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e study a stylized dynamic assortment planning problem during a selling season of finite length T. At each time
W period, the seller offers an arriving customer an assortment of substitutable products and the customer makes the
purchase among offered products according to a discrete choice model. The goal of the seller is to maximize the expected
revenue, or equivalently, to minimize the worst-case expected regret. One key challenge is that utilities of products are
unknown to the seller and need to be learned. Although the dynamic assortment planning problem has received increas-
ing attention in revenue management, most existing work is based on the multinomial logit choice models (MNL). In this
paper, we study the problem of dynamic assortment planning under a more general choice model—the nested logit
model, which models hierarchical choice behavior and is “the most widely used member of the GEV (generalized extreme
value) family” (Train 2009). By leveraging the revenue-ordered structure of the optimal assortment within each nest, we
develop a novel upper confidence bound (UCB) policy with an aggregated estimation scheme. Our policy simultaneously
learns customers’ choice behavior and makes dynamic decisions on assortments based on the current knowledge. It
achieves the accumulated regret at the order of O(vVMNT), where M is the number of nests and N is the number of prod-
ucts in each nest. We further provide a lower bound result of Q(vMT), which shows the near optimality of the upper
bound when T is much larger than M and N. When the number of items per nest N is large, we further provide a dis-
cretization heuristic for better performance of our algorithm. Numerical results are presented to demonstrate the empirical
performance of our proposed algorithms.
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the random utility theory where a customer’s prefer-
ence of a product is represented by the mean utility of
Assortment planning has a wide range of applications the product with a random factor (McFadden 1974).
in retailing and online advertising. Given a large  Animportant extension of the MNL is the nested logit
number of substitutable products, the assortment model (Borch-Supan 1990, McFadden 1980, Williams
planning problem refers to the selection of a subset of ~ 1977) that models a customer’s choice in a hierarchical
products (a.k.a., an assortment) offered to a customer  way: a customer first selects a category of products
such that the expected revenue is maximized. To (known as a nest), and then a product within the cate-

1. Introduction

model customers’ choice behavior when facing a set gory. When the mean utilities of the products are
of offered products, discrete choice models, which given, the static assortment optimization problem
capture demand for each product as a function of the under MNL or nested logit models can be efficiently
entire assortment, have been widely used. One of the solved (Davis et al. 2014, Talluri and van Ryzin 2004).
most popular discrete choice models is the multino- In many scenarios, customers’ choice behavior (e.g.,

mial logit model (MNL), which naturally results from mean utilities of products) is not given as a priori and
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cannot be easily estimated due to the insufficiency of
historical data (e.g., fast fashion sale or online adver-
tising). To address this challenge, dynamic assort-
ment planning that simultaneously learns choice
behavior and makes decisions about the assortment
has received a lot of attention (Agrawal et al. 2017,
2019, Caro and Gallien 2007, Chen and Wang 2018,
Rusmevichientong et al. 2010, Saure and Zeevi 2013,
Wang et al. 2018). More specifically, in a dynamic
assortment planning problem, the seller offers an
assortment (or a set of assortments for different nests
in a nested logit model) to each arriving customer in a
finite time horizon T, observes the purchase behavior
of the customer, and then updates the learned infor-
mation about the underlying demand function. The
goal of the seller is to maximize the cumulative
expected revenue over T periods. In the literature, the
regret is often adopted to measure the performance of
a given dynamic assortment planning policy, which is
defined as the gap between the expected revenue gen-
erated by the policy and the oracle expected revenue
when the mean utility for each product is known as a
priori.

In existing dynamic assortment literature, the
underlying choice model is usually assumed to be an
MNL model (Agrawal etal. 2017, 2019, Rus-
mevichientong et al. 2010, Saure and Zeevi 2013,
Wang et al. 2018). (The work of (Saure and Zeevi
2013) also considered other forms of choice models, in
addition to the MNL model.) In this article, we study
this problem under a more general choice model—the
two-level nested logit model. Indeed, the nested logit
model is considered as “the most widely used mem-
ber of the GEV (generalized extreme value) family”
and “has been applied by many researchers in a vari-
ety of situations” (see Chapter 4 from Train (2009)). It
is well known that the standard MNL suffers from the
independence of irrelevant alternatives (IIA), which
implies proportional substitution across alternatives
(see Chapter 4 from Train (2009)). The nested logit
model relaxes the IIA assumption on alternatives in
different nests, and thus provides a richer set of sub-
stitution patterns. Despite the importance of the
nested logit model, the dynamic assortment planning
question under nested logit models remains an open
problem in revenue management due to the compli-
cated structure of nested logit models.

The main contribution of this study is to develop
computationally efficient policies for addressing this
problem. Assume that there are M nests and each nest
has N possible products to recommend. By leveraging
the revenue-ordered structure of optimal assortments
and the idea of aggregate estimation of next-level util-
ities, we propose the first upper confidence bound
(UCB)-based policy, which leads to a non-asymptotic
regret bound, in which the dominating term

involving T is O(v/MNT) (see Corollary 1 for a more
precise bound). Here, O hides the logarithmic depen-
dence on T,N, and M.

Our second contribution is to understand the infor-
mation-theoretical limitation of the problem. In par-
ticular, we further provide a lower bound on the
regret Q(vVMT) (see Theorem 2). First, this lower
bound shows that when the time horizon T is suffi-
ciently large, our upper bound is within a factor of
VN of the lower bound, where N is the number prod-
ucts within each nest and is smaller than the total
number of products. The optimal dependence on N is,
however, a technically very challenging question and
is beyond the scope of this study. Nevertheless, for
the case of N being large, we introduce a discretiza-
tion technique, which provides a useful heuristic
leading to a much improved dependence on N.
Through simulation studies, we found the discretiza-
tion heuristic to be very effective with improved per-
formance when there are many items per nest.
Second, this lower bound also demonstrates a funda-
mental difference between the nested logit models
and standard (plain) MNL models. According to
Wang et al. (2018), the standard MNL admits a tight
lower bound of Q(v/T), independent of other problem
parameters (e.g., the number of products). In contrast,
for nested logit models, our lower bound shows that,
in addition to v/T, dependency on the number of nests
M is unavoidable.

The details of the proposed policies will be pre-
sented in the main paper and here we briefly high-
light the key technical points in the proposed policies:

1. Leveraging the revenue-ordered structure: For
N products in each of the M nests, the total
number of possible assortment combinations
(i.e., the size of the action space) will be (2N ™,
which is exponentially large. By leveraging the
revenue-ordered structure of the optimal
assortment within each nest (see Lemma 1 and
Davis et al. (2014), Li et al. (2015)), the size of
the action space can be effectively reduced to
O(NM). However, the size of this reduced
action space is still too large if one directly
applies existing bandit learning algorithms that
treat each assortment in the action space inde-
pendently, which will incur a regret related to
NM. To address this challenge, we propose an
aggregate estimation technique as follows.

2. Aggregate estimation: A key point of the paper
is that estimating utility parameters for each
individual product (that will incur a large
regret) is unnecessary for dynamic assortment
planning. Instead, we propose an aggregate
estimation technique that only estimates the
preference and revenue parameters on a nest
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level. More specifically, in our algorithm only
level sets of assortments within each nest are
considered, which have both unknown aggre-
gated revenue and utility parameters.

Another advantage of our algorithm is that it
shows that estimation of exponent parameters
{731, (see Equation (7) in the nested logit
model specification) is not necessary. Instead,
we directly estimate “nested-level utility”
Vi(-)" (see Equation (7) and the discussions
above Equation (7)).

3. UCB policy: We propose an upper confidence
bound (UCB) algorithm using an epoch-based
strategy from Agrawal etal. (2019), which
leads to a worst-case expected regret of
O(VMNT). Although the UCB has been a well-
known technique for bandit problems, adopt-
ing this high-level idea to solve a problem with
specific structures certainly requires technical
innovations (e.g.,, how to build a confidence
bound on a carefully designed parameter, see
Lemma 4). We further note that our UCB pol-
icy generalizes the one in Agrawal et al. (2019)
because in our model the “level sets” are con-
structed within each nest, and therefore both
their revenue and utility parameters are
unknown (see Equation (6) in section 2.2) This
contrasts the setting in Agrawal et al. (2019) in
which the revenue parameters of each single
item are known.

4. Discretization technique: When N is large, we
introduce a discretization technique to reduce
the size of the action space to O((1/6)™),
where ¢ is discretization granularity. Our pol-
icy without discretization corresponds to a spe-
cial case of 0=0. We are able to show that the
proposed space reduction techniques lose very
little in terms of optimal expected revenue, that
is, the gap of the optimal expected revenue
between all the possible assortment combina-
tions and the reduced action space is at most ¢
(see Lemma 8). Simulation studies confirm the
effectiveness of this discretization heuristic.

To the best of our knowledge, our policies are the
first policies for dynamic assortment planning under
the nested logit model, which presents unique chal-
lenges compared to the standard MNL model as the
nest-level revenues of assortment selections are not
known and have to be estimated on the fly. It is also
worthwhile noting that due to the complicated struc-
ture of the nested logit model, it is technically chal-
lenging to derive a tight lower bound on the regret in
terms of N, and we suspect that the current lower
bound Q(v/MT) is not tight and misses a v/N factor
(see more detailed discussions in Remark 4 in section

4). Since the main focus of the paper is to derive the
first efficient policy for dynamic assortment planning
under nested logit models, we leave this challenging
technical problem for future works.

1.1. Related Works

Static assortment planning with known choice
behavior has been an active research area since the
seminal works by van Ryzin and Mahajan (1999)
and Mahajan and van Ryzin (2001). When the cus-
tomer makes the choice according to the MNL
model, Talluri and van Ryzin (2004) and Gallego
et al. (2004) proved an optimal assortment will
belong to revenue-ordered assortments (a.k.a.
nested-by-revenue assortments). An alternative
proof is provided in Liu and van Ryzin (2008). This
important structural result enables the efficient com-
putation of static assortment planning under the
MNL model, which reduces the number of candi-
date assortments from 2V to N, where N is the
number of products per nest. When there is a set
constraint on the assortment set, an efficient polyno-
mial-time algorithm (with running time O(N?)) was
proposed in Rusmevichientong et al. (2010). For
nested logit models, Davis et al. (2014) proved an
important structural result that the optimal assort-
ment within each nest is revenue-ordered, which
will also be used in designing our dynamic policies.
Assuming that there are M nests and N products
within each nest, Li and Rusmevichientong (2014)
further proposed an efficient greedy algorithm to
find an optimal assortment set with O(NM log M)
time complexity. Kok and Xu (2011) considered the
joint assortment optimization and pricing problem
with a restricted number of nests. There are several
recent works on static assortment planning under
variants of nested logit models. For example, Gal-
lego and Topaloglu (2014) studied the constrained
nested logit model; Li et al. (2015) extended the
popular two-level nested logit model to a d-level
nested logit model with d>2; Zhang et al. (2020)
studied the paired combinatorial nested logit model.
In addition, there are extensive research on static
assortment optimization for more complex choice
models, for example, a robust version of MNL (Rus-
mevichientong and Topaloglu 2012), the mixture of
logit models (Bront et al. 2009, Méndez-Diaz et al.
2014, Rusmevichientong et al. 2014), Markov chain-
based choice models (Blanchet et al. 2016, Désir
et al. 2020), the generalized attraction model (Wang
2013), Mallows-based choice models (Désir et al.
2016), a multiple attempt model (Chung et al. 2019),
contextual MNL (Cheung and Simchi-Levi 2017),
and a general class of choice models based on a dis-
tribution over permutations (Farias et al. 2013).
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Davis et al. (2014) considered the nested logit
model studied in this study, with both the cases of
7; <1 and p; > 1. In the case of y;<1, they estab-
lished the revenue-order property within each nest,
but considered an alternative linear programming
type algorithm to solve for optimal assortments effi-
ciently. In Li et al. (2015) the optimization question
of d-level nested logit models is considered, and
efficient fractional programming based methods are
developed. Our optimization subroutine (see section
3.1) turns out to be similar as the one in Li et al.
(2015) in the special case of =2, with the difference
being that upper confidence estimates of R;(S;) and
Vi(Si)" are used in our optimization, while in Li
et al. (2015) the full-information parameter values
were used.

Due to increasing popularity of data-driven rev-
enue management, researchers have started to relax
the assumption about fully available prior knowl-
edge of customers’ choice behavior and investigate
dynamic assortment planning. Motivated by fast-
fashion retailing, the work by Caro and Gallien
(2007) was among the first to study the dynamic
assortment planning problem, which assumes that
the demand for products is independent of each
other. Bertsimas and Misi¢ (2019) studied a two-
step problem with separate demand estimation and
assortment planning, where the first step estimates
a generic ranking-based choice model and the sec-
ond step solves a mixed-integer optimization for
assortment planning. Rusmevichientong et al.
(2010), Saure and Zeevi (2013), Agrawal et al. (2017,
2019), Wang et al. (2018) and Chen et al. (2018)
incorporated choice models of MNL into dynamic
assortment planning, formulating the problem into
an online regret minimization problem. However,
the extension of the plain MNL model to nested
logit models is highly nontrivial and requires sev-
eral technical innovations. For example, instead of
estimating utility parameters for each product, we
estimate nest-level aggregated quantities (see more
discussions in the introduction). Furthermore, we
introduce a discretization technique to alleviate the
effect of having many items per nest.

There is another line of recent research on inves-
tigating the assortment planning question in which
each arriving customer could have a different
choice behavior. For example, Golrezaei et al
(2014) and Chen et al. (2019) assumed that each
customer’s choice behavior is known but that the
customers’ arriving sequence can be adversarially
chosen, and took into account both the revenue
and inventory levels. Since the arriving sequence
can be arbitrary, there is no learning component in
the problem and both Golrezaei et al. (2014) and
Chen et al. (2019) adopted the competitive ratio as

the performance evaluation metric. In addition,
there are a few recent works studying joint assort-
ment planning and pricing under MNL models
(see, e.g., Besbes and Saure (2016), Miao and Chao
(2018), and Wang (2012)). It would also be an inter-
esting future work to consider dynamic joint assort-
ment planning and pricing under nested MNL
models.

1.2. Notations and Paper Organizations
Throughout the paper, we use f(-)Sg(:) to denote that
f()=0(g(")), or more specifically limsup, __|f(T)|/
|g(T)| <oo. Similarly, by f(-)2g(-), we denote f(-) =
Q(g(-)). We also use f(-) = g() for f(:) = O(g(")). In the
paper, O(-) is used to hide logarithmic factors on T, N,
and M. The rest of the paper is organized as follows:
In section 2, we first provide the background of
nested logit models and introduce an important struc-
tural result on optimal assortments (Davis et al. 2014,
Li et al. 2015). In section 3, we propose our UCB pol-
icy and establish the corresponding regret bound. A
lower bound on regret is provided in section 4. The
numerical results are provided in section 5, followed
by the conclusion in section 6.

2. Model Specifications and
Assortment Space Reductions

In this section, we formally introduce the nested logit
assortment choice model considered in this study. We
restrict ourselves to two-level nested logit models,
where items are organized as M known commodity
nests and customers’ purchasing actions are modeled
by a hierarchical multinomial logit model (more details
given in section 2.1).

2.1. The Nested Logit Model

We use [M]={1,2,-,M} to label the M nests. For each
nest i€ [M], label the items in nest i by
[Ni] ={1,2,---,N;}. Each item j € [N;] is associated
with a known revenue parameter r;; and an unknown
mean utility parameter v;;. We assume each nest has
an equal number of items, thatis, Ny =--- = Ny = N.
Furthermore, let {y;};cpy € [0, 1] be a collection of un-
known correlation parameters for different nests. Each
parameter 7; is a measure of the degree of indepen-
dence among the items in nest i: a larger value of y;
indicates less correlation (see Chapter 4 of Train
(2009)).

At each time period t € {1,2,
the arriving customer an assortment S( €S;=
for every nest i € [M], conveniently denoted as
st = (S 8¢ )) The retailer then observes a nest-
level purchase option i; € MJU{0}. If i, € [M], an
item j; € [N]is purchased within the nest i;. Moreover,
it =0 means no purchase occurs at time t. The

-, T}, the retailer offers
2[N]
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probabilistic model for the purchasing option (i, j)
can be formulated as below:

V. SQ) Vi
Prli; = i|SY] = 'AEI i) 5 where Vo
Vo + 3 i Vi(S;7)
=1,Vi(S") = Y vy for i € [M]; (1)
jest

Prlj; = jli; = i,8"] = ﬁ foric [M],jesY.
jresl_ 1
(2)

Note that when y; =1 for all i € [M], the nested
logit model reduces to the standard MNL model.
The retailer then collects revenue r;; provided

that i, #0. The expected revenue R(S")) given

the assortment combination S} can then be writ-
ten as

M
R(8Y) = "Prli=i[SU] > ryPrlj; = jlir = i,S")]
i=1 jEsEf)
RSV
1+ 3, vis)”
2jest Tifi

.ot Ojj '
Z]ESy. i

; where (3)

Ri(s\") =

The objective of the seller is to minimize expected (ac-
cumulated) regret, defined as follows:

T
Regret({S®}],) := ZR* — E[R(S")], where R*
=1

= ax _ R(S). (4)

= m
SeS=S1x--xSm

Throughout the paper, we make the following
boundedness assumptions on revenue and utility
parameters:

(A1) The revenue parameters satisfy 0 <r; <1 for
alli € [M] and j € [N].

(A2) The utility parameters satisfy 0<v; <Cy for
all i € [M] and j € [N] with some constant
Cy>1.

The first boundedness assumption on revenue
parameters is standard in the literature (see e.g., The-
orem 1 in Agrawal et al. (2019)). It is also worthwhile
noting that assumption (A2) is weaker than the com-
mon assumption that no purchase (with Vy=1) is
the most frequent outcome. Both assumptions can be
regarded as without loss of generality as the parame-
ter values could be normalized.

We remark that in the original nested-logit model
assortment planning paper (Davis et al. 2014), it is

allowed that y; > 1 and furthermore there is a no-pur-
chase option within each nest. We assumed 7y; <1
because it is the setting in which the full-information
combinatorial optimization problem is easy to solve,
which is the foundation of our theoretical regret anal-
ysis. Indeed, when 7; exceeds one, it is proved in the
work of Davis et al. (2014) that the combinatorial opti-
mization question (when all parameters are known) is
NP-hard, and only approximation algorithms can be
developed.

We do not allow for a no-purchase option within
each nest, moreover, for a more technical reason. In
our proposed learning-while-doing algorithm, it is
critical to count the number of times that each nest i is
selected by customers until a no-purchase action on
the nest level occurs. If we allow for no-purchase
options within each nest, our algorithm will no longer
be able to distinguish between the events of no-pur-
chase on the nest level or within nests. This leads to
biased estimates of V;(S;)"" parameters and potentially
linear regret. Hence, we choose not to include no-pur-
chase options within nests for a cleaner algorithm and
analysis.

2.2. Assortment Space Reductions
For nested logit models, the complete assortment
selection space (aka. action space)
S =81 xSy x -+ x Sy is extremely large, consisting
of an exponential number of candidate assortment
selections (on the order of (2V¥)). Existing bandit
learning approaches treating each assortment set in S
independently would easily incur a regret also
exponentially large. It is, thus, mandatory to reduce
the number of candidate assortment sets in S.
Fortunately, existing results on the structure of
optimal S show that it suffices to consider level sets
Li(0;) :={j € [N] : r;j > 0;} for each nest i. In other
words, £;(0;) is the set of products in nest i with rev-
enue larger than or equal to a given threshold 0; > 0.
Define P; := {£i(6;) : 0; >0} C S; to be all the possible
level sets of S; and let

P=PixPyx---xPyCS. (5)

The following lemma from Davis et al. (2014) and
Li et al. (2015) shows that one can restrict the assort-
ment selections to P without loss of any optimality in
terms of expected revenue.

Lemma 1. (Davis ET AL.  (2014), L1  ET AL.
(2015)). There exists level set threshold parameters
(01,...,0y) and S* = (L1(07),---,Lm(0y)) € P such
that the following hold:
1. R(S*) = maxges R(S) = R*;
2. 07 >y R*+ (1 —y;)Ri(SF) for all i€ [M], where
St = L;i(0;).
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The first item in Lemma 1 is an important struc-
tural result showing that the optimal assortments are
“revenue-ordered” within each nest. The second item
is a technical result, which will be used in the proof.
Compared to the original action space S, the reduced
“level set” space P is much smaller, with each P;
consisting of N instead of 2V candidate assortments.

With Lemma 1, an assortment combination
S =(S1,---,Sm) € P can then be parameterlzed by a
vector 0= (0,---,0n) € ([0,1]U{co})™, such that
S(0) = (£1(01), -+, Lm(0p)). Note that Lij(oco)=10
indicates the empty set for nest i. Denote
Ki=10,1] U {oc}, and for any i € [M], 6; € K; define

Ujg, ‘=

o0, 5= Vi(£i(0:))" and ¢; := Ri(Li(6;)),  (6)
where V;(-) and R;(-) are nest-level utility parameter
and expected revenue associated with the level set
L;(0;) (see definitions of V; and R; in Equations (1)
and (3), respectively). We note that it is fundamen-
tally different from the standard MNL: the nest-level
expected revenue ¢;y, which depends on utility
parameters, is unknown and needs to be learned;
while the revenue of each product in a standard
MNL is known to the seller prior to the first selling
period. By our assumptions (A1) and (A2), it is easy
to verify that ¢;y €[0,1] and w4 € [0, (NCy)"]

C [0,NCy] for all i € [M] and 6; € K;. We also note
that (NCy)"" <NCy, since y; € [0,1] and Cy >1. Fur-
thermore, because each nest consists of at most N
products, the sets KC; can be made finite by consider-
ing only levels 0; corresponding to revenue parame-
ters of the N products.

Let i; € [M] U {0} be the nest the customer selects at
time t and r; be the Collected revenue. The expected
revenue for assortment S parameterized by 6% can
then be expressed as
Priiy = i00)] = — % Elnfi, = i] = ¢y

r =0 as. if iti%;i':1 iy

Therefore, the expected revenue for an assortment
combination parameterized by 0 takes the follow-

ing form:
M M
i1 Do Uip,
=" Prfiy = ilo® L1 Dol
=1 T+ 705 tip,

and the regret in Equation (4) can be equivalently
written as,

[E[Tt|it = l] =

Regret({09}/)) ®) where R'(6")

T
=E> R(0") — R’
t=1

= max R/(0).

0y X XKy

(8)

Algorithm 1: The upper confidence bound (UCB)
policy for dynamic assortment planning.

Input: Parameter space of 0: K4, - -,
in Equation (6).
Output: assortment sequences 0, -, 07 € Ky x -+ x K.

1 Initialization: =1, {&.}:2, = 0, t=1; for every i € [M] and 0 € Kj,
set 7(/,0) =0, T(0)=0, ¢ = iy =1, g = Ty = U; for all

i € [M] and 0 € K; corresponding to the empty assortment (i.e.,
Li(0) =0), set ¢pjg = djg=Uig = Uig=0;

2 while t<Tdo

3Find 0% =9 — arg J M) -y R'(6),  where
[Zl 1 (1710,”!0]/[1 +ZI 1 ul()]
> This optimization problem can be solved in polynomial time; see
section 3.7,

4 repeat

5  Pick 69 =9 and observe i, r; in Equation (7) and update
& — E U{t}, EH1;

6 until ;_10 or &T,

7 for each i € [M] with £;(0;) # 0 do

8 ComputeA N, = ZT’E& ﬂ[l[/ = I] and f,‘_r = ZP,E& fr/ﬂ[i[! = I],

9 Let 0 = 0; (for notational simplicity) and update:

T(1,0) —T(i,0)U{t}, T(i,0) — T(i,0) +1;

10  Update the utility and mean revenue estimates and as well as

their associated confidence bounds:

Er’e’f(/ o i

Uy = ﬁzﬂg(/,g) P, ig = S o
11 if 7(,0)96 In (2MTK) then "

96 max(il;,i2,) In(2MTK)

_ . ~ I 144 In(2MTK
12 Uy =min{U, iy + r(ﬂé) rn<<i,9) )}‘

Ky, upper bound U on {u;y}

R’(g) —

n(2MTK)
¢,07m|n{1 ¢/(}+ 10u,;}

13 else
14 Uy=Udip=1,
15 end
16 end
17 1e—1+1;
18 end

3. UCB-Based Dynamic Assortment
Planning Policies

In this section, we design dynamic planning policies
under the nested logit model using an upper-confi-
dence-bound (UCB) approach. The details and pseudo-
code of our proposed policy are given in Algorithm 1.

The high-level idea behind Algorithm 1 is as fol-
lows: for every nest i and level set 0 € K;, a pair of
upper confidence estimates (2)1"9 and ;9 are
constructed and maintained, estimating the nest-level
revenue and utility parameters R;(£;(0)) =
(Xjecio Tivi)/ (Xjeci o) Vi) Vi(Li(0))" = XCiesio)
vij)yi. For every potential customer, an optimal assort-
ment combination based on current (upper) parame-
ter estimates ¢, ,i;y are computed, which is then
offered to the customers repetitively until a no-pur-
chase action occurs. Afterwards, the parameter esti-
mates ¢, .79 are updated for all assortments
provided in each nest, and the dynamic assortment
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planning procedure continues until a total of T cus-
tomers are served.

We next explain a few notations used in the algo-
rithm and then describe the details of the algorithm.
The proofs of the results in this section are provided
in the supplementary material.

1. & all iterations in epoch t where the same
assortment combination @ is provided. Each
epoch (corresponding to Steps 4-6 in Algorithm
1) terminates whenever the no-purchase action
is observed. In other words, one and only one
“no-purchase” action i; = 0 appears at the last
iteration of each epoch &..

2. 7(i,0): the indices of epochs in which 0 € K; is
supplied in nest i; T(i,0) = |7 (i, 0)| denotes the
cardinality of 7 (i, 0);

3. f1i;: the number of iterations in the epoch
(i.e., &) in which an item in nest i is
purchased;

4. 7;,: the total revenue collected for all iterations
in &; in which an item in nest i is purchased;

5. u,g,qﬁl 0 Ui 0, ¢,0 estimates of u;g, ¢;y, and their
upper confidence bounds.

The epoch-based strategy (i.e., offering the same
assortment until no-purchase is observed) in Algo-
rithm 1 was first introduced by Agrawal et al. (2019)
and enjoys the favorable properties stated in the next
lemma.

Lemma 2. For each epoch &, and nest i € [M],

0; € K; be such that assortment L£;(0;) is provided in nest
i in epoch t. The expectations of the number of iterations
and total revenues collected in which nest i is purchased
(denoted by ;. and ¥, respectively, in Algorithm 1)
satisfy the following regardless of the other offered
assortments Oy for i’ # i in the same epoch:

1. E[ni]=u Lo
2. [E[mlnn]—nnqb,g

The above properties motivate intuitive parameter
estimators ii; g, ¢; g of u;p and ¢, for 0 = 0;, which are
taken to be the sample averages of 71;; and 7; ; over all
prior epochs &£; in which the assortment correspond-
ing to level set £;(0;) in nest i is offered. It is worth
noting that in those epochs, the offered assortments in
nests other than the i-th nest (i.e., the nests i’ for 7 7é )]
can be arbitrary since the distributions of 1;; and 7;,
are independent of 0, for i’ # i. This key 1ndependence
property enables us to combine purchasing informa-
tion of vastly different assortment combinations (pro-
vided that 6; remains the same), which forms an
important aggregation strategy that avoids exponen-
tially large regret if assortment combinations are trea-
ted independently.

3.1. Efficient Computation of 0
Our policy in Algorithm 1 involves a combinatorial
optimization problem over all 6 € Iy x -+ x Ky (see
Step 3 in Algorithm 1). A brute-force algorithm that
enumerates all such 0 takes O(KM) time and is com-
putationally intractable even for small M values,
where K =max; [{r;:j € [Nj]}| <N +1. In this sec-
tion, we introduce a computationally efficient proce-
dure to compute @ using a binary search technique.
The idea behind our procedure is similar to the one
introduced in (Rusmevichientong et al. 2010) for
dynamic assortment optimization in MNL models,
which can also be traced to the fractional program-
ming work as early as (Megiddo 1978).

For any A€ 10,1] and 0= (61, --,0m)

€ K1 x -+ x Ky define potential function
M
Ya(0) == (g, — Nitig,- 9)

i=1

Z, | o 0, Hi0;

1+Z i, in Step 3
of Algorithm 1. The following lemma "characterizes
the properties of ,(0) and its relationship with
R* = maxgcic, x.-xiy R'(0):

Lemma 3. The following holds for all A € [0,1]:

1. If R*> )\, then there exists a 0 € K1 x --- x Ky
such that y,(0) > \; furthermore if R* > ), then
the inequality is strict;

2.If R*<\ then for all 0€k;x---xKy,
U, (0)< N, furthermore if R*<)\, then the
inequalities are strict.

Recall the definition of R'(0) =

Based on Lemma 3, an efficient optimization algo-
rithm computing the maximizer 6 can be
designed by a binary search over A € [0,1]. In partic-
ular, for each fixed value of 1, the
0 (\) = (07(N),- -+, Oyy(N) € K1 x --- x Ky that max-
imizes Y,(#) can be found Dby setting
07 (\) € argmaxgex, (P — Ntig. I P (0°(N) > A,
then R* > ), because otherwise it violates the sec-
ond property in Lemma 3. Similarly, if
¥, (0°(\)) <)\, then R* <)\, because otherwise it vio-
lates the second part of the first property in Lemma
3 (note that since 0*(\) is the maximizer of ¥,(0),
W, (0°(N)) <X implies that ¥,(0) <X for all 0). Thus,
whether R* > A or R*<)\ can be determined by
solely comparing v, (6*(\)) with A.

We remark that each evaluation of ¥, (0%()\)) takes
O(MK) time, and the entire binary search procedure
takes time O(MK log (1/¢)) to approximate R* up to
arbitrarily small error e. This is much faster than the
brute force algorithm that takes O(KM) time.

We also remark that, similar to other bisection
type algorithms, the computation procedure
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outlined above computes approximate solutions only,
with O(log (1/¢)) iterations required if an error
level of &0 is desired. We suggest setting the accu-
racy level ¢ to ¢=1/T, which would inflate an addi-
tional O(1) term in the cumulative regret upper
bound, while the running time of the binary search
routine is strictly polynomial in T. When the time
horizon T is unknown before hand, a doubling trick
can be wused to consider epochs of lengths
1,2,4,---,2%,---, and within epoch 7 (of length 2%)
an error level of ¢, =277 can be used.

3.2. Regret Analysis
Below is our main regret theorem for Algorithm 1.

TrHeOREM 1. For each nest i let KC; = {r; : j € [N;]}. The
assortment sequence {0} produced by Algorithm 1
has the regret upper bounded as

Regret({0"}]_,)<y/MKT log(MKT) 10)

+ MKU log?(MKT) + O(1),
where K = max; |K,| and U = max,-e[M] maXpek; Ui -

CoroLLary 1. With K=|Ki|=N+1 (for any
i€[MD and U<NCy, the regret upper bound in
Theorem 1 can be simplified to

Regret({S"},)<y\/MNTlog(MNT)

+ MN2Cylog?(MNT) +0(1) (11)
= O(VMNT + MN?)

We make several remarks on the regret upper
bound in Corollary 1. In online and bandit learning
literature, the time horizon T is usually considered to
be the dominating term asymptotically. Therefore,
when T>M and the number of items per nest N is
small as compared to T, the dominating term in Equa-
tion (11) is O(v/MNT). This matches the lower bound
result Q(v/MT) in Theorem 2 within a factor of v/N.

We give further discussion on this gap of O(v/N) in
section 4. We will also show later in section 3.3 how to
deal with a large N case by considering a “discretiza-
tion” heuristic.

In the rest of the section we sketch key steps and
lemmas toward the proof of Theorem 1. The detailed
proofs of these lemmas are provided in the supple-
mentary material. First, the following lemma shows
that the estimates ¢; , it; 9 concentrate around the true
values ¢; g, ;9.

Lemma 4. Suppose  T(i,00>96 In 2QMTK).  With
probability 1 — T~ uniformly over all i € [M], 0 € K;
and t € [T]

. 48 max (it g, #?,) In(2MTK)
< . ) i
|itip — uip| < min {U,B\/ TG 0)

)

144 In(2MTK)
T(i,0)

(12)

g 1
|bip — ipl < min{l, %} (13)

In addition, lf uig>1 then 1:!1',() € [0.51/11',(), 21/{,'70].

The following corollary is an immediate conse-
quence of Lemma 4:

CoroLLary 2. Suppose  T(i,0)>96 In 2MTK). With
probability 1—T7, wig>uig and ¢;9>¢;y for all
ieM],0ex- - xKum.

Corollary 2 shows that (with high probability) u; ¢
and ¢, are valid upper bounds for ;¢ and ¢, . Our
next corollary shows that R’ is also an upper bound
for R at maximizers of R’ and R. Recall that

R(0) = [X0 digitio)/[1 + X1 ] and  R(0)
= [Zf\il biguio]/[1 + Zf\il Uig]-

We defer its proof to the online supplement.

CoroLLARY 3. With probability 1—T~!, R'() >R'(0)
and R'(6°) >R'(0"), where 0,0" € 1 x --- x Ky are
maximizers of R’ and R', respectively.

We are now ready to sketch the proof of Theorem 1.
The first step is to use the classical regret decomposi-
tion for UCB-type policies (A denotes the success
event in Corollary 3).

T
Regret({0}]_,) = ED"R'(6°) — R'(6)
t=1
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T g .
E ZR/(@U)) —R(6M)|A]. (15) Lemma 7. Conditioned on event A, it holds that
t=1

1)+E

Z|5| (R'(9) — R'(8" ))H. (16)

Here, 0" denotes any 0" in the t-th epoch &,'. We
also note that Equation (14) holds because
Pr[A]<T-! and R'(0*)>R'(6*), and Equation (15)
holds because R'(0") > R'(0"), since ) is the maxi-
mizer of R at time t.

It remams tou per bound the discrepancy between
R'(07) and R'(8") at every epoch t. This is accom-
phshed by the followmg “aggregation lemma,” which
is proved in the online supplement.

LemMa 5. With probability 1— T, for all t € [T],
ie[Mland 6= (01, --,0m) € K1 X -+ X Kp,
1
R(0) -R(0) < ——=——
1+ 21 1 Ui,

(17)
ui 9 u1 0 —
Z 1+ g, + Zul«,ei(qsi,(),‘ —ip,) |-

i=1

RemaArk 1. Comparing Lemma 5 with Lemma A.4
from (Agrawal et al. 2019), we can see that there is
an additional 1/[1 + >, ui¢] multiplication term in
the error upper bounds. Such an improvement is
made possible by our more careful analysis and
insights into the mathematical structures of the
MNL choice model, and is important in dealing
with preference parameters v;; larger than one.

Note that E|&| =1+ Eliti]=1+>" uig,.
Combining Lemma 5 with Equation (16) we obtain

Regret({6"},) <O(1)
MU e — Uy o M -
i Zr: ’ T+ u, 40 * Z g0 (B0

i=1

The following lemmas upper bound (asymptoti-
cally) the two terms in Equation (18) separately.

LemMmA 6.  Conditioned on event A, it holds that

. (T - A(
S < /MKT log(MTK
< gl ) 19)

+ MKU log?(MTK).

> Z 50 (9,30 = ¢, 0) S/ MKT log(MTK)

+ MKU log’ (MTK). (20)

Lemmas 6 and 7 are proved in the supplementary
material. Combining both lemmas and Equation (18),
we complete the proof of Theorem 1.

3.3. A Discretization Heuristic

When the number of items N per nest is large, we pre-
sent a useful discretization heuristic that discretizes the
parameter sets K; into small finite subsets. In other
words, instead of considering level sets defined for
thresholds 0 = r;; for all j € [N] so that |K;| =N +1,
we only include level sets whose thresholds are on a
finite grid. Our simulation studies (see section 5)
demonstrate the effectiveness of this method.

More specifically, let ¢ € (0,1) be a granularity
parameter to be specified by the retailer. Recall the
definition of the level set £;(0) = {j € [N] : r;; > 0}. In
the discretized framework, we only consider level set
threshold parameters 0 that are multiples of 1/4. Let
N be the set of non-negative integers and define

K9 :={0:0<0<1,0/5 € N, L;(0)'sare distinct} U {o0},
forie [M]
(21)

where each 0 € K corresponds to a unique level set
Li(0). When there are multiple (’s leading to the
same level set, we keep any one of these s in K2,
and thus the level sets induced by K! (e,
{£i(0) : 0 € KJ}) are unique. Since duplicate assort-
ment sets are removed in I~C?, we have INC? C K;, and
thus |K?| <|K;i| = K = N + 1. Moreover, we also have
IK?| < [1/8] +2 because level set thresholds in K?
must be an integer multiple of 6. On one hand, when
d is not too small, the size of K¢ could be significantly
smaller than N. On the other hand, when 6—0, we
recover the original set XC;, which gives the full level
sets. We shall, thus, define K? := K; when 6=0.

The following discretized reduction lemma shows
that by restricting ourselves to K instead of K;, the
approximation error in terms of expected revenue can

be upper bounded by §, which goes to zero as we take
0—0.

LEMMA 8. (DISCRETIZED REDUCTION LEMMA). Fix an arbi-
trary 6 € (0,1). Then
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max R'(9) — max R'(0)<5,

0k X x Ky 0K x - x K,

where R'(0) := [S21 i gttio]) /[1+ S0 tig)-

With a pre-specified J, we run the policy in Algo-
rithm 1 on the parameter space K x --- x K3,. As a
result of Lemma 8, the value of ¢ can be thought of
as a trade-off between additive bias and multiplica-
tive terms in the final regret. With a small value of 9,
there is almost no additive terms arising from
Lemma 8, yet the number of items N per nest will
not be reduced too much. Moreover, when ¢ is large
the regret bound in Corollary 1 is improved as the
number of items N per nest is now upper bounded
by L1/61+2. However, a large ¢ value will introduce
a large additive bias from Lemma 8. Hence, a balance
has to be achieved for an appropriate value of J to
deliver the best performance. We further demon-
strate the performance for different choices of ¢ in
our simulation studies (see section 5).

4. A Regret Lower Bound

We establish the following lower bound on the regret
of any dynamic assortment planning policy under
nested logit models.

THEOREM 2.  Suppose the number of nests M is divisible
by 4 and vy, =---=yy =0.5. Assume also that (Al)
and (A2) hold. Then there exists a numerical constant
Co > 0 such that for any dynamic assortment planning
policy =,

T

sup ZR* —E*[R(S")]>Cov/MT where R* :nsging(S).

{rijvii} =1
(22)

RemArk 2. The condition that M is divisible by 4 is
only a technical condition and does not affect the
main message delivered in Theorem 2, which shows
necessary dependency on M asymptotically when M
is large.

Remark 3. (Discussion on the dependency of M)
Comparing Theorem 2 with the regret upper bound
in Corollary 1, we notice that when T (time horizon)
is large compared to M (the number of nests), both
regret bounds have an O(vM) dependency on M.
This suggests that our algorithm and regret analysis
delivers optimal dependency of regret on the number

of nests M in a dynamic nested assortment planning
problem.

RemArk 4. (Discussion on the dependency of N)
Comparing Theorem 2 with the regret upper bound
in Corollary 1, we notice that there is a gap of VN
between the upper and lower bounds.

We conjecture that the upper bound with an addi-
tional O(v/N) factor is in fact tight. Actually, because
our proposed algorithm treats each “level set” assort-
ments (within each nest) as standalone estimation
units, it is intuitive to see that the regret that our algo-
rithm incurs has to scale polynomially with N. We con-
jecture that any possible dynamic strategy for nested
logit models has to suffer at least an O(v/N) term in
regret bound.

Unfortunately, due to technical difficulty of con-
structing lower bounds for problem instances, we are
unable to extend our lower bound constructions to
more than N=3 items per nest. This is because our
lower bound construction (to be presented later) uses
only N=3 items per nest and therefore cannot deliver a
lower bound depending on N. We, thus, leave the
question of proving a matching O(VMNT) lower
bound as an interesting yet challenging open problem.

In the rest of this section, we provide the proof of
Theorem 2, while deferring proofs of several technical
lemmas to the supplementary material.

4.1. Construction of Adversarial Model Parameters
Let >0 be a small positive parameter depending on
M and T, which will be specified later. Each nest
i € [M] in our construction consists of N=3 items and
is classified into two categories: “Type A” and “Type
B,” with parameter configurations detailed in Table 1.
Note that regardless of which type of nest i € [M] is,
the three items in nest i have preference parameters
(1+¢€)/M?, (1 —€)/M? and 1/M?. Hence it is impossi-
ble to decide the type of a nest without observations
of customers’ purchasing actions. Given the model
parameters in Table 1, it is easy to verify that for a
Type A nest, the optimal assortment is {1,2}, while
for a Type B nest, the optimal assortment is {1,2,3}.

The following lemma shows that any assortment S;
that does not equal {1,2} for Type A nests or {1,2,3}
for Type B nests incurs an Q(¢/M) regret. It is proved
in the supplementary material.

Lemma 9. Let UC[M] be the set of Type A nests, and
by construction [MINU are all Type B mnests. For any
S=(S1,--,Sm) € N™,  define  m{(S) =1
{Si A {1,2}} + > iy WSi # {1,2,3}}. Then there exists
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Table 1 Adversarial Construction of Two Types of Nests

Type A Nest Type B Nest

Item 1 Item 2 Item 3 Item 1 ltem 2 Item 3
Revenues r; 1 0.8 p 1 0.8 o
Preferences vj (1 +¢)/M? (1 —e)/M? 1/M? (1 —e)/M? (1 +¢)/M? 1/M?

Notes: The revenue parameter p is set to p = 9v/2/(1 + v2) ~ 0.694774.

a numerical constant C>0 such that for all S,
R(S*) — R(S) >mu( )- Ce/M, where S* € argmaxs
R(S) is the optimal assortment combination under U.

To avoid confusion, we emphasize that in our
lower bound proof the notation U refers to a particu-
lar type of nest, instead of upper confidence bounds
in algorithm descriptions and the upper bound
proof.

4.2. Reduction to Average-Case Regret
For any policy n, we want to show a lower bound on
the worst-case regret
T
sup Y R* — F° [R(s“))]. (23)
{rrjavij} t=1

Recall that in our adversarial construction, US[M]
denotes the set of all Type A nests and the remaining
nests [M]\U are Type B. The following inequalities
show a reduction to average-case regret:

Sup{f‘i/’,vij} ZR* - [En [R(S(t))]
t=1

T

> sup ZR* - E} [R(S(t))] (24)
UcM] t=1
T
> iM S SR -E [R(S(t))},
2 UcM] =1

where in SUPycp OF ZUQ[M]
summing over all 2M subsets of [M]={1,2,,M}.
Here, we also use the Ef; notation to emphasize that

we are optimizing or

the distribution of {S")} (and hence the expectation)
depends on both the parameter setting (uniquely
determined by the set of Type A nests US[M]) and
the policy = itself.

For any ie[M] and  SE[N],
ne(i) = Zi 1{(5?) = &} as the random variable of
the number of times assortment S is offered in nest 1.
Let Ef;[ne(i)] be the expectation of ng (i), with expecta-
tion taken under model parameters setting U (recall
that U is the set of all Type A nests) and policy .
Invoking  Lemma 9 and noting that
>sciy) Egme(i)] = T for any UC[M], i € [M] and pol-
icy =, the right-hand side of Equation (24) can be
lower bounded by,

denote

Yy [m%(s“))-fﬂ

ucm] t=1

Cel
Llsly s
M2Y = 16US;£{12}

Ce 1l
> 2 |2 D

me®]+> > [ne(i)]]

i A}

Ef e ()] +)_Ey [ﬂ{ﬁ}(i)]]

UciM) | iell s#{1.2} i1l
Cel [ .
=<5 D | 2 (T Eulny O+ _Eil (i ]
uciM] Lieu il

Cel [y MT .
:Mz_M (2 Z |:Z Eu[n{ } Z[Eu ]‘I{ } :| )
iel il

(26)

Here in Equation (25) we wuse the fact that
>scn) Exlne(i)] = T, Equation (26) holds because
ZUQ[M] YieuT = Zug[M] ZisguT by symmetry, and
furthermore oucpyicu T+ 22iu T) = 2ucmy
SM. T =2M x MT.

Next, for every UC[M], define U =U&i as
U=Uuu{i} if i¢gl, and U =U\{i} if ielU.
Clearly, there is a one-to-one correspondence
between UC[M] and U®DiC[M], for every fixed
i € [M]. The right-hand side of Equation (27) can
then be simplified as

7 ()M E {1, 2} ()]

Ce Ce1l &1 [
ucm]

2 M2
+ ) <1)1{1‘6“@1‘}%[71{1,2}@]1
ucm]

76 MZM-‘rlz Z

i=1 UC[M]
X (Eflng 2y ()] = Efelng 2y (0)]).

(28)

1{1€U}
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4.3. Pinsker’s Inequality
Let Pf;, P, denote the probabilistic laws under U, W
and policy n. Then, for any SE[N],

’<Z] |P{;[ns(i Py
<T Z‘Pn 1’15

=T|PG—Piylirv ST\/Emin{KL(P’&llp%LKL(P%|P’z})}
(29)

|[E7Z Tls [EW 1’15

—Pjy[ns (i) =j]|

ST\/gmin{msaxKL(PuﬂIS)||Pw('|5))~,msaxKL(Pw(~|S)HPu('IS))}

(30)

Here ||P — Q||rv and KL(PIIQ) denote the total varia-
tional distance and Kullback-Leibler divergence
between two probability laws P and Q. Equation
(29) is known as the Pinsker’s inequality (see e.g.,
Tsybakov (2009), Csiszar and Korner (2011)). Note
that in the last term Py and Pw do not have super-
script m, because conditioned on a particular assort-
ment combination S the KL divergence no longer
depends on .

The following lemma shows that if U and W differ
by only one nest, then the KL divergence between Py
and Pw is small forall S = (51, -+, Sm).-

Lemma  10. Suppose  |UaW|=1, where UaW=
(UNW)UWNUD is the symmetric difference between subsets
U,WCI[M]. Then there exists a universal constant C' > 0
such that for any S =(S1,---,Sm), min{KL(Py
(1S)IPw(:IS), KL(Pw([S)[[Pu([8))}) < C'e*/M.

Invoking Lemma 10, the right-hand side of Equa-
tion (30) can be further upper bounded by

T T ce S STVTE/M. (31)

We are now ready to prove Theorem 2 by simplify-
ing the Equation (28) with the help of Equations (30)
and (31). For every US[M] and i € [M], by Equation

(30) it holds that
N<T/Te¢/M

Subsequently, Equation (28) can be lower bounded
as

|[E’&[n{172}(i)] — Efpeilngay (i

Ce TaM
o M2M+1ZZOT Te M)

i=1 UCM]

> % — Ce x O(T\/TE/M).

Setting € = cgy/M/T for some sufficiently small pos-
itive constant ¢y > 0, the above inequality is lower

bounded by Q(eT) = Q(1/M/T). This completes the
proof of Theorem 2.

5. Numerical Results

We present numerical studies of our proposed poli-
cies for dynamic nested assortment planning on
synthetic data. The main focus of our simulation is
the regret of our policies under various model
parameter settings of M, N, and T, as well as the
effect of the discretization granularity ¢ € [0,1] on
the regret.

For each nest i € [M], the revenue parameters
{rij }] 1 are independently and identically distributed
from the uniform distribution on [0.2,0.8] and the
preference parameters {v,-]-}jl\i1 are independently and
identically distributed from the uniform distribution
on [10/N(M-1),20/N(M—-1)], where N is the number
of items in each nest. The nest discounting parameters
{7}, are independently and identically distributed
from the uniform distribution on [0.5,1].

We consider the different combinations of parame-
ters in terms of M (the number of nests), N (the num-
ber of items per nest), T (time horizon length), and 6
(the granularity parameter in the heuristic discretized
policy). We note that 6=0 means that no discretization
is carried out. For each (M,N) settings, we generate
model parameters {r;,v;;,7;}; _I\{ as described in the
previous paragraph, and then run the dynamic assort-
ment policy for 100 independent trials. The median
and maximum accumulated regret over T periods are
reported.

In Table 2, we compare the accumulated regret of
our proposed policies with different granularity
parameters J, under a range of different parameter
settings of number of nests M, number of items per
nest N, and time horizon T. We also compare the per-
formances of our algorithms with some competitive
algorithm baselines, such as the Thompson Sampling
(TS) algorithm and the Explore-then-Exploit (Exp-
Exp) algorithm. The TS algorithm works similar to
our UCB algorithm (with 0=0), where the level-set
assortments are first generated for each nest and the
algorithm learns and optimizes the assortment while
maintaining Beta priors for the aggregate parameters,
as suggested in (Agrawal et al. 2017). In the Exp-Exp
algorithm, the level-set assortments are also first gen-
erated. However, the exploration phase (learning the
aggregate parameters) and the exploitation phase (ex-
ploiting the estimated optimal assortment) are sepa-
rated.

In Figure 1, we further plot the accumulated and
average regret of our policies for time horizon when T
is large (T between 10° and 10”). From both Table 2
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Table 2 Median (Meo) and Maximum (Max) Accumulated Regret (summation over T periods) for Various Algorithms and Under Various Model and
Parameter Settings

o=0 5=103 5=5x10"3 5=10"2 5=5x10"2 TS Exp-Exp

(M,N) Mep Max Mep Max Mep Max Mep Max Mep Max Mep Max Mep Max
T=100:

(5,100) 5.5 6.4 5.5 6.0 3.8 a1 3.2 4.3 54 8.5 6.4 10.2 6.4 18.8
(10,100) 48 6.2 54 55 47 6.5 2.3 3.9 5.8 7.0 6.7 1.7 6.6 25.3
(5,250) 10.4 141 9.8 12.0 5.7 6.5 3.3 34 7.0 8.3 6.1 121 6.6 22.3
(10,250) 10.8 12.0 9.7 12.3 5.5 74 3.0 4.4 5.1 8.7 6.8 9.2 6.1 17.4
(5,1000) 22.0 25.3 16.0 18.2 6.2 7.5 3.2 5.0 6.9 10.9 6.1 10.1 5.5 21.6

(10,1000) 215 24.1 15.1 17.7 5.1 6.4 3.1 4.9 6.2 9.4 6.3 9.1 6.4 24.8
T=500:

(5,100) 14.3 18.5 18.3 22.6 26.8 30.9 31.9 35.3 33.3 34.3 32.6 427 25.6 88.9
(10,100) 15.7 23.0 16.5 221 28.4 28.9 354 36.5 35.0 36.5 33.0 42.9 30.7  128.0
(5,250) 14.2 17.3 12.7 14.9 16.4 18.4 29.1 36.8 32.6 34.2 30.6 43.4 26.2 105.1
(10,250) 13.8 15.9 13.0 17.4 16.6 19.6 29.2 35.0 35.8 38.6 33.2 39.5 30.5 47.4
(5,1000) 411 46.1 22.7 25.7 14.1 17.3 29.4 37.4 33.0 35.8 30.8 39.8 27.0 94.3

(10,1000) 39.3 44.2 21.0 27.2 13.7 18.7 28.0 37.0 35.7 415 324 39.8 29.3 49.4
T =10000:

(5,100) 4915 5055 4894  496.5 4945 5008  503.1 511.8 5134 52562 5799 6722 5389 9047
(10,100) 5484 5580 5486 5529 5293 5347 5382 5443 5543 5652 6180 7067 5724 8831
(5,250) 5344 5437 5297 5439 5234  536.1 519.7  525.5  526.1 5322 6177 6943 4779 9709
(10,250) 5561.0 5605 5545 563.3 5474 5552 5486  555.1 5716 5784 6421 7144 5586  928.6
(5,1000) 669.0 7044 5705 5848 5388 5527 5329 5413 5358 5584  621.6 671.8  489.7 8633
(10,1000) 7035 7382  613.1 633.6 5557  566.3 5499  559.5 5672 5786 6466 6974 5607  911.0

Notes: The minimum regret for each case is highlighted using the bold font. TS stands for Thompson Sampling, and Exp-Exp stands for Explore-then-

Exploit.

and Figure 1, one can see a clear pattern of sub-linear
accumulated regret. Moreover, when N is small as
compared to T, a smaller discretization granularity
leads to better empirical performance; while when N
is large, a larger discretization granularity is better.
We can observe from both Table 2 and Figure 1 that
our algorithm with the appropriate granularity level ¢
consistently outperforms the two baseline methods.
The TS algorithm performs similarly to our UCB
algorithm with 6=0. It is also possible to combine the
TS algorithm with our discretization heuristic (i.e.,
setting 0 to be a positive value), and we would expect
the similar performance as its UCB counterpart with
the same discretization parameter §. For simplicity
and interpretability of the figures, we omit those per-
formance curves.

We also remark that, because of the inherent insta-
bility of the Exp-Exp algorithm (as a consequence of
the fact that Exp-Exp commits to a single assortment
for the majority of T time periods), the curve for Exp-
Exp displayed in Figure 1 is much more wiggly com-
pared to the other algorithms that are more stable
with smaller variance.

One principle for choosing an appropriate value for
¢ is based on the time horizon T. When T is larger, the
inherent bias could result in a 6T cumulative regret
that is linear with T, which is typically reflected by
the UCB with J=.1 curves in all settings of Figure 1.

(For large enough T, a linear growth can also be
observed for some of the UCB with 6=0.05 curves.)
Therefore, in the long term, a smaller 6 would reduce
the negative impact to the cumulative regret. How-
ever, when T is smaller, a larger 6 means less amount
of aggregate parameters to learn, and therefore the
algorithm benefits from a quick start. This is clearly
reflected in the N=25 setting of Figure 1 where the
UCB with =1 curve enjoys the lowest regret for
small T, and gradually loses its advantages as T
increases. For future directions, it is a very interesting
question to study how to appropriately (and maybe
even dynamically) set the values of J to derive a better
theoretical regret bound.

We note that a linear growth of the regret with T
would only occur when the algorithm fails to recover
the optimal assortment after the discretization pro-
cess. Moreover, if ¢ is set to be a small enough value
such that the optimal assortment can be found even
after the discretization process, such a linear growth
of the regret will not occur. In Table 3, we report the
percentage of instances in the corresponding settings
of Figure 1, where the optimal assortment can be
recovered after discretization. We note that a small
percentage value corresponds to a linear growth
curve in Figure 1.

We also remark that, when N is small, the gap
between two-level set assortments in each nest is
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Figure 1 Accumulated (left) and Average (right) Regret of Our Policy and Competitive Policies with M=5 Nests, Varying the Number of ltems Per
Nest N and the Granularity Parameter 5. TS Stands for the Thompson Sampling Algorithm and Exp-Exp stands for the Exploration-Exploi-
tation Algorithm, with Details in the Main Text [Color figure can be viewed at wileyonlinelibrary.com]
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potentially large and therefore the bias resulting from
a large ¢ value could also be large. This means that
when N is small, giving rise to only a few “level-set”
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Time horizon (x 10°)

assortments, ¢ cannot be set too large because other-
wise the optimal level-set assortment might be
missed because of the large gap between integer
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Table 3 Percentage of the Instances in the Settings of Figure 1 Where
the Optimal Assortment can be Recovered After Discretization

=0 =01 6=.05 =1
N=10 100% 99% 66% 36%
N=25 100% 99% 28% 2%
N=100 100% 99% 1% 0%

multiples of Js. Moreover, when N is large, even if ¢
is big the potential bias introduced by discretization
could still be smaller, because there might be a
“level-set” assortment close to every levels of if,
i € N, at the discretization level of 6. This means that
discretization at a larger value of ¢ is potentially
more beneficial when N is large, because little addi-
tional bias is increased but the number of “level-set”
assortments to be considered is significantly fewer
when § is large.

Finally, in Figure 2 we compare the cumulative
regret of our proposed UCB algorithm (at different
levels of discretization granularity §) by holding M, T
fixed and varying the number of products per nest (N).
As we observe from Figure 2, when =0 (i.e., no dis-
cretization carried out), the cumulative regret of our
algorithm does scale on the order of O(v/N) with N,
suggesting that our upper bound results in Theorem 1
and Corollary 1 are tight. Figure 2 also shows that with
larger discretization granularity level §, the regret of
the proposed UCB algorithm scales more mildly with
increasing number of products per nest N.

5.1. Experiments Following the Setting in Davis

et al. (2014)

In this subsection, we report the simulation results on
a set of different classes of the synthetic problem

instances. The synthetic problem instances are gener-
ated similar as described in (Davis et al. 2014). The
instance is parameterized by ¢ € (0,1). For each nest
i € [M], we first generate the nest discounting param-
eter y; independently from the uniform distribution
[0.5,1]. We then generate the first (N—1) items as fol-
lows. For each j € [N—1], we independently sample
Ujj from the uniform distribution over [0,4], Xj; from
the uniform distribution over [0.1,1], and Y;; from the
uniform distribution over [0.01,0.1], and set
rij = Ui . Xl']' and Vjj = e Ui Y’] Finally, weletriy =0
and vy =€ ! - Y,y where Y,y is also independently
and uniformly sampled from [0.01,0.1]. We note that
the main differences between our generating proce-
dure and that of (Davis et al. 2014) are that the range
of Xij is [1,10] and the range of Y is [0.2,1.8] in (Davis
et al. 2014). While the differences for Xij only affect
the revenue parameters {r;} (and therefore the rev-
enues of all candidate assortments) up to a scaling fac-
tor, the differences for Y;; are because that weight of
the no-purchase option is set to 10 in (Davis et al.
2014), but normalized to 1 in our paper. Considering
the typical value of the discounting parameter y;
(which is ~0.75), we therefore correspondingly
reduce the range of Y;; by ~10'/075 ~ 20 times for the
normalization purpose. We set M=5 and pick (¢,N)
from {0.6,0.4} x {25,100} to generate four classes of the
problem instances.

In Figure 3, we report the performance of our
algorithms and the two baseline algorithms TS and
Exp-Exp in these four settings. As one can observe
from Figure 3, the comparison between our algo-
rithms and the baseline algorithms are similar to
the settings in Figure 1, with one difference that the
TS algorithm performs better than our UCB

Figure 2 Cumulative Regret of Our Algorithm with Varying Number of Products Per Nest (N), at Different levels of Discretization Granularity (5)

[Color figure can be viewed at wileyonlinelibrary.com]

Lo 10" M=5 nests, T=10°
— =0
3 —6=.005
- -5=.01
©257 —--6=.05
g’ ..... 5=
o 27
=
S5t
€
=)
O 1t e e e =
051
0

0 100 200 300 400 500
Number of items per nest (N)

10 M=10 nests, T=10°

—65=0
351 —5=.005
- =5=.01
—--6=.05
..... 0=1

Cumulative regret
N

N

o T o

................................................................

0 100 200 300 400 500
Number of items per nest (N)


www.wileyonlinelibrary.com

100

Chen, Shi, Wang, and Zhou: Dynamic Assortment Planning Under Nested Logit Models
Production and Operations Management 30(1), pp. 85-102, © 2020 Production and Operations Management Society

Figure 3 Cumulative Regret of Our Algorithm and Other Comparative Methods for Experiments Outlined in Section 5.1. ¢ is a Parameter Used in

Generating Problem Instances, Which is Described in Further Details in the Main Text [Color figure can be viewed at wileyonlinelibrary.

com]
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algorithm with 0=0 (and sometimes our UCB algo-
rithm with 6=0.01).

6. Conclusions

In this study, we consider the dynamic assortment
planning problem under the nested logit models and
we propose the UCB policy to achieve
O(VMNT + MN?) accumulative regret. We also pro-
pose the discretization heuristic that shows the
improved empirical performance.

There are several interesting future directions of
the current work. The first technical problem is to
investigate the dependency of N in the lower bound.
Second, it is interesting to further extend the current
two-level nested logit models to variants of nested
models (e.g., constrained nested logit models (Gal-
lego and Topaloglu 2014), d-level nested logit

Cumulative regret

—
-
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models (Li et al. 2015)). Third, the dynamic assort-
ment planning is a relatively new topic in revenue
management and the understanding of this problem
is still limited. Therefore, most existing work (in-
cluding this study) focuses on the stylized models
where the assortment is the only decision variable.
One potential future work is to incorporate other
operational decisions and constraints, such as prices
and inventory constraints.
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Note

'Recall that in Algorithm 1, ) does not change within
the same epoch &,. We write 87 to highlight that 6 is
the maximizer of R’ in the t-th epoch (see Step 3 of
Algorithm 1).

References

Agrawal, S., V. Avandhanula, V. Goyal, A. Zeevi. 2017. Thomp-
son sampling for MNL-bandit. Proccedings of the Conference
on Learning Theory (COLT).

Agrawal, S., V. Avadhanula, V. Goyal, A. Zeevi. 2019. MNL-ban-
dit: A dynamic learning approach to assortment selection.
Oper. Res. 67(5): 1453-1485.

Bertsimas, D., V. V. Misi¢. 2019Exact first-choice product line opti-
mization. Oper. Res. 67(3): 559-904.

Besbes, O., D. Saure. 2016. Product assortment and price competi-
tion under multinomial logit demand. Prod. Oper. Manag. 25
(1): 114-127.

Blanchet, J., G. Gallego, V. Goyal. 2016. A markov chain approxi-
mation to choice modeling. Oper. Res. 64(4): 886-905.

Borch-Supan, A. 1990. On the compatibility of nested logit models
with utility maximization. J. Econom. 43(3): 373-388.

Bront, J. J. M., I. Méndez-Diaz, G. Vulcano. 2009. A column gener-
ation algorithm for choice-based network revenue manage-
ment. Oper. Res. 57(3): 769-784.

Caro, F., J. Gallien. 2007. Dynamic assortment with demand learning
for seasonal consumer goods. Management Sci. 53(2): 276-292.

Chen, X., Y. Wang. 2018. A note on tight lower bound for MNL-
bandit assortment selection models. Oper. Res. Lett. 46(5): 534—
537.

Chen, X., Y. Wang, Y. Zhou. 2018. Dynamic assortment optimiza-
tion with changing contextual information. | Mach Learn Res.

Chen, X., W. Ma, D. Simchi-Levi, L. Xin. 2019. Assortment Plan-
ning for Recommendations at Checkout Under Inventory
Constraints. Available at https://papers.ssrn.com/sol3/
papers.cfm?abstract_ #id=2853093 (accessed date October 20,
2020).

Cheung, W. C., D. Simchi-Levi. 2017. Thompson sampling for
online personalized assortment optimization problems with
multinomial logit choice models. Available at https://
papers.ssrn.com>abstract_ #id=3075658  (accessed  date
October 20, 2020).

Chung, H., H. S. Ahn, S. Jasin. 2019. (Rescaled) multi-attempt
approximation of choice model and its application to assort-
ment optimization. Prod. Ooper. Manag. 28(2): 341-353.

Csiszar, L, J. Korner. 2011. Information Theory: Coding Theorems for
Discrete  Memoryless Systems. Cambridge University Press,
Cambridge.

Davis, J. M., G. Gallego, H. Topaloglu. 2014. Assortment optimiza-
tion under variants of the nested logit model. Oper. Res. 62(2):
250-273.

Désir, A., V. Goyal, S. Jagabathula, D. Segev. 2016. Assortment
optimization under the Mallows model. Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS).

Désir, A., V. Goyal, D. Segev, C. Ye. 2020. Capacity constrained
assortment optimization under the markov chain-based choice
model. Management Sci. 66(2): 698-721.

Farias, V. F., S. Jagabathula, D. Shah. 2013. A nonparametric
approach to modeling choice with limited data. Management
Sci. 59(2): 305-322.

Gallego, G., H. Topaloglu. 2014. Constrained assortment optimiza-
tion for the nested logit model. Management Sci. 60(10): 2583—
2601.

Gallego, G., G. Iyengar, R. Phillips, A. Dubey. 2004. Managing
flexible products on a network. Technical Report CORC TR-
2004-01, Department of Industrial Engineering and Opera-
tions Research, Columbia University.

Golrezaei, N., H. Nazerzadeh, P. Rusmevichientong. 2014. Real-
time optimization of personalized assortments. Management
Sci. 60(6): 1532-1551.

Kok, A. G, Y. Xu. 2011. Optimal and competitive assortments
with endogenous pricing under hierarchical consumer choice
models. Management Sci. 57(9): 1546-1563.

Li, G., P. Rusmevichientong. 2014. A greedy algorithm for
the two-level nested logit model. Oper. Res. Lett. 42(5): 319-
324.

Li, G., P. Rusmevichientong, H. Topaloglu. 2015. The d-level
nested logit model: Assortment and price optimization prob-
lems. Oper. Res. 63(2): 325-342.

Liu, Q., G. van Ryzin. 2008. On the choice-based linear program-
ming model for network revenue management. Manufact.
Serv. Oper. Manag. 10(2): 288-310.

Mahajan, S., G. van Ryzin. 2001. Stocking retail assortments under
dynamic consumer substitution. Oper. Res. 49: 334-351.

McFadden, D. 1974. Conditional logit analysis of qualitative
choice behavior. Frontiers in Econometrics (Academic Press).

McFadden, D. 1980. Econometric models for probabilistic choice
among products. J. Bus. 53(3): 13-29.

Megiddo, N. 1978. Combinatorial optimization with rational
objective functions. Proceedings of the annual ACM symposium
on Theory of computing (STOC).

Méndez-Diaz, ., J. J. Miranda-Bront, G. Vulcano, P. Zabala. 2014.
A branch-and-cut algorithm for the latentclass logit assort-
ment problem. Discrete Appl. Math. 164: 246-263.

Miao, S. T., X. L. Chao. 2018. Dynamic joint assortment and pric-
ing optimization with demand learning. Technical report,
University of Michigan, Ann Arbor.

Rusmevichientong, P., H. Topaloglu. 2012. Robust assortment
optimization in revenue management under the multinomial
logit choice model. Oper. Res. 60(4): 865-882.

Rusmevichientong, P., Z. J. Shen, D. Shmoys. 2010. Dynamic
assortment optimization with a multinomial logit choice
model and capacity constraint. Oper. Res. 58(6): 1666-1680.

Rusmevichientong, P., D. Shmoys, C. Tong, H. Topaloglu. 2014.
Assortment optimization under the multinomial logit model
with random choice parameters. Prod. Oper. Manag. 23(11):
2023-2039.

van Ryzin, G., S. Mahajan. 1999. On the relationships between
inventory costs and variety benefits in retail assortments.
Management Sci. 45(11): 1496-1509.

Saure, D., A. Zeevi. 2013. Optimal dynamic assortment planning with
demand learning. Manufact. Serv. Oper. Manag. 15(3): 387-404.
Talluri, K., G. van Ryzin. 2004. Revenue management under a
general discrete choice model of consumer behavior. Manage-

ment Sci. 50(1): 15-33.

Train, K. 2009. Discrete Choice Methods with Simulation. Cambridge
University Press, Cambridge, 2nd edn.

Tsybakov A. B. 2009. Introduction to Nonparametric Estimation
Springer Series in Statistics. Springer, New York.

Wang, R. 2012. Capacitated assortment and price optimization
under the multinomial logit choice model. Oper. Res. Lett. 40
(6): 492497.

Wang, R. 2013. Assortment management under the generalized
attraction model with a capacity constraint. . Rev. Pric.
Manag. 12(3): 254-270.

Wang, Y., X. Chen, Y. Zhou. 2018. Near-optimal policies for
dynamic multinomial logit assortment selection models.



Chen, Shi, Wang, and Zhou: Dynamic Assortment Planning Under Nested Logit Models
102 Production and Operations Management 30(1), pp. 85-102, © 2020 Production and Operations Management Society

Proceedings of Advances in Neural Information Processing Systems
(NeurlIPS).

Williams, H. C. W. L. 1977. On the formation of travel demand
models and economic evaluation measures of user benefit.
Environ. Plan. A 9, 285-344.

Zhang, H., P. Rusmevichientong, H. Topaloglu. 2020. Assortment
optimization under the paired combinatorial logit model.
Oper. Res. 68(3): 741-761.

Supporting Information

Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

Proofs of Statements



