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Gravitational-wave astronomy with an uncertain noise power spectral density
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In order to extract information about the properties of compact binaries, we must estimate the noise power
spectral density of gravitational-wave data, which depends on the properties of the gravitational-wave detector. In
practice, it is not possible to know this perfectly, only to estimate it from the data. Multiple estimation methods
are commonly used, and each has a corresponding statistical uncertainty. However, this uncertainty is widely
ignored when measuring the physical parameters describing compact binary coalescences, and the appropriate
likelihoods which account for the uncertainty are not well known. In order to perform increasingly precise
astrophysical inference and model selection, it will be essential to account for this uncertainty. In this work, we
derive the correct likelihood for one of the most widely used estimation methods in gravitational-wave transient
analysis, the median average. We demonstrate that simulated Gaussian noise follows the predicted distributions.
We then examine real gravitational-wave data at and around the time of GW151012, a relatively low-significance
binary black hole merger event. We find that the difference in our inference when using different PSD estimation
techniques is larger than the predicted statistical uncertainty.
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I. INTRODUCTION

The astrophysical parameters of compact binaries are in-
ferred from gravitational-wave data using Bayesian inference.
A crucial first step for Bayesian inference is to choose the
appropriate likelihood for our data. In gravitational-wave tran-
sient data analysis this, typically, hinges on assumptions that
the noise is Gaussian and stationary over the period being an-
alyzed [1]. If these conditions are met, and if the noise power
spectral density (PSD) were known exactly, the appropriate
likelihood would be the Whittle likelihood [2]:

L(d̃|θ, P) = 2

πT P
exp

[
−2|d̃ − μ̃(θ )|2

T P

]
. (1)

Here P is the PSD, d̃ is the frequency domain interferometer
data, T is the duration of the data being analyzed, and μ̃ is our
model for the expected signal.

However, in practice, we do not have access to the true
power spectral density of gravitational-wave detectors, and
so we have to rely on an empirical estimate. There are two
commonly used methods to compute these estimates. The
simplest method is to average over the power in neighboring
stretches of data. This method assumes that the PSD does not
vary over the duration being averaged and that there are no
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non-Gaussian features in the data. The other commonly used
method is to simultaneously fit a parameterized model to any
non-Gaussian features and the power spectral density (e.g.,
Ref. [3]). While this method does not require analyzing as
much data and hence is less effected by nonstationarity and
non-Gaussianity, it is far more computationally expensive. In
this work, we are going to focus on the former.

To generate an average PSD we typically either compute
the mean or median of neighboring segments. Taking the
mean of neighboring segments is a commonly used method
(sometimes referred to as the Welch or Blackwell method
[4]) in gravitational-wave data analysis and many other signal
processing applications. However, it is not widely used in
gravitational-wave transient data analysis due to its sensitivity
to non-Gaussian transients, “glitches,” in the detector noise.
To mitigate the effect of these glitches a median average is
instead used to compute the PSD as the median is more robust
to the presence of large outliers. However, there may be effec-
tive methods to either remove or exclude these non-Gaussian
features [5–11].

The other assumption underlying Eq. (1) is that the PSD
does not change over time; in other words, the data are station-
ary. In practice, the PSD of real interferometers varies over
the timescale of minutes, and so care must be taken when
estimating the PSD using longer stretches of time [1,3,12].
Methods for mitigating this nonstationarity have also been
considered previously [11]. In this paper, we ignore these
possible effects and assume the data we look at are both
Gaussian and stationary.

In Chatziioannou et al. [13], the authors compare Ad-
vanced LIGO data whitened with a median average PSD with
parametric PSD estimation methods. They show that the data
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whitened using the median PSD does not follow a unit normal
distribution. They argue that this difference is due to non-
Gaussianity and nonstationarity in the data. However, data
whitened using an average of a finite number of segments are
known to follow a non-Normal distribution even for Gaussian
noise. For a mean average, the whitened Gaussian-noise data
follow a Student’s t distribution, and the correct likelihood
to use is the Student-Rayleigh distribution [14–17]. In this
work, we demonstrate that data whitened with a median PSD
estimate follows a different distribution, and we show how
to marginalize over the uncertainty in this estimated PSD to
obtain the correct likelihood for stationary, Gaussian noise.

Parametric PSD estimation using the BayesLine algo-
rithm [3] marginalizes over a prior which models the PSD as a
combination of a slowly varying spline and Lorentzians to fit
sharp spectral features. This algorithm is generally combined
with the BayesWave algorithm [18] to fit astrophysical and
terrestrial transients simultaneously with the PSD. However,
this does not allow direct inference of physical parameters
describing compact binary coalescences, e.g., the masses and
spins of merging black holes.

A common approach in compact binary data analysis is
to take a median average of the posterior distribution for the
PSD obtained using BayesLine rather than an averaged PSD
(e.g., Ref. [19]). Recently, Biscoveanu et al. [20] introduced
a method to marginalize over the uncertainty in these para-
metric PSDs estimates. However, this is done at significant
computational cost requiring ∼200× the computational re-
sources as a standard analysis. Additionally, under the
formalism presented there, it is not possible to compute the
Bayesian evidences necessary to perform model comparison.

The remainder of this paper is structured as follows.
In Sec. II we derive the appropriate distributions for the
likelihood and whitened data after marginalizing over the
uncertainty in a median (and/or mean) PSD estimate. We pro-
vide a brief introduction to Bayesian inference in the context
of gravitational-wave astronomy in Sec. III. We then demon-
strate the efficacy of our formalism by applying it to simulated
Gaussian data in Sec. IV. Following this, in Sec. V we con-
sider a case study using real Advanced LIGO data. We analyze
the marginal gravitational-wave candidate GW151012 with
both mean and median PSD estimates to understand the effect
of marginalizing over the statistical uncertainty and of using
the different estimation techniques. This event is convenient
for our present purposes since the effects we seek to study are
most prominent for marginal signals like GW151012. Some
closing comments are then provided in Sec. VI.

II. FORMALISM

A. Gaussian noise

For stationary Gaussian noise n(t ), if we do not manipulate
the data in any way before performing a Fourier transform, the
noise covariance can be written in the frequency domain as

C( f , f ′) = 〈ñ( f )ñ∗( f ′)〉 = P( f )δ( f − f ′). (2)

The angle braces denote an ensemble average over realiza-
tions. In practice, we work with discrete Fourier transforms

and noise covariance matrices

Ci j = 〈ñiñ
∗
j 〉 = T

4
Piδi j = T

4
Aiδi jA j . (3)

Here T is the duration over which the discrete Fourier trans-
forms is performed, i, j index frequency bins, and Ai = P1/2

i
is the noise amplitude spectral density (ASD).

For real data, a number of manipulations are performed
before the data are Fourier transformed, which makes things
more complicated. The data are band-passed and windowed in
the time domain to prevent aliasing and spectral leakage [1].
As long as the frequency limits of the band-pass filters do not
overlap with the frequency range of interest, the band-passing
can be ignored. However, the window applied to the data must
be considered. Since the window is multiplicative in the time
domain, there is a corresponding convolution in the frequency
domain,

Cw
i j = 〈(ñ ∗ W̃ )∗i (ñ ∗ W̃ ) j〉 = T

4
AiTi jA j, (4)

Ti j =
{

W̃i− j i � j
W̃ ∗

j−i i < j , (5)

where T is a Hermitian Toeplitz matrix and there is no implied
summation over i or j. For a rectangular window Ti j = δi j and
the covariance matrix is diagonal. For generic windows, there
is a regular, predictable, off-diagonal power. In reality, the
effect of this is much smaller than the effects considered here,
and inverting the covariance matrix is a significant computa-
tional challenge. We leave a detailed analysis of the effect of
nonrectangular windows on parameter estimation and model
selection to a future study.

The real and imaginary components of the frequency-
domain noise follow a normal distribution with variance
matrix P,

p(ñi|Pi ) =
√

2

πT Pi
exp

(
− 2ñ2

i

T Pi

)
. (6)

This is not the likelihood which we use when analyzing
gravitational-wave transients as we need to simultaneously
consider the real and imaginary components of the noise. The
likelihood is given by

L(ñi, ñ j |Ci j ) = 2

πT det(Ci j )
exp

(
−1

2
ñiC

−1
i j ñ∗

j

)
. (7)

Since we assume the covariance matrix is diagonal this is
often written in the simplified form known as the Whittle
likelihood,

L(ñi|Ci ) = 2

πT Pi
exp

(
−2|ñi|2

T Pi

)
. (8)

We note that this likelihood is normalized over the complex
plane. It is convenient to reduce to one dimension for visu-
alization purposes, so we note that the power of the noise
Pi = |ñi|2 follows an exponential distribution,

p(Pi|Pi ) = 2

T Pi
exp

(
−2Pi

T Pi

)
. (9)

All of the expressions above assume that there are no non-
Gaussian signals in the data. In order to include signals we
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simply make the substitution n = d − μ where d is the data
and μ is the signal.

Time-domain windows affect the noise and signal com-
ponents differently. We assume that the window is always
applied such that the window does not cause any loss of signal
power in the observing frequency band. In addition to the
correlation between different frequency bins induced by the
window, there is a net power loss in the Gaussian noise given
by the mean square value of the window function. Care must
be taken to consistently correct for this power loss to avoid
biasing our inference (e.g., Ref. [21]).

Now that we have established which distributions we want
to use when the PSD is known, we can address the distribu-
tions we want to use when the PSD is uncertain.

B. Median PSD estimate

The generic expression for the likelihood marginalized
over uncertainty in an estimated PSD, P̂, is

LP(d̃|θ, P̂) =
∫ ∞

0
dP L(d̃|θ, P)π (P|P̂), (10)

where L(d̃|θ, P) is the likelihood of obtaining the data given
model parameters θ and the true PSD P, as defined in Eq. (1),
and π (P|P̂) is our prior on the true PSD given the estimated
PSD. Similarly, using Eq. (6), we can write down an expres-
sion for the expected distribution of whitened strain residuals,
ν̃ = ñ/P̂1/2,

pP(ν̃|P̂) =
∫ ∞

0
dP p(ñ|P)π (P|P̂). (11)

Here ñ is the frequency-domain data after removing any sig-
nals present.

First we need to define the estimated PSD

P̂ = median(P�)

α
, (12)

where

α =
N∑

�=1

(−1)�

�
(13)

is a factor to account for the median being a biased estimator
of the mean (see, e.g., Appendix B of Ref. [22]), and � indexes
the segments being averaged over. For simplicity, we assume
that we are computing the median of an odd number, N , of
stretches ensuring α > 0. We use nonoverlapping segments to
ensure that our average is over independent noise realizations,
although we note that overlapping segments are widely used.

It is convenient to work with a regularized version of the
PSD,

Q = 2P̂/P. (14)

Since the data are assumed to follow a zero-mean Gaussian
distribution with variance P, the Qi are drawn from a χ2

distribution of order 2,

p(Q) = χ2
2 (Q) = 1

2
exp

(
−Q

2

)
. (15)

Additionally, we define the usual cumulative distribution
function, 	, and survival function, S, for this quantity:

	(Q) =
∫ Q

0
dQ′ p(Q′) = 1 − exp

(
−Q

2

)
, (16)

S(Q) =
∫ ∞

Q
dQ′ p(Q′) = exp

(
−Q

2

)
. (17)

The probability of the median of an odd number of
segments follows the median order statistic. This is the prob-
ability of the getting the median value from the distribution
multiplied by the probability of having m = (N − 1)/2 mea-
surements less than Q̂ and m measurements larger than Q̂.
Symbolically, this is

π (Q|P̂) = p(Q)

2P̂

	(Q)mS(Q)m

B(m + 1, m + 1)
(18)

=
(
1 − e− 1

2 Q
)m

e− (m+1)
2 Q

4P̂B(m + 1, m + 1)
(19)

=
m∑

k=0

(
m

k

)
(−1)ke− (m+k+1)

2 Q

4P̂B(m + 1, m + 1)
, (20)

where B is the beta function and in the last line we perform
a binomial expansion. The final piece we need is to relate our
prior on Q to our prior on P,

π (P|P̂)dP = π (Q|P̂)dQ. (21)
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FIG. 1. The distributions of the whitened power (a) and whitened
data (b) when using a median average power spectral density estimate
for a range of numbers of segments used in the average. As the
number of averages approaches infinity, the distributions converge
to the unmarginalized case.
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FIG. 2. Comparison of the expected and empirical distribution of whitened frequency-domain strain (left) and whitened noise power (right)
when using three different PSDs for whitening and simulated Gaussian noise colored to the known PSD. The three PSDs used are the true
“known” PSD (blue/darkest gray), a mean estimate (orange/lightest gray), and a median estimate (green/mid-gray). The number of averages
used to generate the mean and median estimates are seven (top) and 31 (bottom). In all cases the data follow the predicted distributions.

Substituting this expression into Eq. (10), the PSD-
marginalized likelihood is

LP =
∫ ∞

0
dQ

Q

8π P̂

(
1 − e− Q

2
)m

e− Q
2 ( 1

2 |ν̃|2+m+1)

B(m + 1, m + 1)
(22)

=
m∑

k=0

(
m

k

)
(−1)k

2π P̂

(
m + k + 1 + |ν̃|2

2

)−2

B(m + 1, m + 1)
, (23)

and using Eq. (11), the distribution of whitened residuals is

p(ñ) =
∫ ∞

0
dQ

1

4

√
Q

2π P̂

(
1 − e− Q

2
)m

e− Q
2 ( 1

2 |ν̃|2+m+1)

B(m + 1, m + 1)
(24)

=
m∑

k=0

(
m

k

)
(−1)k

√
2π P̂

(
m + k + 1 + |ν̃|2

2

)−3/2

B(m + 1, m + 1)
. (25)

While the final expressions Eqs. (23) and (25) are ex-
act closed-form solutions, they are numerically unstable and
cannot be safely computed for m � 15. We therefore simply
construct an interpolant over numerically computed values
of the integrals in Eqs. (22) and (24), which can be rapidly
evaluated at run time. In Fig. 1 we show the distributions
derived above for a range of values of N .

C. Mean PSD estimate

The appropriate distribution to use for a mean averaged
PSD has been discussed and independently derived multiple

times in the literature (e.g., Refs. [15,17]); in this work, we
just quote the relevant results. For a mean estimate:

P̂ = 1

N

N∑
i=1

Pi, (26)

π (P|P̂)dP = π (Q|P̂)dQ = χ2
2N (Q)dQ, (27)

LP = 1

2π P̂

(
1 + |ν̃|2

2N

)−(N+1)

, (28)

p(ν̃ ) = 
(N + 1/2)√
2πNP̂
(N )

(
1 + |ν̃|2

2N

)−(N+1/2)

. (29)

Equation (28) is the F distribution with d1 = 2, d2 = 2N
[23] and Eq. (29) is the Student’s t distribution with 2N
degrees of freedom, two degrees for each segment being av-
eraged over, coming from the real and imaginary components
of the frequency domain strain.

D. Limiting cases

When N = 1 the mean and median are the same and so
Eq. (25) should reduce to a Student’s t distribution with two
degrees of freedom. As expected, we find

p(ñ) = 1√
2π P̂

(
1 + |ν̃|2

2

)−3/2

. (30)
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FIG. 3. Difference between the empirical and expected cumulative distributions of whitened frequency-domain strain (left) and whitened
noise power (right) when using two different PSDs for whitening and simulated Gaussian noise colored to a known PSD. In the top panels
we consider 512 s of simulated data and in the bottom panels we consider 8 s of simulated data. The two PSDs used are a mean estimate
(orange/red, lightest/darkest gray) and a median estimate (green/purple, lighter/darker gray). The gray-shaded regions show the expected 1σ ,
2σ , and 3σ uncertainties. We average over 31 realizations to generate the PSDs. There are significant deviations when not marginalizing over
the uncertainty in the PSD once enough data are considered.

Analogously, the PSD uncertainty marginalized likelihoods
also match and are both

LP = 1

2π P̂

(
1 + |ν̃|2

2

)−2

. (31)

The other important limiting case is when N → ∞. It is a
well-known result that the Student’s t distribution converges
to a Gaussian in this limit; this follows from Taylor-expanding
the distribution. Performing a similar expansion, it is pos-
sible to demonstrate that the Student-Rayleigh distribution
converges to the Whittle likelihood. We numerically confirm
that (25) and (23) also converge to a Gaussian distribution
and Whittle likelihood respectively although more slowly than
(29) and (28).

III. BAYESIAN INFERENCE FOR GRAVITATIONAL-WAVE
TRANSIENTS

In the previous section, we derived likelihood functions,
marginalized over the statistical uncertainty in an estimate
of the PSD. These likelihood functions L(d̃|θ, P̂,M) are
the probability of obtaining data d̃ given a signal model M
described by parameters θ and a PSD estimate P̂. However,
we are generally interested in measuring the source-model
parameters and performing model comparison. Using Bayes’

theorem we get

p(θ |d̃, P̂,M) = L(d̃|θ, P̂,M)π (θ, P̂,M)

Z (d̃|P̂,M)
. (32)

The term on the LHS, p(θ |d̃, P̂,M), is the posterior probabil-
ity distribution, the probability of the parameters describing
the model given the data. The term π (θ, P̂,M) is our prior
distribution which is based on our expectation before analyz-
ing the data. The term Z (d̃|P̂,M) is the evidence for the data
given the model M.

The evidence is used for model comparison by computing
Bayes factors for two models,

BF 1
0 = Z (d̃|P̂,M1)

Z (d̃|P̂,M0)
. (33)

While the Bayes factor is often used for model selection,
strictly speaking, we should compare the probability of the
model given the data, rather than the probability of the data
given the model. This is given by the odds

O1
0 = Z (d̃|P̂,M1)

Z (d̃|P̂,M0)

π (M1|P̂)

π (M0|P̂)
, (34)

which is the Bayes factor comparing the two models multi-
plied by the prior odds. Throughout this work, we will assume
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all models have equal prior odds and so the odds reduces to the
Bayes factor.

Finally, we define the coherent versus incoherent Bayes
factor [24], BCI, as a measure of the relative probability that
the data contain a coherent signal or incoherent signals in
different detectors,

BCI = Z ({d̃k}|{P̂k},M))

�kZ (d̃k|P̂k,M))
. (35)

Here the k index multiple independent interferometers, e.g.,
LIGO Hanford and LIGO Livingston. As in Ref. [25] we
assume that any incoherent signals are described by the same
model as the coherent signals; however, this is not necessarily
the case [26]. We note that the BCI is not used as the final
discriminator between the coherent and incoherent models as
it is missing a prior for the relative rates of coherent and
incoherent signals. In Refs. [25,26] the priors on rate are
empirically calibrated delta functions; however, in Ref. [27]
the authors fit the rates of coherent and incoherent signals.

In general relativity, noneccentric binary black hole co-
alescences are fully described by fifteen parameters. Eight
parameters which describe the “intrinsic” properties of the
binary (two masses and two three-dimensional angular mo-
mentum vectors), and seven “extrinsic” parameters to specify
the position, orientation, and coalescence time of the binary
relative to Earth. This parameter space is typically explored
using stochastic samplers using either Markov-chain Monte
Carlo [28] or nested sampling [29].

In order to improve the convergence of the sampling and
accelerate our inference, it is possible to use a modification of
the Whittle likelihood which is marginalized over the coales-
cence time, orbital phase, and distance of the source [24,30].
It is not possible to perform these marginalizations as easily
while also marginalizing over uncertainty in the PSD. There-
fore, in this work, we perform our inference in two stages
following Ref. [31]:

(1) First, we analyze the data using the Whittle likelihood
marginalized over coalescence time, binary orbital phase,
and distance to obtain samples from the posterior distribu-
tion and an estimate of the signal evidence and Gaussian
noise evidence. Posterior distributions for these marginalized
parameters are then recomputed in postprocessing. We use
dynesty [32], an implementation of the nested sampling al-
gorithm, as implemented in Bilby [33] to sample the space.

(2) After this, we importance resample the posterior
obtained in the previous step by the ratio of the PSD-
marginalized likelihood to the Whittle likelihood to ob-
tain posterior samples and an evidence which include the
marginalization over the statistical uncertainty.

We note that the importance sampling in step 2 works
only when resampling to a distribution which is similar to
the original posterior distribution. We quantify this by eval-
uating the efficiency of the resampling and the number of
effective samples from the PSD-marginalized posterior. Since
the marginalized likelihoods converge to the nonmarginalized
likelihood when averaging many segments, we expect the
resampling to be efficient. This method also generically gives
a much smaller uncertainty on the Bayes factor comparing
the two models than would be obtained by performing two
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FIG. 4. The survival function of the Anderson-Darling statis-
tic comparing Gaussian noise whitened with three PSDs with the
distributions which do/do not marginalize over the statistical un-
certainty in the PSD estimate. In panel (a), we analyze the real
and imaginary components of the whitened strain. In panel (b), we
analyze whitened power. The blue (dark solid) curve is generated
using data whitened by the exact known PSD. The solid curves
are generated by comparing data whitened by the mean/median
(orange/green, lightest/mid-gray) PSD estimates with the distri-
butions which marginalize over the statistical uncertainty. The
dashed curves are generated by comparing data whitened by the
mean/median (red/purple, darkest/less dark gray) PSD estimates
with the distributions which do not marginalize over the statistical
uncertainty. The grey shaded regions show the expected 1σ and
2σ uncertainties. We average over 31 realizations to generate the
PSDs. The Anderson-Darling statistic does not follow the expected
distribution when not marginalizing over the uncertainty in the PSD.

independent sampling runs [34]. A similar method has pre-
viously been employed for cosmological inference in [35]
to marginalize over uncertainty in an estimated covariance
matrix. We find that including the marginalization over extrin-
sic parameters reduces the run time by up to approximately
an order of magnitude, therefore sampling directly using the
PSD-marginalized likelihood would increase the computa-
tional cost by an equivalent factor compared to the method
used here.

IV. DEMONSTRATION WITH GAUSSIAN NOISE

To demonstrate the accuracy of the methods described
in Sec. II we analyze simulated Gaussian noise colored by
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FIG. 5. Frequency domain strain power (blue/dark gray) and
mean (a) and median (b) estimated power spectral densities
(orange/light gray) for LIGO Hanford at the time of GW151012.

the Advanced LIGO design sensitivity PSD [36]. Following
Ref. [13], we perform three tests on data whitened using
median and mean PSD estimates for verification. As an ex-
tension to the analysis presented in Ref. [13], we consider
the whitened power, |ν̃|2 in addition to the real and imaginary
components of the whitened strain ν̃. For all estimated PSDs,
we average nonoverlapping segments with the same duration
as the analysis segment.

First, we perform a visual test of the whitened data. In
Fig. 2 we show the distribution of the real and imaginary
components of the whitened strain (left) and whitened power
(right) along with the theoretical expectations. In the top (bot-
tom) pair of panels, we average over seven (31) independent
noise realizations. We see that the data whitened using the
averaged PSD estimates follow the expected distributions in
each case. We emphasize that throughout we consider only
whitened frequency-domain data and so use the ASD as an
acausal whitening filter.

In Fig. 3 we show the difference between the empirical and
expected cumulative distribution functions, 	s − 	, plotted
against the expected cumulative distribution function for the
same data as in Fig. 2. In orange and red we compare the data
whitened with the mean PSD estimate with the expected dis-
tributions with and without marginalizing over the uncertainty
in the PSD respectively. In green and purple we compare
the data whitened with the median PSD estimate with the
expected distributions with and without marginalizing over
the uncertainty in the PSD respectively. The gray regions
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FIG. 6. Frequency domain strain power (blue/dark gray) and
mean (a) and median (b) estimated power spectral densities
(orange/light gray) for LIGO Livingston at the time of GW151012.

indicate the expected 1σ , 2σ , and 3σ fluctuations. For both
PSD estimation methods, we see that the data agree better with
the distributions which marginalize over the uncertainty in the
PSD.

When comparing the marginalized distributions to the
nonmarginalized distributions we see two clear deviations
from the expected behavior. The whitened strain uncertainty-
marginalized distribution has wider, symmetric, tails than a
normal distribution leading to the negative 	s − 	 for small
ν̃ and positive 	s − 	 for large ν̃. The distribution of the
whitened power, however, has a wide tail only out to large
|ν̃|, leading to the positive 	s − 	 for large ν̃.

To quantify the similarity of the data to the expected distri-
butions we compute the Anderson-Darling statistic

A2 = N
∫ ∞

−∞
d	

(	s − 	)2

	(1 − 	)
. (36)

Here N is the number of samples, in this case, the number of
frequency bins. The numerator is the square of the quantity
on the vertical axis of Fig. 3, and the integral is over the
horizontal axis.

In Fig. 4 we show the survival function of the distribution
of the Anderson-Darling statistic for four cases: for both the
mean and median PSD estimation methods we compare the
distribution of the whitened strain to a unit normal distribution
and the expected distribution as described in the previous
section for the whitened strain (a) and whitened power (b). We
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FIG. 7. The difference between the empirical and analytic cumulative distribution functions of whitened strain ν̃ and whitened power |ν̃|2
in the LIGO Hanford (top) and Livingston (bottom) interferometers with two different power spectral density estimation methods at the time
of GW151012. The gray-shaded regions show the expected 1σ , 2σ , and 3σ fluctuations. For the orange (lightest gray) and green (lighter gray)
curves, the data are compared with the distributions which marginalize over uncertainty in the power spectral density estimate. For the red
(darkest gray) and purple (darker gray) curves, the data are compared with the distributions which do not marginalize over uncertainty in the
power spectral density estimate. We note that the latter pair of curves deviate from the 3σ region, while the former does not. The data are well
described by a stationary Gaussian process when marginalizing over uncertainty in the power spectral density.

also show the expected distribution if the two distributions are
the distributions when the PSD is exactly known.

We note that the gradient of the expected distribution of
the Anderson-Darling statistic is steeper for the whitened
strain than for the whitened power. When applying a window
the data before performing the discrete Fourier transforms,
the real and imaginary components of the frequency domain
strain are no longer independent, reducing the appropriate
value of N by a factor of two (see Appendix A of Ref. [21]).
We, therefore, avoid the case identified in [13] where the
distribution of ν appeared to match the correct distribution
better than possible.

V. A CASE STUDY: GW151012

To examine the effect of non-Gaussianity and nonstationar-
ity on the noise properties of real gravitational-wave detectors,
we analyze the data in the two Advanced LIGO interferome-
ters [37] at and around the time of GW151012 [38], the lowest
significance binary black hole merger included in the first
gravitational-wave transient catalog [19]. We analyze 256 s of
data ending 2 s after the merger time. We subdivide the data
into 32 8 s chunks, the first 31 chunks are used to compute the
PSD and the final 8 s are the analyzed data [39].

We apply a Tukey window with a roll off of 0.2 s to each of
the chunks to suppress spectral leakage. We then fast-Fourier

transform the windowed time-domain strain before averaging
the PSD chunks. We do not apply the conventional window
amplitude correction factor to either the PSD or the data. After
applying the fast-Fourier transform, we remove all data below
20 Hz and above 1024 Hz.

The resulting PSDs and the power in the analyzed data
are shown in Figs. 5 and 6. Figure 5 shows data from the
LIGO Hanford interferometer and Fig. 6 data from the LIGO
Livingston interferometer. The orange curves show the mean
estimated PSDs, and the green show the median estimated
PSDs. All the PSD estimates are at the center of the scatter
in the analyzed data, as expected. We note that the width of
the scatter on the mean PSDs is slightly smaller than for the
median due to the slower convergence of the median estimate.

A. Data quality tests

The main reason for using a median estimate over a mean
estimate is to mitigate the effect of large non-Gaussian tran-
sients. However, the formalism derived above is incorrect if
there is a large outlier in the data being averaged over; see
Appendix A for a more detailed discussion of the issue and
a potential resolution. Therefore, we try to identify if any of
the segments are clear outliers. We compute the power per
segment divided by the mean power in all the other segments.
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TABLE I. Values of the Anderson-Darling statistic for the whitened strain for the mean and median marginalized likelihood at the time
of GW151012. Larger values of the Anderson-Darling statistic indicate comparatively worse agreement. The marginalized distributions match
the data better.

Mean vs marginalized Median vs marginalized Mean vs not marginalized Median vs not marginalized

Livingston strain 0.53 0.46 1.62 2.66
Hanford strain 0.56 0.42 0.48 2.21
Livingston power 1.48 1.03 4.22 6.71
Hanford power 0.79 0.48 0.84 5.55

This is essentially testing how well the data in each of the
segments is whitened by the data in the other segments. We
apply an empirically tuned threshold of 1.5 for the mean
whitened power per segment. Any segment with a mean power
above this value we discard and repeat the test. We identify
that one segment of the Hanford data which fails this test with
a mean whitened power of 2.66. Visual inspection reveals that
this segment has a larger amplitude than all the others below
∼100 Hz. No significant outliers are present in the selected
Livingston data.

Additional tests of the quality are possible and performed
routinely during gravitational-wave data analysis. For exam-
ple, researchers often remove specific frequency bins if the
noise at that frequency is known to be non-Gaussian, e.g.,
around the frequency (and higher harmonics) of mains elec-
tricity [1]. A possible extension would be to use the normal-
ized average power used above to track nonstationarity in the
data, a similar method is used in in [11]. Implementing further
data quality cuts and vetoes will improve the quality of our
PSD estimates and is an interesting avenue for further study.

B. Data whitening

We repeat the tests performed in Sec. IV on the data.
In Fig. 7 we show the deviations from the expected cumu-
lative distribution functions for the data from the Hanford
(top) and Livingston (bottom) interferometers. On the left,
we show the real and imaginary components of the whitened
strain and on the right the whitened power. In orange we
show the difference between the empirical mean-estimated
PSD whitened data and expected mean-marginalized dis-
tributions (29, 28), in green the difference between the
empirical median-estimated PSD whitened data and expected
median-marginalized distributions (25, 23). In red (purple)
we compare the data whitened using the mean- (median-)
estimated PSDs with the distributions which do not account
for the uncertainty. In gray we show the 1σ , 2σ , and 3σ

expected deviations.
In Table I we quote the corresponding values of the

Anderson-Darling statistic for each of these lines. We see
that the largest deviations are observed when using data
whitened with a median estimated PSD and compared to
the nonmarginalized distributions. We also see that, with the
exception of the strain components in Hanford, the Anderson-
Darling statistic is always smaller when using the appropriate
marginalized distributions.

C. Impact on inference

We analyze the data using Bayesian inference as described
in Sec. III twice, once each with the mean-averaged and

median-averaged PSDs to obtain samples from the posterior
distribution and Bayesian evidences under four sets of as-
sumptions:

(1) The data are well described by the mean-estimated
PSD and the Whittle likelihood.

(2) The data are well described by the mean-estimated
PSD and the Student-Rayleigh likelihood.

(3) The data are well described by the median-estimated
PSD and the Whittle likelihood.

(4) The data are well described by the median-estimated
PSD and the median marginalized likelihood, Eq. (23).

In Table II we show the natural logarithm of the BCI
under these four set of assumptions. We find that both PSD
estimation methods have ln BCI ≈ 10 which is a moderately
strong preference for the coherent hypothesis, although we
note that a full treatment requires careful consideration of
prior odds. For both PSD estimates the BCI decreases slightly
when marginalizing over the uncertainty. The increase in the
BCI when using the median estimated PSD is mirrored in the
increased signal-to-noise ratio ρ in the lower panel of Fig. 8.
This is likely due to the different handling of non-Gaussian
features in the mean and median PSD estimation methods.

In Table III we show the natural log Bayes factors compar-
ing the marginalized to unmarginalized likelihoods for both
PSD estimation methods. In both cases, we see a strong pref-
erence for the model which marginalizes over the uncertainty.
This preference is much larger for the median PSD estimate.
This can be understood by the fact that the large |ν| tail of
the median marginalized likelihood is broader than the mean
marginalized likelihood; cf. Fig. 2, lower-right panel.

In Figs. 8 and 9 we show selected posterior distribution
under our four sets of assumptions. In Fig. 8(a) we show the
posterior distribution for the best measured combination of the
component masses, the chirp mass

M = (m1m2)3/5

(m1 + m1)1/5
. (37)

TABLE II. Values of the (natural) log coherent vs incoherent
Bayes factor (ln BCI) for different PSD estimates and likelihoods.
In both cases the difference between the ln BCI with and without
marginalizing over the PSD uncertainty is within typical uncertain-
ties due to finite sampling.

PSD No marg. Marg.

Mean 9.98 9.89
Median 10.39 10.16
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FIG. 8. The posterior distribution for chirp mass (a) and matched
filter SNR (b) for GW151012 for four different models. In blue
(darker gray) and green (lighter gray) we use the mean estimated
PSD while in orange (lightest gray) and red (darker gray) we use the
median estimate. In blue and orange we neglect the uncertainty in the
PSD estimate and in green and red we marginalize over the appropri-
ate statistical uncertainty. We note that in both cases, marginalizing
over the uncertainty increases the width of the chirp mass posterior
and decreases the average SNR. The mean estimated PSD gives a
wider chirp mass posterior than the median PSD estimate and we see
a corresponding decrease in the recovered matched filter SNR.

The parameters mi are the masses of the two component black
holes. In Fig. 8(b) we show the network matched filter signal-
to-noise ratio (SNR). We find that the recovered SNR is larger
when using the median PSD estimate and the marginalizing
over the uncertainty in the PSD increases the posterior support
at SNR less than the maximum found SNR but does not
decrease the maximum SNR. Correspondingly, we see that the
posterior for chirp mass is slightly less strongly peaked when
marginalizing over uncertainty in the PSD, and when using
the median PSD estimate.

TABLE III. Values of the (natural) log Bayes factor comparing
the marginalized and unmarginalized likelihood hypotheses. In both
cases there is a strong preference for the marginalized likelihood
better describing the data than the unmarginalized likelihood.

PSD Marg. vs no marg.

Mean 19.26
Median 91.67

0 1 2 3 4 5 6

α

0.0

0.2

0.4

0.6

0.8

P
ro

b
ab

il
it
y

d
en

si
ty

(a) Mean

Median

Mean Marginalized

Median Marginalized

−1.0 −0.5 0.0 0.5 1.0

δ

0.00

0.25

0.50

0.75

1.00

1.25

P
ro

b
ab

il
it
y

d
en

si
ty

(b) Mean

Median

Mean Marginalized

Median Marginalized

FIG. 9. The posterior distribution for right ascension (a) and dec-
lination (b) for GW151012 for four different models. In blue (darker
gray) and green (lighter gray) we use the mean estimated PSD while
in orange (lightest gray) and red (darkest gray) we use the median
estimate. In blue and orange we neglect the uncertainty in the PSD
estimate and in green and red we marginalize over the appropriate
statistical uncertainty. In this case, marginalizing over the uncertainty
does not make a large difference to the inferred posterior distribu-
tions. However, the different PSD estimation techniques while giving
consistent posterior distributions give different posterior weights to
different parts of the sky.

In Fig. 9 we show the posterior distribution for the pa-
rameters describing the position on the sky, right ascension
α and declination δ. The impact of marginalizing over the
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FIG. 10. The ratio of the true bias factor in the (N + 1)/2-th
sample compared to the median bias as a function of the fraction
of segments with large outliers.
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uncertainty in the PSD does not significantly affect the in-
ferred sky localization of the binary. However, the two PSD
estimation methods recover different posterior distributions
within the same region on the sky.

The fact that the differences in the posterior distributions
and Bayes factors when using the different PSD estimation
methods are larger than the corrections due to marginalizing
over the statistical uncertainty mean that either one or both
of the estimation methods are producing a biased estimate of
the true PSDs. The source of this bias is presumably nonsta-
tionarity and/or non-Gaussianity in the data used to estimate
the PSD. It is not possible to determine which estimate is less
biased and so this must be considered as an extra source of
systematic uncertainty in average PSD estimates.

VI. DISCUSSION

Performing astrophysical inference on gravitational-wave
data requires an estimate of the noise power spectral density
(PSD). In practice it is not possible to know this perfectly, only
to estimate it from the data. Multiple methods of estimating
the PSD are used, and each carries with it a different class
of statistical uncertainty. In this work, we derived the rele-
vant statistical uncertainty for an estimation method, which is
widely used when analyzing gravitational-wave transients, the
median average. We obtained a closed-form expression for the
likelihood, which marginalizes over the statistical uncertainty,
and demonstrated that simulated Gaussian data matches this
distribution.

We then applied our new results to the lowest significance
transient in the first LIGO/Virgo gravitational-wave transient
catalog, GW151012. We analyzed this event using two differ-
ent PSDs with likelihoods, which did and did not marginalize
over the appropriate statistical uncertainty, one using a median
average, and one using a mean average. We showed the PSD
estimation method has a clear effect on the inferred posterior
probability distribution and Bayesian evidence. The changes
in the posterior distributions and Bayesian evidence when
marginalizing over the statistical uncertainty is more subtle.
However, for applications which require precise estimates of
the evidence such as Refs. [25–27], these small differences
will be crucial.

There are many interesting extensions to the work
presented here, which are left to future work. These in-
clude implementing data quality tests when analyzing real
gravitational-wave data, which are known to be non-Gaussian
and nonstationary over timescales of minutes to hours. There
are also other average PSD estimation methods employed. For
example, the “median-mean” estimate [22], a hybrid method
in which the mean of two median estimated PSDs is taken.
The method presented here can be applied to that method,
however, in practice the statistics describing this average are
more complex.

Examples of handling non-Gaussianity and nonstationarity
can be found in other areas of gravitational-wave data anal-
ysis. For example, searches for gravitational-wave transient
signals implement methods to track and mitigate nonstation-
arity [11] and remove large non-Gaussian transients [10,11].
Searches for continuous gravitational-wave sources and the
stochastic gravitational-wave background include algorithms

to detect and remove stretches of data where the PSD is
rapidly fluctuating [5] or frequencies where the data are
known to be non-Gaussian, e.g., around the frequency of AC
mains electricity [1]. By combining these methods and the
statistical models presented here, we can enable precision as-
trophysical inference for gravitational-wave transients without
large computational overheads.

The code to generate the distributions in this work are
available at Ref. [47] including implementations in scipy and
Bilby formats. This work used the following software pack-
ages: numpy [40], matplotlib [41], scipy [42], gwpy [43],
lalsuite [44], Bilby [33].
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APPENDIX: ROBUSTNESS OF MEDIAN PSD ESTIMATE

The widespread use of median PSD estimates in the
gravitational-wave literature is motivated by the additional
robustness of the median estimator compared to a mean es-
timate. While it is true that the median estimate is less biased
than the mean estimate, it is still biased by outliers.

The median of N samples is the value (N + 1)/2-th sample
(for odd N). If there are n outliers we have (N − n) samples
from the expected distribution and n samples from the dis-
tribution of outliers, which we assume will be the n largest
values. When we compute a median, we are therefore taking
the (N + 1)/2-th of (N − n) samples drawn from the expected
distribution, and so rather than the median order statistic, we
must modify Eq. (18) to use this new order statistic

π (Q|P̂, n)
p(Q)

2P̂

	(Q)mS(Q)m−n

B(m + 1, m − n + 1)
(A1)

(
1 − e− 1

2 Q
)m−n

e− (m+1)
2 Q

4P̂ B(m + 1, m − n + 1)
(A2)

m−n∑
k=0

(
m − n

k

)
(−1)ke− (m+k+1)

2 Q

4P̂ B(m + 1, m − n + 1)
. (A3)
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If we expect that there is a Poisson process producing
glitches with some rate R and we average T second segments
to estimate the PSD, the expected number of glitches per
segment follows a Poisson distribution with λ = T/R. The
prior probability that n segments contain at least one glitch
is then

π (n) = pN−n(k = 0, λ)[1 − p(k = 0, λ)]n (A4)

= e− (N−n)T
R

(
1 − e− T

R
)n

. (A5)

The full expression for use in Eq. (18) is then

π (Q|P̂) =
(N−1)/2∑

n=0

π (Q|P̂, n)π (n). (A6)

Here, the upper limit for the sum is (N − 1)/2 correspond-
ing to the case where one in every two segments contains a
non-Gaussian outlier. Therefore, if R < 2T the median PSD
method cannot produce correct (or even sensible) estimates.

We also note that the bias factor α should be smaller for
these not-quite-median PSD estimates. In Fig. 10 we show the
ratio of the correct bias factor to the median bias as a function
of the fraction of segments containing a glitch. As the number
of averages increases, the bias decreases. As expected, the
ratio diverges for n = (N + 1)/2.

Another factor to consider is that many glitches do not
affect the full frequency band being analyzed and the rate of
glitches changes over time. We can account for this by using
a time-and-frequency-dependent glitch rate.
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