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Abstract—We consider the following problem in this
paper: given a set of n distributions, find the top-m ones
with the largest means. This problem is also called top-
m arm identifications in the literature of reinforcement
learning, and has numerous applications. We study the
problem in the collaborative learning model where we
have multiple agents who can draw samples from the n
distributions in parallel. Our goal is to characterize the
tradeoffs between the running time of learning process and
the number of rounds of interaction between agents, which
is very expensive in various scenarios. We give optimal
time-round tradeoffs, as well as demonstrate complexity
separations between top-1 arm identification and top-m
arm identifications for general m and between fixed-time
and fixed-confidence variants. As a byproduct, we also give
an algorithm for selecting the distribution with the m-th
largest mean in the collaborative learning model.

I. INTRODUCTION

In this paper we study the following problem: given

a set of n distributions, try to find the m ones with

the largest means via sampling. We study the problem

in the multi-agent setting where we have K agents,

who try to identify the top-m distributions collabora-

tively via communication. Suppose sampling from each

distribution takes a unit time, our goal is to minimize

both the running time and the number of rounds of

communication of the collaborative learning process.

The problem of top-m distribution identifications

originates from the literature of multi-armed bandits
(MAB) [52], where each distribution is called an arm,

and each sampling from a distribution is called an arm
pull. When m = 1, the problem is called best arm
identification, and has been studied extensively in the

centralized setting where there is only one agent [5],

[11], [24], [27], [45], [39], [33], [40], [20], [13], [29].

§Full version in https://arxiv.org/abs/2004.09454.
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1633215, CCF-1844234, and CCF-2006591. Yuan Zhou is supported
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Some of these algorithms can be easily modified to

handle top-m arm identification (e.g., [5], [12]). The

problem of best arm identification has also been studied

in the multi-agent collaborative learning model [31],

[54]. Surprisingly, we found that in the multi-agent

setting, the tasks of identifying the best arm and the top-

m arms look to be very different in terms of problem

complexities; the algorithm design and lower bound

proof for the top-m case require significantly new ideas,

and need to address some fundamental challenges in

collaborative learning.

Collaborative Learning with Limited Interaction. A

natural way to speed up machine learning tasks is to

introduce multiple agents, and let them learn the target

function collaboratively. In recent years some works

have been done to address the power of parallelism

(under the name of concurrent learning, e.g., [50], [30],

[23], [22]). Most of these works assume that agents

have the full ability of communication. That is, they

can send/receive messages to/from each other at any
time step. This assumption, unfortunately, is unreal-

istic in real-world applications, as it would be very

expensive to implement unrestricted communication,

which is usually the biggest drain of time, data, energy

and network bandwidth. For example, once we deploy

sensors/robots to unknown environment such as deep

sea and outer space, it would be almost impossible to

recharge them; when we train a model in a central server

by interacting with hundreds of thousands of mobile

devices, the communication cost will directly contribute

to our data bills, not mentioning the excessive energy

and bandwidth consumption.

In this paper we consider the model of collaborative
learning with limited interaction, where the learning

process is partitioned into rounds of predefined time

intervals. In each round, each of the K agents takes

a series of actions individually like in the centralized

model, and they can only communicate at the end of
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each round. At the end of the last round before any

communication, all agents should agree on the same

output; otherwise we say the algorithm fails. Our goal is

to minimize both the number of rounds of computation

R and the running time T (assuming each action takes

a unit time step).1

Naturally, there is a tradeoff between R and T : If

R = 1, that is, no communication is allowed, then

T ≥ TC where TC is the running time of the best cen-

tralized algorithm. When R increases, T may decrease.

On the other hand we always have T ≥ TC/K even

when R = T . We are mostly interested in understanding

the number of rounds needed to achieve almost full
speedup, that is, when T = Õ(TC/K) where Õ(·) hides

logarithmic factors.

We do not put any constraints on the lengths of the

messages that each agent can send at the end of each

round, but in the MAB setting they will not be very large

– the information that each agent collects can always be

compressed to an array of n pairs in the form of (xi, θ̃i),
where xi is the number of arm pulls on the i-th arm,

and θ̃i is the empirical mean of the xi arm pull.

Top-m Arm Identification. To be consistent with

the MAB literature, we will use the term arm instead

of distribution throughout this paper. The top-m arm

identification problem is motivated by a variety of appli-

cations ranging from industrial engineering [41] to med-

ical tests [55], and from evolutionary computation [49]

to crowdsourcing [1]. The readers may refer to [5], [36],

[21], [18], [19] and references therein for the state-of-

the-art results on the top-m arm identification in the

centralized model.

In this paper we mainly focus on the fixed-time case,

where given a fixed time horizon T , the task is to

identify the set of m arms with the largest means

with the smallest error probability. We will also discuss

the fixed-confidence case, where given a fixed error

probability δ, the task is to identify the top-m arms

with error δ using the smallest amount of time.

Without loss of generality, we assume that each of

the underlying distributions has support on (0, 1). In

the centralized setting, Bubeck et al. [12] introduced

the following complexity to characterize the hardness

of an input instance V for the top-m arm identification

problem. Let θi be the mean of the i-th arm. Let [j] be

1We note that our model is a simplified version of the one
formulated in [54]. The model defined in [54] allows each agent to
perform different numbers of actions in each round, and the length
of each round can be determined adaptively by the agents. However,
we noticed that all the existing algorithms for collaborative learning
in the literature have predefined round lengths, under which there is
no point for an agent to stop early in a round.

the index of the arm in V with the j-th largest mean, and

let θ[j](V ) be the corresponding mean. Given an input

instance I of n arms, let Δ
〈m〉
i (I) be the gap between

the mean of the i-th arm and that of the [m]-th arm or

the [m+1]-th arm, whichever is larger. In other words,

Δ
〈m〉
i (I) �

{
θi − θ[m+1](I), if θi ≥ θ[m](I),

θ[m](I)− θi, if θi ≤ θ[m+1](I).
(1)

Definition 1 (Instance Complexity). Given an input
instance I of n arms and a parameter m (call it the
pivot), we define the following quantity which charac-
terizes the complexity of I .

H〈m〉(I) �
∑
i∈I

(
Δ
〈m〉
i (I)

)−2

.

We also define a related quantity which we call the ε-
truncated instance complexity.

H〈m〉
ε (I) �

∑
i∈I

max
{
Δ
〈m〉
i (I), ε

}−2

.

To see why H〈m〉(I) is the right measure for the

instance complexity, note that if the mean of an arm is

either (θ+Δ) or (θ−Δ) where θ is a known threshold,

it takes Ω(Δ−2) samples to decide whether the mean is

above or below the threshold θ (as long as θ ± Δ are

bounded away from 0 and 1). Therefore, suppose all the

means are bounded away from 0 and 1, even if we are

given the means of the [m]-th and the [m+1]-th arms,

it still takes Ω(H〈m〉(I)) samples to decide for each

arm whether it is one of the top-m arms or not. Such

intuition can be formalized to show that, in the fixed-

confidence case, Ω(H〈m〉(I) log(1/δ)) samples are

needed to identify the top-m arms with success proba-

bility (1−δ) [51], [19]. On the other hand, there are cen-

tralized algorithms to achieve O(H〈m〉(I) log(1/δ) +
H〈m〉(I) logH〈m〉(I)) (see, e.g., [36]), almost match-

ing the lower bound (up to logarithmic factors).

For the fixed-time case, in [12] it was shown that

there is a centralized algorithm that identifies the top-m
arms with probability at least

1− exp

(
−Ω̃

(
T

H〈m〉(I)

))
(2)

using at most T time steps, where Ω̃(·) hides logarith-

mic factors in n. This upper bound can also be shown

to be tight up to logarithmic factors [40], [13], [51],

[19]. In the collaborative learning setting, our goal is

to replace the T factor in (2) with KT where K is the

number of agents, so as to achieve a full speedup.

Our Contributions. We summarize our main results

and their implications.
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1) We give an algorithm for the fixed-time top-

m arm identification problem in the collabora-

tive learning model with K agents and a set I
of n arms. For any choice of r, the algorithm

uses T time steps and O(log logm
logK + r) rounds

of communication, and successfully computes

the set of top-m arms with probability at least

1− exp
(
−Ω̃

(
K(R−1)/R·T

H〈m〉(I)

))
. In particular, when

r = logK, the algorithm uses T time steps and

O(log logm
logK +logK) rounds of communication to

compute the set of top-m arms with probability at

least 1 − exp
(
−Ω̃

(
KT

H〈m〉(I)

))
, achieving a full

speedup. See Section III.

2) We prove that under the same setting, any col-

laborative algorithm that uses T = 1√
K
·H〈m〉(I)

time steps and aims to achieve success probability

0.99 needs at least Ω(log logm
logK ) rounds of com-

munication. By leveraging a result in [54], we

can also show that any collaborative algorithm

that uses T = α
K · H〈m〉(I) time steps and

aims to achieve success probability 0.99 needs

at least Ω(logK/(log logK + logα)) rounds of

communication. These indicate that our upper

bound is almost the best possible. See Section IV.

3) Our lower bound gives a strong separation be-

tween the best arm identification and top-m iden-

tifications: there is a collaborative algorithm for

best arm identification (i.e., when m = 1) that

uses T = Õ
(

1√
K
·H〈1〉(I)

)
time and 2 rounds

of communication (see [54], [31]), while Item 2

states that for general m, to achieve the same time

bound we need Ω(logK/(log logK + logα))
rounds of communication.

4) We give an algorithm for the fixed-confidence

top-m identification problem in the collaborative

model with K agents and a set of n arms;

the algorithm uses O
(

H〈m〉(I)
K log

(
n
δ logH〈m〉))

time steps and O
(
log(1/Δ

〈m〉
[m] )

)
rounds of com-

munication, and successfully computes the set of

top-m arms with probability at least 1 − δ. This

is almost tight by a previous result in [54]. See

Section V.

5) Combining Items 1, 2, and 4, we have given a sep-

aration between fixed-time and fixed-confidence

top-m arm identification. We note that a similar

separation result is also proved for the best arm

identification problem [54], although the round

complexities for top-m identification are quite

different from the m = 1 special case (i.e., best

arm identification).

Speedup. In [54] the authors introduced a concept

called speedup for presenting the power of collaborative

learning algorithms. The precise definition of speedup is

rather complicated due to the definition of the instance

complexity of MAB. Roughly, the speedup is defined to

be the ratio between the best running time of centralized

algorithm and that of a collaborative algorithm (given a

predefined round budget R) under the condition that the

two algorithms achieve the same success probability. In

this paper we simply focus on a fixed success proba-

bility 0.99, and define the speedup of a collaborative

algorithm which identifies the top-m arms on input

instance I with accuracy 0.99 using time TA(I) to be

TA(I)/H〈m〉(I), since the best centralized algorithm

achieving success probability 0.99 has running time

Θ̃(H〈m〉(I)) [12]. Interpreting our results in terms of

speedup, we have the following remarks:

1) Our algorithm for fixed-time top-m arm identifi-

cation achieves a speedup of Õ(K
r−1
r ) and uses

O(log logm
logK + r) rounds.

2) Our lower bound shows that in order to achieve

even an Ω̃(
√
K) speedup, any algorithm for top-

m arm identification needs at least Ω(log logm
logK )

rounds.

3) Compared with the main result for the best arm

identification in [54], which states that there is

a R-round algorithm achieving a speedup of

Õ(K
R−1
R ), we have shown a separation between

the complexities of the two problems (e.g., when

R = 2).

Selection under Uncertainty. As a byproduct, we also

get almost tight bounds for a closely related problem

we call selection under uncertainty. This problem is

similar to the classic selection problem where given a

set of n numbers, one needs to find the m-th largest

number. The difference is that now instead of having n
(deterministic) numbers, we have n distributions/arms,

and our goal is to find the one with the m-th largest

mean via sampling. It is easy to see that this problem

can be solved by first identifying the top-m arms, and

then finding the worst arm in these top-m arms, which

can be done in the same way as identifying the best

arm.

For convenience, let us introduce a new (but very sim-

ilar) definition of instance complexity for the selection

under uncertainty problem:

H̄〈m〉(I) �
∑
i�=[m]

(θi − θ[m])
−2.

With H̄〈m〉 we have the following immediate result:

There exists an algorithm for the fixed-time m-th arm
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selection problem in the collaborative learning model

with K agents and a set I of n arms; the algorithm

uses T time steps and O(log logm
logK + r) rounds of

communication, and successfully identifies the m-th

arm with probability at least

1− exp

(
−Ω̃

(
K(r−1)/r · T
H̄〈m〉(I)

))
.

Why Top-m Arm Identification is Difficult in the
Collaborative Learning Model? Before presenting

our results, let us first try to give some intuition on why

top-m arm identification is difficult in the collaborative

learning setting, as one may think that the top-m arm

identification is a natural generalization of best arm

identification (when m = 1), and the algorithm for the

latter in [54] may be adapted to the former.

The key procedure used in previous collaborative

algorithms for best arm identification [31], [54] is that

in the first round, we randomly partition the set I of n
arms into K groups, and feed each group to one agent

as a subproblem. Now if each of the K agents computes

the best arm in its subproblem, then we can reduce the

number of best arm candidates from n to K after the

first round, which is critical for us to achieve logK
communication rounds. The question now is whether

each subproblem can be solved time-efficiently (more

precisely, in Õ(H〈1〉(I)/K) time steps if we target a

Ω̃(K) speedup) at each agent in the first round.

A nice property for the best arm identification is that

if we randomly partition the set I of n arms to the K
groups, then the group (denoted by G) containing the

global best arm has a subproblem complexity H ′ =∑|G|
i=2 (Δ

′
i)
−2

, where Δ′i is the difference between the

mean of the best arm and that of the i-th best arm in

group G. It is easy to show that

E[H
′] = Θ

(
H〈1〉(I)/K

)
. (3)

Therefore, even though we cannot guarantee that each

of the K subproblems can be solved successfully under

time budget Õ(H/K), we still know that the global best

arm will advance to the next round with a good proba-

bility, which is enough for the algorithm to succeed.

Unfortunately, the above property does not hold in the

top-m setting due to its “multi-objective” goal. First, the

global m-th arm will only be assigned to one agent, and

thus others do not know what pivot to use for defining

its subproblem complexity. Second, even for the agent

who gets the m-th arm j, it does not know what is the

local rank of j, and, thus, still does not know when to

stop the local pruning. Third, even if the agents know

the local ranks of the m-th arm, it may not have enough

time budget to solve the sub-problem; note that this is

an issue only for the top-m case but not for the best

arm case, since in the top-m case each subproblem may

contain some top-m arms.

We will design an algorithm which addresses all

of these challenges, and then complement it with an

almost tight lower bound. Looking back, we feel that

in the best arm case it was just lucky for us to have

Equation (3), while in the general top-m case we have

to deal with some inherent challenges in collaborative

learning, which, unfortunately, also make our algorithm

for top-m much more complicated than that for best

arm identification. We will give a technical overview for

both the algorithm and lower bound proof in Section II.

Related Work. To the best of our knowledge, the

collaborative learning model studied in this paper was

first proposed in [31], where the authors studied the best

arm identification problem in MAB. The model was

recently formalized in [54], where almost tight time-

round tradeoffs for best arm identification are given.

A number of works studied regret minimization,

which is another important problem in MAB, in various

distributed models, most of which are different from the

collaborative learning model considered in this paper.

For example, several works [44], [48], [9] studied regret

minimization in the setting of cognitive ratio network,

where radio channels are models as arms, and the

rewards by pulling each arm depend on the number

of simultaneous pulls by the K agents (i.e., penalty is

introduced for collisions). In [16] the authors considered

a model where at each time step each agent can choose

either to pull an arm, or broadcast a message to other

agents, but cannot do both. Authors of [53], [42],

[57] considered regret minimization in communication

networks. Distributed regret minimization has also been

studied in the non-stochastic setting [6], [37], [15].

The collaborative learning model is closely related to

the batched model (or, learning with limited adaptivity),

where one wants to minimize the number of policy

switches in the learning process. In the batched model

we want to minimize the number of policy switches

when trying to achieve our learning goal. Algorithms

designed in the batched model can naturally be trans-

lated to a restricted version of the collaborative model in

which at each time step, the action taken by each agent

is determined by the information (historical actions

and outcomes, messages received from other agents,

and the randomness of the algorithm) the agent has

at the beginning of the round, and the agents cannot

change their policies in the middle of the a round. A

number of problems have been studied in the batched
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n number of arms in the input instance.
K number of agents.
T running time.
θi mean of the i-th arm.

θ[i](V ) the i-th largest mean among arms in V .

Topm(V ) indices of the m arms with the largest means in V .
Top1(V ) index of the best arm in V .

Δ
〈m〉
i (V ) mean gap of the i-th arm; defined in (1).

H〈m〉(V ) instance complexity; see Definition 1.

H
〈m〉
ε (V ) ε-truncated instance complexity; see Definition 1.

Table I: Summary of Notations

model in recent years, including best arm identification

[35], [2], [34], regret minimization in MAB [47], [28],

[26], Q-learning [7], convex optimization [25], online

learning [14]. We note that our collaboratively learning

algorithm for top-m arm identification in the fixed-

confidence case also works in the batched model, and

improves the algorithm in [34].

Finally, we note that there is also a large body

of work on sample/communication-efficient distributed

algorithms for various learning-related tasks such as

classification [8], [32], [38], convex optimization [59],

[58], [3], linear programming [4], [56]. Sample-efficient

PAC learning in the collaborative setting is recently

studied by [10], [17], [46]. However, the models con-

sidered in the papers mentioned above mainly focus on

reducing the sample/communication cost, and are all

different from the collaborative learning with limited

interaction model we study in this paper.

Notations and Conventions. Let Topm(V ) be the

indices of m arms in V with the largest means, and

Top1(V ) be the index of the best arm in V .

We say the i-th arm is (ε, j)-top in V if and only if

θi ≥ θ[j](V )− ε. Similarly, the i-th arm is (ε, j)-bottom

in V if and only if θi ≤ θ[|V |+1−j](V ) + ε.

In this paper we focus on the case when θ[m](I) >
θ[m+1](I), since otherwise the instance complexity of I
will be infinity.

For simplicity, we will write Topm(V ), Top1(V ),

θ[i](V ), Δ
〈m〉
i (V ), H〈m〉(V ), and H

〈m〉
ε (V ) as Topm,

Top1, θ[i], Δ
〈m〉
i , H〈m〉, and H

〈m〉
ε , when V = I (I is

the input instance) or it is clear from the context.

We include a list of notations in Table I.

Roadmap. In the rest of this paper, we first give

a technical overview of our results in Section II. We

present our algorithmic result for the fixed-time case in

Section III, and complement it with a matching lower

bound in Section IV. Finally in Section V, we state our

results for the fixed-confidence case.

II. TECHNICAL OVERVIEW

In this section we give a technical overview for

our upper and lower bounds for fixed-time top-m arm

identification.

A. Upper Bounds for the Fixed-Time Setting

For simplicity we consider the full speedup setting

(i.e., we target a speedup of Ω̃(K)); the general speedup

is an easy extension. We achieve our upper bound result

for fixed-time top-m arm identification in three stages.

We first design an algorithm for a special time horizon

T = Θ̃(H〈m〉/K) which uses O(log logn
logK + logK)

rounds of communication and has an error probability

0.01. We next consider general time horizon T , and

target an error probability that is exponentially small

in T . Finally, we try to improve the round complexity

to O(log logm
logK + logK). In each stage we face new

challenges which stem from the collaborative learning

model, each of which demands novel ideas.

Stage 1: A Basic Algorithm. We start with our

basic algorithm. A natural idea for achieving the T =
Õ(H〈m〉/K) running time is to randomly partition the

n arms to K agents, and then ask each agent to solve

a top-η arms identification (for some value η) on its

sub-instance. At the end we try to aggregate the K
outputs. As briefly mentioned in the introduction, there

are multiple hurdles associated with this approach. First,

it is not clear how to set the value η, since we do not

know how many global top-m arms will be distributed

to each agent. Second, even if we know the number

of global top-m arms assigned to each agent, there

are cases in which the global instance complexity is

rarely distributed evenly across the K agents. In other

words, we cannot guarantee that each agent can solve

the subproblem within our time budget Õ(H〈m〉/K).
We resolve these issues using the following ideas: we

take a conservative approach by setting η ≈ (m/K −√
n), and ask each agent to adopt a PAC algorithm for

multiple arm identification and compute an approximate
set of top-η arms on its sub-instance using Õ(H〈m〉/K)
time steps. The approximation error is a random vari-
able depending on the random partition process. We

then show that with a good probability this error is

smaller than the gap between the smallest mean of the

outputted arms and that of the global m-th arm. In this

way we can guarantee that the approximate top-η arms

outputted by each agent are indeed in the set of global

top-m arms. Using the same idea we try to prune a set

of “bottom” arms of size ≈ ((n−m)/K −√n). After

these operations we recurse on the rest O(K
√
n) arms.

We continue the recursion for O(log logn
logK ) rounds until

164

Authorized licensed use limited to: University of Illinois. Downloaded on April 08,2021 at 09:35:21 UTC from IEEE Xplore.  Restrictions apply. 



the number of arms is reduced to K10, and then use a

simple O(log n)-round collaborative algorithm which is

modified from an existing centralized algorithm. Note

that for n′ = K10 we have O(log n′) = O(logK), and

thus overall we have used O(log logn
logK +logK) rounds.

Stage 2: General Time Horizon. The basic algorithm

only guarantees that the set of top-m arms are cor-

rectly identified with probability 0.99. Our next goal

is to make the error probability exponentially small

in T , which is achievable in the centralized setting.

The standard technique to achieve this is to perform

parallel repetition and then take the majority. That is,

we guess the instance complexity to be H = 1, 2, 4, . . .,
and for each guess we run the basic algorithm with

time horizon H for T/H times. Finally, we take the

majority of the output. In the case that the budget T
is larger than the actual instance complexity, at each

run with probability 0.99 we are guaranteed to obtain

the correct answer. Unfortunately, when T is smaller

than the actual instance complexity, not much can be

guaranteed. For some bad input instances, the output of

the basic algorithm can be consistently wrong, resulting

in a wrong majority.

We resolve this difficulty by introducing a notion

we call top-m certificate, which takes form of a pair

(S, {θ̃i}i∈I), with the property that S = Topm and for

each i ∈ I , it holds that
∣∣∣θ̃i − θi

∣∣∣ < Δ
〈m〉
i /4. We can

augment our basic algorithm to output a (S, {θ̃i}i∈I)
pair (instead of simply a set of top-m arms). We then

design a verification algorithm which is able to check

for each (S, {θ̃i}i∈I) pair whether it is indeed a top-m
certificate. Our verification step can be fully parallelized

and can finish within our guessed instance complexity

H . With such a verification step at hand, the situation

that we take a wrong majority will not happen with high

probability.

Stage 3: Better Round Complexity. Our ultimate goal

is to achieve an O(log logm
logK +logK) round complexity,

instead of O(log logn
logK + logK) in the basic algorithm.

We approach this by first reducing the number of arms

in the input instance to Õ(m), and then applying the ba-

sic algorithm. Such a reduction, however, is highly non-

trivial, especially when we require the error probability

introduced by the reduction to again be exponentially

small in T .

Our basic idea for performing the reduction is the

following: we construct a random sub-instance V by

sampling each of the n arms with probability 1/m.

We can show that with constant probability, V con-

tains exactly one global top-m arm, and H〈1〉(V ) =

O(H〈m〉/m). Therefore we have enough time budget

to compute the best arm of V and include it into set

S as a top-m candidate. We perform this subsampling

procedure for Õ(m) times, getting Õ(m) sub-instances.

By the Coupon Collector’s problem we know that all

global top-m arms will be included in S with a good

probability.

The challenging part is to reduce the error probability

of this reduction to a value that is exponentially small

in T . Unfortunate, the idea of “guess-then-verify” that

we have used previously does not apply here – there

is simply no (S, {θ̃i}i∈I) pair for us to verify in the

reduction process.

We take the following new approach. We try to make

sure that for each randomly sampled sub-instance on

which we try to compute the best arm, the probability

of outputting any arm in Topm is at least half of that of

any arm outside Topm. This turns out to be enough for

us to guarantee that the set S contains all top-m arms.

We comment that the relaxation “half” is necessary here

for a technical reason which we will elaborate next.

Our key observation is that if we provide sufficient

time budget, say, T ≥ λH〈1〉(V ) where λ is a polylog-

arithmic factor, for solving a randomly sampled sub-

instance V , then provided that there is only one arm

a ∈ Topm in V , we will output a correctly with a

good probability. Now for any two arms a ∈ Topm and

b �∈ Topm, by the uniformity of the sampling they will

be in the sub-instance with equal probability. We are

thus able to conclude that the probability of outputting

a is at least as large as that of outputting b. On the other

hand, if T ≤ H〈1〉(V ), then we can use our verification

step to detect this event. The subtle part is the middle

case when H〈1〉(V ) ≤ T ≤ λH〈1〉(V ), to handle which

we perturb our time budget T such that it takes values

T/λ or λT with equal probability. Using this trick we

are able to “reduce” the third case to the first two cases

with probability at least 1/2, which leads to our desired

property. The actual implementation of this idea is more

involved, and we refer the readers to the full version for

details.

B. Lower Bounds for the Fixed-Time Setting

In the lower bound part, we present two results. The

first result is that Ω(logK/(log logK + logα)) com-

munication rounds are needed for any algorithm with

(K/α) speedup to identify the top-m arms for any m.

This matches (up to logarithmic factors) the R term in

the O(log logm
logK +R) rounds vs Õ(K(R−1)/R) speedup

trade-off in our upper bound result. This lower bound

theorem is derived via a simple reduction together with
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the similar type of lower bound proved in [54] for the

m = 1 special case.
Our main contribution in the lower bound part is the

second theorem. The theorem states that even if the goal

is an O(
√
K) speedup, the log logm

logK term in the round-

speedup trade-off is necessary. (In fact, the log logm
logK can

be shown to be necessary for any Kζ speedup where ζ
is a positive constant.) This marks a completely different

phenomenon from the m = 1 special case where only

2 rounds of communication are needed to achieve an

Õ(
√
K) speedup [54], [31]. Below we sketch the proof

idea for this lower bound theorem.
The need for the log logm

logK term in the round complex-

ity stems from the hardness of collaboratively learning

the splitting position (i.e., where the m-th largest arm lo-

cates), which turns out to be substantially more difficult

than estimating the best arm (the m = 1 special case).

We start from the fact that any (possibly randomized)

algorithm cannot identify the number of 1’s in the n-

bit binary vector with success probability ω(n−1/2), if

the algorithm is allowed to probe only o(n) entries in

the vector. A strengthened statement we will prove as

the building block is the following lower bound for the

“learning the bias” problem: given n Bernoulli arms

(i.e., the stochastic reward of the arm is either 0 or 1),

each of which has mean reward (μ+ ε) or (μ− ε), then

any algorithm using o(nε−2/ log(n/ε)) samples will not

be able to identify the number of two types of arms with

probability ω(n−1/2).2

Now we explain the connection between the learning

the bias problem and the top-m arm identification

problem by sketching the plan of constructing the hard

instances as follows. Suppose that we set all but n1/2

arms in the hard instance to be Bernoulli with mean

reward either (μ+ε) (namely “the top arms”) or (μ−ε)
(namely “the bottom arms”). We denote the set of the

rest n1/2 arms by M , and their mean rewards are

sandwiched between (μ + ε) and (μ − ε). We will

set m = n/2, i.e., the goal is to identify the top

half of the arms. Now, as long as the number of top

arms, denoted by X , is bounded between n
2 −

√
n and

n
2 +

√
n, the goal is equivalent to identify the X top

arms and the top-(n2 −X) arms in M . We then vary the

number of the top arms and consequently the number

2The sample complexity lower bound for a similar problem is
proved in a recent work [43]. Our lower bound is different from
theirs in two aspects. First, in their setting, the number of arms is
not bounded and the goal is to estimate the fraction of the two types
of arms up to an additive error, while in our setting, the number of
arms is n, and the goal is to find out the exact numbers of arms
for the two types. Second, their lower bound is for algorithms with
constant success probability, while our lower bound is for algorithms
with only ω(n−1/2) success probability.

of the bottom arms (say, let X be uniformly randomly

chosen from the range), and will argue that each agent

will not be able to identify X much better than a

random guess without communication, and therefore

must perform one round of communication to learn

X in order to identify the top-(n2 − X) arms in M .

Here, the need for communication is due to the lower

bound for learning the bias and the fact that any agent

in a
√
K-speedup algorithm is allowed to make only

O(nε−2/
√
K) = o(nε−2) samples (where we make

a crucial assumption that the H〈m〉 complexity of the

constructed hard instance is O(nε−2)). The last piece of

plan is to argue that since X is not known before the first

round of communication, each agent cannot make much

progress before the communication towards identifying

the top-(n2 −X) arms in M , which is a necessary sub-

task. We will finally inductively prove a communication

lower bound for this sub-task. Note that the number of

arms in M is n1/2, and this plan will lead to a log logn-

style round complexity lower bound.

There are several challenges for the plan above. Note

that in the sub-task for M , the goal is no longer to

identify the top half arms, which is not well aligned

with the (planned) induction hypothesis. Moreover, to

make the induction work, M would naturally have the

similar structure as the n-arm instance, i.e., with many

top and bottom arms (possibly with different μ and ε
parameters). However, such a construction would hardly

ensure that the H〈m′〉 complexity is still O(nε−2).
Indeed, if the goal of the sub-task is to identify, for

example, the top |M |/4 arms, since most of the top

half arms are the same, the corresponding the H〈m′〉

complexity would become infinitely large. Finally, it is

not clear how to make sure that any agent will not gain

much information about M before the first round of

communication so as to quickly identify the top (n2−X)
arms in M whenever X is learned.

To address these challenges, we craft a more com-

plex distribution of hierarchical instances. The main

highlight is that we let M consist of multiple blocks

I1, I2, . . . , Ik, where each block has the same number

of arms and is independently sampled from a recursively

defined hard distribution. We restrict the possible values

of (n2 − X) to be the half multiples of the block size

so that the sub-task always becomes to identify the top

half arms in Iξ for some ξ ∈ {1, 2, . . . k}. We will make

careful selection of the block parameters so that the

H〈m〉 complexity for any instance in the support of the

distribution, and the H〈m′〉 complexity of any sub-task,

are all Θ̃(nε−2), where both upper and lower bounds

are crucial to the proof.
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III. A COLLABORATIVE ALGORITHM FOR THE

FIXED-TIME CASE

A. Preparation

We first introduce two centralized algorithms

CenAppTop and CenAppBtm for computing (ε,m)-
top/bottom arms. We leave their detailed description

to the full version of the paper. The following lemma

summarizes the guarantees of these two algorithms.

Lemma 1. Let I be a set of n arms, m ∈ {1, . . . , n−1},
and ε ∈ (0, 1) be an approximation parameter. Let

T1(I, a, ε, δ) = c1H
〈a〉
ε/2(I) · log

(
H
〈a〉
ε/2(I)/δ

)
for a universal constant c1. We have that
• If T ≥ T1(I,m, ε, δ), then with probability at least

(1 − δ), CenAppTop(I,m, T, δ) returns m arms
each of which is (ε,m)-top in I using at most T
time steps.

• If T ≥ T1(I, n−m, ε, δ), then with probability at
least (1 − δ), CenAppBtm(I,m, T, δ) returns m
arms each of which is (ε,m)-bottom in I using at
most T time steps.

The following lemma says that there is a simple

collaborative algorithm CollabTopMSimple for top-

m arm identification that uses O(log n) rounds of

communication. Note that this bound is still much

larger than our final target O(log logm+logK) rounds.

CollabTopMSimple is a simple modification of a

centralized algorithm in [12], and will be described in

details in the full version of the paper.

Lemma 2. Let I be a set of n arms, and m ∈
{1, . . . , n− 1}. Let

T2(I,m, δ) = c2 · H
〈m〉(I)
K

· log n · log n

δ
(4)

for a universal constant c2. There is a collaborative
algorithm CollabTopMSimple(I,m, T ) such that if
T ≥ T2(I,m, δ) then with probability at least 1 − δ,
one computes the set of top-m arms of I using at most
T time steps and O(log n) rounds.

B. Special Time Horizon T

We are able to establish the following theorem con-

cerning a special time horizon T .

Theorem 3. Let I be a set of n arms, and m ∈
{1, . . . , n− 1}. Let

T0 = c0
H〈m〉

K

(
log

(
H〈m〉K

)
+ log2 n

)
log(2) n (5)

for a large enough constant c0. There exists a collabo-
rative algorithm CollabTopM(I,m, T ) that computes

Algorithm 1: CollabTopM(I,m, T )

Input: a set of n arms I , parameter m, and time

horizon T .

Output: the set of top-m arms of I .

1 Let R be the global upper bound on the number of

rounds and δ be also the global parameter equal

to 1/(100R);

2 q ← 4K
√
n log (nR);

3 if n > K10 then
4 Acc ← ∅,Rej ← ∅;
5 randomly assign each arm in I to one of the

K agents, and let Ii be the set of arms

assigned to i-th agent;

6 if m > q then
7 �← (m− q)/K;

8 for agent i = 1 to K do
9 Acci ← CenAppTop

(
Ii, �,

T
4R , δ

2K

)
;

10 Acc ← ⋃K
i=1 Acci;

11 if n−m > q then
12 r ← (n−m− q)/K;

13 for agent i = 1 to K do
14 Rej i ← CenAppBtm

(
Ii, r,

T
4R , δ

2K

)
;

15 Rej ← ⋃K
i=1 Rej i;

16 return Acc ∪
CollabTopM(I \ (Acc∪Rej ),m−|Acc|, T );

17 else
18 return CollabTopMSimple(I,m, T/2) .

the set of top-m arms of I with probability at least
0.99 when T ≥ T0, and uses at most T time steps and
O(log logn

logK + logK) rounds of communication.

Our algorithm is described in Algorithm 1. Note that

we have used recursion instead of iteration to omit a

superscript r. But we still call each recursive step a

round.

While the detailed proof of Theorem 3 is deferred to

the full version of the paper, here we briefly state the

intuition behind the algorithm and its analysis. At the

beginning of each round we first randomly partition the

set of arms to the K agents. Then each agent tries to

identify a subset of arms Acci of size � ≈ (m/K−√n)
to be included to Topm, and a subset of arms Rej i
of size r ≈ ((n − m)/K − √n) to be pruned. The

intuition to introduce the additive
√
n term is that by a

concentration bound, we have with a good probability

that at least � true top-m arms will be assigned to

each agent, and similarly at least r non-top-m arms
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will be assigned to each agent. However, even with

this fact, we still cannot guarantee that each agent can

identify the top and bottom arms successfully given its

limited budget, which is approximately H〈m〉/K. Such

a budget in some sense demands that the global instance

complexity is evenly divided into the K agents, which is

not necessary true. We thus adopt a PAC algorithm for

top-m arm identification which returns a set of � (ε, �)-
top arms at each agent Ai, where ε is a random variable

which, with a high probability, is smaller than the gap

between the �-th top arm locally at Ai and that of the m-

th global top arm. In this way we can guarantee that it is

safe to include each Acci that Ai computes into Topm.

By essentially the same arguments, we can show that it

is safe to prune the set of bottom arms Rej i.

C. General Time Horizon T

Theorem 3 only achieves a constant error probability

for a special case of the time horizon T = Θ̃(T0)
where T0 = H〈m〉/K. Our next goal is to consider

general time horizon T ≥ T0, and try to make the error

probability decrease exponentially with respect to T/T0.

More precisely, we have the following theorem.

Theorem 4. Let I be a set of n arms, and m ∈
{1, . . . , n − 1}. Let T be a time horizon. There exists
a collaborative algorithm CollabTopMGeneral that
computes the set of top-m arms of I with probability at
least

1−n·exp
(
−Ω

(
TK

H〈m〉 · (log(H〈m〉K) + log2 n)A

))
,

where A = log logn · log2 (TK/H〈m〉), using at most

T time steps and O
(
log logn

logK + logK
)

rounds.

The proof of Theorem 4 is deferred to the full version

of the paper. Here, we explain its high level idea. A

standard technique to achieve an error probability that

is exponentially small in terms of T/T0 is to perform

parallel repetition and then take the majority. This is

straightforward if we know the value T0. Unfortunately,

T0 depends on the instance complexity which we do

not know in advance. A standard trick to handle this

issue is to use the doubling method. That is, we guess

T0 = 1, 2, 4, . . ., and for each value we repeat T/T0

times (ignoring logarithmic factors). We know that one

of these values is very close to the actual T0. We hope

that this value is the first value in {1, 2, 4, . . .} for

which the T/T0 runs of CollabTopM(I,m, T ) contain

a majority output.

The main issue in this approach is that when T ≤ T0,

the output of the algorithm can be consistently wrong,

which leads to a wrong majority. Note that we do not

have much control on the output of the algorithm when

the time horizon is very small.

We handle this issue by introducing a concept called

top-m certificate. We require each algorithm for top-m
arm identification to output a pair (S, {θ̃i}i∈I), where S
is a subset of I of size m and {θ̃i}i∈I are the estimated

means for all arms in I (not just those in S). We say a

pair (S, {θ̃i}i∈I) is a top-m certificate if it can pass an

additional verification step which checks whether S is

indeed the set of top-m arms of I given the estimated

means {θ̃i}i∈I . With such a verification step at hand, we

do not need to worry about the case that CollabTopM
will output a wrong answer when T is too small, since

a wrong output will simply not pass the verification

step. Finally, we make sure that this verification step is

perfectly parallelizable and thus fit in our time budget.

D. An Improved Algorithm

We are able further improve the round complexity

of Algorithm 1 to O(log logm
logK + logK). Formally, we

prove the following theorem in the full version of the

paper.

Theorem 5. Let I be a set of n arms, m ∈ {1, . . . , n−
1}, and T be the time horizon. There exists a collab-
orative algorithm that computes the set of top-m arms
of I with probability at least

1− n · exp
(
−Ω

(
KT

H〈m〉B

))
,

where

B = log6(KT ) log2 (KT/H〈m〉) log n,

using at most T time steps and O(log logm
logK + logK)

rounds.

IV. LOWER BOUNDS FOR THE FIXED-TIME CASE

In this section, we state the lower bound theorems

for the fixed-time setting.

Theorem 6. For every K, m (m ≤ K), and α (α ∈
[1,K0.1]), if a fixed-time collaborative algorithm A with
K agents returns the top-m arms for every instance J
with probability at least 0.99, when given time budget
α

17K · H〈m〉(J), then there exists an instance J ′ such
that A uses Ω(logK/(log logK + logα)) rounds of
communication in expectation given instance J ′ and
time budget α

17K ·H〈m〉(J ′).
In other words, to achieve (K/α) speedup for identi-

fying the top m arms, the collaborative algorithm needs
Ω(logK/(log logK + logα)) communication rounds.
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The proof of Theorem 6 is relatively easy

and resembles the round complexity lower bound

Ω(logK/(log logK+logα)) for top arm identification

in the fixed-time setting [54].

Theorem 7. For every large enough K and m such
that K ≥ Ω(log4 m), if a fixed-time collaborative
algorithm A with K agents returns the top-m arms
for every instance J with probability at least 0.99,
when given time budget 1√

K
·H〈m〉(J), then there exists

an instance J ′ such that A uses Ω(log(logm/ logK))
rounds of communication given instance J ′ and time
budget 1√

K
·H〈m〉(J ′).

In other words, even if one only aims at
√
K speedup,

the collaborative algorithm needs

Ω(log(logm/ logK))

rounds of communication.

Theorem 7 marks the different round complexity

requirement for collaborative multiple arm identification

compared to the best arm identification problem. It is

known that only constant number of round is needed

to achieve 0.99 success probability using Õ(K−ζ ·
H〈m〉(J)) time budget (i.e., Õ(Kζ) speedup) for every

constant ζ ∈ (0, 1) [31], [54]. However, Theorem 7

rules out such possibility for the multiple arm iden-

tification problem, proving it much harder than best

arm identification in the collaborative setting. We note

that we only prove the lower bound for ζ = 1/2, for

the simplicity of the exposition. However, the proof

can be easily extended to any constant ζ > 0. The

only differences are that, in the theorem statement, the

constraint K ≥ Ω(log4 m) will become K ≥ logf(ζ) m,

and the round complexity lower bound will become
1

f(ζ) · log(logm/ logK) where f(ζ) > 0 increases as ζ
approaches 0.

V. THE FIXED-CONFIDENCE CASE

In this section we discuss the fixed-confidence case.

We first present a collaborative algorithm for the fixed-

confidence case. The algorithm is inspired by [31]

and [12], and described in Algorithm 2.

Theorem 8. There is an algorithm (Algorithm 2) that
solves top-m arm identification with probability at least
1− δ, using O

(
log

(
1/Δ

〈m〉
[m]

))
rounds of communica-

tion and O
(

H〈m〉
K log

(
n
δ logH〈m〉)) time.

Finally we comment on the lower bound. In [54]

it was shown that for the special case when m = 1,

to achieve a running time of Õ(H〈1〉/K) with suc-

cess probability 0.99 one needs at least log
(
1/Δ

〈1〉
[1]

)

Algorithm 2: Collaborative algorithm for fixed-

confidence setting.

Input: a set of arms I , parameter m, and a

confidence parameter δ.

Output: a set of top-m arms of I .

1 Initialize I0 ← I , m0 ← m, Acc0 ← ∅, Rej 0 ← ∅,
r ← 0, T−1 ← 0;

2 for r = 0, 1, . . . , let εr = 2−(r+1) and

Tr = 8 log(4n(r + 1)2δ−1)/(Kε2r);
3 while Ir �= ∅ do
4 each agent pulls each arm in Ir for Tr − Tr−1

times;

5 for each i ∈ Ir, let θ̂
(r)
i be the estimated mean

of the i-th arm in Ir after KTr pulls (over all

rounds and agents so far);

6 let πr : {1, . . . , |Ir|} → Ir be the bijection

such that θ̂
(r)
πr(1)

≥ θ̂
(r)
πr(2)

≥ . . . ≥ θ̂
(r)
πr(|Ir|);

7 Accr+1 ← Accr ∪ {i ∈ Ir : θ̂
(r)
i >

θ̂
(r)
πr(mr+1) + εr};

8 Rej r+1 ← Rej r ∪ {i ∈ Ir : θ̂
(r)
i <

θ̂
(r)
πr(mr)

− εr};
9 mr+1 ← m− |Accr+1|;

10 Ir+1 ← Ir \
(
Accr+1 ∪ Rej r+1

)
;

11 r ← r + 1;

12 return Accr.

rounds. Therefore the upper bound in Theorem 8 is tight

up to logarithmic factors.
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[29] Aurélien Garivier and Emilie Kaufmann. Optimal best
arm identification with fixed confidence. In COLT, pages
998–1027, 2016.

[30] Zhaohan Guo and Emma Brunskill. Concurrent PAC RL.
In AAAI, pages 2624–2630, 2015.

[31] Eshcar Hillel, Zohar Shay Karnin, Tomer Koren, Ronny
Lempel, and Oren Somekh. Distributed exploration in
multi-armed bandits. In NIPS, pages 854–862, 2013.
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