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Primordial gravitational waves are expected to create a stochastic background encoding information
about the early Universe that may not be accessible by other means. However, the primordial
background is obscured by an astrophysical foreground consisting of gravitational waves from
compact binaries. We demonstrate a Bayesian method for estimating the primordial background in the
presence of an astrophysical foreground. Since the background and foreground signal parameters are
estimated simultaneously, there is no subtraction step, and therefore we avoid astrophysical
contamination of the primordial measurement, sometimes referred to as “residuals.” Additionally,
since we include the non-Gaussianity of the astrophysical foreground in our model, this method
represents the statistically optimal approach to the simultaneous detection of a multicomponent
stochastic background.
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Introduction.—Detection of a cosmological gravita-
tional-wave background from the early Universe is
one of the most ambitious goals of gravitational-wave
astronomy. There are several scenarios which may give rise
to primordial backgrounds, including inflationary scenarios
and phase-transition scenarios [1]. Inflationary models in
general produce a gravitational-wave background through
the amplification of vacuum fluctuations [2–5]. In the slow-
roll inflation model, the dimensionless energy density of
the background,

ΩgwðfÞ≡ 1

ρc

dρgw
d ln f

; ð1Þ

is expected to be ΩgwðfÞ ≈ 10−15 across many orders of
magnitude in frequency f [1]. Here, dρgw is the gravita-
tional-wave energy density between f and f þ df while ρc
is the critical energy density for a flat universe.
Such a low value of Ωgw is unlikely to be directly

detected by all but the most ambitious space-based gravi-
tational-wave detectors [6,7]. However, in models with
either nonstandard inflation or nonstandard cosmology, it is
possible to generate inflationary backgrounds accessible by
current detectors [8]. Alternatively, it may be possible for
the inflaton to decay nonperturbatively through parametric
resonance. This process, known as preheating, may
produce a potentially detectable gravitational-wave back-
ground through explosive particle production, peaking as
high as Ωgw ≈ 10−11 [9,10]. In reality, the physics of
inflation is highly uncertain. Indirect detection, via the

observation of B-modes in the cosmic microwave back-
ground, provides an alternative means of observing infla-
tionary gravitational waves [11].
Phase transitions in the early Universe may produce

gravitational waves if they are strongly first order [12–15].
The peak frequency of the gravitational-wave energy
density spectrum f0 is related to the energy scale of the
transition T� [1,13,16]:

f0 ≈ 170 Hz

�
T�

109 GeV

�
: ð2Þ

Thus, the detection of a primordial background from a
phase transition by either an audio-band or millihertz
gravitational-wave detector, such as LIGO [17] or LISA
[18], respectively, would probe physics at energy scales
inaccessible by colliders, corresponding to a time when
the Universe was only ≳10−14 s old. The energy density
created from phase transitions depends on model-
dependent details, but numerical simulations and scaling
arguments suggest that Ωgwðf0Þ ≈ 10−12�2 for a strongly
first-order transition [19]. This is just below the projected
sensitivity of advanced detectors operating at design
sensitivity [17,20], but well within the range of space-
based detectors and proposed third-generation terrestrial
detectors [21–23].
Astrophysical foregrounds are interesting in their own

right since they contain valuable information about the
population properties of compact binaries at high redshifts
[24–27]. However, recent observations of merging compact
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binaries [28–33] by the Advanced LIGO [17] and Virgo
[20] detectors imply that primordial backgrounds are
masked by much brighter astrophysical foregrounds
[34,35]. Binary black holes (BBHs) and binary neutron
stars (BNSs) each produce astrophysical foregrounds of
Ωgwðf ¼ 25 HzÞ ≈ 10−9 with α ¼ 2=3 [35–39]. Some
fraction of these astrophysical foregrounds is resolvable
with current detectors, meaning that some of the events
contributing to the background are unambiguously
detectable. The most ambitious proposed detectors will
resolve essentially every compact binary in the visible
Universe [6,7,40]. These astrophysical foregrounds are
non-Gaussian because the signals do not combine to create
a random signal, characterized only by its statistical
properties. Rather, BBHs merge every 2–10 min while
BNSs merge every 4–62 s [35]. While there are likely to be
many BNS signals in the LIGO/Virgo band at any given
time, they are nonetheless distinguishable based on their
different coalescence times [40,41].

Previous proposals to disentangle the primordial back-
ground from the astrophysical foreground utilize the
concept of subtraction. The idea, pioneered in [42], is to
measure the parameters of each resolved compact binary
in order to subtract the gravitational waveform from the
data. Inevitably, this results in “residuals,” or systematic
error from imperfect subtraction. However, the residuals
can be “projected out” using a Fisher matrix formalism,
which reduces the level of contamination [43]. While
[42] considered the subtraction problem in the context of
the ambitious Big Bang Observer [6], more recent work
has explored the possibility of carrying out subtraction
using the third-generation detectors Einstein Telescope
[44] and Cosmic Explorer [45] that are planned to come
online in the next decade [40,46].
One limitation of the subtraction paradigm is that weak,

unresolved signals are not subtracted and therefore con-
taminate the measurement of the primordial background,
introducing a systematic error. While BBH mergers will
be more easily resolvable, subthreshold BNS mergers
will impact the sensitivity of third-generation ground-
based gravitational-wave detectors to the primordial
background [47].

Other analyses have proposed methods for the simulta-
neous measurement of stochastic gravitational-wave back-
grounds with different spectral shapes [48,49]. However,
none of these methods account for the non-Gaussianity of

the astrophysical foreground, resulting in a decrease in the
sensitivity of the search.
Here, we present a Bayesian formulation in which the

primordial background and the astrophysical foreground are
measured simultaneously. Our method estimates the astro-
physical foreground from both resolved and unresolved
binaries, which ensures that our measurement of the
primordial background is free from bias. The method can
therefore also include the contributions from high signal-
to-noise ratio compact binaries. Because our likelihood
models the non-Gaussianity of the astrophysical fore-
ground as in [50], this method serves as the scaffolding
for a unified, statistically optimal approach (yielding the
minimum unbiased credible interval posterior) to the simul-
taneous detection of compact binaries and the primordial
background.
Formalism.—We seek to measure a cosmological

stochastic background described by two power-law
parameters:

ΩgwðfÞ ¼ Ωα

�
f

25 Hz

�
α

: ð3Þ

Here, α is a power-law index whileΩα is the amplitude. The
power-law model is chosen for consistency with cross-
correlation searches for the stochastic background (e.g.,
[34,35,51,52]), but the subsequent formalism can be applied
to any spectral shape. The background is obscured by a
foreground of merging compact binaries, each described by
a vector of 15 parameters θ including properties such as the
component masses and the sky location. We only consider
BBH mergers for this analysis and assume that the pop-
ulation distribution for the binary parameters πðθÞ is known
to curtail the computational cost and additional complica-
tions for longer-duration BNS signals, but later discuss how
the method can be generalized to relax these assumptions.
Since we want our formalism to include subthreshold events,
the number of compact binary signals in the data is, by
assumption, unknown.
Following [50,52], the likelihood of observing fre-

quency-domain strain data, si;k, with a Gaussian stochastic
background characterized by the parameters ðΩα; αÞ and a
compact binary coalescence with signal hkðθÞ is derived by
marginalizing over the random Gaussian strain perturbation
of the background:

Lðsi;kjθ;Ωα; αÞ ¼
1

det½πTCkðΩα; αÞ=2�
exp

�
−
2

T
½si;k − hkðθÞ�†C−1

k ðΩα; αÞ½si;k − hkðθÞ�
�
; ð4Þ

Here, we assume that the data is divided into segments of
duration T labeled with index i. The frequency dependence
is denoted with the index k such that si;k ¼ siðfkÞ.

The strain data in each segment, si;k, and the binary signal
model, hkðθÞ, are vectors with one entry for each detector in
some network:
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si;k ¼
0
@ sð1Þi;k

sð2Þi;k

1
A; hkðθÞ ¼

0
@hð1Þk ðθÞ

hð2Þk ðθÞ

1
A: ð5Þ

At least two detectors are required to search for stochastic
backgrounds modeled as excess cross power, since the
autopower of one detector cannot distinguish between
instrumental noise and signal, but the framework presented
here can be extended to include multiple detector baselines.
The frequency-dependent covariance matrix, Ck,

includes contributions from both the detector noise power
spectral density (PSD) PIðfkÞ and the primordial back-
ground energy density:

Ck ¼
 
P1ðfkÞ þ κ11ðfkÞΩgw κ12ðfkÞΩgw

κ21ðfkÞΩgw P2ðfkÞ þ κ22ðfkÞΩgw

!
;

ð6Þ

where

κIJðfkÞ≡ γIJðfkÞ
3H2

0

10π2f3
ð7Þ

converts the primordial background energy density Ωgw
into a (signal) strain power spectral density [51,53]. The
variable γIJðfkÞ is the overlap reduction function for
detector pair IJ, encoding the geometry of the detector
network [52,54,55]. It is normalized to γII ¼ 1 for coinci-
dent and coaligned detectors with perpendicular arms.
Additionally, H0 is the Hubble constant. Combining data
from many frequency bins, the likelihood is the product of
the individual-frequency likelihoods:

Lðsijθ;Ωα;αÞ ¼
Ym
k

Lðsi;kjθ;Ωα; αÞ: ð8Þ

For an astrophysical non-Gaussian foreground, we are
interested in determining the fraction of segments contain-
ing a signal, ξ, (which we call the “duty cycle” following
[50]) rather than the binary parameters, θ, for a particular
segment. We say that a segment “contains” a binary signal
if the time of coalescence falls inside the segment. In this
case, the likelihood in Eq. (4) can be marginalized over the
binary parameters θ to obtain

LðsijΩα;α;ξÞ¼ ξLSðsijΩα;αÞþð1−ξÞLNðsijΩα;αÞ; ð9Þ

where we have defined the marginalized signal and “noise”
likelihoods as

LSðsijΩα; αÞ ¼
Z

dθLðsijθ;Ωα; αÞπðθÞ; ð10Þ

LNðsijΩα; αÞ ¼ Lðsijθ ¼ 0;Ωα; αÞ: ð11Þ

The θ ¼ 0 appearing in the expression for LN indicates that
the noise likelihood is functionally identical to the signal
likelihood if we set the compact binary signal, hkðθÞ, equal
to zero. Readers should understand the phrase “noise
likelihood” to refer to noise+a low-level Gaussian stochas-
tic background but no binary signal. We assume that the
probability of observing one BBH merger event in a single
segment is much less than one, so that the probability of
observing two events is negligibly small, which is
a reasonable assumption for BBH mergers [35,40,50].
We discuss how this assumption can be relaxed later.
For an ensemble of N data segments, fsg, the total

likelihood is given by multiplying the likelihoods for
individual segments:

LðfsgjΩα; α; ξÞ ¼
YN
i

LðsijΩα; α; ξÞ: ð12Þ

This joint likelihood function for ðΩα; α; ξÞ defined in
Eq. (12) is the product of N single-segment likelihood
functions, each of which contains a signal subhypothesis
(with probability ξ) and a noise subhypothesis (with
probability 1 − ξÞ.
To obtain joint posteriors on ðΩα; α; ξÞ, we apply Bayes

theorem:

pðΩα; α; ξjfsgÞ ¼
πðΩα; α; ξÞ

Z
LðfsgjΩα; α; ξÞ; ð13Þ

where Z is the Bayesian evidence given by marginalizing
the total likelihood over the stochastic parameters,

Z ¼
Z

dΩαdαdξLðfsgjΩα; α; ξÞπðΩα; α; ξÞ; ð14Þ

and πðΩα; α; ξÞ is the prior.
Demonstration.—We demonstrate this formalism with

mock data. Assuming a two-detector network of the LIGO
Hanford and Livingston observatories operating at design
sensitivity [17], we simulate data for 101 nonoverlapping
segments each with a duration of 4 s. Each segment
contains uncorrelated Gaussian noise [56] colored by the
noise PSD PðfkÞ of the interferometers as well as corre-
lated Gaussian noise colored by the signal power spectral
density of the primordial background. The correlated noise
is simulated such that the cross-power spectral density is
given by κIJðfkÞΩgwðfkÞ for a cosmological background
characterized by ðlogΩα ¼ −6; α ¼ 0Þ, where we use
log≡ log10 throughout. While this amplitude is several
orders of magnitude higher than that expected for primor-
dial backgrounds, we have chosen this value so that our
simulated cosmological signal corresponds to an unam-
biguous primordial-background detection with signal-to-
noise ratio (SNR) of ∼5.4 for 404 s of data observed with
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advanced LIGO. The value of α ≈ 0 is expected for the
background due to slow-roll inflation [59].
Next, we randomly assign BBH mergers to 11 of our

simulated segments for a corresponding duty cycle of
ξ ¼ 11=101 ¼ 0.11. This duty cycle is higher than would
be expected based on the current estimates of the BBH
merger rate [35] but is just chosen for the purposes of our
demonstration. The chirp mass,

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

; ð15Þ

is drawn from a uniform prior over the range ð13; 45ÞM⊙.
The prior for the symmetric mass ratio,

η ¼ m1m2

ðm1 þm2Þ2
; ð16Þ

is uniform over (0.09876, 0.25). The sky locations and
component spin orientations are distributed isotropically,
with spin magnitudes ranging uniformly from 0 to 0.8, and
the luminosity distance prior is ∝ d2L between 500 and
5000 Mpc. This results in a range of network optimal SNRs
between 2.06 and 12.17 with a median of 3.54. Only the
signal with the highest SNR corresponds to a confident
detection. The rest of the simulated events have network
optimal SNR < 7 that would not be individually detected
with high confidence.
If we were using real LIGO data instead of simulated

Gaussian noise, the noise power spectral density in the
covariance matrix in Eq. (6) would have to be estimated
from the data itself. Estimates of the PSD include both
of the terms on the diagonal of the covariance matrix,
PðfkÞ þ κIIðfkÞΩgw, since autopower due to detector noise
cannot typically be distinguished from the persistent
Gaussian background [52]. This results in a decrease in
the sensitivity of the search, which we mimic in our
demonstration by fixing the diagonal terms to the sum of
the known noise PSD and the signal power from the
simulated cosmological background. Hence, the diagonal
terms do not contribute to the estimation of the ðΩα; αÞ
parameters, although simultaneously fitting a parameterized
PSD model as in [60] could be a possible future extension.
Evaluating the likelihood in Eq. (12) poses a computa-

tional challenge due to the product over N single-segment
likelihoods. To overcome this issue, we use likelihood
reweighting [61] to evaluate the marginalized signal like-
lihood [Eq. (10)] and the noise likelihood [Eq. (11)] on a
grid in ðΩα; αÞ. For each segment we use the CPNEST [62]
nested sampler as implemented in the BILBY [63,64]
package to obtain posterior samples for the binary para-
meters using the likelihood in Eq. (4) under the assumption
that there is no Gaussian background present: Ωα ¼ 0.
The priors for the binary parameters are the same as those
used to generate the BBH injections previously described.
We use the IMRPhenomPv2 waveform model [65–67] for

the compact binary signal, hkðθÞ, in both the simulation and
recovery.
The marginalized signal likelihood for each segment at a

particular value of ðΩα; αÞ is calculated via a Monte Carlo
integral over the n posterior samples obtained in the
original sampling step:

LSðsijΩα; αÞ ¼
Z0;i

n

Xn
j

Lðsijθj;Ωα; αÞ
Lðsijθj;Ωα ¼ 0Þ ; ð17Þ

where Z0;i is the evidence calculated by the sampler using
the likelihood where Ωα ¼ 0:

Z0;i ¼
Z

dθLðsijθ;Ωα ¼ 0ÞπðθÞ: ð18Þ

The noise likelihood in Eq. (11) can be directly evaluated
on the same grid in ðΩα; αÞ as the reweighted signal
likelihood. We use a 50 × 50 grid ranging from logΩα ∈
½−8;−4� and α ∈ ½0; 4�.
Once we have obtained the marginalized signal and noise

likelihoods for each segment using reweighting, we cal-
culate the joint likelihood in Eq. (9) on a grid in ξ, with 100
values ranging from [0,1]. The full likelihood in Eq. (12) is
then calculated by multiplying the individual three-
dimensional grids from each data segment. Figure 1 shows
the marginalized likelihoods for the cosmological back-
ground parameters ðΩα; αÞ as well as ξ obtained using all
101 simulated data segments. We recover values for all

FIG. 1. Corner plot for the combined posterior for ðΩα; α; ξÞ,
with the orange lines showing the true values used in the
simulated data. The 90% credible region is shown in light blue
and the 50% credible region in dark blue.
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three parameters that are consistent with the true values
used in the simulation: logΩα ¼ −5.96þ0.08

−0.16 , α ¼ 0.49þ1.14
−0.49 ,

and ξ ¼ 0.08þ0.09
−0.05 , where the uncertainty is the 90%

credible interval calculated using the highest probability
density method.
In addition to successfully measuring the parameters

characterizing both the astrophysical foreground and the
cosmological stochastic background simultaneously, we
also calculate a Bayes factor comparing the cosmological
signal hypothesis to the no-signal hypothesis. This quan-
tifies to what extent the model where Ωα ¼ 0 is statistically
disfavored compared to the model where ðΩα; αÞ can take
on any of the values on our grid. In the high-SNR limit, the
natural log of the Bayes factor is proportional to the square
of the SNR familiar from frequentist cross-correlation
searches, ln BFSN ∼ SNR2=2 (see, e.g., [68]). The “signal”
evidence for a nonzero cosmological background is given
by Eq. (14). We set the priors on α and logΩα to be uniform
across the ranges covered by the grid. The “noise” evidence
is evaluated by integrating Eq. (12) assuming that Ωα ¼ 0:

ZN ¼
Z

dξ
Y
i

ξZ0;i þ ð1 − ξÞZN;i; ð19Þ

where ZN;i is the likelihood in Eq. (4) evaluated with
both Ωα ¼ 0 and hkðθÞ ¼ 0. We obtain ln BFSN ¼
lnZS − lnZN ¼ 11.16, which is consistent with the naive
scaling based on SNR for a signal with SNR ¼ 5.41.
Discussion.—In this paper we have demonstrated a new

method for simultaneously detecting two distinct stochastic
gravitational-wave backgrounds—a non-Gaussian astro-
physical foreground from subthreshold merging BBHs
and a Gaussian cosmological background. Our method
models both contributions simultaneously, so that subtrac-
tion of the foreground is not required. Additionally, this is
the statistically optimal framework for detecting a sto-
chastic background consisting of both a Gaussian and non-
Gaussian component, resulting in significant improvements
in the estimated time to detection of the astrophysical
foreground compared to other methods for multicomponent
analyses, as described in [50]. However, in the absence of a
non-Gaussian foreground, we find that there is no statistical
advantage to using the fully Bayesian method compared to
the standard cross-correlation method. Based on the com-
parison of the signal-to-noise Bayes factor and SNR for the
presence of the Gaussian background, the two methods
yield a similar level of statistical confidence, to the extent
that it is possible to compare frequentist and Bayesian
detection statistics.
In our demonstration, we assume that the sampling priors

chosen for the BBH parameters, πðθÞ, match the true
population distribution. In order to avoid biases that would
be introduced due to a mismatch between the population
distribution and the sampling prior, our method could be
amended to instead measure these population priors

simultaneously with the cosmological background param-
eters and duty cycle, following the formalism described in
[69]. This would amount to adding additional hyper-
parameters to the marginalized signal likelihood in
Eq. (17):

LSðsijΛ;Ωα;αÞ ¼
Z0

n

Xn
j

Lðsijθj;Ωα;αÞπðθjjΛÞ
Lðsijθj;Ωα ¼ 0;αÞπ0ðθjÞ

: ð20Þ

The hyper-parameters Λ describe the shape of the distri-
bution πðθjΛÞ, while the original prior used in the first step
of sampling, π0ðθÞ, must also be divided out. The hyper
parameters do not enter the noise likelihood in Eq. (11)
because the noise model assumes that each segment
contains only the cosmological background with no binary
signal.
Evaluating the marginalized signal likelihood in Eq. (20)

using the same grid-based reweighting technique becomes
computationally prohibitive, since the hyper-parameters Λ
drastically increase the dimensionality of the grid. One
possible solution that has been applied to similar problems
in gravitational-wave astronomy could be to build a
high-dimensional interpolant [70,71]. Another promising
approach could be to factorize the problem into two
separate calculations, first carrying out population studies
ignoring the stochastic background then using the inferred
posterior predictive distributions for πðθjΛÞ as priors for the
Ω > 0 run. We leave exploration of these approaches to
future work.
Another simplifying assumption we make in our dem-

onstration is that only merging BBHs contribute to the
astrophysical foreground, while in reality there will also be
a foreground from binary neutron star and neutron star-
black hole mergers. While our assumption that there is only
one binary signal in a 4 s analysis segment is valid for
BBHs, the rate of BNS mergers is higher, meaning that
there are typically ∼15 unresolved BNS signals in the
LIGO band at any given time [35].
Because we need to model multiple populations of

merging binaries simultaneously to avoid contamination
from residual power, one possible solution would be to treat
the number of binary mergers in a given segment as a
free parameter using a trans-dimensional Markov chain
Monte Carlo algorithm, fitting the binary parameters for
multiple mergers along with the cosmological background
parameters all at once [72]. Another possible method is to
analyze overlapping stretches of data that are offset by a
shorter 0.2 s window, constraining the coalescence time
prior to this window so that at most one binary system
merges during this short “segment,” allowing us to keep the
same definition of ξ presented above. Preliminary tests
suggest that the presence of other binary signals, merging at
times outside of the segment, have a negligible effect on
inferences about the binary merging during the segment.
By marginalizing over the BNS parameters in many short
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segments, it should be possible to calculate the likelihood
of a much longer span of data given the stochastic
parameters. We estimate that it would take about ∼105
CPUs to perform the BNS analysis in real time [73],
followed by ∼10 GPUs to perform the hierarchical infer-
ence including the uncertainty in the population distribu-
tion using the likelihood interpolation method for each
individual segment [74]. We leave investigation of these
methods to future work.
The formalism we describe and demonstrate assumes

that the uncorrelated detector noise is Gaussian, while it is
known that interferometric gravitational-wave data suffers
from non-Gaussian noise transients called glitches [75].
This assumption can be relaxed via the introduction of
additional duty cycle parameters to the likelihood in
Eq. (4), characterizing the fraction of segments that contain
a glitch in each detector, as described in [50]. This would
increase the computational cost for each data segment
analyzed, but the method is embarrassingly parallelizable,
so the overall wall time for running the analysis does not
increase significantly.
We also note that limitations in the accuracy of the

waveform model describing the compact binary signal can
leave behind coherent residual power that could bias the
inference of the Gaussian background parameters. Based
on current estimates of the uncertainty in numerical
relativity waveforms [76], this level of contamination
would likely not affect cosmological backgrounds probe-
able with proposed third-generation detectors, but improve-
ments to waveform modeling would be necessary to
recover unbiased parameter estimates for the weakest
background models. The subtraction-projection methods
for background detection would also be affected by wave-
form systematics, but our method could be modified to
account for marginalizing over different waveform models
[77] or parametrizing the waveform uncertainty [78].
While we demonstrate our method for the simultaneous

detection of a stochastic background with both Gaussian
and non-Gaussian components in the context of a cosmo-
logical background and an astrophysical foreground of
BBH mergers, this formalism can be applied to any
analogous problem. For example, this method could be
applied to simultaneously measure both individual compact
binary mergers or a foreground of these sources in the
frequency band of the space-based LISA detector [18] on
top of the white dwarf confusion noise background [79,80].
Our model can also be extended to include multiple
Gaussian backgrounds with different spectral shapes
through the addition of extra terms in the covariance matrix
defined in Eq. (6). One such example is the contamination
from correlated magnetic noise in a ground-based detector
network [54,57,58], which has a unique overlap reduction
function [81].
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