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Abstract.4
While students may find spline interpolation quite digestible, based on their familiarity with con-5

tinuity of a function and its derivatives, some of its inherent value may be missed when students only6
see it applied to standard data interpolation exercises. In this paper, we offer alternatives where stu-7
dents can qualitatively and quantitatively witness the resulting dynamical differences when objects8
are driven through a fluid using different spline interpolation methods. They say, seeing is believ-9
ing ; here we showcase the differences between linear and cubic spline interpolation using examples10
from fluid pumping and aquatic locomotion. Moreover, students can define their own interpolation11
functions and visualize the dynamics that unfold. To solve the fluid-structure interaction system,12
the open-source fluid dynamics software IB2d is used. In that vein, all simulation codes, analysis13
scripts, and movies are provided for streamlined use.14
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1. Introduction. Traditionally it is in numerical analysis and scientific com-19

puting courses where students are first introduced to the topic of interpolation. It20

is frequently motivated by posing the seemingly innocent question of, “If handed N21

unique data points, {xj , yj}Nj=0, can you find a polynomial, p(x), with the property22

that p(xj) = yj , ∀j = 0, 1, 2, . . . , N?” It is customary to accompany this question with23

a uniqueness theorem that gives a somewhat surprising result for students - that if24

such a polynomial exists, it must be unique. The proof is even rather elegant [21, 14]!25

What happens next? Well, surely a discussion of how to construct such a polyno-26

mial and alas the standard ways to find such an interpolation polynomial (monomial,27

Newton, and Lagrange) are derived. This effort, in essence, enforces that students28

once again see that existence and uniqueness go together, like peas and carrots.29

This may leave the students usually wondering, “Well, how close is this poly-30

nomial to the actual function from which the data was originally sampled?” Not be31

disappointed, the class dives into estimating the error of such a polynomial, and af-32

ter seeing a few exploitative examples using uniformly spaced nodes [32, 21, 18, 14],33

and going down the rabbit hole of Chebyshev nodes, students see the corresponding34

interpolation error and how it can be minimized.35

If that is the best such a polynomial can do in terms of minimizing the error,36

instructors may encourage their class to contemplate whether there could be any37

other methods to interpolate the original data given. That is, motivating the stu-38

dents to move beyond constructing a single global polynomial that interpolates the39

data, but instead interpolating the data point-by-point. This, of course, leads to the40

introduction of spline interpolation, cubic splines, and/or Bezier curves! Splendid!41

Unfortunately, a genuine difficultly for students during this onslaught of interpola-42

tion techniques, error analysis, and implementation, is sometimes seeing the practical43
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2 N. A. BATTISTA

applications of interpolation. Some possible (surprising) applications for students that44

may be mentioned include how letters are shaped in typography [1, 37], vector graph-45

ics and imaging [36], or data and digital signal processing [35, 23]. However, students46

generally interested in computational science and modeling may not be captivated or47

satisfied with these applications.48

We would like to introduce an application of interpolation that unfortunately falls49

through the cracks for students - the use of interpolation in mathematical modeling,50

and in particular biological fluid dynamics. Simply stated interpolation can be used to51

prescribe the motion of objects. The enticing portion - these objects can be immersed52

within a fluid, where the fluid reacts and moves due to the prescribed motion of said53

object.54

Not sold, yet? Numerous recent scientific studies have used this exact type of55

interpolation to successfully prescribe motion, ranging from diverse fields such as56

heart development [3, 22, 6], aquatic locomotion [19, 2, 12], animal flight [27, 31, 20],57

organismal feeding and filtering [17, 28, 33], and beyond.58

We offer a software alternative that will allow students to test out varying kinds59

of spline interpolation to prescribe the motion between one or more feature states,60

within a framework that provides direct practical scientific applications.61

In the remainder of this paper, we will provide three differing examples of how62

spline interpolation can be used to drive the motion of a structure immersed within63

a fluid, while also comparing different kinds of spline interpolation, e.g., linear and64

higher order polynomial (cubic). This will provide students intuition about splines65

that is not traditionally emphasized in the classroom that can help facilitate greater66

learning and further curiosity in computational science.67

In Section 2 we motivate the ideas of spline interpolation through the presentation68

of a moving circular object immersed in a fluid. In Section 3 we introduce how to pre-69

scribe motion using a cartoon heart pumping example and provide a stencil for how to70

create your own example. In Section 4 we move beyond prescribing the motion of in-71

dividual points to instead interpolate between different material property states of an72

immersed body, e.g., modeling a structure that has time-dependent curvature, which73

gives rise to forward locomotion (swimming)! For details regarding the fluid-structure74

interaction software, see Appendix A, or [4, 10, 9] for a more detailed overview.75

All simulations presented here are available on https://github.com/nickabattista/ib2d76

and can found in the sub-directory IB2d/matIB2d/Examples/Examples Education/77

as well as the Supplementary Materials.78

2. Spline Interpolation: Linear vs. Higher Order Polynomials.79

80

When first introducing splines in numerical analysis, it may fruitful to tell students81

they have already seen an example of a linear spline in Multivariate Calculus, when82

parameterizing curves for line integrals. Have them consider two points, a and b,83

(xa, ya) and (xb, yb), respectively. Students can then parameterize a straight line84

between the two points in a familiar way:85

(2.1) (x(t), y(t)) = h0(t) = a +
t

t1
(b− a),86

for t ∈ [0, t1]. We can see that h0(0) = a and h0(t1) = b. Of course, in calculus87

this is not introduced as a spline and the word interpolation probably doesn’t echo88

off the classroom walls, but that is exactly what this process was - setting up a linear89

spline interpolant between two points. If we had a third point c = (xc, yc), we could90

construct another linear interpolant between the b and c,91
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(2.2) (x(t), y(t)) = h1(t) = b +
t− t1
t2 − t1

(c− b),92

for t ∈ [t1, t2]. We note that h1(t1) = b and h1(t2) = c. The piecewise linear93

interpolant between all three points could then be written as94

(2.3) (x(t), y(t)) =

(
h0(t)
h1(t)

)
=

{
a + t

t1
(b− a) 0 ≤ t ≤ t1

b + t−t1
t2

(c− b) t1 ≤ t ≤ t2
.95

What we have done, although perhaps not emphasized too much in Calculus, is
created a method to prescribe the motion of a point, x around the plane in R2,

a→ b→ c.

There is no reason this cannot extend to a larger collection of points! Instead96

of points a, b, and c, consider the following matrices, where each column contains97

N -(x, y) points, respectively,98

(2.4) A =


xa0 ya0
xa1 ya1
...

...
xaN yaN

 , B =


xb0 yb0
xb1 yb1
...

...
xbN ybN

 , and C =


xc0 yc0
xc1 yc1
...

...
xcN ycN

 .99

We can write an analogous spline interpolant to (2.3) as follows,100

(2.5) (x(t),y(t)) =

(
H0(t)
H1(t)

)
=

{
A + t

t1
(B−A) 0 ≤ t ≤ t1

B + t−t1
t2

(C−B) t1 ≤ t ≤ t2
.101

Example 2.1. Consider the circles given by the following N points {xaj , yaj }Nj=0, {xbj , ybj}Nj=0102

and {xcj , ycj}Nj=0. These are illustrated in Figure 1.103

Fig. 1. 3 circles in the xy plane, each composed of N points.

Next using (2.5), let’s prescribe the motion of these circles starting from State104

A to State B and finally State B to State C for 0 ≤ t ≤ t2, with t1 ∈ (0, t2) The105

This manuscript is for review purposes only.



4 N. A. BATTISTA

positions, (x(t),y(t)) of these interpolated states are illustrated in Figure 2, given by106

the circle in red.107

Fig. 2. Timeslices of the N-point circle moving from State A to State B to State C using the
piecewise linear interpolate to prescribe the motion.

As mentioned earlier, we could imagine that beyond these circles simply moving108

around the xy-plane in a prescribed fashion, one could envision these objects immersed109

within a fluid. This is exactly an example found in IB2d, e.g.,110

Examples Education/Interpolation/Moving Circle/Linear Interp. Immersing111

a circle within a fluid environment and then prescribing its motion will cause the112

fluid to react, and in turn, move in response. This is shown in Figure 3, where the113

colormap illustrates the magnitude of the fluid velocity and vector field represents the114

fluid velocity.115
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FSI FOR THE CLASSROOM: INTERPOLATION! 5

Fig. 3. A circle undergoing prescribed motion in a fluid domain, causing the fluid to move in
response. The colormap illustrates the magnitude of velocity, while the vector field depicts the fluid
velocity itself.

It is evident from Figure 3 that the fluid is moving the fastest right nearest to the116

circle, the immersed object. Students can change the fluid viscosity, µ, or interpolation117

time-points, t1 or t2, to see how the fluid motion changes. Furthermore, students118

can plot the simulation as it runs directly within MATLAB, or they can view the119

data using open-source visualization software, such as VisIt [15], which was used to120

construct Figure 3. Note that this simulation was designed to use a rather unresolved121

grid, e.g., 32× 32, for speed so students can watch the movement of the circle unfold122

directly in MATLAB .123

It should be emphasized that while this example only prescribed the motion of a124

circle, immersed within a fluid, to move between a few predetermined states, this is125

exactly the kind intepolation that is used in a lot of research applications, as mentioned126

in Section 1. One could imagine constructing a much more complex geometrical entity,127

such as a heart, fish, or other immersible structure, and prescribe it to move in rather128

complicated ways in order to test a hypothesis or engineering question!129

From the way the linear interpolant in (2.3) and (2.5) was constructed, it should130

not be a surprise that the interpolant is continuous at all of the interpolation nodes,131

{xj}, that is132

(2.6) hk(tk+1) = hk+1(tk+1).133

At this stage, students are usually encouraged to consider what happens to the134

derivatives at the interpolation nodes. Simply differentiating either (2.3) or (2.5), one135

can show that that this linear interpolating scheme does not guarantee continuous136

derivatives at the nodes. Is this an issue?137

Let’s consider the movement of the circle from Example 2.1. When the circle is138

moving between State A to State B, what happens when t ≈ 0 or t ≈ t1? We want to139

explore how fast the circle moving, its acceleration, and what implications these may140

have on the circle moving around. There are a couple things to consider:141
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6 N. A. BATTISTA

1. First, we see that going from t = 0 to t = ε, where ε > 0, that the structure142

immediately begins to move at a constant speed, the constant speed it will143

move with between 0 ≤ t ≤ t1. This illustrates there is an instantaneous144

acceleration from not moving to moving at its constant speed.145

2. Second, a similar phenomenon happens as t → t1; that is, an instantaneous146

deceleration from moving at its constant to speed to 0.147

3. Third, if we are testing a hypothesis about the natural world or modeling an148

engineering device, no such situation occurs where we see such instantaneous149

accelerations (or decelerations for that matter).150

We can encourage students to ask how can we ensure such accelerations do not151

happen? This can lead to a great discussion on not having enough degrees of freedom152

to enforce continuous derivatives, if we only have piecewise linear interpolating func-153

tions. Students may be obliged to try a polynomial of higher degree to interpolate154

between the positions, such as a quadratic or a cubic.155

Before diving right in, note that the situation we were previously considering had156

the general linear interpolant157

(2.7) h(t) =

(
h0(t)
h1(t)

)
=

{
a + (d0 + d1t)(b− a) 0 ≤ t ≤ t1
b + (d2 + d3t)(c− b) t1 ≤ t ≤ t2

,158

with unknowns, {Dj}3j=0. Whether we knew it or not, we constructed (2.3) and159

(2.5) using the following continuity conditions to find the unknown coefficients:160

(2.8)

h0(0) = a
h0(t1) = b
h1(t1) = b
h1(t2) = c

 continuity161

That is, we had four unknowns, {dj}3j=0, and used four conditions, all based on162

continuity, to find them. At this junction, if we wanted to impose more conditions163

such as continuity across one or more derivatives, we would not have enough degrees164

of freedom, or free parameters, satisfy all the conditions; we would have an over-165

constrained system.166

Rather than use linear interpolation, which lead to instantaneous accelerations,167

let’s try to use a cubic polynomial between successive points. Using a higher order168

polynomial interpolant will also provide more free parameters such that we are able169

to impose more continuity conditions. Keep in mind, although we will try a cubic170

polynomial interpolant, our goal is still interpolating between the two states a =171

(xa, ya) and b = (xb, yb).172

Our goal is to use a familiar form of an interpolant, that looks awfully reminiscent173

of the linear case, but with a cubic function of the parameter, t, for t ∈ [0, 1]. We174

could attempt to use an interpolant such as the following175

(2.9) h(t) = a + g(t)(b− a),176

where g(t) is a cubic polynomial, rather than a line as in (2.7), e.g.,177

(2.10) g(t) = d0 + d1t+ d2t
2 + d33.178

This manuscript is for review purposes only.



FSI FOR THE CLASSROOM: INTERPOLATION! 7

Here we wish for continuity of the function, h(t), continuity in its velocity, h′(t),179

and no instantaneous accelerations (h′′(t) = 0 at the endpoints of the interpolation180

domain in t). However, when we write the conditions we wish to satisfy,181

h(0) = a
h(1) = b

}
continuity182

h′(0) = 0
h′(1) = 0

}
continuous velocities(2.11)183

h′′(0) = 0
h′′(1) = 0

}
no instantaneous accelerations184

185

it is clear that we have an over-constrained system, that is, 6 conditions but only 4186

unknowns, {dj}3j=0. To circumvent this, we can introduce two interpolating mediary187

points, say p1 and p2, such that we partition the interval t ∈ [0, 1] into three regions:188

(1) t ∈ [0, p1], (2) t ∈ [p1 < p2], and (3) t ∈ [p2, 1]. In each of those three regions, we189

could define an independent cubic interpolant, e.g.,190

(2.12) g(t) =

 g0(t) = a0 + a1t+ a2t
2 + a3t

3 0 ≤ t ≤ p1
g1(t) = b0 + b1t+ b2t

2 + b3t
3 p1 ≤ t ≤ p2

g2(t) = c0 + c1t+ c2t
2 + c3t

3 p2 ≤ t ≤ 1
.191

Upon imposing the conditions from (2.11) onto (2.12), we see that now we have192

12 degrees of freedom but only 6 equations, leaving us with an under-constrained193

system. If we were to think physically about this, at the interfaces t = p1 and t = p2,194

we would want continuity of our interpolating functions and their first and second195

derivatives, providing continuity in velocity and acceleration, respectively. Hence the196

piecewise cubic interpolating functions must satisfy the following constraints:197

g0(0) = 0
g2(1) = 1

g0(p1) = g1(p1)
g1(p2) = g2(p2)

 continuity198

g′0(0) = 0
g′2(1) = 0

g′0(p1) = g′1(p1)
g′1(p2) = g′2(p2)

 continuous velocities(2.13)199

g′′0 (0) = 0
g′′2 (1) = 0

g′′0 (p1) = g′′1 (p1)
g′′1 (p2) = g′′2 (p2)

 no instantaneous accelerations200

201

This gives the following linear system to solve, with variables, p1 and p2,202
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(2.14)

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 p1 p21 p31 −1 −p1 −p21 −p31 0 0 0 0
0 1 2p1 3p21 0 −1 −2p1 −3p21 0 0 0 0
0 0 2 6p1 0 0 −2 −6p1 0 0 0 0
0 0 0 0 1 p2 p22 p32 −1 −p2 −p22 −x23

0 0 0 0 0 1 2p2 3p22 0 −1 −2p2 −3p22
0 0 0 0 0 0 2 6p2 0 0 −2 −6p2
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 2 3
0 0 0 0 0 0 0 0 0 0 2 6





a0
a1
a2
a3
b0
b1
b2
b3
c0
c1
c2
c3



=



0
0
0
0
0
0
0
0
0
1
0
0



203

As an example, if we let p1 = 0.25 and p2 = 0.925, upon solving (2.14), we find204

the coefficients to be approximately205

(2.15)

a0 = 0 b0 = 0.123 c0 = −16.778
a1 = 0 b1 = −1.481 c1 = 53.333
a2 = 0 b2 = 5.923 c2 = −53.333
a3 = 4.324 b3 = −3.577 c3 = 17.778.

206

A plot of the resulting interpolant, h(t), h′(t), and h′′(t) is provided in Figure 4.207

It is clear that all the conditions sought after in (2.13) are satisfied. Moreover by208

introducing two new parameters p1 and p2, we can essentially control the acceleration209

of the interpolated motion. The script used to solve this system is provided in the210

Supplemental Materials, e.g., the interp Function Coeffs.m script.211

Fig. 4. Plots of the piecewise cubic interpolant, h(t), its derivative, h′(t), and its second
derivative, h′′(t), for p1 = 0.25 and p2 = 0.925 for 0 ≤ t ≤ 1, respectively.

As p1 → 0 (or p2 → 1), the initial acceleration (or final deceleration) becomes212

larger in magnitude. In practice we can use the parameters p1 and p2 to match the213

acceleration to the kinematics coming from a biological system or engineering system.214

These parameters p1 and p2 may actually provide a beneficial tool for capturing the215

correct kinematics of a system in a mathematical model!216

Next, in Example 2.2, we will illustrate qualitative differences in the fluid dynam-217

ics when using a cubic interpolant rather than linear interpolant, as is in the previous218

example. The corresponding source code for this example with a cubic interpolant is219

found in Examples Education/Interpolation/Moving Circle/Cubic Interp.220
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Example 2.2. In this example we will use the same prescribed motion described in221

Example 2.1; however, we will use two different interpolation polynomials - one linear222

and one cubic to interpolate between successive states. Using the cubic interpolant223

that was determined above, with p1 = 0.25 and p2 = 0.925, we ran simulations and224

compared the results to those when using the linear interpolation scheme.225

Simulations were compared at time-points when the circle would be accelerating226

or decelerating between State A → B and the acceleration at the very beginning of227

State B → C. This is illustrated in Figure 5, where the magnitude of velocity is used228

to demonstrate qualitative differences in the underlying fluid motion. It is clear that229

when using different interpolants to prescribe the motion between two states, it can lead230

to significant differences in the fluid motion. Movies illustrating the dynamical differ-231

ences are provided in the Supplemental Materials (Supplemental/Circles/Linear Interp232

or Supplemental/Circles/Cubic Interp).233

Fig. 5. Images illustrating qualitative differences in the magnitude of velocity when using linear
and cubic interpolants. Snapshots were taken when the circles were accelerating and decelerating
from Phase A→ B, and then accelerating from Phase B → C.

We note that in both cases the circle moves between States A ↔ B and B ↔234

C with the periods t1 = 0.01 and t2 = 0.02, respectively. In fact, qualitatively it235

appears that in both cases the circles look like they maybe moving in the same way;236

however, there are clear dynamical differences as seen by the underlying fluid velocity.237

Again, this is because the velocity and acceleration/deceleration of the circles moving238

between the states is significantly different. This is an important aspect that should239

get proper attention when mathematically modeling using prescribed motion. Not only240
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is it important to make the an object begin and end in the right place, but we must241

also make sure the way it moves between the states is biologically (or scientifically)242

relevant! Introducing higher order polynomial interpolants is a convenient way to243

introduce more degrees of freedom into a model, so it is able capture more kinematic244

accuracy.245

3. Interpolation and beating hearts: a virtual walk through.246

247

Here we present an example of how to implement an object’s prescribed motion248

within the IB2d software. We will consider the motion of a beating cartoon heart,249

that is, a heart that goes between two states, one larger and one smaller, see Figure250

6. The hole in the heart is to allow fluid to flow in and out of it, thereby obeying fluid251

volume conversation.252

Fig. 6. Moving between States A and B to model a beating heart.

Running the simulation found in Examples Education/Interpolation/Beating Heart,253

will produce data that can be visualized, as in Figure 7. The corresponding movie is254

provided in the Supplemental Materials (Supplement/Pulsing Heart). We are using255

the same cubic interpolation scheme that was discussed in Section 2 to move between256

State A → B and then State B → A with periods t1 and t2, respectively. However257

we also introduce an intermediate resting state of length tR, before moving back from258

State B→A to introduce additional possible model complexity.259
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Fig. 7. Snapshots of a simulation of a beating cartoon heart that is immersed within a fluid.
The colormap depicts the underlying pressure, while the vector field depicts the fluid velocity itself.

We will now dive into detail on how to implement the cubic interpolant to pre-260

scribe motion. Although, a beating heart example is introduced here, it should be261

noted that this will work for just about any geometry, as long as each state has both262

the same number of points, is ordered consistently, and has a ‘hole’ to obey volume263

conversation.264

The script that actually prescribes the motion is update Target Point Positions.m.265

This script does the following three things:266

1. Specify the period spent moving between states and initialize the267

cubic interpolant .268

269

We initialize the time spent in each phase moving between A → B, resting,270

and finally B → A as t1, tR, and t2, respectively. We also specify the param-271

eters for the specific cubic interpolant we are going to use to move between272

States, that is, the coefficients of the cubic interpolant in each sub-phase,273

{aj , bj , cj}3j=0, and location of the interpolation nodes, p1 and p2. The values274

of p1 and p2 were chosen to be 0.25 and 0.925, respectively, which is the same275

case as in Section 2.276

277

Note we also define a period of the total heart beat to be the sum of all the278
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subsequent phases, t1 + tR + t2, and use modular arithmetic, with respect279

to said period, for an adjusted time in the simulation in order to simulate280

repetitive heartbeats.281

Fig. 8. Initializing the time for each phase of motion as well as the cubic interpolant’s coeffi-
cients from Section 2.

282

283

2. Read in the points associated for States A and B.284

285

Next we read in the (x, y) positions for each state into N × 2-sized matrices,286

where the columns give the x and y positions, respectively.287

Fig. 9. Reading in the (x,y) positions for States A and B into matrices A and B.

For completeness the code that reads in the data from the files State A.pts288

and State B.pts is shown below.289
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Fig. 10. Function that reads in the (x, y) point data.

We note that the information contained within the files State A.pts and290

State B.pts are lists of the x and y points for each phase, respectively. If291

you would like to substitute your own shape, rather than use a heart, one only292

needs to create .txt files that contain their own (x, y) point geometries. Note293

you must also make the .vertex file contain the (x, y) positions of the first294

state as well as include a similarly constructed .target file, see the Tutorials295

in Appendix A.1 for further details.296

297

298

3. Check which phase of the beating heart it’s in, e.g., contraction or299

expansion, and then update the target point positions to which pre-300

scribes the motion of the beating heart .301

302

Upon checking to see which phase of the simulation the adjusted time cur-303

rently relates to gives three state possibilities: either the simulation is between304

States A→ B or States B → A, or no motion is being prescribed, e.g., heart305

is in a rest state.306

307

For example, if the simulation time, t, is less than the period moving from308

A → B, the script then inquiries to find the point between State A and B309

that it is in, that is, it scales the time appropriately to t̃ = t/t1, so that it is310

possible to compare t̃ to the interpolation nodes, p1 and p2.311
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Fig. 11. Checks to see which phase of the motion the adjusted simulation time currently relates
to and then updates the position of the target points in the x and y directions, which will effectively
drive the motion of the beating heart.

4. Interpolation between material property states: it swims!. Ready,312

Set, Swim! Here we present a simple, idealized model of anguilliform locomotion -313

swimming. Here we do not wish to prescribe the exact kinematics of the swimmer’s314

locomotive patterns, but rather we will only model how the swimmer’s body switches315

between two preferred curvature states. This is a biologically relevant modeling as-316

sumption as muscle activation patterns produce specific intrinsic curvatures for a317

swimmer’s body [24, 25, 16]. By switching between two different curvature states,318

the swimmer’s body bends and contorts, and locomotion emerges due to the swim-319

mer’s interactions with the surrounding fluid. How can model the process of switching320

between curvature states? That’s right; you guessed it - interpolation!321

We must first get in the water before we can swim; let’s begin with the shape322

of the swimmer. To create a simplified scenario, the idealized swimmer’s body was323

constructed by taking a line segment and attaching a polynomial section to it, see324

Figure 12, adapted from [9]. Thus the swimmer’s geometry (morphology) is modeled325

as an infinitely thin 1D curve only. The straight portion composes 28% of the total326

length of the body, while the polynomial, i.e., y = x3, portion makes up the remaining327

72%. The polynomial section was determined by starting at x = 0 and adding equally328

spaced points until x = L/10.329
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Fig. 12. The two phases, in which, the preferred curvature was interpolated between to cause
forward swimming, adapted from [9].

Note that all the points are equally spaced at a distance twice of that of the330

fluid mesh (ds = 2dx). Each phase was defined by negating the y-coordinate of the331

polynomial portion of the body. The “curvatures” were computed as follows (to tie332

into the IB2d framework, see [9]):333

(4.1)
CP

x = xPLag(s)− 2xPLag(s+ 1) + xPLag(s+ 2)

CP
y = yPLag(s)− 2yPLag(s+ 1) + yPLag(s+ 2)

334

where s runs over all Lagrangian points along the swimmer’s body and P refers to335

Phase 1 or 2.336

This intrinsic curvature is the quantity we will now interpolate between. We337

are no longer interpolating between explicit positions, but instead material property338

states! Although seemingly different, the mathematics (spline interpolation) works339

out exactly the same. In lieu of changing explicit coordinates (or positions), we now340

update the curvatures, CP
x and CP

y in the update nonInv Beams.m script.341

We also define the downstroke and upstroke to be moving between Phase 1 to342

Phase 2 and Phase 2 to Phase 1, respectively. Furthermore we also define 1 stroke343

period to encompass both the upstroke and downstroke. The same interpolation344

rigmarole, as in Section 3, follows.345

Running the simulation found in Examples Education/Interpolation/Swimmer/Single Swimmer346

will produce locomotion data that can be visualized as in Figure 13. This figure shows347

the idealized anguilliform swimmer moving forward due to vortices being shed off its348

caudal end during each stroke. The background colormap represents the fluid’s vor-349

ticity, e.g, the local swirling motion of the fluid (mathematically given by the curl of350

the velocity field, ∇× u(x, t)). The corresponding movie to Figure 13 is provided in351

the Supplementary Materials (Supplemental/Swimmer/Individual Swimmer/). Fur-352

thermore, we can quantitatively track the position of the swimmer’s head over time,353

using the script Individual Swimmer Analysis.m, to see what its forward swimming354

patterns (and performance) looks like, see Figure 14.355
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Fig. 13. An idealized anguilliform swimmer progressing forward due to continually changes in
the preferred curvature of its configuration with a stroke frequency f = 1.0s−1. The background
colormap illustrates the fluid’s vorticity.

Fig. 14. Swimming performance of the single anguilliform swimmer shown in Figure 13. (a)
Distance (bodylengths) vs number of strokes performed and (b) velocity (bodylengths/stroke) vs.
number of strokes performed.

At this point while we have a single simulation of one anguilliform swimmer, there356

are many interesting questions one could ask, including a plethora of interesting bio-357

logical questions. However, we will first focus on how subtle changes in interpolating358

between curvature states affects swimming performance. Note that for the simulation359

shown in Figure 13 that (p1, p2) = (0.1, 0.9). In particular, we will ask three questions:360

1. What happens when the interpolation mediary points p1 and p2 are changed?361

Remember these points help dictate the acceleration and velocity profile of362

the interpolation (see Section 2).363

2. What happens if we make the interpolation mediary points (p1, p2) asymmet-364

ric (e.g., say if p1 = 0.1 and p2 = 0.5 rather than p2 = 0.9)?365

3. What happens if we have an asymmetric stroke pattern? (For example, if the366

upstroke is 25% of the total period while the downstroke is only 75%?)367
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Lastly, we can have a little fun with our swimmer, taking advantage of the fact it is368

immersed in a fluid, and ask how does changing the fluid environment affect swimming369

performance? To change its fluid environment, we will only have to vary the fluid’s370

viscosity. This effectively asks how the swimmer performs in stickier and stickier fluid371

environments, like going from water to corn syrup. For those with previous experience372

in fluid dynamics, this equates to looking how swimming performance varies over a373

range of Reynolds Numbers, Re.374

It is important to note that while asking these questions (and hopefully making375

hypothesis) we are only changing one parameter of a single simulation at a time,376

whether that it is (p1, p2), the upstroke and downstroke percentages of the total377

period, or the fluid’s viscosity.378

4.1. Changing (p1, p2) symmetrically. First we will investigate how the choice379

of interpolation mediary points (p1, p2) affects swimming performance of our idealized380

anguilliform swimmer. These simulations are found in Examples Education/Interpolation/Swimmer/Case1.381

We will vary the (p1, p2) points symmetrically about the interpolation interval and382

consider the following cases:383

1. (p1, p2) = (0.1, 0.9)384

2. (p1, p2) = (0.2, 0.8)385

3. (p1, p2) = (0.3, 0.7)386

4. (p1, p2) = (0.4, 0.6)387

Upon varying these points, we need to make sure that our interpolation function388

is consistent, that is, we need to solve the linear system described in Section 2 ac-389

cordingly to get the proper coefficients for the spline interpolant. These coefficients390

are listed in Supplement 2 of the Supplementary Materials. Once calculated, we can391

modify the update nonInv Beams.m script, which performs the curvature interpola-392

tion.393

We will now compare the interpolation profiles (h(x), h′(x), and h′′(x)) for two394

cases: (p1, p2) = {(0.1, 0.9), (0.4, 0.6)} . Comparison plots are given in Figure 15. We395

note that in every case we still have continuous first and second derivatives; however,396

the velocity and acceleration profiles are significantly different.397

Fig. 15. Plots of the piecewise cubic interpolant, h(t), its derivative, h′(t), and its second
derivative, h′′(t), with 0 ≤ t ≤ 1, for varying (p1, p2) symmetrically chosen.
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Fig. 16. Snapshots from simulations for the case of symmetric interpolation points, given by
(p1, p2) ∈ {(0.1, 0.9), (0.2, 0.8), (0.3, 0.7), (0.4, 0.6)}.

Upon running the aforementioned simulations, it is evident that changing (p1, p2)398

affects swimming performance! Snapshots from the simulation are given in Figure399

16. Note that although the swimmer’s position from each case are over laid on each400

other, each simulation was independently performed; there are no swimmer-swimmer401

interactions. The case when (p1, p2) = (0.4, 0.6) appears in the lead after 6 strokes402

followed by cases (0.3, 0.7), (0.2, 0.8), and then (0.1, 0.9), respectively. The faster cases403

correspond to higher magnitudes of velocity and acceleration, see Figure 15. We also404

present the distance swam vs. swimming stroke as well as forward swimming speed405

vs. stroke in Figure 17, which further confirms those results. Furthermore, both peaks406

in the forward swimming speed’s waveform are also higher in the faster cases. The407

corresponding movie for these simulations is provided in the Supplementary Materials408

(Supplemental/Swimmer/Case1/).409

Fig. 17. (a) Forward distance swam and (b) forward velocity vs. swimming strokes performed
in the case of symmetric interpolation points (p1, p2) in [0, 1].

Simply changing the interpolation mediary points, p1 and p2, affects swimming410

performance even when everything else remains the same - the same cubic spline-411

based interpolating function , the same upstroke and downstroke periods, and the412

same fluid environment! Next we will once again ask how swimming performance is413

affected if we again change the interpolation points p1 and p2, but this time place414

them asymmetrically about the interpolation window [0, 1].415

4.2. Changing (p1, p2) asymmetrically. Here we will again will inquire into416

how changing the interpolation mediary points (p1, p2) affects swimming performance,417
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but this time choose p2 such that interpolation points are not symmetric within the in-418

terpolation interval [0, 1]. These simulations are found in Examples Education/Interpolation/Swimmer/Case2.419

We selected the following (p1, p2) cases:420

1. (p1, p2) = (0.1, 0.9)421

2. (p1, p2) = (0.1, 0.7)422

3. (p1, p2) = (0.1, 0.5)423

4. (p1, p2) = (0.1, 0.3)424

It is important to note that in this section, although we are asymmetrically varying425

p2 about the interpolation interval, both the upstroke and downstroke have the same426

period. The only difference is that the rate of change of the interpolating function427

h(t) during each portion of the stroke.428

Again, to ensure that the interpolation function is consistent, we solve the linear429

system described in Section 2 for each different set of interpolation points, (p1, p2).430

These coefficients are listed in Supplement 2 of the Supplementary Materials and are431

used in each corresponding update nonInv Beams.m script to perform the curvature432

interpolation.433

Fig. 18. Plots of the piecewise cubic interpolant, h(t), its derivative, h′(t), and its second
derivative, h′′(t), with 0 ≤ t ≤ 1, for varying (p1, p2) asymmetrically chosen.

The interpolation profiles h(t), h′(t), and h′′(t) look strikingly different than those434

shown in Section 4.1 due to the asymmetry introduced by choice of p1 and p2. The435

profiles are given in Figure 18.436

Fig. 19. Snapshots from simulations for the case of asymmetric interpolation points, given by
p1 = 0.1 and p2 ∈ {0.3, 0.5, 0.7, 0.9}.

As hopefully hypothesized, the dynamics are different between each swimmer for437

the above cases; however, perhaps surprisingly, there appears to be less variation than438

the previous case of symmetric (p1, p2) choices in terms of forward swimming perfor-439

mance. Snapshots of the four swimmers are shown in Figure 19. In this case there440
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was a non-linear relationship with choice of p2 and how fast the swimmer went, e.g.,441

the case with p2 = 0.5 was the fastest, followed by p2 = 0.7, then 0.3, and finally442

0.9. This is confirmed when analyzing the data, shown in Figure 20, which gives the443

distance swam vs. swimming stroke as well as forward swimming velocity vs. stroke.444

The corresponding movie of these simulations is provided in the Supplementary Ma-445

terials (Supplemental/Swimmer/Case2/). What do you think happens if we again446

sweep over p2 = {0.3, 0.5, 0.7, 0.9} but choose a different p1, where p1 ∈ (0, p2)?447

Fig. 20. (a) Forward distance swam and (b) forward velocity vs. swimming strokes performed
in the case of asymmetric interpolation points, given by p1 = 0.1 and p2 = {0.3, 0.5, 0.7, 0.9}.

While Sections 4.1 and 4.2 used different interpolation mediary points, p1 and448

p2, they both used the same upstroke and downstroke periods as well as same fluid449

environment, e.g., fluid density and viscosity were the same. We will now investi-450

gate variances in swimming performance due to varying stroke periods, followed by451

changing the fluid environment via varying the fluid’s viscosity.452

4.3. Making asymmetric stroke periods. In this case we will keep the in-453

terpolation points fixed at (p1, p2) = (0.1, 0.9) and fix the stroke period to T = 2.0s454

(frequency of 0.5 Hz). We then asymmetrically vary the upstroke (UPS) and down-455

stroke (DWS) percentages of the total stroke period (T ). Recall that earlier we defined456

one stroke to be the upstroke and downstroke periods added together. To that end,457

we simulated the following cases:458

1. UPS = DWS, e.g., (UPS,DWS)=(50%T,50%T)459

2. UPS = 75% DWS, e.g., (UPS,DWS)=(42.9%T,57.1%T)460

3. UPS = 50% DWS, e.g., (UPS,DWS)=(33%T,0.66%T)461

4. UPS = 25% DWS, e.g., (UPS,DWS)=(20%T,0.80%T)462

Note that although we have made each portion of a single full stroke have a differ-463

ent sub-period, we can still use the same piecewise interpolant, h(t), to interpolate be-464

tween each! These simulations are found in Examples Education/Interpolation/Swimmer/Case3.465

This manuscript is for review purposes only.



FSI FOR THE CLASSROOM: INTERPOLATION! 21

Fig. 21. Snapshots from simulations with varying upstroke and downstroke percentages of a
single stroke period.

As the UPS percentage of a stroke decreases, the upstroke happens faster. How-466

ever, although the swimmer that swims forward the fastest also has the quickest UPS,467

having a faster UPS does not always equate to a faster forward swimming speed, see468

Figures 21 and 22. The initial acceleration of the UPS=25%DWS case is the slowest469

but eventually it starts outswimming the others - truly a tortoise and a hare story470

(well not exactly, biologically). Figure 21 gives snapshots of the four swimmers and471

Figure 22 presents the distance swam vs. swimming stroke as well as forward swim-472

ming velocity vs. swimming stroke. The corresponding movie of these simulations is473

provided in the Supplementary Materials (Supplemental/Swimmer/Case3/). Inter-474

estingly, due to the asymmetric UPS and DWS, the swimming velocity profiles look475

significantly different than those in Figures 17 and 20. In particular, the waveforms476

appear trimodal rather than bimodal, which were observed in the cases of varying477

(p1, p2), especially in the cases of UPS = 25% DWS and UPS = 50% DWS.478

What do you think would happen if we redid this same analysis, but with a479

different (p1, p2)? Or if we varied the stroke frequency cycle-by-cycle during the480

simulation?481

Fig. 22. (a) Forward distance swam and (b) forward velocity vs. swimming strokes performed
in the case of asymmetric upstroke and downstroke periods.

4.4. Changing the fluid viscosity (Re). Finally, we will consider what hap-482

pens if we put the swimmer in varying fluid environments, via changing the fluid’s483

viscosity. This equates to placing the swimmer in less or more of a viscous fluid.484

Examples of highly viscous fluids include things like honey or corn syrup, or fluids485
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that are generally “thicker” or ”more sticky”, while less viscous fluids, like water, are486

considerably less so. For these numerical experiments we keep all other parameters487

the same, i.e., all the interpolation parameters, upstroke and downstroke periods, ge-488

ometry, etc. We considered fluid dynamic viscosities, µ, across 5 orders of magnitude489

from 0.05 to 5000. Note that the viscosity considered in all previous cases (Sections490

4.1-4.3) was µ = 10.491

As briefly stated earlier, this is equivalent to varying the Reynolds Number, Re,492

which describes the ratio of inertial to viscous forces, which is quantitatively given by493

(4.2) Re =
ρV L

µ
.494

Note that ρ and µ are the fluid’s density and dynamic viscosity, respectively, while L495

and V are characteristic length and velocity scales for the system. We will not go into496

more depth regarding Reynolds Number; more information regarding Re “scaling”497

studies can be found in [13, 19, 11, 7, 5, 26]. Let’s see how these idealized swimmers498

perform in different viscosities!499

Fig. 23. Snapshots from simulations with varying fluid viscosities.

Snapshots from simulations of various swimmers in fluids with different viscosities500

are provided in Figure 23. The corresponding movie is provided in the Supplemen-501

tary Materials (Supplement/Swimmer/Viscosity Race/). Qualitatively it appears502

that swimming performance of our idealized anguilliform swimmer decreases as vis-503

cosity increases. When the fluid is “thick” or “sticky”-enough, the swimmer may not504

even able to move forward with this set of model parameters (see the µ = 5000 case)505

unlike its anguilliform counterparts in less viscous fluid! This is confirmed in Figure506

24, which gives the distance swam (bodylengths) vs. swimming strokes performed507

and average forward swimming speed (bodylengths/stroke) vs viscosity (µ). Interest-508

ingly, it appears that this particular anguilliform swimmer has a maximum speed at a509

particular viscosity around µ ∼ 5. That is, in this model of anguilliform locomotion,510

simply putting the swimmer into less and less viscous fluid will not always result in511

a faster swimming speed. How do you think this would change if you varied some of512

the interpolation parameters, (p1, p2), or the stroke frequency?513

This manuscript is for review purposes only.



FSI FOR THE CLASSROOM: INTERPOLATION! 23

Fig. 24. (a) Forward distance swam vs swimming strokes performed and (b) swimming speed
(bodylengths/stroke) vs. viscosity.

5. Discussion. Hopefully this has convinced you that there are some practical514

uses of interpolation in mathematical modeling, which are not generally discussed515

in traditional numerical analysis settings. In this paper we illustrated a few of the516

possibilities when applying spline interpolation techniques to mathematical modeling,517

including prescribing movement patterns (Sections 2 and 3) and material property518

states (Section 4). In particular, we demonstrated the following practical aspects of519

interpolation in mathematical modeling:520

1. Interpolation can be used to prescribe the motion of an object.521

2. Interpolation can be used to switch between different material property states522

of an object, which can give rise to unsuspecting, interesting dynamics.523

3. When using spline interpolants, the number of continuous derivatives affects524

the resulting dynamics of the system. That is, it does not only matter that525

you get from A to B, but also how you get there, in terms of velocities and526

accelerations.527

4. Thus to relinquish modeling artifacts, one could design their interpolant to528

match observed velocities and accelerations from experimental data, if possi-529

ble.530

5. Even when not prescribing the precise movement of an object, but rather531

the object’s material property states (e.g., curvature), changing the spline532

interpolant affects the system’s outcome.533

6. In fact, subtly changing aspects of the interpolant can lead to significant534

changes in the unveiling dynamics.535

We note that the simulations in Sections 2 and 3 were designed on a coarse mesh so536

that students can run them locally on laptops in a manner of a few minutes. However537

the swimmer simulations in Section 4 were constructed on much finer meshes, which538

have been observed to be required for locomotion previously [8]. Each of the swimmer539

simulations takes on the order of ∼ 2 hours on a personal machine (∼4-16GB RAM,540

∼2-3GHz processor). In all of these examples, students have the opportunity to541

experience scientific computing research in practice, e.g., simulations that can greatly542

vary in computational time, produce a lot of data with non-trivial data analysis, and543

open the floor for discussions on effective data visualization.544

The main purpose of this work was to bring interpolation to life for students, al-545

lowing them to visually witness how subtle differences in interpolation techniques can546
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lead to significant differences in dynamics, particular within mathematical models.547

For this reason all codes, both simulation and analysis scripts, are made available.548

To that extent, this work allows students the opportunity to ask a variety of ques-549

tions (e.g., such as those posed in Section 4), explore, and chase their answers. This550

encourages students to ‘play’ in a numerical and mathematical setting, experienc-551

ing mathematical material in a possibly unfamiliar way. Francis Su, former MAA552

President, has publicly said, “Play is part of human flourishing. You cannot flourish553

without play. And if mathematics is for human flourishing, we should “play up” the554

role of play in how we teach and who we teach. . . and teaching play is hard work”555

[34]. Granting students opportunities to take what can sometimes be digestible, but556

dry material, such as interpolation, and allowing them to get their hands dirty by557

experiencing its utility in mathematical models at the interface of education and con-558

temporary research, could have a profound impact on their future mathematical or559

scientific journeys.560
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Appendix A. Details regarding IB2d and the Immersed Boundary577

Method (IB).578

Here we will touch upon the major points regarding the fluid-structure interaction579

software used for computations, IB2d, as well as the numerical method it is built upon,580

the immersed boundary method (IB).581

A.1. IB2d . Biological fluid dynamics is a vast subject, in which nearly encom-582

passes the entire natural world around us. From the way birds fly, fish swim, or the583

way you’ve taken a couple breaths in the past few seconds, fluid dynamics, or more584

precisely, fluid-structure interactions are ever present. Unfortunately, for such a sig-585

nificant practical area of mathematical modeling, it traditionally comes with a very586

steep learning curve, making it challenging to teach educational modules or give stu-587

dents meaningful first hand experience in course projects. Our open source software,588

IB2d, was designed specifically for these purposes. It has two full implementations in589

high-level programming environments most familiar to most undergraduate students,590

MATLAB and Python.591

IB2d was created to be used for both teaching and research purposes. It comes592

equipped with over 60 built in examples that allow students to explore the world593

of fluid dynamics and fluid-structure interaction, from examples that illustrate fluid594
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dynamics principles, such as flow around a cylinder for multiple Reynolds Numbers595

or the Rayleigh-Taylor Instability, to examples that purely illustrate interactions of596

a fluid with different immersed structure material properties to biological examples,597

such as jellyfish locomotion or embryonic heart development. Some of these examples598

are highlighted in [4, 10, 9]. Therefore IB2d can be used for either course projects or599

homework assignments for a multitude of courses, ranging from mathematical mod-600

eling and mathematical biology courses to fluid mechanics to scientific computing. It601

has also been used for research purposes [29, 26].602

For these reasons, there have been tutorial videos created to help acquaint one603

with the software. All tutorial videos be found at github.com/nickabattista/IB2d:604

• Tutorial 1: https://youtu.be/PJyQA0vwbgU605

An introduction to the immersed boundary method, fiber models, open source606

IB software, IB2d, and some FSI examples!607

• Tutorial 2: https://youtu.be/jSwCKq0v84s608

A tour of what comes with the IB2d software, how to download it, what Exam-609

ple sub-folders contain and what input files are necessary to run a simulation610

• Tutorial 3: https://youtu.be/I3TLpyEBXfE611

The basics of constructing immersed boundary geometries, printing the ap-612

propriate input file formats, and going through these for the oscillating rub-613

berband example from Tutorial 2614

• Tutorial 4: https://youtu.be/4D4ruXbeCiQ615

The basics of visualizing data using open source visualization software called616

VisIt (by Lawrence Livermore National Labs). Using the oscillating rubber-617

band from Tutorial 2 as an example to visualize the Lagrangian Points and618

Eulerian Data (colormaps for scalar data and vector fields for fluid velocity619

vectors)620

More explicit details about IB2d ’s functionality can be found in [4, 10, 9].621

A.2. Governing Equations of IB. In this section we will introduce the equa-622

tions of fluid motion and how they can be coupled with the motion and deformations623

of an immersed body. The conservation of momentum equations that govern an624

incompressible and viscous fluid are written as the following set of coupled partial625

differential equations,626

(A.1) ρ
[∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

]
= −∇p(x, t) + µ∆u(x, t) + F(x, t)627

628

(A.2) ∇ · u(x, t) = 0629

where u(x, t) is the fluid velocity, p(x, t) is the pressure, F(x, t) is the force per unit630

area applied to the fluid by the immersed boundary, ρ and µ are the fluid’s density631

and dynamic viscosity, respectively. The independent variables are the time t and the632

position x. The variables u, p, and F are all written in an Eulerian frame on the fixed633

Cartesian mesh, x. We note that (A.1) is the conversation of momentum, while (A.2)634

is the conversation of mass, for an incompressible fluid.635

The equations that couple the motion of the fluid to deformations of the structure636

are written as integral equations. These interaction equations handle all communi-637

cation between the fluid (Eulerian) grid and immersed boundary (Lagrangian grid).638
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They are given as the following integral equations with delta function kernels,639

F(x, t) =

∫
f(s, t)δ (x−X(s, t)) ds(A.3)640

U(X(s, t)) =

∫
u(x, t)δ (x−X(s, t)) dx(A.4)641

642

where f(s, t) is the force per unit length applied by the boundary to the fluid as643

a function of Lagrangian position, s, and time, t, δ(x) is a three-dimensional delta644

function, and X(s, t) gives the Cartesian coordinates at time t of the material point645

labeled by the Lagrangian parameter, s. The Lagrangian forcing term, f(s, t), gives646

the deformation forces along the boundary at the Lagrangian parameter, s. (A.3)647

applies this force from the immersed boundary to the fluid through the external forcing648

term in (A.1). Equation (A.4) moves the boundary at the local fluid velocity. This649

enforces the no-slip condition. Each integral transformation uses a three-dimensional650

Dirac delta function kernel, δ, to convert Lagrangian variables to Eulerian variables651

and vice versa.652

The way deformation forces are computed, e.g., the forcing term, f(s, t), in the653

integrand of (A.3), is specific to the application. To either hold the geometry nearly654

rigid or prescribe the motion of the immersed structure, all of the Lagrangian points655

along the immersed boundary are tethered to target points. They can do this through656

a penalty force formulation of f(s, t). In this paper, in Sections 2 and Section 3, we657

have used target points to prescribe the motion of the immersed structure. The658

penalty force was written in the following way,659

(A.5) f(s, t) = ktarg (Y(s, t)−X(s, t)) ,660

where ktarg is a stiffness coefficient and Y(s, t) is the prescribed position of the target661

boundary. Note that Y(s, t) is a function of both the Lagrangian parameter, s, and662

time, t, and that in these models ktarg was chosen to be large so that it would663

effectively drag the Lagrangian points into the preferred positions.664

In Section 4, we construct a swimmer that is composed of springs and beams.665

Springs allow for stretching and compressing of the successive Lagrangian points,666

while beams allow for bending. Their corresponding deformation force equations can667

be written as the following,668

Fspr = −kspr
(

1− RL

||XS −XM ||

)
· (XM −XS) .(A.6)669

Fbeam = −kbeam
∂4

∂s4

(
X(s, t)−XB(s, t)

)
,(A.7)670

671

where kspr and kbeam are the spring stiffness and beam stiffness coefficients for springs672

and beams, respectively. For the linear spring forces, the terms XM and XS represent673

the positions in Cartesian coordinates of the master and slave Lagrangian nodes at674

time, t, and RL is the spring’s corresponding resting length. For the bending force,675

XB(s, t) represents the preferred curvature of the configuration at time, t. We note676

that in the swimmer model of Section 4, we interpolate between different curvature677

states given by different configurations of Xa
B(s, t) and Xb

B(s, t), rather than interpo-678

late between positions in space for the swimmer.679

Using delta functions as the kernel in (A.3)-(A.4) is the heart of IB. To approx-680

imate these integrals, discretized (and regularized) delta functions are used. We use681

This manuscript is for review purposes only.



FSI FOR THE CLASSROOM: INTERPOLATION! 27

the ones given from [30], e.g., δh(x),682

(A.8) δh(x) =
1

h3
φ
(x
h

)
φ
(y
h

)
φ
( z
h

)
,683

where φ(r) is defined as684

(A.9) φ(r) =


1
8 (3− 2|r|+

√
1 + 4|r| − 4r2), 0 ≤ |r| < 1

1
8 (5− 2|r|+

√
−7 + 12|r| − 4r2), 1 ≤ |r| < 2

0 2 ≤ |r|.
685

A.2.1. Numerical Algorithm. As stated in the main text, we impose periodic686

and no slip boundary conditions on a rectangular domain. To solve A.1), (A.2),(A.3)687

and (A.4) we need to update the velocity, pressure, position of the boundary, as well688

as the force acting on the boundary at time n + 1 using data from time n. The IB689

does this in the following steps [30, 10]:690

Step 1: Find the force density, Fn on the immersed boundary, from the current691

boundary configuration, Xn.692

Step 2: Use (A.3) to spread this boundary force from the Lagrangian boundary693

mesh to the Eulerian fluid lattice points.694

Step 3: Solve the Navier-Stokes equations, (A.1) and (A.2), on the Eulerian grid.695

Upon doing so, we are updating un+1 and pn+1 from un, pn, and fn.696

Step 4: Update the material positions, Xn+1, using the local fluid velocities,697

Un+1, computed from un+1 and (A.4).698
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