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Abstract—We consider the following problem in this
paper: given a set of n distributions, find the top-m ones
with the largest means. This problem is also called top-
m arm identifications in the literature of reinforcement
learning, and has numerous applications. We study the
problem in the collaborative learning model where we
have multiple agents who can draw samples from the n
distributions in parallel. Our goal is to characterize the
tradeoffs between the running time of learning process and
the number of rounds of interaction between agents, which
is very expensive in various scenarios. We give optimal
time-round tradeoffs, as well as demonstrate complexity
separations between top-1 arm identification and top-m
arm identifications for general m and between fixed-time
and fixed-confidence variants. As a byproduct, we also give
an algorithm for selecting the distribution with the m-th
largest mean in the collaborative learning model.

I. INTRODUCTION

In this paper we study the following problem: given
a set of n distributions, try to find the m ones with
the largest means via sampling. We study the problem
in the multi-agent setting where we have K agents,
who try to identify the top-m distributions collabora-
tively via communication. Suppose sampling from each
distribution takes a unit time, our goal is to minimize
both the running time and the number of rounds of
communication of the collaborative learning process.

The problem of top-m distribution identifications
originates from the literature of multi-armed bandits
(MAB) [52], where each distribution is called an arm,
and each sampling from a distribution is called an arm
pull. When m = 1, the problem is called best arm
identification, and has been studied extensively in the
centralized setting where there is only one agent [5],
[11], [24], [27], [45], [39], [33], [40], [20], [13], [29].
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Some of these algorithms can be easily modified to
handle top-m arm identification (e.g., [5], [12]). The
problem of best arm identification has also been studied
in the multi-agent collaborative learning model [31],
[54]. Surprisingly, we found that in the multi-agent
setting, the tasks of identifying the best arm and the top-
m arms look to be very different in terms of problem
complexities; the algorithm design and lower bound
proof for the top-m case require significantly new ideas,
and need to address some fundamental challenges in
collaborative learning.

Collaborative Learning with Limited Interaction. A
natural way to speed up machine learning tasks is to
introduce multiple agents, and let them learn the target
function collaboratively. In recent years some works
have been done to address the power of parallelism
(under the name of concurrent learning, e.g., [50], [30],
[23], [22]). Most of these works assume that agents
have the full ability of communication. That is, they
can send/receive messages to/from each other at any
time step. This assumption, unfortunately, is unreal-
istic in real-world applications, as it would be very
expensive to implement unrestricted communication,
which is usually the biggest drain of time, data, energy
and network bandwidth. For example, once we deploy
sensors/robots to unknown environment such as deep
sea and outer space, it would be almost impossible to
recharge them; when we train a model in a central server
by interacting with hundreds of thousands of mobile
devices, the communication cost will directly contribute
to our data bills, not mentioning the excessive energy
and bandwidth consumption.

In this paper we consider the model of collaborative
learning with limited interaction, where the learning
process is partitioned into rounds of predefined time
intervals. In each round, each of the K agents takes
a series of actions individually like in the centralized
model, and they can only communicate at the end of
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each round. At the end of the last round before any
communication, all agents should agree on the same
output; otherwise we say the algorithm fails. Our goal is
to minimize both the number of rounds of computation
R and the running time 7' (assuming each action takes
a unit time step).!

Naturally, there is a tradeoff between R and T If
R = 1, that is, no communication is allowed, then
T > Tc where T¢ is the running time of the best cen-
tralized algorithm. When R increases, 7' may decrease.
On the other hand we always have T' > T /K even
when R = T'. We are mostly interested in understanding
the number of rounds needed to achieve almost full
speedup, that is, when T = O(T¢/K) where O(-) hides
logarithmic factors.

We do not put any constraints on the lengths of the
messages that each agent can send at the end of each
round, but in the MAB setting they will not be very large
— the information that each agent collects can always be
compressed to an array of n pairs in the form of (z;, éi),
where x; is the number of arm pulls on the i-th arm,
and 6; is the empirical mean of the z; arm pull.

Top-m Arm Identification. To be consistent with
the MAB literature, we will use the term arm instead
of distribution throughout this paper. The top-m arm
identification problem is motivated by a variety of appli-
cations ranging from industrial engineering [41] to med-
ical tests [55], and from evolutionary computation [49]
to crowdsourcing [1]. The readers may refer to [5], [36],
[21], [18], [19] and references therein for the state-of-
the-art results on the top-m arm identification in the
centralized model.

In this paper we mainly focus on the fixed-time case,
where given a fixed time horizon 7', the task is to
identify the set of m arms with the largest means
with the smallest error probability. We will also discuss
the fixed-confidence case, where given a fixed error
probability J, the task is to identify the top-m arms
with error § using the smallest amount of time.

Without loss of generality, we assume that each of
the underlying distributions has support on (0,1). In
the centralized setting, Bubeck et al. [12] introduced
the following complexity to characterize the hardness
of an input instance V for the top-m arm identification
problem. Let 6; be the mean of the i-th arm. Let [j] be

I'We note that our model is a simplified version of the one
formulated in [54]. The model defined in [54] allows each agent to
perform different numbers of actions in each round, and the length
of each round can be determined adaptively by the agents. However,
we noticed that all the existing algorithms for collaborative learning
in the literature have predefined round lengths, under which there is
no point for an agent to stop early in a round.
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the index of the arm in V' with the j-th largest mean, and
let 6;1(V') be the corresponding mean. Given an input

instance I of n arms, let A§m> (I) be the gap between
the mean of the i-th arm and that of the [m]-th arm or
the [m + 1]-th arm, whichever is larger. In other words,

{91‘ = Omy1y (1), if 0; > Oy (1),

A

A (1) (1)

H[m] (I) —0,,if 9; < 9[m+1} ([)
Definition 1 (Instance Complexity). Given an input
instance I of n arms and a parameter m (call it the
pivot), we define the following quantity which charac-
terizes the complexity of 1.
-2
(n) .

H (1) 237 (Al
el

We also define a related quantity which we call the e-

truncated instance complexity.

H§m> (I) = Zmax {A§m>(1), e} 2.
icl

To see why H(™(I) is the right measure for the
instance complexity, note that if the mean of an arm is
either (#+A) or (6§ — A) where 6 is a known threshold,
it takes Q(A~2) samples to decide whether the mean is
above or below the threshold 6 (as long as § + A are
bounded away from 0 and 1). Therefore, suppose all the
means are bounded away from 0 and 1, even if we are
given the means of the [m]-th and the [m + 1]-th arms,
it still takes Q(H (™ (I)) samples to decide for each
arm whether it is one of the top-m arms or not. Such
intuition can be formalized to show that, in the fixed-
confidence case, Q(H("™ (I)log(1/5)) samples are
needed to identify the top-m arms with success proba-
bility (1—9) [51], [19]. On the other hand, there are cen-
tralized algorithms to achieve O(H ™ (I)log(1/8) +
H™)(I)log H{™(I)) (see, e.g., [36]), almost match-
ing the lower bound (up to logarithmic factors).

For the fixed-time case, in [12] it was shown that
there is a centralized algorithm that identifies the top-m

T

arms with probability at least
G Ca)

using at most 7" time steps, where Q(-) hides logarith-
mic factors in n. This upper bound can also be shown
to be tight up to logarithmic factors [40], [13], [51],
[19]. In the collaborative learning setting, our goal is
to replace the 7" factor in (2) with K'T' where K is the
number of agents, so as to achieve a full speedup.

(@)

Our Contributions. We summarize our main results

and their implications.
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)

2)

3)

4)

5)

We give an algorithm for the fixed-time top-
m arm identification problem in the collabora-
tive learning model with K agents and a set [
of n arms. For any choice of r, the algorithm
uses T time steps and O(log 2 log % =+ r) rounds
of communication, and successfully computes
the set of top-m arms with probability at least

1—exp g{—fl (%) ) In particular, when
r = log K, the algorithm uses 7' time steps and
O(log 12 1°g % +log K') rounds of communication to

compute the set of top-m arms with probability at
O (KT
Hm) (1)
speedup. See Section III.
We prove that under the same setting, any col-
laborative algorithm that uses 7' = \/% SH™N(T)
time steps and aims to achieve success probability
0.99 needs at least Q(log %gg;’é) rounds of com-
munication. By leveraging a result in [54], we
can also show that any collaborative algorithm
that uses T & . H™(I) time steps and
aims to achieve success probability 0.99 needs
at least Q(log K/(loglog K + log a)) rounds of
communication. These indicate that our upper
bound is almost the best possible. See Section I'V.
Our lower bound gives a strong separation be-
tween the best arm identification and top-m iden-
tifications: there is a collaborative algorithm for
best arm identification (i.e., when m = 1) that
uses T = O \/% -HM(I)) time and 2 rounds
of communication (see [54], [31]), while Item 2
states that for general m, to achieve the same time
bound we need (log K/(loglog K + log«))
rounds of communication.
We give an algorithm for the fixed-confidence
top-m identification problem in the collaborative
model with K agents and a set of n arms;

the algorithm uses O ( >(I log (% log H<m>)>

time steps and O (log(l/A[m] )
munication, and successfully computes the set of
top-m arms with probability at least 1 — . This
is almost tight by a previous result in [54]. See
Section V.

Combining Items 1, 2, and 4, we have given a sep-
aration between fixed-time and fixed-confidence
top-m arm identification. We note that a similar
separation result is also proved for the best arm
identification problem [54], although the round
complexities for top-m identification are quite
different from the m = 1 special case (i.e., best
arm identification).

least 1 — exp (— ), achieving a full

rounds of com-
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Speedup. In [54] the authors introduced a concept
called speedup for presenting the power of collaborative
learning algorithms. The precise definition of speedup is
rather complicated due to the definition of the instance
complexity of MAB. Roughly, the speedup is defined to
be the ratio between the best running time of centralized
algorithm and that of a collaborative algorithm (given a
predefined round budget R) under the condition that the
two algorithms achieve the same success probability. In
this paper we simply focus on a fixed success proba-
bility 0.99, and define the speedup of a collaborative
algorithm which identifies the top-m arms on input
instance I with accuracy 0.99 using time T'4() to be
T4(I)/H™) (I), since the best centralized algorithm
achieving success probability 0.99 has running time
O(H'™) (I)) [12]. Interpreting our results in terms of
speedup, we have the following remarks:

1) Our algorithm for fixed-time top-m arm identifi-
cation achieves a speedup of O(K %1) and uses
O(log }Zgz + r) rounds.
Our lower bound shows that in order to achieve
even an Q(v/K) speedup, any algorithm for top-
m arm identification needs at least 2(log %ggz)
rounds.
Compared with the main result for the best arm
identification in [54], which states that there is
a R- round algorithm achieving a speedup of
O(K R ) we have shown a separation between
the complexities of the two problems (e.g., when
R =2).

2)

3)

Selection under Uncertainty. As a byproduct, we also
get almost tight bounds for a closely related problem
we call selection under uncertainty. This problem is
similar to the classic selection problem where given a
set of n numbers, one needs to find the m-th largest
number. The difference is that now instead of having n
(deterministic) numbers, we have n distributions/arms,
and our goal is to find the one with the m-th largest
mean via sampling. It is easy to see that this problem
can be solved by first identifying the top-m arms, and
then finding the worst arm in these top-m arms, which
can be done in the same way as identifying the best
arm.

For convenience, let us introduce a new (but very sim-
ilar) definition of instance complexity for the selection
under uncertainty problem:

H™ (1) &3 (0

i7[m]

A

- H[m])_Z

With H{™ we have the following immediate result:
There exists an algorithm for the fixed-time m-th arm
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selection problem in the collaborative learning model
with K agents and a set I of n arms; the algorithm
uses T time steps and O(log %Zgz + r) rounds of
communication, and successfully identifies the m-th
arm with probability at least

(K(r—l)/r.T

H{m)(T)

Why Top-m Arm Identification is Difficult in the
Collaborative Learning Model? Before presenting
our results, let us first try to give some intuition on why
top-m arm identification is difficult in the collaborative
learning setting, as one may think that the top-m arm
identification is a natural generalization of best arm
identification (when m = 1), and the algorithm for the
latter in [54] may be adapted to the former.

The key procedure used in previous collaborative
algorithms for best arm identification [31], [54] is that
in the first round, we randomly partition the set I of n
arms into K groups, and feed each group to one agent
as a subproblem. Now if each of the K agents computes
the best arm in its subproblem, then we can reduce the
number of best arm candidates from n to K after the
first round, which is critical for us to achieve log K
communication rounds. The question now is whether
each subproblem can be solved time-efficiently (more
precisely, in O(H")(I)/K) time steps if we target a
Q(K) speedup) at each agent in the first round.

A nice property for the best arm identification is that
if we randomly partition the set I of n arms to the K
groups, then the group (denoted by () containing the
global best arm has a subproblem complexity H’
ZEQ (A})™2, where A/ is the difference between the
mean of the best arm and that of the ¢-th best arm in
group G. It is easy to show that

E[H'] = © <H<1>(I) /K) . 3)

Therefore, even though we cannot guarantee that each
of the K subproblems can be solved successfully under
time budget O(H/K ), we still know that the global best
arm will advance to the next round with a good proba-
bility, which is enough for the algorithm to succeed.
Unfortunately, the above property does not hold in the
top-m setting due to its “multi-objective” goal. First, the
global m-th arm will only be assigned to one agent, and
thus others do not know what pivot to use for defining
its subproblem complexity. Second, even for the agent
who gets the m-th arm j, it does not know what is the
local rank of j, and, thus, still does not know when to
stop the local pruning. Third, even if the agents know
the local ranks of the m-th arm, it may not have enough

1 —exp <—Q
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time budget to solve the sub-problem; note that this is
an issue only for the top-m case but not for the best
arm case, since in the top-m case each subproblem may
contain some top-m arms.

We will design an algorithm which addresses all
of these challenges, and then complement it with an
almost tight lower bound. Looking back, we feel that
in the best arm case it was just lucky for us to have
Equation (3), while in the general top-m case we have
to deal with some inherent challenges in collaborative
learning, which, unfortunately, also make our algorithm
for top-m much more complicated than that for best
arm identification. We will give a technical overview for
both the algorithm and lower bound proof in Section II.

Related Work. To the best of our knowledge, the
collaborative learning model studied in this paper was
first proposed in [31], where the authors studied the best
arm identification problem in MAB. The model was
recently formalized in [54], where almost tight time-
round tradeoffs for best arm identification are given.
A number of works studied regret minimization,
which is another important problem in MAB, in various
distributed models, most of which are different from the
collaborative learning model considered in this paper.
For example, several works [44], [48], [9] studied regret
minimization in the setting of cognitive ratio network,
where radio channels are models as arms, and the
rewards by pulling each arm depend on the number
of simultaneous pulls by the K agents (i.e., penalty is
introduced for collisions). In [16] the authors considered
a model where at each time step each agent can choose
either to pull an arm, or broadcast a message to other
agents, but cannot do both. Authors of [53], [42],
[57] considered regret minimization in communication
networks. Distributed regret minimization has also been
studied in the non-stochastic setting [6], [37], [15].
The collaborative learning model is closely related to
the batched model (or, learning with limited adaptivity),
where one wants to minimize the number of policy
switches in the learning process. In the batched model
we want to minimize the number of policy switches
when trying to achieve our learning goal. Algorithms
designed in the batched model can naturally be trans-
lated to a restricted version of the collaborative model in
which at each time step, the action taken by each agent
is determined by the information (historical actions
and outcomes, messages received from other agents,
and the randomness of the algorithm) the agent has
at the beginning of the round, and the agents cannot
change their policies in the middle of the a round. A
number of problems have been studied in the batched
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n number of arms in the input instance.
K number of agents.

T running time.

0; mean of the i-th arm.

0 (V) the ¢-th largest mean among arms in V.
Top,, (V) | indices of the m arms with the largest means in V.
Top, (V) index of the best arm in V.

Aim>(V) mean gap of the ¢-th arm; defined in (1).
H{™) (V) instance complexity; see Definition 1.
am (V) e-truncated instance complexity; see Definition 1.

Table I: Summary of Notations

model in recent years, including best arm identification
[35], [2], [34], regret minimization in MAB [47], [28],
[26], Q-learning [7], convex optimization [25], online
learning [14]. We note that our collaboratively learning
algorithm for top-m arm identification in the fixed-
confidence case also works in the batched model, and
improves the algorithm in [34].

Finally, we note that there is also a large body
of work on sample/communication-efficient distributed
algorithms for various learning-related tasks such as
classification [8], [32], [38], convex optimization [59],
[58], [3], linear programming [4], [56]. Sample-efficient
PAC learning in the collaborative setting is recently
studied by [10], [17], [46]. However, the models con-
sidered in the papers mentioned above mainly focus on
reducing the sample/communication cost, and are all
different from the collaborative learning with limited
interaction model we study in this paper.

Notations and Conventions. Let Top,, (V) be the
indices of m arms in V' with the largest means, and
Top, (V') be the index of the best arm in V.

We say the i-th arm is (e, j)-top in V' if and only if
0; > 0;(V) —e. Similarly, the i-th arm is (e, j)-bottom
in V' if and only if 6; < Oy 415 (V) + e

In this paper we focus on the case when 0y,,(1) >
Ofm-+1) (1), since otherwise the instance complexity of [
will be infinity.

For simplicity, we will write Top,,(V), Top,(V),
0 (V), A (V), Hm/(V), and HE™ (V) as Top,,,
Topy, O, A, H™, and H™, when V =T (I is
the input instance) or it is clear from the context.

We include a list of notations in Table 1.

Roadmap. In the rest of this paper, we first give
a technical overview of our results in Section II. We
present our algorithmic result for the fixed-time case in
Section III, and complement it with a matching lower
bound in Section IV. Finally in Section V, we state our
results for the fixed-confidence case.
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II. TECHNICAL OVERVIEW

In this section we give a technical overview for
our upper and lower bounds for fixed-time top-m arm
identification.

A. Upper Bounds for the Fixed-Time Setting

For simplicity we consider the full speedup setting
(i.e., we target a speedup of Q(K )); the general speedup
is an easy extension. We achieve our upper bound result
for fixed-time top-m arm identification in three stages.
We first design an algorithm for a special time horizon
T = O(H™ /K) which uses O(log fg’g}; + log K)
rounds of communication and has an error probability
0.01. We next consider general time horizon 7', and
target an error probability that is exponentially small
in T'. Finally, we try to improve the round complexity
to O(log iggz + log K). In each stage we face new
challenges which stem from the collaborative learning
model, each of which demands novel ideas.

Stage 1: A Basic Algorithm. We start with our
basic algorithm. A natural idea for achieving the T' =
O(H'™ /K) running time is to randomly partition the
n arms to K agents, and then ask each agent to solve
a top-n arms identification (for some value 7) on its
sub-instance. At the end we try to aggregate the K
outputs. As briefly mentioned in the introduction, there
are multiple hurdles associated with this approach. First,
it is not clear how to set the value 7, since we do not
know how many global top-m arms will be distributed
to each agent. Second, even if we know the number
of global top-m arms assigned to each agent, there
are cases in which the global instance complexity is
rarely distributed evenly across the /K agents. In other
words, we cannot guarantee that each agent can solve
the subproblem within our time budget O(H (™ /K).
We resolve these issues using the following ideas: we
take a conservative approach by setting n ~ (m/K —
v/n), and ask each agent to adopt a PAC algorithm for
multiple arm identification and compute an approximate
set of top-77 arms on its sub-instance using O(H ‘™ / K)
time steps. The approximation error is a random vari-
able depending on the random partition process. We
then show that with a good probability this error is
smaller than the gap between the smallest mean of the
outputted arms and that of the global m-th arm. In this
way we can guarantee that the approximate top-n arms
outputted by each agent are indeed in the set of global
top-m arms. Using the same idea we try to prune a set
of “bottom” arms of size ~ ((n —m)/K — \/n). After
these operations we recurse on the rest O(K\/n) arms.

We continue the recursion for O(log llggg;) rounds until
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the number of arms is reduced to K'Y, and then use a
simple O(log n)-round collaborative algorithm which is
modified from an existing centralized algorithm. Note
that for n’ = K'° we have O(logn’) = O(log K ), and

thus overall we have used O(log llc‘)’gg; +log K) rounds.

Stage 2: General Time Horizon. The basic algorithm
only guarantees that the set of top-m arms are cor-
rectly identified with probability 0.99. Our next goal
is to make the error probability exponentially small
in T, which is achievable in the centralized setting.
The standard technique to achieve this is to perform
parallel repetition and then take the majority. That is,
we guess the instance complexity tobe H = 1,2,4,.. .,
and for each guess we run the basic algorithm with
time horizon H for T/H times. Finally, we take the
majority of the output. In the case that the budget T
is larger than the actual instance complexity, at each
run with probability 0.99 we are guaranteed to obtain
the correct answer. Unfortunately, when 7' is smaller
than the actual instance complexity, not much can be
guaranteed. For some bad input instances, the output of
the basic algorithm can be consistently wrong, resulting
in a wrong majority.

We resolve this difficulty by introducing a notion
we call top-m certificate, which takes form of a pair
(S,{0;}icr), with the property that S = Top,, and for
each ¢ € I, it holds that ‘éi - 92-‘ < A§m>/4. We can

augment our basic algorithm to output a (S, {6;}ics)
pair (instead of simply a set of top-m arms). We then
design a verification algorithm which is able to check
for each (S, {0;}ic;) pair whether it is indeed a top-m
certificate. Our verification step can be fully parallelized
and can finish within our guessed instance complexity
H. With such a verification step at hand, the situation
that we take a wrong majority will not happen with high
probability.

Stage 3: Better Round Complexity. Our ultimate goal
is to achieve an O(log {22 4 log K) round complexity,

log K
instead of O(log llggg;é + log K) in the basic algorithm.
We approach this by first reducing the number of arms
in the input instance to O(m), and then applying the ba-
sic algorithm. Such a reduction, however, is highly non-
trivial, especially when we require the error probability
introduced by the reduction to again be exponentially

small in 7.

Our basic idea for performing the reduction is the
following: we construct a random sub-instance V' by
sampling each of the n arms with probability 1/m.
We can show that with constant probability, V' con-
tains exactly one global top-m arm, and HD (V) =
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O(H'™ /m). Therefore we have enough time budget
to compute the best arm of V' and include it into set
S as a top-m candidate. We perform this subsampling
procedure for O(m) times, getting O(m) sub-instances.
By the Coupon Collector’s problem we know that all
global top-m arms will be included in S with a good
probability.

The challenging part is to reduce the error probability
of this reduction to a value that is exponentially small
in T'. Unfortunate, the idea of “guess-then-verify” that
we have used previously does not apply here — there
is simply no (S,{6;}ic;) pair for us to verify in the
reduction process.

We take the following new approach. We try to make
sure that for each randomly sampled sub-instance on
which we try to compute the best arm, the probability
of outputting any arm in Top,,, is at least half of that of
any arm outside Top,,. This turns out to be enough for
us to guarantee that the set .S contains all top-m arms.
We comment that the relaxation “half” is necessary here
for a technical reason which we will elaborate next.

Our key observation is that if we provide sufficient
time budget, say, T > MH(" (V) where X is a polylog-
arithmic factor, for solving a randomly sampled sub-
instance V, then provided that there is only one arm
a € Top,, in V, we will output a correctly with a
good probability. Now for any two arms a € Top,, and
b ¢ Top,,, by the uniformity of the sampling they will
be in the sub-instance with equal probability. We are
thus able to conclude that the probability of outputting
a is at least as large as that of outputting b. On the other
hand, if T < H(V (V), then we can use our verification
step to detect this event. The subtle part is the middle
case when H" (V) < T < AH(V), to handle which
we perturb our time budget T such that it takes values
T/ or AT with equal probability. Using this trick we
are able to “reduce” the third case to the first two cases
with probability at least 1/2, which leads to our desired
property. The actual implementation of this idea is more
involved, and we refer the readers to the full version for
details.

B. Lower Bounds for the Fixed-Time Setting

In the lower bound part, we present two results. The
first result is that Q(log K/(loglog K + log «)) com-
munication rounds are needed for any algorithm with
(K/a) speedup to identify the top-m arms for any m.
This matches (up to logarithmic factors) the R term in
the O(log }ggz + R) rounds vs O(K(F=1/E) speedup
trade-off in our upper bound result. This lower bound
theorem is derived via a simple reduction together with
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the similar type of lower bound proved in [54] for the
m = 1 special case.

Our main contribution in the lower bound part is the
second theorem. The theorem states that even if the goal

is an O(v/K) speedup, the log igg}? term in the round-

speedup trade-off is necessary. (In fact, the log

logm
log K
be shown to be necessary for any K¢ speedup v%/here ¢
is a positive constant.) This marks a completely different
phenomenon from the m = 1 special case where only
2 rounds of communication are needed to achieve an
O(\/f ) speedup [54], [31]. Below we sketch the proof
idea for this lower bound theorem.
The need for the log igg 72 term in the round complex-
ity stems from the hardness of collaboratively learning
the splitting position (i.e., where the m-th largest arm lo-
cates), which turns out to be substantially more difficult
than estimating the best arm (the m = 1 special case).
We start from the fact that any (possibly randomized)
algorithm cannot identify the number of 1’s in the n-
bit binary vector with success probability w(n~'/2), if
the algorithm is allowed to probe only o(n) entries in
the vector. A strengthened statement we will prove as
the building block is the following lower bound for the
“learning the bias” problem: given n Bernoulli arms
(i.e., the stochastic reward of the arm is either O or 1),
each of which has mean reward (;+¢€) or (41— €), then
any algorithm using o(ne =2/ log(n/¢)) samples will not
be able to identify the number of two types of arms with
probability w(n~1/2).2

Now we explain the connection between the learning
the bias problem and the top-m arm identification
problem by sketching the plan of constructing the hard
instances as follows. Suppose that we set all but n'/2
arms in the hard instance to be Bernoulli with mean
reward either (114 ¢€) (namely “the top arms”) or (u—¢€)
(namely “the bottom arms”). We denote the set of the
rest n'/2 arms by M, and their mean rewards are
sandwiched between (u + €) and (u — €). We will
set m n/2, ie., the goal is to identify the top
half of the arms. Now, as long as the number of top
arms, denoted by X, is bounded between % — /n and
% + +/n, the goal is equivalent to identify the X top
arms and the top-(4§ — X)) arms in M. We then vary the
number of the top arms and consequently the number

can

2The sample complexity lower bound for a similar problem is
proved in a recent work [43]. Our lower bound is different from
theirs in two aspects. First, in their setting, the number of arms is
not bounded and the goal is to estimate the fraction of the two types
of arms up to an additive error, while in our setting, the number of
arms is n, and the goal is to find out the exact numbers of arms
for the two types. Second, their lower bound is for algorithms with
constant success probability, while our lower bound is for algorithms
with only w(n~1/2) success probability.
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of the bottom arms (say, let X be uniformly randomly
chosen from the range), and will argue that each agent
will not be able to identify X much better than a
random guess without communication, and therefore
must perform one round of communication to learn
X in order to identify the top-(§ — X) arms in M.
Here, the need for communication is due to the lower
bound for learning the bias and the fact that any agent
in a vV K-speedup algorithm is allowed to make only
O(ne=2/v/K) = o(ne?) samples (where we make
a crucial assumption that the H("™ complexity of the
constructed hard instance is O(ne~?)). The last piece of
plan is to argue that since X is not known before the first
round of communication, each agent cannot make much
progress before the communication towards identifying
the top-(§ — X)) arms in M, which is a necessary sub-
task. We will finally inductively prove a communication
lower bound for this sub-task. Note that the number of
arms in M is n'/2, and this plan will lead to a log log n-
style round complexity lower bound.

There are several challenges for the plan above. Note
that in the sub-task for M, the goal is no longer to
identify the top half arms, which is not well aligned
with the (planned) induction hypothesis. Moreover, to
make the induction work, M would naturally have the
similar structure as the n-arm instance, i.e., with many
top and bottom arms (possibly with different p and e
parameters). However, such a construction would hardly
ensure that the H(™') complexity is still O(ne2).
Indeed, if the goal of the sub-task is to identify, for
example, the top |M|/4 arms, since most of the top
half arms are the same, the corresponding the H {m")
complexity would become infinitely large. Finally, it is
not clear how to make sure that any agent will not gain
much information about M before the first round of
communication so as to quickly identify the top (5 —X)
arms in M whenever X is learned.

To address these challenges, we craft a more com-
plex distribution of hierarchical instances. The main
highlight is that we let M consist of multiple blocks
I, 15,..., I, where each block has the same number
of arms and is independently sampled from a recursively
defined hard distribution. We restrict the possible values
of (§ — X) to be the half multiples of the block size
so that the sub-task always becomes to identify the top
half arms in /¢ for some & € {1,2,...k}. We will make
careful selection of the block parameters so that the
H{™ complexity for any instance in the support of the
distribution, and the H (™" complexity of any sub-task,
are all ©(ne=2), where both upper and lower bounds
are crucial to the proof.
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III. A COLLABORATIVE ALGORITHM FOR THE
F1XED-TIME CASE

A. Preparation

We first introduce two centralized algorithms
CenAppTop and CenAppBtm for computing (e, m)-
top/bottom arms. We leave their detailed description
to the full version of the paper. The following lemma
summarizes the guarantees of these two algorithms.

Lemma 1. Let I be a set of n arms, m € {1,...,n—1},
and € € (0,1) be an approximation parameter. Let

Ti(1,a.e,6) = . HS$)(I) - log (Hjj;(f) /5)

for a universal constant ci. We have that

o IfT >Ti(I,m,e,0), then with probability at least
(1 —90), CenAppTop(Il,m,T,d) returns m arms
each of which is (e,m)-top in I using at most T
time steps.

o If T >Ti(I,n —m,e,0), then with probability at
least (1 — ), CenAppBtm(I,m,T,§) returns m
arms each of which is (e, m)-bottom in I using at
most T time steps.

The following lemma says that there is a simple
collaborative algorithm CollabTopMSimple for top-
m arm identification that uses O(logn) rounds of
communication. Note that this bound is still much
larger than our final target O(log log m+log K') rounds.
CollabTopMSimple is a simple modification of a
centralized algorithm in [12], and will be described in
details in the full version of the paper.

Lemma 2. Let I be a set of n arms, and m €
{1,...,n—1}. Let

(m) I

Ty(1,m,8) = o - 20 )

for a universal constant co. There is a collaborative
algorithm CollabTopMSimple (I, m,T) such that if
T > To(I,m,0) then with probability at least 1 — 6,
one computes the set of top-m arms of I using at most
T time steps and O(logn) rounds.

~logn~log%

B. Special Time Horizon T

We are able to establish the following theorem con-
cerning a special time horizon T'.
Theorem 3. Let I be a set of n arms, and m €
{1,...,n—1}. Let

H(m)
T() = Cp

(log (H<m>K) + log® n) log(Q) n (5)

for a large enough constant cy. There exists a collabo-
rative algorithm CollabTopM(I, m,T) that computes
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Algorithm 1: CollabTopM(I,m,T)

Input: a set of n arms I, parameter m, and time

horizon T'.

Output: the set of top-m arms of I.

Let R be the global upper bound on the number of
rounds and § be also the global parameter equal
to 1/(100R);

q < 4K+/nlog (nR);

if n > K19 then

Acc + 0, Rej < 0;

randomly assign each arm in [ to one of the
K agents, and let I; be the set of arms
assigned to ¢-th agent;

if m > ¢ then

{4 (m—q)/K;

for agent v =1 to K do
L Acc; < CenAppTop (I,-,E, %,

K
Acc U, Accss

if n —m > ¢ then
r+<(n—m-q)/K,
for agent i =1 to K do

L Rej; < CenAppBtm (Ii,r

| Rej Uf; Rej;;

return Acc U
CollabTopM(I\ (AccURej),m—|Acc|,T);

n A W N

o e 0

o
2

)

11
12
13

14 r o

» 4R’ 2K

)i

15

16

else
L return CollabTopMSimple(l,m,T/2) .

the set of top-m arms of I with probability at least
0.99 when T > Ty, and uses at most T’ time steps and
O(log llggg_” + log K) rounds of communication.

K

Our algorithm is described in Algorithm 1. Note that
we have used recursion instead of iteration to omit a
superscript r. But we still call each recursive step a
round.

While the detailed proof of Theorem 3 is deferred to
the full version of the paper, here we briefly state the
intuition behind the algorithm and its analysis. At the
beginning of each round we first randomly partition the
set of arms to the K agents. Then each agent tries to
identify a subset of arms Acc; of size £ ~ (m/K —+/n)
to be included to Top,,, and a subset of arms Rej,
of size r = ((n — m)/K — y/n) to be pruned. The
intuition to introduce the additive /n term is that by a
concentration bound, we have with a good probability
that at least ¢ true top-m arms will be assigned to
each agent, and similarly at least r non-top-m arms

~
~
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will be assigned to each agent. However, even with
this fact, we still cannot guarantee that each agent can
identify the top and bottom arms successfully given its
limited budget, which is approximately H (™ /K. Such
a budget in some sense demands that the global instance
complexity is evenly divided into the K agents, which is
not necessary true. We thus adopt a PAC algorithm for
top-m arm identification which returns a set of £ (e, £)-
top arms at each agent A;, where € is a random variable
which, with a high probability, is smaller than the gap
between the ¢-th top arm locally at A; and that of the m-
th global top arm. In this way we can guarantee that it is
safe to include each Acc; that A; computes into Top,,,.
By essentially the same arguments, we can show that it
is safe to prune the set of bottom arms Rej,.

C. General Time Horizon T

Theorem 3 only achieves a constant error probability
for a special case of the time horizon T = O(Tp)
where Ty = H(™ /K. Our next goal is to consider
general time horizon T' > Tp, and try to make the error
probability decrease exponentially with respect to T'/Ty.

More precisely, we have the following theorem.

Theorem 4. Let I be a set of n arms, and m €
{1,...,n —1}. Let T be a time horizon. There exists
a collaborative algorithm CollabTopMGeneral that
computes the set of top-m arms of I with probability at

least

where A = loglogn - log2 (TK/H<7”>), using at most

1
52 4 log K )

TK
1-n-exp | —Q 5
Hm) - (log(H{™ K) +log“n)A

rounds.

T time steps and O (log

The proof of Theorem 4 is deferred to the full version
of the paper. Here, we explain its high level idea. A
standard technique to achieve an error probability that
is exponentially small in terms of T'/T} is to perform
parallel repetition and then take the majority. This is
straightforward if we know the value 7j. Unfortunately,
Ty depends on the instance complexity which we do
not know in advance. A standard trick to handle this
issue is to use the doubling method. That is, we guess
To = 1,2,4,..., and for each value we repeat T/Tj
times (ignoring logarithmic factors). We know that one
of these values is very close to the actual 7j. We hope
that this value is the first value in {1,2,4,...} for
which the T'/T} runs of CollabTopM(I,m,T) contain
a majority output.

The main issue in this approach is that when T' < T,
the output of the algorithm can be consistently wrong,
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which leads to a wrong majority. Note that we do not
have much control on the output of the algorithm when
the time horizon is very small.

We handle this issue by introducing a concept called
top-m certificate. We require each algorithm for top-m
arm identification to output a pair (S, {6;};cr), where S
is a subset of I of size m and {@}ie 1 are the estimated
means for all arms in I (not just those in S). We say a
pair (S,{0;}icr) is a top-m certificate if it can pass an
additional verification step which checks whether S is
indeed the set of top-m arms of I given the estimated
means {6; };c;. With such a verification step at hand, we
do not need to worry about the case that CollabTopM
will output a wrong answer when 7T is too small, since
a wrong output will simply not pass the verification
step. Finally, we make sure that this verification step is
perfectly parallelizable and thus fit in our time budget.

D. An Improved Algorithm

We are able further improve the round complexity
of Algorithm 1 to O(log iggz + log K). Formally, we
prove the following theorem in the full version of the
paper.

Theorem 5. Let I be a set of n arms, m € {1,...,n—
1}, and T' be the time horizon. There exists a collab-
orative algorithm that computes the set of top-m arms
of I with probability at least

1—n-exp<—Q(

B =10g%(KT)log® (KT/H™)logn,

+ log K)

KT
H{™ B

where

logm
log K

using at most T time steps and O(log
rounds.

IV. LOWER BOUNDS FOR THE FIXED-TIME CASE

In this section, we state the lower bound theorems
for the fixed-time setting.

Theorem 6. For every K, m (m < K), and o (o €
[1, K1), if a fixed-time collaborative algorithm A with
K agents returns the top-m arms for every instance J
with probability at least 0.99, when given time budget
2= - H™ (]), then there exists an instance J' such
that A uses Q(log K/(loglog K + log«)) rounds of
communication in expectation given instance J' and
time budget 73 - Hm(J.

In other words, to achieve (K /«) speedup for identi-
Jying the top m arms, the collaborative algorithm needs

Q(log K/(loglog K + log o)) communication rounds.
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The proof of Theorem 6 is relatively easy
and resembles the round complexity lower bound
Q(log K/(loglog K +1log «)) for top arm identification
in the fixed-time setting [54].

Theorem 7. For every large enough K and m such
that K > Q(log*m), if a fixed-time collaborative
algorithm A with K agents returns the top-m arms
for every instance J with probability at least 0.99,
when given time budget \/% -H'™ (.]), then there exists
an instance J' such that A uses Q(log(log m/log K))
rounds of communication given instance J' and time
budget 7 - H™ ().

In other words, even if one only aims at /K speedup,
the collaborative algorithm needs

Q(log(logm/ log K))
rounds of communication.

Theorem 7 marks the different round complexity
requirement for collaborative multiple arm identification
compared to the best arm identification problem. It is
known that only constant number of round is needed
to achieve 0.99 success probability using O(K <.
H{™) (.J)) time budget (i.e., O(K¢) speedup) for every
constant ¢ € (0,1) [31], [54]. However, Theorem 7
rules out such possibility for the multiple arm iden-
tification problem, proving it much harder than best
arm identification in the collaborative setting. We note
that we only prove the lower bound for { = 1/2, for
the simplicity of the exposition. However, the proof
can be easily extended to any constant ( > 0. The
only differences are that, in the theorem statement, the
constraint K > Q(log4 m) will become K > logf © m,
and the round complexity lower bound will become
ﬁ -log(log m/ log K') where f(¢) > 0 increases as ¢
approaches 0.

V. THE FIXED-CONFIDENCE CASE

In this section we discuss the fixed-confidence case.
We first present a collaborative algorithm for the fixed-
confidence case. The algorithm is inspired by [31]
and [12], and described in Algorithm 2.

Theorem 8. There is an algorithm (Algorithm 2) that
solves top-m arm identification with probability at least

1—4, using O (log (l/A[(:erLf))
tion and O (

rounds of communica-
% log (% log H<m>)) time.

Finally we comment on the lower bound. In [54]
it was shown that for the special case when m = 1,
to achieve a running time of O(H'Y/K) with suc-

cess probability 0.99 one needs at least log (1 / Aﬁf)
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Algorithm 2: Collaborative algorithm for fixed-
confidence setting.

Input: a set of arms I, parameter m, and a
confidence parameter 9.
QOutput: a set of top-m arms of [.
1 Initialize Iy < I, mg < m, Accg + 0, Rejy < 0,
r<0,1T_1+ 0
2 forr=0,1,..., let e, =2~ "+ and
T, = 8log(4n(r + 1)2671) /(Ke€2);
3 while I, # 0 do

4 each agent pulls each arm in I, for 7. — T,
times;
5 for each ¢ € I, let égr) be the estimated mean

of the i-th arm in [, after KT, pulls (over all
rounds and agents so far);
6 let . : {1,...,]I;|} — I, be the bijection

A(r) A(T) H(r) .
such that 6 ) > 0", > ... > 67,

7 Accryq  Acc, U{i €1, : éfr >
A(r) .

eﬂ:(mr"rl) - GT}’ R

8 Rej, . < Rej, U{ie I, : GET) <

éit)(mr) - GT};

9 myi1 < m— |Accria);

10 L1 < I\ (Accri1 U Rej,q)s

1 ré—r+1;

return Acc,.

rounds. Therefore the upper bound in Theorem 8 is tight
up to logarithmic factors.
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