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ABSTRACT

Motivated by practical needs such as large-scale learning, we study
the impact of adaptivity constraints to linear contextual bandits, a
central problem in online learning and decision making. We con-
sider two popular limited adaptivity models in literature: batch
learning and rare policy switches. We show that, when the con-
text vectors are adversarially chosen in d-dimensional linear con-
textual bandits, the learner needs O(d log dlog T) policy switches
to achieve the minimax-optimal regret, and this is optimal up to
poly(log d,loglog T) factors; for stochastic context vectors, even in
the more restricted batch learning model, only O(loglog T) batches
are needed to achieve the optimal regret. Together with the known
results in literature, our results present a complete picture about the
adaptivity constraints in linear contextual bandits. Along the way,
we propose the distributional optimal design, a natural extension
of the optimal experiment design, and provide a both statistically
and computationally efficient learning algorithm for the problem,
which may be of independent interest.
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1 INTRODUCTION

Online learning and decision making is a fundamental research
direction in machine learning where the learner conducts sequen-
tial interactions, once per time step, with the environment in order
to learn the optimal policies and maximize the total reward. To
achieve optimal learning performance, the learner must seek a bal-
ance between exploration and exploitation, which is usually done
by adaptively selecting actions based on all historical observations.
However, full adaptivity at a per-time-step scale significantly sacri-
fices parallelism and hinders the large-scale deployment of learning
algorithms. To facilitate scalable learning, it is worthwhile to study
the following question:

What is the minimum amount of adaptivity needed
to achieve optimal performance in online learning and
decision making?

In this paper, we address the above question through studying the
impact of two popular types of adaptivity constraints to the linear
contextual bandits, a central problem in online learning literature.
We prove tight adaptivity-regret trade-offs for two natural settings
of the problem. Along the way, we make a new connection to
optimal experiment design: we propose the natural distributional
optimal design problem, prove the existence of parametric forms
for the optimal design, and present sample-efficient algorithms to
learn the parameters. Our proposed framework contributes a novel
learning component to the classical field of experiment design in
statistics, and may be of independent interest.

Linear Contextual Bandits. The linear contextual bandits (or lin-
ear bandits for short), also known as “associative reinforcement
learning” [3, 7], are a generalization of the ordinary multi-armed
bandits. While also encapsulating the fundamental dilemma of
“exploration vs. exploitation” in online learning and decision mak-
ing, linear contextual bandits highlight the guidance of contextual
information for decisions, enabling personalized treatments and
recommendations in real-world applications such as clinical trial,
recommendation systems, and advertisement selection.

In a bandit game, there are T time steps in total. At each time
step t € [T], the learner has to make a decision among K candi-
date actions (a.k.a. arms in bandit literature). While in ordinary
multi-armed bandits, the mean rewards of the actions have to be
completely independent from each other, linear bandits allow a
linear model for the mean rewards. More specifically, at time step
t, each action i € [K] is associated with a d-dimensional context
vector x;; (a.k.a., the feature vector), and the context vectors are
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presented to the learner. The expected reward for the i-th action
is 0T x4;, where 0 € R is hidden from the learner. The goal is to
gradually learn @ and maximize the cumulative expected reward,
or equivalently, minimize the expected regret (i.e., the difference
between the received rewards and the rewards of the best actions in
hindsight, as later defined in (1)). For example, in clinical trial, the
candidate actions correspond to the K involved treatments. At time
step ¢, an individual patient arrives with the context vectors {x;; }le
characterizing his/her response to the candidate treatments, and
the recovery probability given treatment i is modeled by the linear
function 87 x;;, which corresponds to the expected reward in linear
bandits.

There are two natural settings of the linear bandits: adversarial
and stochastic contexts. The first setting is harder for the learner,
as the context vectors are chosen by an adversary and the learner
has to minimize the regret in the worst case. In the second setting,
in contrast, the sets of context vectors are independently drawn
from an unknown distribution O (while correlation may still exist
among the contexts during the same time step), and the learner
aims at minimizing the expected regret over D. Note that in the
clinical trial example, the individual patients can often be viewed
as independent samples from the population which is characterized
by D.

Limited Adaptivity Models: Batch Learning and Rare Policy Switches.

We consider two popular models of adaptivity constraints. The first
model is batch learning, where the time steps are grouped into
pre-defined batches. Within a batch, the same (possibly random-
ized) policy is used to select actions for all data and the rewards are
observed only at the end of the batch. The amount of adaptivity
is measured by the number of batches, which is expected to be
as small as possible. A notable example is designing clinical trials,
where each phase (batch) of the trial involves simultaneously ap-
plying medical treatments to a batch of patients. The outcomes are
observed at the end of the phase, and may be used for designing
experiments in future phases. Finding the correct number and sizes
of the batches may achieve optimal efficiency for the trial by creat-
ing sufficient intra-batch parallelism while still providing sufficient
adaptivity at the inter-batch scale.

The other model is learning with rare policy switches, where
the amount of adaptivity is measured by the number of times al-
lowed for the learner to change the action-selection policy. For the
same amount of adaptivity measure, this model can be viewed as a
relaxation of the batch learning model, because the learner in the
batch learning model can only change the policy at the pre-defined
time steps.

Both of the above models are closely connected to parallel learn-
ing, as we will discuss at the end of Section 1.1. We also note that
another natural limited adaptivity model is “batch learning with
adaptive grid” [17]. This model allows the learner to adaptively
decide the size of a batch at the beginning of the batch, which is
a more relaxed constraint than batch learning with pre-defined

'Implied by the lower bound for multi-armed bandits.

“Implied by the lower bound for multi-armed bandits with rare policy switches. Note
that the lower bound by Simchi-Levi and Xu [31] is for deterministic action-selection
policies, and becomes Q(K loglog T). A simple adaptation of their argument will
prove the Q(loglog T) policy switch lower bound for randomized action-selection
policies in multi-armed bandits, and imply the same lower bound for linear bandits.
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batches (a.k.a., the static grid model) but more restricted than the
rare policy switch model, given the same amount of adaptivity
measure.® Simple arguments will show that the bounds for the
adaptive grid model are the same as the static grid model in both
linear bandit settings. Therefore, for succinct exposition, we omit
further discussions about the adaptive grid model.*

Optimal Experiment Design. Optimal experiment design seeks
to minimize the estimation variances of parameters via intelli-
gently choosing queries to the given set of data points. Among
the multiple optimization criteria, the one most related to lin-
ear bandits is the G-optimality criterion which seeks to minimize
the maximum estimation variance among the given data points.
More precisely, given a set of data points X C R? that spans
the full dimension, the goal is to find a distribution K supported
on X, such that max,ex x" (By~x yy' )~ lx is minimized. Here,
I(K) = By~x yy' is the information matrix of the design K, and
x T I(%)~Lxis the variance of the estimate for data point x. The Gen-
eral Equivalence Theorem of Kiefer and Wolfowitz [23] implies that
there always exists a design K such that max,ex x' 1(K)x < d
and such designs have been used for linear bandits with fixed can-
didate action set (see Chapter 22 of [24], and [16]). However, to
the best of our knowledge, traditional optimal design does not ad-
dress the problem when the candidate action set X is stochastic. In
this work, motivated by the algorithmic needs from batch linear
bandits, we address this problem and develop a framework named
distributional optimal design that runs at the core of our algorithm.
We will introduce this framework in the next subsection.

1.1 Our Contributions

Adaptivity constraints in online learning and decision making have
attracted much attention recently. It has been shown that multi-
armed bandits only need O(loglog T) batches to achieve asymptot-
ically minimax-optimal regret [17, 28]. For linear contextual ban-
dits with adversarial contexts, when In K > Q(d), Abbasi-yadkori
etal. [1] showed an optimal-regret algorithm with O(d log T) policy
switches. In contrast, for the batch model, Han et al. [19] recently
showed that as many as Q(VT) batches are needed to achieve the
optimal regret bound, implying that batch learning is significantly
more restrictive than policy switch constraints for adversarial con-
texts.

In light of these partial results, quite a few questions are in-
triguing and remain to be explored - What makes the adaptivity
requirements of linear contextual bandits fundamentally different
from multi-armed bandits? What is the limitation for algorithms
with rare policy switches, or in other words, can we extend the algo-
rithm by Abbasi-yadkori et al. [1] to the full parameter range of K,
and further improve the number of policy switches to O(loglog T)?
Do linear bandits with stochastic contexts require substantially less
adaptivity than the adversarial setting? We address these questions
and summarize our answers as follows.

3Indeed, in the adaptive grid model, the time for a policy switch has to be decided
when the previous policy switch happens, while in the rare policy switch model, the
learner can freely switch the policy, as long as the total number of switches is limited.
4A simple argument will prove the Q(VT) batch lower bound for achieving the
asymptotically minimax-optimal regret for the adaptive grid model with adversarial
contexts, and the rest bounds can be derived by direct corollaries of this work and the
existing results in [17, 19].
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Table 1: Amount of adaptivity needed in various models and settings for linear bandits.

Batch Learning Model Rare Policy Switch Model
. ) UB: O(dlogT) for InK > Q(d) [1]
Adversarial | UB: O(VT) [19] O(dlogdlogT) for InK < o(d) (by (C1))
Contexts dlogT
LB: Q(VT) [19] LB: Q(j557atery) by (C1)
Stochastic UB: O(loglog T) (by (C2)) | UB: O(loglog T) (implied by (C2))
Contexts LB: Q(loglog T) [17]" LB: Q(loglog T) [31]

(C1) (Contribution #1) For linear bandits with adversarial contexts,
we show that dlog T (up to poly(logd,loglog T) factors) is
the tight amount of policy switches needed to achieve the
minimax-optimal regret. To this end, we first extend the algo-
rithm by Abbasi-yadkori et al. [1] to the case where InK <
o(d). Our algorithm achieves the asymptotically minimax-
optimal regret with O(d log d log T') policy switches. We then
prove that our algorithm and the one by Abbasi-yadkori et al.
[1] achieve the near-optimal policy switch vs. regret trade-
off. In particular, Q(d log T /log(d log T)) policy switches are
needed to achieve any VT-type regret.

(C2) (Contribution #2, an informal statement of Theorem 6) For
linear bandits with stochastic contexts, even in the more
restricted batch learning model, it is possible to achieve the
asymptotically minimax-optimal regret using only O(loglog T)
batches. Our algorithm can be easily adapted to use M batches

1

and achieve v/d log KT 20-2") . poly log T regret, for any M.

Together with the known results in literature, we are able to present
an almost complete picture about the adaptivity constraints for
linear bandits in Table 1. Most interestingly, compared to ordinary
multi-armed bandits, linear bandits exhibit a richer set of adaptivity
requirements, and strong separations among different models and
settings. We also find that adversarially chosen context vectors are
the main source of difficulty for reducing adaptivity requirements.

Comparison of (C2) and [19]. Compared to (C1), our result in (C2)
requires substantially more technical effort and is also the main
motivation for us to develop the framework of distributional opti-
mal design (which will be elaborated soon). We note that Han et al.
[19] also studied batch learning for linear bandits with stochas-
tic contexts and showed an algorithm with O(loglog T) batches.
However, their results are for a special case of the problem with
the following assumptions: the context vectors are drawn from a
Gaussian distribution, the ratio between the maximum and min-
imum eigenvalues of the Gaussian co-variance matrix should be
O(1), and the number of candidate actions K cannot be greater
than a polynomial of d. The design and analysis of their algorithm
crucially rely on these three assumptions and it seems not obvious
that their result can be directly extended to the general context set
distribution. Indeed, their algorithm can safely choose the action
to maximize the estimated mean reward, thanks to the isotropic
Gaussian assumption ensuring sufficient exploration towards other
directions. In contrast, without these assumptions, much effort in
our algorithm is spent on the careful design of the exploration pol-
icy using many candidate actions, which motivates the problem of
distributional optimal design.
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Distributional Optimal Design. As mentioned above, to facilitate
the algorithm for stochastic contexts, we have to extend the tra-
ditional experiment design results to the regime where the set X
of contexts/data points is stochastic. Suppose that X follows the
distribution D, the goal of our proposed distributional optimal de-
sign problem is to find a sample policy & that maps any set X to
a probability distribution supported on X, so as to minimize the
distributional G-variation, defined as Ex. ¢ maxy.x x ' Ly () lx,
where I (1) = Ex~ 9 Ey~z(x) yy' is the information matrix of
sample policy 7 over . Note that the traditional G-optimal design
is the special case of our problem when D is deterministic, which
was used in the algorithm for linear bandits with fixed candidate
action sets (see, e.g., Chapter 22 in [24]). In contrast, the stochastic-
ity of X ~ D in our problem arises due to the stochastic context in
linear bandits.

The first natural question about our proposed problem is on the
existence of a good sample policy. Regarding this, we prove the
following result.

(C3) (Contribution #3, an informal statement of Theorem 4) For any
D, there exists a sample policy 7 such that the distributional
G-variance is bounded by O(dlogd).® Moreover, we can
construct such a policy from the class of so-called mixed-
softmax policies, which admits a succinct description using
O(d®log d) real-valued parameters.

Since D is not known beforehand in linear bandits, we have to learn
a good sample policy 7 via finite samples from D. Since even the
input of x lie in a continuous space with dK dimensions, proving
the existence of the succinct parametric form of 7 in (C3) is a good
news to learning. However, we find that directly constructing a
policy based on the uniform distribution over empirical samples
does not generalize to the true distribution 9. We will come up
with a more careful learning procedure to achieve the following
goal.

(C4) (Contribution #4, an informal statement of Theorem 5) For any
D, we design an algorithm to learn a good mixed-softmax
policy 7 using only poly(d) independent samples from D.”

We remark that the introduction of the distribution D brings a
unique learning challenge to optimal experiment design. It is hope-
ful that our results and the future study on other criteria in distribu-
tional optimal design may lead to broader applications in machine
learning and statistics.

SFor simplicity of presentation, we assume that the vectors in the sets of D span the
full dimension, so that there always exists a sample policy with invertible information
matrix. Please refer to Theorem 5.1 for the general definition.

®This bound can be improved to O(d) with additional techniques, which will be
included in the full version of the paper.

"More precisely, the good policy here is defined by the distributional G-deviation. Please
refer to Theorem 5 for more details.
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Implications for Collaborative and Concurrent Learning. The idea
of letting multiple learning agents learn in parallel so as to save
overall running time has been studied a lot recently in online learn-
ing and decision making, which is also the main motivation of this
study (as mentioned in the very beginning of the paper). Below we
discuss the implications of our algorithmic results for a few parallel
learning models.

The first implication is for the collaborative learning with limited
interaction model, which was recently studied for pure exploration
(i.e., top arm(s) identification) in multi-armed bandits [20, 22, 37]. In
this model, there are & learning agents, and the learning process is
partitioned into rounds of pre-defined time intervals. During each
round (which is also referred to as the communication round), each
of the K agents learns individually like in the centralized model -
image that there is a global buffer of the context vectors, and the
agents repeatedly draw a set of context vectors from the buffer and
make corresponding decisions. Each play of an arm takes one time
step, and the agents may choose to skip a few time steps without
playing. The agents can only communicate at the end of each round.
The collective regret is defined to be the sum of the regret incurred
by each agent. Suppose there are T sets of context vectors in the
global buffer, the goal is to finish the game in O([T/R]) time (i.e.,
achieving the full speedup), while minimizing the collective regret
and the number of communication rounds R.

Observe that a batch learning algorithm with M batches can
be easily transformed to a collaborative algorithm with R = M
communication rounds, where in each round i, each agent uses the
policy for the i-th batch to play for | 7;/8 | or [7; /K] times, where 7;
is the size of the i-th batch. The total running time for collaborative
learning is at most T /t+M, achieving the full speedup when M-K <
O(T). Therefore, when & < O(T/loglogT), our algorithmic result
(C2) implies a collaborative algorithm for stochastic-context linear
bandits with full speedup and minimax-optimal collective regret,
using only O(loglog T) communication rounds.

The second implication is for the concurrent learning model
which was recently studied in [8, 18, 41]. In this model, there is no
limit on the number of communication rounds and the & learning
agents may communicate at the end of every time step. By a simple
reduction described in [8], any algorithm with at most M policy
switches can be transformed to a f-agent concurrent learning
algorithm with full speedup, and the collective regret is at most M-K
plus the original regret bound. Therefore, our algorithmic result in
(C1) implies a concurrent learning algorithm for adversarial-context
linear bandits with full speedup and minimax-optimal collective

regret, as long as & < O(+/(T log K)/d).

1.2 Additional Related Works

The linear contextual bandit problem is a central question in online
learning and decision making, and its regret minimization task has
been studied during the past decades [1, 2, 7, 10, 12, 25, 30]. The
minimax-optimal regret is proved to be 4/dT min{log K, d} up to
poly log T factors, which is also the target regret for our algorithms
with limited adaptivity. When the candidate action set is fixed, the
task of identifying the best action has also been studied [34, 36, 40],
and many of these works borrow the idea of G-optimal design.
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Batch regret minimization for multi-armed bandits was intro-
duced by Perchet et al. [28] with 2 arms, and the K-arm general
setting was recently studied by Gao et al. [17]. Simchi-Levi and
Xu [31] studied the K-arm setting with the rare policy switch con-
straint and achieved comparable results. For batch linear bandits,
Esfandiari et al. [16] and Han et al. [19] recently studied the problem
with aforementioned additional assumptions. For batch stochastic
contextual bandits, Simchi-Levi and Xu [32] recently proposed an al-
gorithm with O(loglog T) batches to achieve the minimax-optimal
regret. We note that another usage of batch learning (mainly in
reinforcement learning) refers to learning from a fixed set of a
priori-known samples with no adaptivity allowed, which is very
different from the definition in our work.

For the rare policy switch model, Abbasi-yadkori et al. [1] showed
a rarely switching algorithm for linear bandits. Rare policy switch
constraints have also been studied for a broader class of online
learning and decision making problems, such as multinomial logit
bandits [14] and Q-learning [8].

Under the broader definition of adaptivity constraints including
batch learning and learning with low switching cost (which might
not exactly align with the models defined in this work), many
other online learning problems are studied, such as adversarial
multi-armed bandits [9, 13], the best (multiple-)arm identification
problem [4, 21], and convex optimization [15].

The optimal design of experiments is a fundamental problem in
statistics, with various optimality criteria proposed and many sta-
tistical models studied (see, e.g., [6, 29]). When the sample budget
is finite, finding the exact solutions to certain optimality criteria is
NP-Hard [11, 35, 39], thus a sequence of recent works have stud-
ied approximation algorithms for the problem [5, 26, 27, 33, 38].
However, to the best of our knowledge, all previous works have
considered the fixed set of all possible experiments. In contrast, we
propose and study the distributional optimal design problem where
the set of candidate experiments might be stochastic.

2 TECHNICAL OVERVIEW

Due to space constraints, we will only introduce the technical
details related to (C2) in the rest of this extended abstract. In this
section, we give an overview of the proof techniques developed
for (C2) in Section 4, Section 5 and Section 6. Along the way, the
proof techniques for (C3) and (C4) are also explained. In Section 7,
we combine all these technical components and prove the main
theorem.

The Batch Elimination Framework. All our algorithms are based
on batch elimination: at each time step, the confidence intervals
are estimated for each candidate action, and the actions whose
confidence intervals completely fall below those of other actions
are eliminated. All survived actions are likely to be the optimal
one, and the learner has to design an intelligent sample policy 7 to
select the action from the survived set. In such a way, the incurred
regret can be bounded by the order of the length of the longest
confidence interval in the survived set.

We note that this elimination-based approach is not new: it is
adopted by the batch algorithms for multi-armed bandit (e.g., [17])
as well as the recent batch algorithm for linear bandits with fixed
action set [16]. However, thanks to the simple structures of the two



Linear Bandits with Limited Adaptivity and Learning Distributional Optimal Design

problems, during each batch, both of their algorithms are able to
construct confidence intervals for survived actions with a uniform
length, so that the regret can be relatively more easily bounded.
Indeed, although the algorithm by Han et al. [19] does not explicitly
eliminate actions, their analysis relies on the uniform estimation
confidence for the actions (which requires the isotropic Gaussian
assumption for context vectors). In contrast, we have to deal with
confidence intervals with wildly different lengths because of the
inherent non-uniformity of the probability mass assigned to each
context direction in the general distribution D.

To deal with such non-uniformity, in Section 4, we provide an
analysis framework to relate the regret bound to the distributional
G-variation of 7 over D, as introduced in Section 1.1. In partic-
ular, we show that if we let 7(X) = 75 (X), which returns the
G-optimal design of the input context set X (regardless of D), its
distributional G-variation can be bounded by d? (for all D), lead-
ing to O(d+/T log K) X poly log T regret with O(loglog T) batches.
This regret is Vd times greater than the minimax-optimal target.
To achieve optimality, we need to improve the distributional G-
variation to O(d) (up to logarithmic factors), which requires to
optimize 7 specifically according to D.

Existence of Distributional Optimal Design and its Parametric Form.
In Section 5, we show that, given D, there exists a sample policy
7 whose distributional G-variation is O(d log d). Our proof is con-
structive and the algorithm involves an innovative application of
the rarely switching linear bandit algorithm [1]. We consider a long
enough sequence of independent samples from D: X1, Xy, ..., XN,
and sequentially feed the context vector sets to the rarely switching
algorithm. Instead of minimizing the regret (as the reward is unde-
fined), the rarely switching algorithm selects the context vector x
that maximizes the variance according to the delayed information
matrix, and updates the total information matrix by adding xxT to
it.

Borrowing the regret analysis techniques in linear bandits litera-
ture, and together with an adapted form of the celebrated Elliptical
Potential Lemma, we are able to prove that, with the proper con-
figuration of the initial information matrix, the average maximum
confidence interval length throughout the N time steps is O(d log d).
Moreover, the rarely switching trick makes sure that the delayed in-
formation matrix switches for at most O(d log d) times. This allows
us to extract O(d log d) (deterministic) sample policies {7;} from
the execution trajectory of the algorithm, each of which chooses
the variance maximizer according to a delayed information matrix
in the trajectory. We also associate each 7; with a probability mass
pj» which is proportional to the number of time steps when the
corresponding delayed information matrix is used in the trajectory.
We can then construct a so-called mixed-argmax policy 7 as follows:
with probability 1/2, & acts the same as r[G; otherwise, & acts the
same as 7r; with probability p;.

We are then able to prove that the distributional G-variance of «
over D is O(d log d). This is done mainly by showing that I () is
comparable to the final information matrix in the trajectory, so that
the distributional G-variance of 7 can be bounded by the empiri-
cal average of the maximum confidence interval lengths. To lower
bound I () using the total information matrix in the trajectory,
while the portion corresponding to the larger switching window
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(i.e., greater p;) in the trajectory can be directly compared, the
smaller switching window will be handled by the 78 component
in 7. We note that the 78 component is also crucial to configur-
ing the “proper” initial information matrix in the rarely switching
algorithm.

We finally observe that 7 can be characterized by O(d> log d)
parameters, because each 7 is parameterized by a d X d information
matrix. Since the arg max operator could be very sensitive to noise
when the top input elements are close, to facilitate learning, we
will also work on the mixed-softmax policy where each 7; uses the
softmax operator instead.

CoRELEARNING for Distributional Optimal Design. It is tempting
to build the natural learning algorithm that computes the distribu-
tional optimal design from the empirical samples, with the hope
that the Lipschitz-continuity property of the softmax policies pro-
vides a small covering of the policy space, which leads to uniform
concentration results, and finally prove that the learned policy
generalizes to the true distribution . However, in Section 6, we
construct an example to show that such an approach requires much
higher sample complexity than we can afford.

To enable sample-efficient learning, we propose a new algorithm,
CORELEARNING, that first identifies a core set, which is a subset of
the empirical samples, and then computes a mixed-softmax policy
from the core. To identify the core, we develop a novel procedure to
iteratively prune away the sets that contain less explored directions
among the empirical samples, so that the set of the remaining sam-
ples at the end of the procedure becomes the core. Via a volumetric
argument, we show that the directions in the core can be sufficient
explored even if only using the sets in the core, and the core is still
overwhelmingly large. Both properties are crucially used in the
CORELEARNING algorithm.

The high-level idea behind CORELEARNING is that, on one hand,
we can prove fast uniform concentration for the information ma-
trix if all directions are sufficiently explored, so that the directions
spanned by the core can be handled. On the other hand, the direc-
tions not included in the core are infrequent in D (because the core
is large enough), and can be dealt with by the 70 component in
the mixed-softmax policy.

Much technical effort is devoted to the analysis of CORELEARN-
ING because (1) it seems not quite obvious whether a core with the
desired properties even exists, and (2) a careful analysis is needed
when combining the analysis for sufficiently explored directions
and infrequent directions, since the (possible) directions of the con-
text vectors are continuous, and the boundary between the two
types of directions may not be always clear. Please refer to Section 6
for more detailed explanation.

3 PRELIMINARIES
Notations. Throughout the paper, we denote [N] def {1,2,...,N}

for any integer N. We define log x def log, x and In x def log, x. We
use 1[-] to denote the indicator variable for a given event (i.e., the
value of the variable is 1 if the event happens, and 0 otherwise).
We use ||| to denote the 2-norm of matrices and vectors. Matrix
and vector variables are displayed in bold letters. For any discrete
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set X, we use Ax to denote the set of all probability distributions
supported on X.

Linear Contextual Bandits. There is a hidden vector 0 (||0]| < 1).
For a given time horizon T, the context vectors {{xti}fi 1}tT:1 are
drawn from the product distribution D; @ Dy ® - - - ® Dr, where
Dy is the distribution for the context vectors at time step t. We
assume ||xz;|| < 1 for all i and ¢ almost surely. Before the game
starts, the learner only knows T.

At each time step of the game t = 1,2,..., T, the learner has to
first decide a policy y; that maps any set of context vectors X to a
distribution in Ax. The learner then observes X; = {xt,-}lK: "
ples an action i; from y; (X),8 plays arm iz, and finally receives the
reward r; = GTxt,it + ¢, where ¢; is an independent sub-Gaussian
noise with variance proxy at most 1.

The goal of the learner is to minimize the expected regret

T

T T
E max x,,0 — xt’i20 R
= i€[K]

where the expectation is taken over D; ® D2 ® - - - ® D, the noises,
and the internal randomness of the learner. In our algorithmic
results, we also prove (1— 8)-high probability expected regret, which

T
ti

the supremum is taken over all events A such that Pr[A] > 1 -6.
In this definition, setting § = O(1/T) recovers the usual expected
regret up to an additive error of O(1).

sam-

RT%g 1)

is defined as sup4 E [I[A] . Zle max; ek X,;0 — x;'—l.t 0] where

Settings of Adversarial and Stochastic Contexts. In the setting of
adversarial contexts, there are no additional constraints for the
distributions {D;}. Note that this corresponds to the oblivious ad-
versary in bandit literature, meaning that the adversary has to
choose all context vectors beforehand. In contrast, the stronger
non-oblivious adversary may adaptively choose context vectors for
any time step according to all game history before that time. Since
we only prove lower bounds for the adversarial context setting
in this work, dealing with a weaker adversary actually means a
stronger lower bound result.

In the setting of stochastic contexts, we have the additional
assumption that O = D; = --- = D7. However, correlation may
still exist among the contexts at the same time step.

4 BATCH ELIMINATION FRAMEWORK AND
THE G-OPTIMAL DESIGN

As a warm-up, in this section, we first present BATcHLINUCB (Algo-
rithm 1) to illustrate the batch elimination framework for the linear
bandit problem with stochastic contexts. Later in Section 4.1, we
will introduce the G-optimal experiment design and show how it
helps to reduce the regret bound of the algorithm. While the regret
bound in Theorem 2 is improved, it still has an extra Vd factor
compared to the optimal minimax regret bound (without adaptivity
constraints). The quest for optimal regret will be addressed in the
later sections.

We now introduce our first algorithm. BATcHLINUCB (Algo-
rithm 1) uses M = O(loglog T) batches and a pre-defined static

8When clear from the context, we interchangeably use the arm indices and their
corresponding context vectors.
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Algorithm 1: BATcHLINUCB

1t M= [loglog T], o — 10,/1n2d%,
T =A%, Tm:LTo =0T =T,Vie [M-1]: T; =
Ti-27",

2. fork «— 1,2,...,M do

3 A« 161n(2dT/5), Ay < AL & « 0;

4 fort — T _1+1,T_1+2,...,7 do

5: AEO) — [K],ft(?) «— 0, a)t(?) — 1
6: forx «— 1,2,...,k—1 do > Eliminate
, 1) . A
7: Vi e A;K ). rt(lfc) — x/, 6k, wt(;c) —
aq Ix;'—l.A,;lxn-;
. —1) | »
s: A;K) —{ie A;K ) | rt(f) +cog€) >
N . -1
rt(;.c) - wt(}c),\%] € Agk )};
9: Ap — A;k_l);
10: play arm i; ~ Unif(A;), and receive reward r;;
11: Xt — Xpj,, A — A + xtx;'—, & — & +rixys;

12: O — A;lfk;

grid 7 = {71, 72, ..., Tpm}- For each batch k, BATCHLINUCB keeps
an estimate ék for the hidden vector @, which is learned using the
samples obtained in the batch. To decide an arm during any time
t in the k-th batch, the algorithm first performs an elimination
procedure that is based on the estimate 6, and the corresponding
confidence region for each previous batch x € {1,2,...,k — 1}. Let
Ay be the set of survived arms after the elimination. The algorithm
then plays a uniformly random arm from A;. The following theorem
upper bounds the regret of BATCHLINUCB.

THEOREM 1. With probability at least (1 — ), the expected regret
of BATcHLINUCB is

R enimuen < O(WAKT log(dKT/8) x loglog T).

To prove Theorem 1, we first introduce the following lemma that
constructs the confidence intervals of the estimated rewards.

LEMMA 1. Fix any batch k, for each time step t in batch k, with
probability at least (1 — §/T?), forallx € {1,2,...,k — 1} and all
i € A;, we have that

)x;ék - x;e| < wg{).

The proof of Lemma 1 can be found in many papers in linear
bandit literature (e.g., [10, 25]), and will be included in the full
version of this paper.

We now start proving Theorem 1. Fix any batch k such that
k > 2, when conditioned on the first (k — 1) batches, we let Dy be
the distribution of the survived candidate arms X = {x;; : i € A;}
at any time ¢ during the k-th batch. We also let Dy = {x;;} be the
distribution of all candidate arms at any time ¢.

Suppose that the desired event in Lemma 1 happens for every
time step during the k-th batch (which happens with probability at
least (1 — 87 /T?) by a union bound), it is straightforward to verify
that for each time ¢ during the k-th batch, the optimal arm is not
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eliminated by the elimination procedure (Line 6 to Line 8) in BATCH-

LINUCB. In other words, we have that i} et arg max;e|g| x;.O €
Ay for each time step t in the k-th batch. Therefore, we can now
upper bound the expected regret incurred during batch k as

R, =E Z ( max x;EH—xZite)
t in batch k ielK]
k-1 k-1
<SE ), (0 - xtlt0k1+a)( R I
t in batch k

<E )

t in batch k

2. (a)(k 1) (k 1))
k-1
<4E Z m%xwt(, ), ®3)
t in batch k
where (2) is due to the successful events of Lemma 1, the both
inequalities in (3) are due to the elimination process and that iy € A;.

By the definition of a)(k Y and the definition of Dy, we further
have that

Ry < 4aE Z ?éf}\x‘,ank 1 Xti
t in batch k ¢
E max,/xTA ! x. 4
X~Dy xeX k-1 ( )

We finally observe that X ~ Dy can be sampled by drawing an
X’ ~ Dy_; and performing an elimination process using 0r_; as
well as the corresponding confidence region for X’. We note that
X C X’. Therefore, continuing with (4), we have that

R <4ax

E max‘/xTA
t in batch kX Dy XX
=407, X E max ,/xTA (5)
X~Dy_1 x€X

Now the goal is to upper bound Ex . p, , maxyex - [xTA]:lx.
The following lemma can be proved by matrix concentration in-

equalities, and the proof is deferred to the full version.

<4a X
t in batch k

LEMMA 2. For each batch k (k < M), with probability (1 — §/T?),

we have that
Te (InT
A > X (n—I E
Tk X~ Dy x~Unif (X)

[xxT]) . ©

Assuming that (6) holds for batch (k — 1), we have that

TA—L T
X~IZB)k,1 ;ng))((.lx A x < Z NE A

T xeX

4 InT
<——.| E T(—I )
VTt \ XD 2 g B m )

xeX yey

4 InT 1 -1
<—— |mr||=—T1 = U T
\/Tk—l\ r((‘72—1 * YN%k—l K Z w ) X~%c—1 Z = )

< 4\dK/T_;.

Together with (5), and collecting the probabilities, we have that
with probability at least (1 — 67 /T? — §/T?), the expected regret
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incurred during batch k (k > 2) is
Ry < 16a7) - VJdK[Tr_; < 16aVdKT. (7)

Note that (7) also holds for k = 1 almost surely, because 77 < vdT
and the maximum regret incurred per time step is at most 1.

Finally, summing up the expected regret incurred across all
batches and collecting the probabilities, we have that, with proba-
bility at least (1 — §), the expected regret is bounded by

RT < M x 16aVdKT = O(\JdKT log(dKT/5) x loglog T).

This concludes the proof of Theorem 1.

4.1 Improved Regret via the G-Optimal Design

In this subsection, we show how a simple application of the G-
optimal design can help to replace the K factor in Theorem 1 by (the
usually smaller quantity) d. To achieve this, we first introduce the
following lemma on G-optimal design, which is a direct corollary
of the General Equivalence Theorem of Kiefer and Wolfowitz [23].

LEmMA 3. For any subset X C RY, there exists a distribution K
supported on X, such that for any e > 0, it holds that

-1
T T
max eI+ E x <d. 8
ma x ( e WY ) ®)
Furthermore, if X is a discrete set with finite cardinality, one can find
a distribution such that the right-hand side of (8) is relaxed to 2d in
time poly(|X]).

We now describe the new BATCHLINUCB-KW algorithm. It is
almost the same as BATCHLINUCB, while the only difference is that
at Line 10 of Algorithm 1, letting X = {x;; : i € A;}, we compute
a distribution Ky satisfying (8) (up to the factor 2 relaxation) and
randomly select the action

iy ~ 7 X) = def . 9)

THEOREM 2. With probability at least (1 — ), the expected regret
of BATcHLINUCB-KW is

RY s renimuciw < 0T log(dKT/8) x loglog T).

We now prove Theorem 2. Note that the analysis for BATCHLIN-
UCB also applies to BATCHLINUCB-KW up to (5). Thus, we will

focus on bounding Ex~p, , MaxXyex 4 /xTAgilx while keeping in
mind that Alil is a different quantity due to €.

Similarly to Lemma 2, for each batch k (k < M), with probability
(1—-68/T?), we have that
Tk ( InT

I+ E E
Tk X~Dy x~76(X)

k7~ T/,

[xxT]) . (10)

Assuming that (10) holds for batch (k — 1), letting

x*(X) = arg max xTAzllx,
xeX
we have that

E max ‘leA =
X~Dyp_q x€X X~

< \/ E (x*(X)TAL x*(X)
X~Dg_q

B 00TALE 00
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= \/Tr(A;;X E (0 (0)T), (1)

where the inequality is by Jensen’s inequality. By (8) (up to the
factor 2 relaxation), we have that

FX)(X)T <2dx E  yy'. (12)
y~n¢(X)
Combining (11) and (12), we have that
E  max+/xTA L x < .|2d x Tr[A]! E T
X~ Dy xeX k-1 D M )
< 4V2d/\[Ti_1, (13)

where the last inequality is due to (10). Combining (13) and (5), we
have that with probability at least (1— 87 /T? —5/T?), the expected
regret incurred during batch k (k > 2) is

Ry < 4aTy - 4V2d/\[Tr—; < 16V2adVT.

Using the similar argument as the analysis for Algorithm 1, we
have that with probability at least (1 — §), the expected regret of
BATcHLINUCB-KW is at most

RT < O(d\Tlog(dKT/5) x loglog T),

proving Theorem 2.

5 DISTRIBUTIONAL G-OPTIMAL DESIGN:
EXISTENCE & PARAMETRIC FORMS

We now work towards removing the extra Vd factor in the regret
of Theorem 2, so as to achieve the optimal VdT -type regret. The
high level idea is to use a difference sample policy other than uni-
form sampling over all (survived) candidate arms or the G-optimal-
design-based 7.

Given a sample policy 7 that maps any set of arms (X C RY)
to a distribution in Ay, we will be interested in its performance,
defined as follows.

Definition 5.1 (A-distributional G-variation and information ma-
trix). For any distribution D of the set of arms X C R? and any
sample policy 7, we define the A-distributional G-variation, or A-
variation for short (1 > 0), of = over D as

VW Y B maxxT (ML +Ip(m) ' x,
X~D xeX

where we define the information matrix by
def T

where Ix(r) = E xx .

Ip () g Ix (),
X~D x~m(X)

Since V(Z’;) is non-increasing as A grows, when the limit exists, we
also define

def .
Vi (m) € lim V) (x), (14)

and set Vg) (1) = 400 otherwise.
Indeed, the arguments in Section 4 imply the following lemma.

LEMMA 4. For any distribution D on the context vectors of the K
arms, we have that

V) (Unif) < O(dK), and V) (z) < 0(d?).  (15)
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Algorithm 2: Algorithm for Computing a Distributional
G-Optimal Design

Input: A context set sequence X, ..
Output: A mixed-argmax policy 7
t N — 2d*logd,V(i, j) € [N] X [T] : X(j_1yr+j < Xj;
2: Uy «— ANTI + % ZLI Ex~7rG(Xi) [xxT] > Ln < 1,7, <
0, W, = Up;
3 fort «— 1,2,...,NT do

X1

4 T n U {t}

5: Xp — ”l/)\V;l (X¢) = argmax,¢x, x"W;lx; > Ties are
broken in a deterministic manner.

6: Uy «— U1 + xtx;r;

7: if detU; > 2detW,, then

s: ne—n+1,1, «— 0,W, « Uy

o: for alli € [n], if |7;| < T then r; « 0;
10: for alli € [n], set p; = |7i|/%; |rj|;
11: return {(pi,Nl"Wi_l) i € [n] and p; > 0}

In light of Lemma 4, the question whether the regret of our
algorithms can be improved to O(4/dTpoly log(KT/J)) boils down
to whether one can find a sample policy 7 such that the bounds
in (15) are improved to O(d) X poly logd. In this section, we will
show that such policies not only exist, but also admit a succinct
parametric form so that we can later study how to efficiently learn
the relevant parameters.

To better explain our results, we first define the following class
of parameterized sample policies.

Definition 5.2 (Argmax and mixed-argmax policies). Suppose we
are given a positive semi-definite matrix V > 0. We define the
associated argmax policy by

né(X) = argmaxx ' Vx,
xeX
where in the arg max operator, ties are broken in a deterministic
manner.

In this subsection, we use 7€ to denote a fixed policy with respect
to (9) and satisfying (8) (up to the factor 2 relaxation). Suppose we
are givenaset V = {(p;, Vi) }[, such that p; > Oand py+- - -+pp =
1. We define the associated mixed-argmax policy by

7°(X), with probability 1/2,
N(X) = {

7["\,_ (X), with probability p;/2.
The following theorem states that for any D, there exists a good
mixed-argmax policy with only O(dlogd) argmax policies in the
mixture.’

THEOREM 3. Let S = {X1,Xo,..., X7} be a (multi-)set and let
D = Unif(S). For any A € (0, 1), there exists a mixed-argmax policy
with parameters V = {(pi, Vi) Y[, such that

(1) n < 4dlogd;

(2) foralli € [n], p; = 1/d° andd™'I < V; < A7I;

“Note that although the theorem only works for the uniform distribution over a multi-
set, since the properties to be proved in the theorem statement do not truly depend

on T, the theorem can be generalized to any distribution via a simple discretization
argument.
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(3) VI (xMA) < O(dlog d).

ProoF. We will assume I' > 17! without loss of generality, as
the properties to be proved do not depend of T and S is a multi-set so
that we can always duplicate the elements by finitely many times.

We prove the theorem constructively. We consider Algorithm 2,
which is very similar to the linear bandits algorithms in literature.
For N = ©(d? log d), the algorithm creates TN times steps, which
includes N blocks, each of which contains I' consecutive time steps.
In each block, the T sets of arms X, ..., Xr are sequentially pre-
sented. The algorithm then simulates the linear bandit algorithms,
where at each time step, the arm with the maximum variance (ac-
cording to the information matrix W) is selected. Inspired by the
rarely switching algorithm for linear bandits [1], the information
matrix Wy, is only updated when its determinant doubles. This sig-
nificantly reduces the number of updates and is crucial to upper
bounding the number of individual argmax policies in the returned
mixed-argmax policy. We refer to the consecutive time steps be-
tween two neighboring updates as a stage. Each of the information
matrices in a stage corresponds to an individual argmax policy in
the returned policy, and the corresponding probability weight is
proportional to the length of the stage. The only exception is that
we discard the stages that contain less than I' time steps (i.e., the
ones that are shorter than a block).

Proof of Item (a). Note that

NT NT NT
Unt = Up + Z x;x] = ANTT + - Iy (7C) + Z xix) . (16)
t=1 t=1
By (8) (up to the factor 2 relaxation), for all ¢, we can show that

xx) <2dx E yy'. (17)

yenS(Xy)
Combining (16) and (17), we have that Uyt < ANTT+(1/2+2d)NT X
Ly (79) < 4dUy. Therefore, we have

detUnr < det(4dUp) = d*? detUp, (18)

andn < 1og(d4d ) — 4dlogd.

Proof of Item (b). Because we discard the stages whose lengths
are less than T', for p; > 0, we have that p; > % > % for large
enough d.

For each W;, we have W; > Uy > ANTI, and W; < 3NT. Since
V= NFWi_l, we have that d71T < V; < 1711

Proof of Item (c). We finally upper bound the A-variation of the
returned policy 7 = n(A"}A. Note that

V%)(ﬂ')z E [maxx'(AI+ E E xx')"lx]
X~D xeX

X~D x~m(X)
NT
= Z max x ' (NT(AI +1gp (7)) 1x
= xeX;

= Z Z max xT(NT(AI +19 (7)) 'x

i=1ter;

+t€Z‘éJrcn€e}()§ x T (NT(AI +1g (7)) Lx, (19)
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where we let B be the set of time steps that are discarded in Line 9
of Algorithm 2.

It remains to show that both terms are O(d log d). For the second
term, we have

Z max x ' (NT(AI + I[D(ﬁ)))flx
xeXy
teB

1 T -1
= AL +1
NT 2 maxx ( p(7) " x
teB

2 T Gyy-1
< ﬁt;‘gmaxx A +1p(n7))  x, (20)

xeXy

where the inequality is because by definition of a mixed-argmax
policy, with probability 1/2, 75 is invoked, and therefore

T

Ip(r) = xx' > xx .

E E =X E
X~D,x~m(X) X~D 2 x~76(X)

Continuing with (20), since B contains at most n stages that are
shorter than a block, therefore, we have that

2 T Gyy-1
ﬁgz;;rgéx AL +1p(n~)) ' x

T
2 T Gyy-1
ﬁxnxgﬂ%x AL +1p(n”)) " 'x

2n

IN

E T +1p(2%))7!
waoﬁgéx ( p(r”) "x

= 20 (%) < T x0(@d) < O(dlogd),  (2)

where the second inequality is due to (14), (15), and the monotonic-
ity of Vg) .

For the first term in (19), we claim that
1 NT
I > — A 22
p(m) > ;xtxt (22)
which will be established at the end of this proof. Once we have
(22), also noting that Iy () » (1/2) Ly (79) because of the 1/2

portion of 7€ in the definition of the mixed-argmax policy, we get
that
11, o 1 &
A +1p(n) = A0+ 5 (S 1p(®) + = thxt )
> L Unp > ——W,. (23)
8NT 8NT
Therefore,

max xTWn_ Iy
xeX;

Z Z max x ' (NT(AI +19 (7)) 1x < SZn: Z
i fen XXt o1 tern
n
8.0

n
max xTW;Ix =38 Z Z xtTVV;Ixt

<
ol fer, XXt i-1 ter;
n NT
<16 Y XU % <16 ) 5 U % (24)
i=1ter; t=1
<32In d;ztUer < O(dlogd). (25)



STOC ’21, June 21-25, 2021, Virtual, Italy

where the first inequality in (24) is by Lemma 12 in [1], the first
inequality in (25) is by the celebrated elliptical potential lemma
(Lemma 5, stated at the end of this subsection)w, and the second
inequality in (25) is due to (18).

It remains to establish (22). Note that

Ip(m) = 1 1p(x%) + 1 Z“H'—' B Ix(r))

+ || X~

|Tz|
—]I ﬂ'G _— xx
olr)+ Z|n|+ +|rn|z|rl|Z o

ter;

2'1[9( RANY = |B|sztxt

i=1ter;

(26)

By (17), we have
T

G- L
Ip(r )—annx

t=1

E xx
x~76(X;)

Therefore, continuing with (26), we have that

1
Ip(n) » —= o IT Z xex) + INT Z Z xx)
teB i=1 ter;

1 1 NT
> X+ — 5, (27
4NT * T aNT Z 2 =exf = g )y el (@)

teB i=1 ter; t=1
which concludes the proof of the theorem. O

Now we state a generalized version of the elliptical potential
lemma. Compared to the usual version in literature (e.g., [1]), our
versions works for positive semi-definite matrices X7, ..., X, with
traces upper bounded by 1 instead of just rank-1 positive semi-
definite matrices. However, we also need the extra assumption that

Tr(XiVO_I) < 1foralli € [n]. The proof of Lemma 5 is deferred to

the full version.

LEMMA 5 (GENERALIZED ELLIPTICAL POTENTIAL LEMMA). Suppose
we are given a sequence of positive semi-definite matrices X1, ..., X,
such that Tr(X;) < 1 for everyi € [n]. Let Ao be a positive semi-

definite matrix and let A; = Aj—1+X; fori € [ WhenTr(X,A ) <

1 fori € [n], we have 3.1 TI’(XiAi__l) <2In dett’}\:.

5.1 The Mixed-Softmax Policies with More
Robustness

To make the sample policy learnable, instead of the mixed-argmax
policies, we will deal with the more robust mixed-softmax policies.
To define this class of policies, we first define the softmax function
as a distribution such that

softmax,(s1,...,s.) =i with probabilit ,
(st ©) P Y s+ sy

where we assume thats; > 0 forall i € [k].
It is easy to check the following fact.

OWe invoke the lemma by letting X; in the lemma statement be x:x, and letting
A; in the lemma statement be U;. Note that Ag = U > I so that Tr(XtAal) <1lis
satisfied.
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Fact 1. Suppose a > logk, then

[si] = = x max{sy,...
i~softmax (s1,...,Sk) 4

—_

,Sk}.

ProOF. Let i* be an index that maximizes s;. Note that for all j
such that s; < (1/2) X s;+, the probability mass that softmax put

for j is at most (1/k) of that for i*. Therefore,
1 1
Pr [SiZ—XSi*]Z—
i~softmaxg (sq,...,Sk) 2 2
and the fact follows. O

We now define the class of mixed-softmax policies.

Definition 5.3 (Softmax and mixed-softmax policies). Fix a =
log K (where K is the number of arms per time step). Suppose
we are given a positive semi-definite matrix M > 0. We define the
softmax policy

ﬂISM(X) =x;, where X ={xy,...,x;} k<K,

and i ~ softmaxg (x;erl, .. .,xZMxk).

Suppose we are given a set M = {(p;, M;)}; such that p; > 0
and p1 + - - - + pp = 1. We define the mixed-softmax policy

G
MS N EQ (X),
M (X) = {ﬂ]swi(x)’

Similarly to Theorem 3, we prove the following theorem on the
existence of good mixed-softmax policies.

with probability 1/2,
with probability p;/2.

THEOREM 4. Let S = {X1,X2,...,Xr} be a (multi-)set and let
D = Unif(S). For any A € (0, 1), there exists a mixed-softmax policy
”/AC(S with parameters M = {(pi, M;)}_, such that

(1) n < 4dlogd;

(2) foralli € [n), pi = 1/d> andd™'I <

3) V) (2\S) < 0(dlogd).

M; < A7

The proof of Theorem 4 is very similar to that of Theorem 3, and
is deferred to the full version.

6 LEARNING THE DISTRIBUTIONAL
G-OPTIMAL DESIGN

In this section, we present an algorithm to learn a good mixed-
softmax policy using only poly(d) log §~! samples with success
probability at least (1 — §).

The Natural Idea and its Counterexample. The most natural idea
is to first draw y independent samples X7, ..., X, ~ D and form an
empirical distribution & = Unif{Xj, ... ,Xy}, learn a good policy =
for S according to Theorem 4, and hope that  also works well for
D (i.e., 7 generalizes to the true distribution). Unfortunately, such
an approach is unlikely to work. Below we illustrate an example
where, even when the number of samples y is very large, a good
policy for S still fails to generalize to O with significant probability.

Let {ei}?zl be the set of canonical basis, and ¢ > 0 be a parameter
to be determined later. Let Y; = {e;} and Y; = {V1 — ¢2e; + cey, ;}
fori € {2,3,...,d}. Consider D supported on {Y7,...,Yy;} the
probability mass for Y7 is 1/(dy) and the probability for Y; (i > 2)
isq = (1 -1/(dy))/(d — 1). If we make y independent samples
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Algorithm 3: CorReLEARNING for the Distributional G-
Optimal Design
Input: A € (exp(—d),1),and S = {Xy,...
Output: A mixed-softmax policy 7
1: Set constant ¢ = 6;
2: Finda core C € S = {Xy,..., Xy} (using
COREIDENTIFICATION (Algorithm 4), see Lemma 6) such
that

Xy}

T . Gyy-1 < J°
Qgggg{x (AT +Typig(cy (1)) x} < d5,
Ic|

Y

and >1-0(d*Cloga™),

which is at least 1/2 for sufficiently large d;
3. Compute the mixed-softmax policy 7 for the samples in C
(according to Theorem 4) and return s;

X1, Xy ~ D, with probability Q(1/d), we will see Y; once
among the samples, and the probability mass of Y; in S becomes
1/y, which is d times its true probability mass. Due to this discrep-
ancy, we will show that a good sample policy for the empirical
distribution S does not work as well on true distribution D.

We consider the sample policy 7 such that 7(X) = e; when
X = Y;. When the event above happens, we have that [g(7) =
diag(1/y, p2, ..., pq) where p; is the probability mass for ¥; in S
(fori > 2). When ¢ = \/Fy we can verify that 7 is a good policy
for the empirical distribution S since

VSSO) () = X]E;S glg;x-r Hs(n)_lx

d
1 ) oo 11
:—-y+g i -max{e‘y + (1 —¢“) - —, —} < 0(d).
y TP pi’ pi

However, for the true distribution D, we have that [ () =
diag(1/(dy).q,...,q), and for any A € [0,1/(dy)), it holds that

Vg)(n) = E maxx' (AI+Ip(n)) 'x
X~D xeX

1 1
Tdy A+1/(dy)
-2y maxfe ——— (1= —— L1y
dy A+1/(dy) A+q A+q

> Q(d%).

Note that in this example, the only constraint for y is that 1/(dy) >
A © y < 1/(dA). Therefore, we have illustrated that, even when y is
greater than an arbitrary polynomial of d, with probability Q(1/d),
a good policy for the empirical distribution S does not generalize
to the true distribution 9.!! By adding more dimensions, we can
even strengthen this counterexample so that the failure probability
becomes (1 — 0(1)). Using similar tricks, we can also show that a
good mixed-softmax policy does not generalize well.

1 Although in our later algorithm, we only learn a policy with small A-deviation as
defined in (30), however, one can also verify that the A-deviation of 7z over D in this
counterexample is also high.

(28)

(29)
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Algorithm 4: COREIDENTIFICATION
Input: 1 € (0,1), and S = {X1,. ..,Xy}
Output: A coreset CC S
1: C1=S;
2 for£=1,2,3,... do
3 if Cy satisfies (39) then return Cy;
4 else Cgyy = {X; € C¢ :
max xT AL+ 1 Yy co. Ix, (9) " 1x < (1/2)d°);
xeX; 14 e

Our Algorithm: CORELEARNING. The key message from the coun-
terexample above is that if a context direction in R4 appears with
tiny probability in D, a limited amount of samples might greatly
change its probability in the empirical distribution S, and fail the
generalization argument. To address this issue, the idea of our new
algorithm is to prune these infrequent context directions, learn a
mixed-softmax policy over the remaining “core” directions, and
finally argue that the infrequent directions can be properly handled
by the 78 component in the mixed-softmax policy.

In light of this idea, we propose CORELEARNING (Algorithm 3).
In this algorithm, instead of directly learning the policy from the
whole set of samples, we first find a large enough core set C at
Line 2, and then learn the mixed-softmax policy only using the
samples in C. The key property of the core is specified by (28),
which is a technical realization of our pruning idea. The property
requires that every direction in C should be well explored by the
7€ policy and only the context vectors within C. To see how the
core set helps to resolve the issue in our counterexample, we note
that the infrequent set Y; is the main trouble-maker. However,
even if Y1 happens to appear among the samples {X1,...,X}}, it
will not be included in the core since its corresponding variation
maxyey, y' (AI+ I[Unif(c)(ﬂc))_ly > (A+1/y)~! > d° when 1 1is
sufficiently small and y > d°. Therefore, CORELEARNING will learn
a sample policy with Y; pruned away, and void our counterexample.

While the core set property (28) is much desirable, even whether
such a core set with cardinality constraint (29) exists is not obvious.
In Section 6.1, we state Lemma 6 to show its existence, and provide
an efficient algorithm COREIDENTIFICATION to find one.

We now state the main theorem of this section (the guarantee
for Algorithm 3).

THEOREM 5. Suppose that A € (exp(—d),1). Let X1,..., Xy ~ D
be i.i.d. drawn from the distribution D. Let it be the returned policy
of Algorithm 3. We have that

Pr[(f%) () < O(+/dlog d)]
>1- exp(O(d4 log? d) — yd™%¢ . 2_16)
= 1-exp(O(d* log?d) - yd 12 - 2719),

where we define the A-deviation of & over D by

T B \/;ng;(({xT(M +lp(m)lx).  (30)
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Note that we are only able to provide the upper bound for

f\(’g) () instead of Vg) (). However, this is still enough for our
linear bandit application.
We now sketch the proof of Theorem 5, and the details can be

found in the full version. For notational convenience, we define

S 9 Unif S),C ©f Unif (C), and we define the mollifier

1, when x < f5,
pp(x) def zﬁT_x when f < x < 2f,
0, when x > 2.

which is a continuous surrogate of the indicator function 1[x < f].
The proof of Theorem 5 consists of the following four steps.

Step I: Lower Bounding the Information Matrix. Via uniform con-
centration inequalities, we are able to prove that with probability
1—exp(O(d® logdlog(dA™1)) — yd2¢ - 2716), it holds that

1
M +1gp(n) = g(/11+]15(7[)). (31)
Step II: Upper Bounding the Variation in the “Core Directions”. Let
W =AI+Ig(n) > %(AIH[C (). The goal of this step is to establish
(36). Via uniform concentration inequalities, we can show that, with

probability 1 — exp(O(d? log(dA™!)) — yd?~2¢/128), it holds that

E @uge(max{x W lx}) - [max{xTW-1x}
X~D xeX xeX

<d+- Z max{xTW-1x}. (32)

xeX;

Let{ =1—|C|/IS| = 1 - |C|/y < O(d>¢log(1/1)). Note that

Y
)l/; /’rcr'lga)f{xTW Ix} < = Z \/max{ZxT(/lIHIC(ﬂ)) 1x}

\/ maX{xT(H +({/2) Tynif(s\c) (79)) "1x}. (33)

+_
Y x/es\c

For the first term in (33), by the guarantee of Theorem 4, we have

3 \/max{ZxT(/UHIC(n))*lx}SO(\/dlogd). (34)
YXeC xeX

For the second term in (33), by the variation bound for 7€ (Lemma 4),
we can prove that

)

X;eS\C

\/’rcrgg{xT(M +(U/2) Tuigs\o) (1) ~Lx} < O(Vd).
(35)
Combining (32), (33), (34), (35), we have that

E  @aqe(max{x "W 'x}) - [max{xTW-1x} < O(y/dlogd).
X~D xeX xeX

(36)
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Step III: Upper Bounding the Variation in the “Infrequent Direc-
tions”. The goal of this step is to establish (38). Via concentration
inequalities, we can prove that, with probability

1- exp(O(dz log(dxl_l)) —yd? /z),
it holds that
X TWlx}) > 1-0(@d™).
By Pad (max{x x}) (d=)
Let 7x = 1 — @4 (maxyex {xT W™ 1x}). We have that Ex..p 7x <

0O(d™"). Using Cauchy-Schwarz and by the variation bound for 7€
(Lemma 4), we can show that

E 7x, [max{x"TW~lx} < o(Vd).
X~D xeX

Altogether, we have that
E (1— @gqc (max{x W 1x})) - max{x W lx} < O(\/E).
~D xeX xeX
(38)

(37)

Step IV: Putting Things Together. Combining (36) and (38), we

have
TW-1x} < O(+/dlogd).
xiE@‘/ri?)?{x x} < O(y/dlogd)

By the definition of W, and together with (31), we have that

T () = B \/m§§{xT(AI+HD(ﬂ))‘1x}SO(\/dlogd),

proving Theorem 5.

6.1 Finding the Core

We now present our algorithm (COREIDENTIFICATION, Algorithm 4)
to find the core, and state the following lemma as its guarantee.

LEMMA 6. LetS = {Xy,... ,Xy} be a sequence/multi-set of context
sets. Algorithm 4 finds a core set C C S in O(dlog A™1) iterations
that satisfies (29) and

max max x ' (AI + — (39)

X;€C xeX;

= 1 () T

X;eC

We remark that (39) implies (28), because )l/ 2X,eC ]IXi(ﬂ'G) <
Tunit(c) (7©). The proof of Lemma 6 is deferred to the full version
due to space constraints.

7 PUTTING EVERYTHING TOGETHER: THE
OPTIMAL BATCH ALGORITHM

Our final algorithm with O(loglogT) static-grid batches and opti-
mal minimax expected regret (up to polylog T factors) is presented
in Algorithm 5. Compared with BATCHLINUCB and BaTcHLINUCB-
KW, the main difference here is the addition of from Line 11 to
Line 16, which not only learns the new estimate ék, but also the
new sample policy 7. Learning of the two objects are done through
disjoint sets of samples (A and B). This is because that Dy depends
on ék (which is learned from A) and we have to make 8 disjoint
from A so as to ensure elements in S are independently sampled
from Dy. The following theorem bounds the expected regret of
Algorithm 5.
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Algorithm 5: BATcHLINUCB-DG

1: M =[loglogT] + 1, « 104/In <42~ ZdKT , 0 = x5,

"r={T,fr,‘..,m},where%=o,7;=ﬁ,7z=zx/f,

and 77 = 7127 fori e {3,,...M= 1}, Ty =T;
2: fork <« 1,2,...,M do
3 fort «— Tp_1+1,T_1+2,..., do
4 A;O) — [K],ft(?) — 0, (u(o) —1;
5: fork «— 1,2,...,k—-1 do > Eliminate
6: Vi e AEK_D : ft(zk 9,<, (K)
ayx A X
7: A(K) —{i EA(K n | A(K) t(:() >
~(K) (K) (k- 1)
Py Vj €A |5
8: Ap — Agk 1);
o: Select i; such that x;, ~ mp_1({xs; : i € As}), play
arm iz, and receive reward ry;
10: Xt xt,i[;

11: Evenly divide {7x_1 + 1,..., 7 } into two sets A, B;
12: A —32In(2dT/8), Ap — AL + Y ez XoX7 ,
& — Srearexr, O — AL &

13: for r € B8 do
14: Vi EA(k v, A(ik) Ok, ( ) o [x;';.Alzlxn-;
15 A(k) — {i GA(k 1) | 7! A(k) ilk) >

A(k)

#9 — o) vj e Ak 1>}

16: Use the context sets S = {{x7,4 | a € A&k) }res and
A =1/T as the input of Algorithm 3 and learn the
sample policy my;

THEOREM 6. Assume that T < Q(max{e?, d32 log* dlog? 571}).
With probability at least (1 — ), the expected regret of Algorithm 5
is bounded as

RY onimucnnG < O(VdT log dlog(dKT/5) x loglog T).

Note that the assumption that T < exp(d) is not restrictive
since otherwise we have logT > Q(d) and BATCHLINUCB-KW
(Theorem 2) already achieves the minimax optimal regret up to
polylog T factors. We also note that the K in the regret bound
can be replaced by min{K, dlog T} by a simple &-net argument, so
that our regret bound becomes minimax-optimal for all K (up to
poly log T factors).

Proor oF THEOREM 6. We adopt the notations in Section 4. Con-
ditioned on the batches 1,2, ...,k — 1, we can bound the expected
regret incurred in batch k similarly as (5), and have that with prob-
ability at least (1 — 87 /T?),

X E max ,/xTAzilx.
X~Dp_1 x€X
Furthermore, similar to Lemma 2, we can show that for each
batch k (k < M), with probability (1 — §/T?), we have that

Je (InT
k= 3—]; e [xxT])

Ry < 4a7; (40)

I+ E E
X~Dj—y X~TT—1 (X)
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> Tk

32 (41)

(T‘ T+Ip, (nk_l)) .

Note that compared with (6), (41) has a worse constant 32 since A
only contains half of the samples.

For each k < M, note thatat Line 16, S = {{x74 | a € Agk) Pres
contains i.i.d. samples from Dy, and |S| > |7 — Tr_1]/2 = VT /4.
By Theorem 5, we have that with probability 1—exp(O(d*log? d) —
VTd™12.2718) > 1 — §/T? (since T > Q(d*2log*dlog?(671)), it
holds that

Tl (m) < O(VdTog d).

The expected regret incurred during batch 1 and batch 2 is at
most 2VT. For any k > 3, assuming (40) holds for batch k, and (41)
and (42) hold for batch (k — 1), we have that

Ry <4a7; E max,/xTAzllx
X~Dj_q x€X -
4V32a T
<k B max \/xT
1/‘7% 1 X~Dp-g x€X

32aVT- E max \/x'r (T‘lI+IDk72(ﬂk_2))_l x (43)
X~Dp_y xeX

< 32aVT - )" (m_1) < O(Y/dT log d1og(dKT/3)),

(42)

(T1+ Ip, , (7rk_2))71 x

IN

where (43) is because that X ~ Dj_; can be sampled via first
drawing X’ ~ Dj_,, then performing one-step elimination on X’,
and getting X € X’.

Finally, collecting the failure probabilities for all O(loglogT)
batches, we prove the desired regret bound. O
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