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FLUID-STRUCTURE INTERACTION FOR THE CLASSROOM:
INTERPOLATION, HEARTS, AND SWIMMING! *

NICHOLAS A. BATTISTA'

Abstract.

While students may find spline interpolation quite digestible, based on their familiarity with con-
tinuity of a function and its derivatives, some of its inherent value may be missed when students only
see it applied to standard data interpolation exercises. In this paper, we offer alternatives where stu-
dents can qualitatively and quantitatively witness the resulting dynamical differences when objects
are driven through a fluid using different spline interpolation methods. They say, seeing is believ-
ing; here we showcase the differences between linear and cubic spline interpolation using examples
from fluid pumping and aquatic locomotion. Moreover, students can define their own interpolation
functions and visualize the dynamics that unfold. To solve the fluid-structure interaction system,
the open-source fluid dynamics software IB2d is used. In that vein, all simulation codes, analysis
scripts, and movies are provided for streamlined use.

Key words. Numerical Analysis Education, Fluid Dynamics Education, Mathematical Biology
Education, Immersed Boundary Method, Fluid-Structure Interaction, Biological Fluid Dynamics

AMS subject classifications. 65D05, 65D07, 97M10, 97M60, 97N40, 97TN50, 97N80, 76M25,
76710, 76799, 92C10

1. Introduction. Traditionally it is in numerical analysis and scientific com-
puting courses where students are first introduced to the topic of interpolation. It
is frequently motivated by posing the seemingly innocent question of, “If handed N
unique data points, {xj,yj}j.vzo, can you find a polynomial, p(z), with the property
that p(z;) =y;,¥j =0,1,2,..., N?” It is customary to accompany this question with
a uniqueness theorem that gives a somewhat surprising result for students - that if
such a polynomial exists, it must be unique. The proof is even rather elegant [21, 14]!

What happens next? Well, surely a discussion of how to construct such a polyno-
mial and alas the standard ways to find such an interpolation polynomial (monomial,
Newton, and Lagrange) are derived. This effort, in essence, enforces that students
once again see that existence and uniqueness go together, like peas and carrots.

This may leave the students usually wondering, “Well, how close is this poly-
nomial to the actual function from which the data was originally sampled?” Not be
disappointed, the class dives into estimating the error of such a polynomial, and af-
ter seeing a few exploitative examples using uniformly spaced nodes [32, 21, 18, 14],
and going down the rabbit hole of Chebyshev nodes, students see the corresponding
interpolation error and how it can be minimized.

If that is the best such a polynomial can do in terms of minimizing the error,
instructors may encourage their class to contemplate whether there could be any
other methods to interpolate the original data given. That is, motivating the stu-
dents to move beyond constructing a single global polynomial that interpolates the
data, but instead interpolating the data point-by-point. This, of course, leads to the
introduction of spline interpolation, cubic splines, and/or Bezier curves! Splendid!

Unfortunately, a genuine difficultly for students during this onslaught of interpola-
tion techniques, error analysis, and implementation, is sometimes seeing the practical
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Funding: This work was funded by the NSF OAC-1828163 the Support of Scholarly Activities
Grant from TCNJ (The College of New Jersey)

TDepartment of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road,
Ewing Township, NJ 08628 (battistn@tcnj.edu, http://http://battistn.pages.tcnj.edu/).

1

This manuscript is for review purposes only.


mailto:battistn@tcnj.edu
http://http://battistn.pages.tcnj.edu/

(S NG) B, B, B N
T W N

ot

69
70
71
72
73
74
75
76
77
78
79

80

87
88
89
90
91

2 N. A. BATTISTA

applications of interpolation. Some possible (surprising) applications for students that
may be mentioned include how letters are shaped in typography [1, 37], vector graph-
ics and imaging [36], or data and digital signal processing [35, 23]. However, students
generally interested in computational science and modeling may not be captivated or
satisfied with these applications.

We would like to introduce an application of interpolation that unfortunately falls
through the cracks for students - the use of interpolation in mathematical modeling,
and in particular biological fluid dynamics. Simply stated interpolation can be used to
prescribe the motion of objects. The enticing portion - these objects can be immersed
within a fluid, where the fluid reacts and moves due to the prescribed motion of said
object.

Not sold, yet? Numerous recent scientific studies have used this exact type of
interpolation to successfully prescribe motion, ranging from diverse fields such as
heart development [3, 22, 6], aquatic locomotion [19, 2, 12], animal flight [27, 31, 20],
organismal feeding and filtering [17, 28, 33], and beyond.

We offer a software alternative that will allow students to test out varying kinds
of spline interpolation to prescribe the motion between one or more feature states,
within a framework that provides direct practical scientific applications.

In the remainder of this paper, we will provide three differing examples of how
spline interpolation can be used to drive the motion of a structure immersed within
a fluid, while also comparing different kinds of spline interpolation, e.g., linear and
higher order polynomial (cubic). This will provide students intuition about splines
that is not traditionally emphasized in the classroom that can help facilitate greater
learning and further curiosity in computational science.

In Section 2 we motivate the ideas of spline interpolation through the presentation
of a moving circular object immersed in a fluid. In Section 3 we introduce how to pre-
scribe motion using a cartoon heart pumping example and provide a stencil for how to
create your own example. In Section 4 we move beyond prescribing the motion of in-
dividual points to instead interpolate between different material property states of an
immersed body, e.g., modeling a structure that has time-dependent curvature, which
gives rise to forward locomotion (swimming)! For details regarding the fluid-structure
interaction software, see Appendix A, or [4, 10, 9] for a more detailed overview.
All simulations presented here are available on https://github.com/nickabattista/ib2d
and can found in the sub-directory IB2d/matIB2d/Examples/Examples _Education/
as well as the Supplementary Materials.

2. Spline Interpolation: Linear vs. Higher Order Polynomials.

When first introducing splines in numerical analysis, it may fruitful to tell students
they have already seen an example of a linear spline in Multivariate Calculus, when
parameterizing curves for line integrals. Have them consider two points, a and b,
(Za,ya) and (xp,ys), respectively. Students can then parameterize a straight line
between the two points in a familiar way:

(21) (@(0).9(t)) = hol®) = a+ 1-(b - a),

for t € [0,%1]. We can see that ho(0) = a and hg(¢;) = b. Of course, in calculus
this is not introduced as a spline and the word interpolation probably doesn’t echo
off the classroom walls, but that is exactly what this process was - setting up a linear
spline interpolant between two points. If we had a third point ¢ = (., y.), we could
construct another linear interpolant between the b and c,
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t—1

2— 11

2 (2.2) (2(t),y(1)) = hy(t) = b+ —(c — b),

93 for t € [t1,t2]. We note that hi(¢;) = b and h;(t2) = c¢. The piecewise linear
94 interpolant between all three points could then be written as

- ho(t a+ & (b—a) 0<t<t
5o23)  (alt)y(t) = ( ) > :{ ey nZieh

What we have done, although perhaps not emphasized too much in Calculus, is
created a method to prescribe the motion of a point, x around the plane in R?,

a—b—c.

96 There is no reason this cannot extend to a larger collection of points! Instead
97 of points a, b, and c, consider the following matrices, where each column contains
98 N-(z,y) points, respectively,

=5 v o v 5 s

af oy o vy
99 (2.4) A= . . , B= . . , and C = . .

e . L

N YN TN YN TN YN

100 We can write an analogous spline interpolant to (2.3) as follows,
_( Ho(t) \ _ [ A+£(B-A) 0<t<t
101 (2.5) (x(t),y(t)) = < Hi(t) )~ | B+ %(C _B) bo<t<ty
102 EXAMPLE 2.1. Consider the circles given by the following N points {x$, y$ évzo, {xlj’», y?}é\;ol

103 and {xg,y;}j\/:o These are illustrated in Figure 1.

y1 C

LI
s
L OTY o

.0...'

A LI

Fia. 1. 3 circles in the xy plane, each composed of N points.

104 Next using (2.5), let’s prescribe the motion of these circles starting from State
105 A to State B and finally State B to State C for 0 < t < to, with t; € (0,t3) The
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positions, ((t), y(t)) of these interpolated states are illustrated in Figure 2, given by

the circle in red.
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F1a. 2. Timeslices of the N-point circle moving from State A to State B to State C using the
piecewise linear interpolate to prescribe the motion.

As mentioned earlier, we could imagine that beyond these circles simply moving
around the xy-plane in a prescribed fashion, one could envision these objects immersed

within a fluid. This is exactly an example found in IB2d, e.g.,

Examples_Education/Interpolation/Moving_Circle/Linear_Interp.
a circle within o fluid environment and then prescribing its motion will cause the
fluid to react, and in turn, move in response. This is shown in Figure 3, where the
colormap illustrates the magnitude of the fluid velocity and vector field represents the

fluid velocity.
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Fic. 3. A circle undergoing prescribed motion in a fluid domain, causing the fluid to move in
response. The colormap illustrates the magnitude of velocity, while the vector field depicts the fluid
velocity itself.

It is evident from Figure 3 that the fluid is moving the fastest right nearest to the
circle, the immersed object. Students can change the fluid viscosity, p, or interpolation
time-points, t1 or ta, to see how the fluid motion changes. Furthermore, students
can plot the simulation as it runs directly within MATLAB, or they can view the
data using open-source visualization software, such as Vislt [15], which was used to
construct Figure 3. Note that this simulation was designed to use a rather unresolved
grid, e.g., 32 x 32, for speed so students can watch the movement of the circle unfold
directly in MATLAB .

It should be emphasized that while this example only prescribed the motion of a
circle, immersed within a fluid, to move between a few predetermined states, this is
exactly the kind intepolation that is used in a lot of research applications, as mentioned
in Section 1. One could imagine constructing a much more complex geometrical entity,
such as a heart, fish, or other immersible structure, and prescribe it to move in rather
complicated ways in order to test a hypothesis or engineering question!

From the way the linear interpolant in (2.3) and (2.5) was constructed, it should
not be a surprise that the interpolant is continuous at all of the interpolation nodes,
{z;}, that is

(2.6) hy(tg1) = hepa(tesn).

At this stage, students are usually encouraged to consider what happens to the
derivatives at the interpolation nodes. Simply differentiating either (2.3) or (2.5), one
can show that that this linear interpolating scheme does not guarantee continuous
derivatives at the nodes. Is this an issue?

Let’s consider the movement of the circle from Example 2.1. When the circle is
moving between State A to State B, what happens when ¢ =~ 0 or ¢t = ¢;7 We want to
explore how fast the circle moving, its acceleration, and what implications these may
have on the circle moving around. There are a couple things to consider:

This manuscript is for review purposes only.
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1. First, we see that going from ¢ = 0 to t = €, where € > 0, that the structure
immediately begins to move at a constant speed, the constant speed it will
move with between 0 < ¢t < ¢;. This illustrates there is an instantaneous
acceleration from not moving to moving at its constant speed.

2. Second, a similar phenomenon happens as t — t1; that is, an instantaneous
deceleration from moving at its constant to speed to 0.

3. Third, if we are testing a hypothesis about the natural world or modeling an
engineering device, no such situation occurs where we see such instantaneous
accelerations (or decelerations for that matter).

We can encourage students to ask how can we ensure such accelerations do not
happen? This can lead to a great discussion on not having enough degrees of freedom
to enforce continuous derivatives, if we only have piecewise linear interpolating func-
tions. Students may be obliged to try a polynomial of higher degree to interpolate
between the positions, such as a quadratic or a cubic.

Before diving right in, note that the situation we were previously considering had
the general linear interpolant

ho () a+(do+dit)(b—a) 0<t<t
(2.7) h(t) = ( h(l)(t) ) :{ b+(d(;+d3t)(cfb) o <t<ty

with unknowns, {Dj}?=0- Whether we knew it or not, we constructed (2.3) and
(2.5) using the following continuity conditions to find the unknown coefficients:

h() (O) =a
(2.8) E?EZ; z E continuity
h1 (tg) =cC
That is, we had four unknowns, {d; };3-:0, and used four conditions, all based on

continuity, to find them. At this junction, if we wanted to impose more conditions
such as continuity across one or more derivatives, we would not have enough degrees
of freedom, or free parameters, satisfy all the conditions; we would have an over-
constrained system.

Rather than use linear interpolation, which lead to instantaneous accelerations,
let’s try to use a cubic polynomial between successive points. Using a higher order
polynomial interpolant will also provide more free parameters such that we are able
to impose more continuity conditions. Keep in mind, although we will try a cubic
polynomial interpolant, our goal is still interpolating between the two states a =
(T4,Ya) and b = (zp, yp)-

Our goal is to use a familiar form of an interpolant, that looks awfully reminiscent
of the linear case, but with a cubic function of the parameter, ¢, for ¢t € [0,1]. We
could attempt to use an interpolant such as the following

(2.9) h(t) =a+ g(t)(b — a),

where g(t) is a cubic polynomial, rather than a line as in (2.7), e.g.,

(2.10) g(t) = do + dit + dot® + d3.

This manuscript is for review purposes only.
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Here we wish for continuity of the function, h(t), continuity in its velocity, h'(t),
and no instantaneous accelerations (h”(t) = 0 at the endpoints of the interpolation
domain in ¢). However, when we write the conditions we wish to satisfy,

Eg?; :2 } continuity
/ —_—
(2.11) }ﬁ,(?; _ 8 } continuous velocities
7 _
E"E(l)) B 8 } no instantaneous accelerations

it is clear that we have an over-constrained system, that is, 6 conditions but only 4
unknowns, {d; }?zo. To circumvent this, we can introduce two interpolating mediary
points, say p; and pa, such that we partition the interval ¢ € [0, 1] into three regions:
(1) t € [0,p1], (2) t € [p1 < p2], and (3) t € [p2,1]. In each of those three regions, we
could define an independent cubic interpolant, e.g.,

go(t) = ap +art +ast? +azt>  0<t<p
(2.12) g(t) = g1(t) =bo + bit +bat> +b3t>  p1 <t <po
92(t) = co+ et + cot® +e3t®  pp <t <1

Upon imposing the conditions from (2.11) onto (2.12), we see that now we have
12 degrees of freedom but only 6 equations, leaving us with an under-constrained
system. If we were to think physically about this, at the interfaces t = p; and ¢t = po,
we would want continuity of our interpolating functions and their first and second
derivatives, providing continuity in velocity and acceleration, respectively. Hence the
piecewise cubic interpolating functions must satisfy the following constraints:

90(0) =0
g2(1) =1 .
continuit
go(p1) = g1(p1) Y
91(p2) = g2(p2)
95(0) =0
g4(1) =0 . i,
2.13 continuous velocities
(2.13) gh(p1) = 91 (1)
91(p2) = 95(p2)
9(0) =0
1 _
. g5 (1 _,,0 no instantaneous accelerations
g0 (p1) = g7 (p1)
9! (p2) = g5 (p2)

This gives the following linear system to solve, with variables, p; and po,
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(2.14)

1 0 0 o0 0O 0 0 0 0 0 0 0 1/ ao
01 0 0 0 0 0 0 0 0 0 0 a
00 1 0 0 0 0 0 0 0 0 0 as
1 po pt p -1 —pr —p} —p{ 0 0 0 0 as
0 1 2p 3p2 0 -1 —2p; —3p2 0 O 0 0 bo
00 2 6p1 0 0 -2 —6p1 0 0 0 0 by
00 0 0 1 p p5 p5 -1 —po —p5 —a2° ba
00 0 0 0 1 2p0  3p2 0 -1 —2py —3p3 bs
00 0 0 0 0 2 6p 0 0 -2 —6po co
00 0 0 0 0 0 0 1 1 1 1 e
00 0 0 0 0 0 0 0 1 2 3 o
|00 0 0 0 0 0 0 0 0 2 6 |\ e

As an example, if we let p; = 0.25 and py = 0.925, upon solving (2.14), we find
the coefficients to be approximately

ap =0 by = 0.123 co = —16.778

a; =0 by = —1.481 1 = 53.333
(2.15) az =0 by = 5.923 o = —53.333

as = 4.324 by = —3.577 3 = 17.778.

A plot of the resulting interpolant, h(t), h'(t), and h'(t) is provided in Figure 4.
It is clear that all the conditions sought after in (2.13) are satisfied. Moreover by
introducing two new parameters p; and po, we can essentially control the acceleration
of the interpolated motion. The script used to solve this system is provided in the
Supplemental Materials, e.g., the interp Function Coeffs.m script.

0.9 16
08 1.4
07
06

05 =
=

h(t)

0.4
0.3

P1 P2 P P2 P1 P2
02 0.4
0.1 0.2

/

0.2 0.4 t 0.6 0.8 1 0.2 0.4 ' 0.6 0.8 0 0.2 04 t 06 08 1

‘l
'i
i
i
/
i

h”(t)
b 5 L H o m s o w

F1G. 4. Plots of the piecewise cubic interpolant, h(t), its derivative, h'(t), and its second
derivative, h''(t), for p1 = 0.25 and p2 = 0.925 for 0 <t < 1, respectively.

As p1 — 0 (or po — 1), the initial acceleration (or final deceleration) becomes
larger in magnitude. In practice we can use the parameters p; and ps to match the
acceleration to the kinematics coming from a biological system or engineering system.
These parameters p; and ps may actually provide a beneficial tool for capturing the
correct kinematics of a system in a mathematical model!

Next, in Example 2.2, we will illustrate qualitative differences in the fluid dynam-
ics when using a cubic interpolant rather than linear interpolant, as is in the previous
example. The corresponding source code for this example with a cubic interpolant is
found in Examples_Education/Interpolation/Moving Circle/Cubic_Interp.

This manuscript is for review purposes only.
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FSI FOR THE CLASSROOM: INTERPOLATION! 9

221 EXAMPLE 2.2. In this example we will use the same prescribed motion described in
222 Ezample 2.1; however, we will use two different interpolation polynomials - one linear
223 and one cubic to interpolate between successive states. Using the cubic interpolant
224 that was determined above, with p1 = 0.25 and ps = 0.925, we ran simulations and
225 compared the results to those when using the linear interpolation scheme.

226 Simulations were compared at time-points when the circle would be accelerating
227 or decelerating between State A — B and the acceleration at the very beginning of
228 State B — C. This is illustrated in Figure 5, where the magnitude of velocity is used
229 to demonstrate qualitative differences in the underlying fluid motion. It is clear that
230 when using different interpolants to prescribe the motion between two states, it can lead
231 to significant differences in the fluid motion. Mowies illustrating the dynamical differ-
232 ences are provided in the Supplemental Materials (Supplemental/Circles/Linear_Interpl
233 or Supplemental/Circles/Cubic_Interp).

t=15%t1, |
(t=60%p,) |

t=90%t,
(t=97%1p,)

t=20%t, |
(t=80%p,)

t=95%1,
(t=103%p,)

t=100%1,
(t=108%p,) |

Pseudocolor
Var: uMag

[ \
0.00 12.5 25.0 37.5 50.0

Fia. 5. Images illustrating qualitative differences in the magnitude of velocity when using linear
and cubic interpolants. Snapshots were taken when the circles were accelerating and decelerating
from Phase A — B, and then accelerating from Phase B — C.

t=105%1,
(t=114%p,)

234 We note that in both cases the circle moves between States A <> B and B <
235 C' with the periods t;1 = 0.01 and to = 0.02, respectively. In fact, qualitatively it
236 appears that in both cases the circles look like they maybe moving in the same way;
237 however, there are clear dynamical differences as seen by the underlying fluid velocity.
238 Again, this is because the velocity and acceleration/deceleration of the circles moving
239 between the states is significantly different. This is an important aspect that should
240  get proper attention when mathematically modeling using prescribed motion. Not only
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is it important to make the an object begin and end in the right place, but we must
also make sure the way it moves between the states is biologically (or scientifically)
relevant! Introducing higher order polynomial interpolants is a convenient way to
introduce more degrees of freedom into a model, so it is able capture more kinematic
accuracy.

3. Interpolation and beating hearts: a virtual walk through.

Here we present an example of how to implement an object’s prescribed motion
within the IB2d software. We will consider the motion of a beating cartoon heart,
that is, a heart that goes between two states, one larger and one smaller, see Figure
6. The hole in the heart is to allow fluid to flow in and out of it, thereby obeying fluid
volume conversation.

F1a. 6. Mowving between States A and B to model a beating heart.

Running the simulation found in Examples_Education/Interpolation/Beating Heart Jj
will produce data that can be visualized, as in Figure 7. The corresponding movie is
provided in the Supplemental Materials (Supplement/Pulsing Heart). We are using
the same cubic interpolation scheme that was discussed in Section 2 to move between
State A — B and then State B — A with periods t; and t5, respectively. However
we also introduce an intermediate resting state of length tr, before moving back from
State B—A to introduce additional possible model complexity.

This manuscript is for review purposes only.
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t=0.81 t=t, t=t+ty t=t+t+02t,

t=t+t,+04t, | t=t+t,+06t, | t=t+t,+08¢t, t=ti+tg+t,

Fi1c. 7. Snapshots of a simulation of a beating cartoon heart that is itmmersed within a fluid.
The colormap depicts the underlying pressure, while the vector field depicts the fluid velocity itself.

We will now dive into detail on how to implement the cubic interpolant to pre-
scribe motion. Although, a beating heart example is introduced here, it should be
noted that this will work for just about any geometry, as long as each state has both
the same number of points, is ordered consistently, and has a ‘hole’ to obey volume
conversation.

The script that actually prescribes the motion is update_Target_Point _Positions.m.Jj
This script does the following three things:

1. Specify the period spent moving between states and initialize the
cubic interpolant.

We initialize the time spent in each phase moving between A — B, resting,
and finally B — A as t1,tg, and t9, respectively. We also specify the param-
eters for the specific cubic interpolant we are going to use to move between
States, that is, the coefficients of the cubic interpolant in each sub-phase,
{a;,bj,¢; };’:0, and location of the interpolation nodes, p; and ps. The values
of p1 and ps were chosen to be 0.25 and 0.925, respectively, which is the same
case as in Section 2.

Note we also define a period of the total heart beat to be the sum of all the
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279 subsequent phases, t; + tg + t2, and use modular arithmetic, with respect
280 to said period, for an adjusted time in the simulation in order to simulate
281 repetitive heartbeats.

Fia. 8. Initializing the time for each phase of motion as well as the cubic interpolant’s coeffi-
cients from Section 2.

282
283
284 2. Read in the points associated for States A and B.
285
286 Next we read in the (z,y) positions for each state into N x 2-sized matrices,
287 where the columns give the x and y positions, respectively.

I

65 -

66 -

F1G. 9. Reading in the (z,y) positions for States A and B into matrices A and B.

288 For completeness the code that reads in the data from the files State_A.pts
289 and State_B.pts is shown below.
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%
% FUNCTION: Reads in (x,y) points of each state from the file <struct_name>
%

function PTS = read_In_State(struct_name)

filename = struct_name; SName of file to read in
TileID = fopen(filename);

% Read in the file, use 'CollectOutput' to gather all similar data together
% and 'CommentStyle' to to end and be able to skip lines in file.
C = textscan(fileID,'sT %T','CollectOutput',l1);

fclose(fileID); %Close the data fTile.
vertices = C{1}; %Stores all read in data in vertices (N+1,2) array

PTS = vertices(l:end,1:2);

F1G. 10. Function that reads in the (z,y) point data.

We note that the information contained within the files State_A.pts and
State B.pts are lists of the x and y points for each phase, respectively. If
you would like to substitute your own shape, rather than use a heart, one only
needs to create .txt files that contain their own (x,y) point geometries. Note
you must also make the .vertex file contain the (x,y) positions of the first
state as well as include a similarly constructed .target file, see the Tutorials
in Appendix A.1 for further details.

Check which phase of the beating heart it’s in, e.g., contraction or
expansion, and then update the target point positions to which pre-
scribes the motion of the beating heart.

Upon checking to see which phase of the simulation the adjusted time cur-
rently relates to gives three state possibilities: either the simulation is between
States A — B or States B — A, or no motion is being prescribed, e.g., heart
is in a rest state.

For example, if the simulation time, ¢, is less than the period moving from
A — B, the script then inquiries to find the point between State A and B
that it is in, that is, it scales the time appropriately to ¢ = t/t;, so that it is
possible to compare t to the interpolation nodes, p; and ps.
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68 %

69 % START THE INTERPOLATING BETWEEN STATES!

70 %

71 - if t <= tl1 % STATE A => STATE B

72

73 % Scaling time for appropriate use in interp. function so tTilde\in[e,1]
74 - tTilde = (t/tl);

75

76 % Evaluate Pieceise Cubic Interpolation Poly

= if tTilde<=pl

78 - gFUNC = a@ + al#tTilde + a2#tTilde"2 + a3*tTilde"3;
79 - elseif tTilde<=p2

80 - gFUNC = b@ + blxtTilde + b2xtTilde~2 + b3*xtTilde"3;
81 - else

82 - gFUNC = c@ + clxtTilde + c2%tTilde”2 + c3*tTilde”3;
83 - end

84

85 — targets(:,2) = A(:,1) + gFUNCx( B(:,1) - A(:,1) );

86 - targets(:,3) = A(:,2) + gFUNCx( B(:,2) - A(:,2) );

87

88 - elseif ( t >= tl+tR ) % STATE B —> A

89

90 % Scaling time for appropriate use in interp. function so tTilde\in[e,1]
91 - tTilde = (t-tl1-tR)/(t2);

92

93 % Evaluate Pieceise Cubic Interpolation Poly

94 - if tTilde<=pl

95 - gFUNC = a@ + alxtTilde + a2*tTilde”2 + a3*tTilde"3;
96 — elseif tTilde<=p2

97 - gFUNC = b@ + blxtTilde + b2¥tTilde~2 + b3*tTilde"3;
98 — else

99 - gFUNC = c® + clxtTilde + c2¥tTilde"2 + c3*tTilde"3;
100 - end

101

102 - targets(:,2) = B(:,1) + gFUNC * ( A(:,1) - B(:,1) );
103 - targets(:,3) = B(:,2) + gFUNC * ( A(:,2) - B(:,2) );
1e4

185 - end

1ee

F1G. 11. Checks to see which phase of the motion the adjusted simulation time currently relates
to and then updates the position of the target points in the x and y directions, which will effectively
drive the motion of the beating heart.

4. Interpolation between material property states: it swims!. Ready,
Set, Swim! Here we present a simple, idealized model of anguilliform locomotion -
swimming. Here we do not wish to prescribe the exact kinematics of the swimmer’s
locomotive patterns, but rather we will only model how the swimmer’s body switches
between two preferred curvature states. This is a biologically relevant modeling as-
sumption as muscle activation patterns produce specific intrinsic curvatures for a
swimmer’s body [24, 25, 16]. By switching between two different curvature states,
the swimmer’s body bends and contorts, and locomotion emerges due to the swim-
mer’s interactions with the surrounding fluid. How can model the process of switching
between curvature states? That’s right; you guessed it - interpolation!

We must first get in the water before we can swim; let’s begin with the shape
of the swimmer. To create a simplified scenario, the idealized swimmer’s body was
constructed by taking a line segment and attaching a polynomial section to it, see
Figure 12, adapted from [9]. Thus the swimmer’s geometry (morphology) is modeled
as an infinitely thin 1D curve only. The straight portion composes 28% of the total
length of the body, while the polynomial, i.e., y = x3, portion makes up the remaining
72%. The polynomial section was determined by starting at x = 0 and adding equally
spaced points until z = L/10.
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e
Sﬁa\%
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Phase 1 Phase 2

FiG. 12. The two phases, in which, the preferred curvature was interpolated between to cause
forward swimming, adapted from [9].

330 Note that all the points are equally spaced at a distance twice of that of the
331 fluid mesh (ds = 2dz). Each phase was defined by negating the y-coordinate of the
332 polynomial portion of the body. The “curvatures” were computed as follows (to tie
333 into the IB2d framework, see [9]):

CF =ap,,(s) —2xp, (s + 1) +7,,(s +2)
Cy = Ulag(8) = 2Ulag(s + 1) + yL,,(s +2)

335 where s runs over all Lagrangian points along the swimmer’s body and P refers to
336  Phase 1 or 2.

337 This intrinsic curvature is the quantity we will now interpolate between. We
338 are no longer interpolating between explicit positions, but instead material property
339 states! Although seemingly different, the mathematics (spline interpolation) works
340 out exactly the same. In lieu of changing explicit coordinates (or positions), we now
341 update the curvatures, CL and C; in the update nonInv_Beams.m script.

342 We also define the downstroke and upstroke to be moving between Phase 1 to
343 Phase 2 and Phase 2 to Phase 1, respectively. Furthermore we also define 1 stroke
344 period to encompass both the upstroke and downstroke. The same interpolation
345 rigmarole, as in Section 3, follows.

346 Running the simulation found in Examples_Education/Interpolation/Swimmer/Single_Swimmer]]
347  will produce locomotion data that can be visualized as in Figure 13. This figure shows
348  the idealized anguilliform swimmer moving forward due to vortices being shed off its
349 caudal end during each stroke. The background colormap represents the fluid’s vor-
350  ticity, e.g, the local swirling motion of the fluid (mathematically given by the curl of
351 the velocity field, V x u(x,t)). The corresponding movie to Figure 13 is provided in
352 the Supplementary Materials (Supplemental/Swimmer/Individual Swimmer/). Fur-
3 thermore, we can quantitatively track the position of the swimmer’s head over time,
1 using the script Individual Swimmer_Analysis.m, to see what its forward swimming
5 patterns (and performance) looks like, see Figure 14.
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Fic. 13. An idealized anguilliform swimmer progressing forward due to continually changes in
the preferred curvature of its configuration with a stroke frequency f = 1.0s~'. The background
colormap illustrates the fluid’s vorticity.
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Fic. 14. Swimming performance of the single anguilliform swimmer shown in Figure 15. (a)
Distance (bodylengths) vs number of strokes performed and (b) velocity (bodylengths/stroke) wvs.
number of strokes performed.

At this point while we have a single simulation of one anguilliform swimmer, there
are many interesting questions one could ask, including a plethora of interesting bio-
logical questions. However, we will first focus on how subtle changes in interpolating
between curvature states affects swimming performance. Note that for the simulation
shown in Figure 13 that (p1,p2) = (0.1,0.9). In particular, we will ask three questions:

1. What happens when the interpolation mediary points p; and py are changed?
Remember these points help dictate the acceleration and velocity profile of
the interpolation (see Section 2).

2. What happens if we make the interpolation mediary points (p1, p2) asymmet-
ric (e.g., say if p; = 0.1 and py = 0.5 rather than py = 0.9)?

3. What happens if we have an asymmetric stroke pattern? (For example, if the
upstroke is 25% of the total period while the downstroke is only 75%7?)
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368 Lastly, we can have a little fun with our swimmer, taking advantage of the fact it is
369 immersed in a fluid, and ask how does changing the fluid environment affect swimming
370 performance? To change its fluid environment, we will only have to vary the fluid’s
viscosity. This effectively asks how the swimmer performs in stickier and stickier fluid

w
J

372 environments, like going from water to corn syrup. For those with previous experience
373 in fluid dynamics, this equates to looking how swimming performance varies over a
374 range of Reynolds Numbers, Re.

375 It is important to note that while asking these questions (and hopefully making
376 hypothesis) we are only changing one parameter of a single simulation at a time,
377  whether that it is (p1,p2), the upstroke and downstroke percentages of the total
378 period, or the fluid’s viscosity.

379 4.1. Changing (p1,p2) symmetrically. First we will investigate how the choice

380 of interpolation mediary points (p1, p2) affects swimming performance of our idealized

381 anguilliform swimmer. These simulations are found in Examples_Education/Interpolation/Swimmer/Casel ]
382 We will vary the (p1,p2) points symmetrically about the interpolation interval and

383 consider the following cases:

384 1. (pl,pz) = (01,09)
385 2. (p1,p2) = (0.2,0.8)
386 3. (p1,p2) = (0.3,0.7)
387 4. (p1,p2) = (0.4,0.6)
388 Upon varying these points, we need to make sure that our interpolation function

389 is consistent, that is, we need to solve the linear system described in Section 2 ac-
390 cordingly to get the proper coefficients for the spline interpolant. These coefficients
391 are listed in Supplement 2 of the Supplementary Materials. Once calculated, we can
392 modify the update nonInv_Beams.m script, which performs the curvature interpola-
393 tion.

394 We will now compare the interpolation profiles (h(z), h'(z), and h”(x)) for two
305 cases: (p1,p2) = {(0.1,0.9), (0.4,0.6)} . Comparison plots are given in Figure 15. We
396 mnote that in every case we still have continuous first and second derivatives; however,
397 the velocity and acceleration profiles are significantly different.

— (0.1,0.9)
— (04,0.6)

— (0.1,09)
— (0.4,0.6)
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36 bbb on s o o B

0.2 04 08 08 1 0.2 0.4 06 08 1 02 04 06 0.8 1

F1G. 15. Plots of the piecewise cubic interpolant, h(t), its derivative, h'(t), and its second
derivative, h'' (t), with 0 <t < 1, for varying (p1,p2) symmetrically chosen.
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F1G. 16. Snapshots from simulations for the case of symmetric interpolation points, given by
(p1,p2) € {(0.1,0.9), (0.2,0.8), (0.3,0.7), (0.4,0.6)}.

Upon running the aforementioned simulations, it is evident that changing (p1, p2)
affects swimming performance! Snapshots from the simulation are given in Figure
16. Note that although the swimmer’s position from each case are over laid on each
other, each simulation was independently performed; there are no swimmer-swimmer
interactions. The case when (p1,p2) = (0.4,0.6) appears in the lead after 6 strokes
followed by cases (0.3,0.7), (0.2,0.8), and then (0.1, 0.9), respectively. The faster cases
correspond to higher magnitudes of velocity and acceleration, see Figure 15. We also
present the distance swam vs. swimming stroke as well as forward swimming speed
vs. stroke in Figure 17, which further confirms those results. Furthermore, both peaks
in the forward swimming speed’s waveform are also higher in the faster cases. The
corresponding movie for these simulations is provided in the Supplementary Materials
(Supplemental/Swimmer/Casel/).

6
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> 1%}
825 £
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1 2 3 4 5 6 0 1 2 3 4 5 6
Strokes Performed Strokes Performed
(a) (b)

F1G. 17. (a) Forward distance swam and (b) forward velocity vs. swimming strokes performed
in the case of symmetric interpolation points (p1,p2) in [0,1].

Simply changing the interpolation mediary points, p; and ps, affects swimming
performance even when everything else remains the same - the same cubic spline-
based interpolating function , the same upstroke and downstroke periods, and the
same fluid environment! Next we will once again ask how swimming performance is
affected if we again change the interpolation points p; and ps, but this time place
them asymmetrically about the interpolation window [0, 1].

4.2. Changing (p1,p2) asymmetrically. Here we will again will inquire into
how changing the interpolation mediary points (p1, p2) affects swimming performance,
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but this time choose ps such that interpolation points are not symmetric within the in-

terpolation interval [0, 1]. These simulations are found in Examples _Education/Interpolation/Swimmer/Case2.|]

We selected the following (p1,p2) cases:
L. (p1,p2) = (0.1,0.9)
2. (pl,pz) = (01,07)
3. (pl,pg) = (01705)
4. (pl,pg) == (01703)

It is important to note that in this section, although we are asymmetrically varying
p2 about the interpolation interval, both the upstroke and downstroke have the same
period. The only difference is that the rate of change of the interpolating function
h(t) during each portion of the stroke.

Again, to ensure that the interpolation function is consistent, we solve the linear
system described in Section 2 for each different set of interpolation points, (p1,p2).
These coefficients are listed in Supplement 2 of the Supplementary Materials and are
used in each corresponding update nonInv_Beams.m script to perform the curvature
interpolation.

1 — (0.1,0.9) — (0.1,0.9)
os 2l 0.1,0.7 15 0.1,0.7)
08 — (0.1,0.5) — (0.1,0.5)
07 — (0.1,0.3) 10 — (0.1,0.3)

0.6
05
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0.2
0.1
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—_ (0.1,0.5)
—_(0.1,03)
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F1G. 18. Plots of the piecewise cubic interpolant, h(t), its derivative, h'(t), and its second
derivative, h''(t), with 0 < ¢t < 1, for varying (p1,p2) asymmetrically chosen.

The interpolation profiles h(t), h'(t), and h”(t) look strikingly different than those
shown in Section 4.1 due to the asymmetry introduced by choice of p; and py. The
profiles are given in Figure 18.

Stroke Stroke Stroke
0.5 o 2.5 o 4.5 o~
10 | ~__~ 3.0 S~ 5.0 N~
1.5 P 3.5 T 5.5 P
2.0 ~_ 4.0 S 6.0 S
— (0.1,09) —— (0.1,07) —— (0.1,0.5) (0.1,0.3)

Fi1c. 19. Snapshots from simulations for the case of asymmetric interpolation points, given by
p1 =0.1 and p2 € {0.3,0.5,0.7,0.9}.

As hopefully hypothesized, the dynamics are different between each swimmer for
the above cases; however, perhaps surprisingly, there appears to be less variation than
the previous case of symmetric (p1, p2) choices in terms of forward swimming perfor-
mance. Snapshots of the four swimmers are shown in Figure 19. In this case there
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141 was a non-linear relationship with choice of p, and how fast the swimmer went, e.g.,
442 the case with p; = 0.5 was the fastest, followed by ps = 0.7, then 0.3, and finally
443 0.9. This is confirmed when analyzing the data, shown in Figure 20, which gives the
444  distance swam vs. swimming stroke as well as forward swimming velocity vs. stroke.
445 The corresponding movie of these simulations is provided in the Supplementary Ma-
146 terials (Supplemental/Swimmer/Case2/). What do you think happens if we again
447 sweep over py = {0.3,0.5,0.7,0.9} but choose a different p;, where p; € (0,p2)?

—(0.1,0.9)

535 =(0.1,0.7)
== (0.1,0.5)
(0.1,0.3)

)

N
o

o
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N
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F1G. 20. (a) Forward distance swam and (b) forward velocity vs. swimming strokes performed
in the case of asymmetric interpolation points, given by p1 = 0.1 and p2 = {0.3,0.5,0.7,0.9}.

448 While Sections 4.1 and 4.2 used different interpolation mediary points, p; and
449 pg, they both used the same upstroke and downstroke periods as well as same fluid
150 environment, e.g., fluid density and viscosity were the same. We will now investi-
451  gate variances in swimming performance due to varying stroke periods, followed by
452 changing the fluid environment via varying the fluid’s viscosity.

453 4.3. Making asymmetric stroke periods. In this case we will keep the in-
454 terpolation points fixed at (p1,p2) = (0.1,0.9) and fix the stroke period to T' = 2.0s
455  (frequency of 0.5 Hz). We then asymmetrically vary the upstroke (UPS) and down-
456 stroke (DWS) percentages of the total stroke period (7). Recall that earlier we defined
457 one stroke to be the upstroke and downstroke periods added together. To that end,
458  we simulated the following cases:

159 1. UPS = DWS, e.g., (UPS,DWS)=(50%T,50%T)

460 2. UPS = 75% DWS, e.g., (UPS,DWS)=(42.9%T,57.1%T)

461 3. UPS = 50% DWS, e.g., (UPS,DWS)=(33%T,0.66%T)

462 4. UPS = 25% DWS, e.g., (UPS,DWS)=(20%T,0.80%T)

463 Note that although we have made each portion of a single full stroke have a differ-

164 ent sub-period, we can still use the same piecewise interpolant, h(t), to interpolate be-
465 tween each! These simulations are found in Ezamples_Education/Interpolation/Swimmer/Case3.}]
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F1a. 21. Snapshots from simulations with varying upstroke and downstroke percentages of a
single stroke period.

As the UPS percentage of a stroke decreases, the upstroke happens faster. How-
ever, although the swimmer that swims forward the fastest also has the quickest UPS,
having a faster UPS does not always equate to a faster forward swimming speed, see
Figures 21 and 22. The initial acceleration of the UPS=25%DWS case is the slowest
but eventually it starts outswimming the others - truly a tortoise and a hare story
(well not exactly, biologically). Figure 21 gives snapshots of the four swimmers and
Figure 22 presents the distance swam vs. swimming stroke as well as forward swim-
ming velocity vs. swimming stroke. The corresponding movie of these simulations is
provided in the Supplementary Materials (Supplemental/Swimmer/Case3/). Inter-
estingly, due to the asymmetric UPS and DWS, the swimming velocity profiles look
significantly different than those in Figures 17 and 20. In particular, the waveforms
appear trimodal rather than bimodal, which were observed in the cases of varying
(p1,p2), especially in the cases of UPS = 25% DWS and UPS = 50% DWS.

What do you think would happen if we redid this same analysis, but with a
different (p1,p2)? Or if we varied the stroke frequency cycle-by-cycle during the
simulation?
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Fia. 22. (a) Forward distance swam and (b) forward velocity vs. swimming strokes performed
in the case of asymmetric upstroke and downstroke periods.

4.4. Changing the fluid viscosity (Re). Finally, we will consider what hap-
pens if we put the swimmer in varying fluid environments, via changing the fluid’s
viscosity. This equates to placing the swimmer in less or more of a viscous fluid.
Examples of highly viscous fluids include things like honey or corn syrup, or fluids
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that are generally “thicker” or ”more sticky”, while less viscous fluids, like water, are
considerably less so. For these numerical experiments we keep all other parameters
the same, i.e., all the interpolation parameters, upstroke and downstroke periods, ge-
ometry, etc. We considered fluid dynamic viscosities, u, across 5 orders of magnitude
from 0.05 to 5000. Note that the viscosity considered in all previous cases (Sections
4.1-4.3) was p = 10.

As briefly stated earlier, this is equivalent to varying the Reynolds Number, Re,
which describes the ratio of inertial to viscous forces, which is quantitatively given by

_pVL

(4.2) Re .

Note that p and p are the fluid’s density and dynamic viscosity, respectively, while L
and V are characteristic length and velocity scales for the system. We will not go into
more depth regarding Reynolds Number; more information regarding Re “scaling”
studies can be found in [13, 19, 11, 7, 5, 26]. Let’s see how these idealized swimmers
perform in different viscosities!

Stroke Stroke Stroke
0.4 2.4 P 4.4 =
_ BN S
0.8 2.8 = 48 /
-— =S —_—
12 32 —_— 5.2
- P 74-\
Y //
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e 1=50 §=20 u=10 u=5 — =2 u=1 = 11=0.5

Fic. 23. Snapshots from simulations with varying fluid viscosities.

Snapshots from simulations of various swimmers in fluids with different viscosities
are provided in Figure 23. The corresponding movie is provided in the Supplemen-
tary Materials (Supplement/Swimmer/Viscosity Race/). Qualitatively it appears
that swimming performance of our idealized anguilliform swimmer decreases as vis-
cosity increases. When the fluid is “thick” or “sticky”-enough, the swimmer may not
even able to move forward with this set of model parameters (see the u = 5000 case)
unlike its anguilliform counterparts in less viscous fluid! This is confirmed in Figure
24, which gives the distance swam (bodylengths) vs. swimming strokes performed
and average forward swimming speed (bodylengths/stroke) vs viscosity (u). Interest-
ingly, it appears that this particular anguilliform swimmer has a maximum speed at a
particular viscosity around g ~ 5. That is, in this model of anguilliform locomotion,
simply putting the swimmer into less and less viscous fluid will not always result in
a faster swimming speed. How do you think this would change if you varied some of
the interpolation parameters, (p1,p2), or the stroke frequency?
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Fic. 24. (a) Forward distance swam vs swimming strokes performed and (b) swimming speed
(bodylengths/stroke) vs. viscosity.

5. Discussion. Hopefully this has convinced you that there are some practical
uses of interpolation in mathematical modeling, which are not generally discussed
in traditional numerical analysis settings. In this paper we illustrated a few of the
possibilities when applying spline interpolation techniques to mathematical modeling,
including prescribing movement patterns (Sections 2 and 3) and material property
states (Section 4). In particular, we demonstrated the following practical aspects of
interpolation in mathematical modeling:

1. Interpolation can be used to prescribe the motion of an object.

2. Interpolation can be used to switch between different material property states
of an object, which can give rise to unsuspecting, interesting dynamics.

3. When using spline interpolants, the number of continuous derivatives affects
the resulting dynamics of the system. That is, it does not only matter that
you get from A to B, but also how you get there, in terms of velocities and
accelerations.

4. Thus to relinquish modeling artifacts, one could design their interpolant to
match observed velocities and accelerations from experimental data, if possi-
ble.

5. Even when not prescribing the precise movement of an object, but rather
the object’s material property states (e.g., curvature), changing the spline
interpolant affects the system’s outcome.

6. In fact, subtly changing aspects of the interpolant can lead to significant
changes in the unveiling dynamics.

We note that the simulations in Sections 2 and 3 were designed on a coarse mesh so
that students can run them locally on laptops in a manner of a few minutes. However
the swimmer simulations in Section 4 were constructed on much finer meshes, which
have been observed to be required for locomotion previously [8]. Each of the swimmer
simulations takes on the order of ~ 2 hours on a personal machine (~4-16GB RAM,
~2-3GHz processor). In all of these examples, students have the opportunity to
experience scientific computing research in practice, e.g., simulations that can greatly
vary in computational time, produce a lot of data with non-trivial data analysis, and
open the floor for discussions on effective data visualization.

The main purpose of this work was to bring interpolation to life for students, al-
lowing them to visually witness how subtle differences in interpolation techniques can
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lead to significant differences in dynamics, particular within mathematical models.
For this reason all codes, both simulation and analysis scripts, are made available.
To that extent, this work allows students the opportunity to ask a variety of ques-
tions (e.g., such as those posed in Section 4), explore, and chase their answers. This
encourages students to ‘play’ in a numerical and mathematical setting, experienc-
ing mathematical material in a possibly unfamiliar way. Francis Su, former MAA
President, has publicly said, “Play is part of human flourishing. You cannot flourish
without play. And if mathematics is for human flourishing, we should “play up” the
role of play in how we teach and who we teach...and teaching play is hard work”
[34]. Granting students opportunities to take what can sometimes be digestible, but
dry material, such as interpolation, and allowing them to get their hands dirty by
experiencing its utility in mathematical models at the interface of education and con-
temporary research, could have a profound impact on their future mathematical or
scientific journeys.
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Appendix A. Details regarding IB2d and the Immersed Boundary
Method (IB).

Here we will touch upon the major points regarding the fluid-structure interaction
software used for computations, IB2d, as well as the numerical method it is built upon,
the immersed boundary method (IB).

A.1. IB2d. Biological fluid dynamics is a vast subject, in which nearly encom-
passes the entire natural world around us. From the way birds fly, fish swim, or the
way you've taken a couple breaths in the past few seconds, fluid dynamics, or more
precisely, fluid-structure interactions are ever present. Unfortunately, for such a sig-
nificant practical area of mathematical modeling, it traditionally comes with a very
steep learning curve, making it challenging to teach educational modules or give stu-
dents meaningful first hand experience in course projects. Our open source software,
IB2d, was designed specifically for these purposes. It has two full implementations in
high-level programming environments most familiar to most undergraduate students,
MATLAB and Python.

IB2d was created to be used for both teaching and research purposes. It comes
equipped with over 60 built in examples that allow students to explore the world
of fluid dynamics and fluid-structure interaction, from examples that illustrate fluid
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dynamics principles, such as flow around a cylinder for multiple Reynolds Numbers
or the Rayleigh-Taylor Instability, to examples that purely illustrate interactions of
a fluid with different immersed structure material properties to biological examples,
such as jellyfish locomotion or embryonic heart development. Some of these examples
are highlighted in [4, 10, 9]. Therefore IB2d can be used for either course projects or
homework assignments for a multitude of courses, ranging from mathematical mod-
eling and mathematical biology courses to fluid mechanics to scientific computing. It
has also been used for research purposes [29, 26].
For these reasons, there have been tutorial videos created to help acquaint one
with the software. All tutorial videos be found at github.com/nickabattista/IB2d:
e Tutorial 1: https://youtu.be/PJyQAOvwhgU
An introduction to the immersed boundary method, fiber models, open source
IB software, IB2d, and some FSI examples!
e Tutorial 2: https://youtu.be/jSwCKq0v84s
A tour of what comes with the IB2d software, how to download it, what Exam-
ple sub-folders contain and what input files are necessary to run a simulation
e Tutorial 3: https://youtu.be/I3STLpyEBX{E
The basics of constructing immersed boundary geometries, printing the ap-
propriate input file formats, and going through these for the oscillating rub-
berband example from Tutorial 2
e Tutorial 4: https://youtu.be/4D4ruXbeCiQ
The basics of visualizing data using open source visualization software called
Vislt (by Lawrence Livermore National Labs). Using the oscillating rubber-
band from Tutorial 2 as an example to visualize the Lagrangian Points and
Eulerian Data (colormaps for scalar data and vector fields for fluid velocity
vectors)
More explicit details about IB2d’s functionality can be found in [4, 10, 9].

A.2. Governing Equations of IB. In this section we will introduce the equa-
tions of fluid motion and how they can be coupled with the motion and deformations
of an immersed body. The conservation of momentum equations that govern an
incompressible and viscous fluid are written as the following set of coupled partial
differential equations,

(A1) p[aa—ltl(x, t) +u(x,t) - Vu(x, t)} = —Vp(x,t) + pAu(x,t) + F(x,t)

(A.2) V-u(x,t)=0

where u(x, t) is the fluid velocity, p(x,t) is the pressure, F(x,t) is the force per unit
area applied to the fluid by the immersed boundary, p and p are the fluid’s density
and dynamic viscosity, respectively. The independent variables are the time ¢ and the
position x. The variables u, p, and F are all written in an Eulerian frame on the fixed
Cartesian mesh, x. We note that (A.1) is the conversation of momentum, while (A.2)
is the conversation of mass, for an incompressible fluid.

The equations that couple the motion of the fluid to deformations of the structure
are written as integral equations. These interaction equations handle all communi-
cation between the fluid (Eulerian) grid and immersed boundary (Lagrangian grid).
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They are given as the following integral equations with delta function kernels,

(A.3) F(x,t) = /f(s, 1) (x — X(s,t)) ds
(A4) U(X(s,t)) = /u(x, t)d (x — X(s,t)) dx

where f(s,t) is the force per unit length applied by the boundary to the fluid as
a function of Lagrangian position, s, and time, ¢, §(x) is a three-dimensional delta
function, and X(s,t) gives the Cartesian coordinates at time t of the material point
labeled by the Lagrangian parameter, s. The Lagrangian forcing term, f(s,t), gives
the deformation forces along the boundary at the Lagrangian parameter, s. (A.3)
applies this force from the immersed boundary to the fluid through the external forcing
term in (A.1). Equation (A.4) moves the boundary at the local fluid velocity. This
enforces the no-slip condition. Each integral transformation uses a three-dimensional
Dirac delta function kernel, §, to convert Lagrangian variables to Eulerian variables
and vice versa.

The way deformation forces are computed, e.g., the forcing term, f(s,t), in the
integrand of (A.3), is specific to the application. To either hold the geometry nearly
rigid or prescribe the motion of the immersed structure, all of the Lagrangian points
along the immersed boundary are tethered to target points. They can do this through
a penalty force formulation of f(s,t). In this paper, in Sections 2 and Section 3, we
have used target points to prescribe the motion of the immersed structure. The
penalty force was written in the following way,

(A.5) £(s,t) = krarg (Y(s,1) = X(s,1)),

where kiqrg is a stiffness coefficient and Y (s, t) is the prescribed position of the target
boundary. Note that Y(s,t) is a function of both the Lagrangian parameter, s, and
time, ¢, and that in these models kiry was chosen to be large so that it would
effectively drag the Lagrangian points into the preferred positions.

In Section 4, we construct a swimmer that is composed of springs and beams.
Springs allow for stretching and compressing of the successive Lagrangian points,
while beams allow for bending. Their corresponding deformation force equations can
be written as the following,

Ry,
A. Fop = kg (1= —— ) (X — Xsg).
( 6) P kp( ||XS_XM|> ( M S)

84
(A7) Fream = 7kbeam@ (X(S, t) - XB(S, t)) R

where kgpr and Kpeqrm, are the spring stiffness and beam stiffness coefficients for springs
and beams, respectively. For the linear spring forces, the terms X, and Xg represent
the positions in Cartesian coordinates of the master and slave Lagrangian nodes at
time, ¢, and Ry is the spring’s corresponding resting length. For the bending force,
X p(s,t) represents the preferred curvature of the configuration at time, t. We note
that in the swimmer model of Section 4, we interpolate between different curvature
states given by different configurations of X%(s,t) and X%(s, t), rather than interpo-
late between positions in space for the swimmer.

Using delta functions as the kernel in (A.3)-(A.4) is the heart of IB. To approx-
imate these integrals, discretized (and regularized) delta functions are used. We use
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the ones given from [30], e.g., dxn(x),

s = R (2)o(2)o()
where ¢(r) is defined as

sB3=2lr|+ /1 +4r[—4r2), 0<|r[<1
(A.9) o(r) =< L5 2|+ /~T+12[r[ - 4r2),1 < || < 2
0 2 < |r|.

A.2.1. Numerical Algorithm. As stated in the main text, we impose periodic
and no slip boundary conditions on a rectangular domain. To solve A.1), (A.2),(A.3)
and (A.4) we need to update the velocity, pressure, position of the boundary, as well
as the force acting on the boundary at time n + 1 using data from time n. The IB
does this in the following steps [30, 10]:

Step 1: Find the force density, F” on the immersed boundary, from the current
boundary configuration, X".

Step 2: Use (A.3) to spread this boundary force from the Lagrangian boundary
mesh to the Eulerian fluid lattice points.

Step 3: Solve the Navier-Stokes equations, (A.1) and (A.2), on the Eulerian grid.
Upon doing so, we are updating u”*! and p"*! from u”, p", and f".

Step 4: Update the material positions, X"*!, using the local fluid velocities,
U™t computed from u”*! and (A.4).
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