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ABSTRACT
Motivated by practical needs such as large-scale learning, we study

the impact of adaptivity constraints to linear contextual bandits, a

central problem in online learning and decision making. We con-

sider two popular limited adaptivity models in literature: batch

learning and rare policy switches. We show that, when the con-

text vectors are adversarially chosen in 𝑑-dimensional linear con-

textual bandits, the learner needs 𝑂 (𝑑 log𝑑 log𝑇 ) policy switches

to achieve the minimax-optimal regret, and this is optimal up to

poly(log𝑑, log log𝑇 ) factors; for stochastic context vectors, even in

the more restricted batch learning model, only𝑂 (log log𝑇 ) batches
are needed to achieve the optimal regret. Together with the known

results in literature, our results present a complete picture about the

adaptivity constraints in linear contextual bandits. Along the way,

we propose the distributional optimal design, a natural extension
of the optimal experiment design, and provide a both statistically

and computationally efficient learning algorithm for the problem,

which may be of independent interest.
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1 INTRODUCTION
Online learning and decision making is a fundamental research

direction in machine learning where the learner conducts sequen-

tial interactions, once per time step, with the environment in order

to learn the optimal policies and maximize the total reward. To

achieve optimal learning performance, the learner must seek a bal-

ance between exploration and exploitation, which is usually done

by adaptively selecting actions based on all historical observations.

However, full adaptivity at a per-time-step scale significantly sacri-

fices parallelism and hinders the large-scale deployment of learning

algorithms. To facilitate scalable learning, it is worthwhile to study

the following question:

What is the minimum amount of adaptivity needed
to achieve optimal performance in online learning and
decision making?

In this paper, we address the above question through studying the

impact of two popular types of adaptivity constraints to the linear

contextual bandits, a central problem in online learning literature.

We prove tight adaptivity-regret trade-offs for two natural settings

of the problem. Along the way, we make a new connection to

optimal experiment design: we propose the natural distributional
optimal design problem, prove the existence of parametric forms

for the optimal design, and present sample-efficient algorithms to

learn the parameters. Our proposed framework contributes a novel

learning component to the classical field of experiment design in

statistics, and may be of independent interest.

Linear Contextual Bandits. The linear contextual bandits (or lin-
ear bandits for short), also known as “associative reinforcement

learning” [3, 7], are a generalization of the ordinary multi-armed

bandits. While also encapsulating the fundamental dilemma of

“exploration vs. exploitation” in online learning and decision mak-

ing, linear contextual bandits highlight the guidance of contextual

information for decisions, enabling personalized treatments and

recommendations in real-world applications such as clinical trial,

recommendation systems, and advertisement selection.

In a bandit game, there are 𝑇 time steps in total. At each time

step 𝑡 ∈ [𝑇 ], the learner has to make a decision among 𝐾 candi-

date actions (a.k.a. arms in bandit literature). While in ordinary

multi-armed bandits, the mean rewards of the actions have to be

completely independent from each other, linear bandits allow a

linear model for the mean rewards. More specifically, at time step

𝑡 , each action 𝑖 ∈ [𝐾] is associated with a 𝑑-dimensional context

vector 𝒙𝑡𝑖 (a.k.a., the feature vector), and the context vectors are
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presented to the learner. The expected reward for the 𝑖-th action

is 𝜽⊤𝒙𝑡𝑖 , where 𝜽 ∈ R𝑑 is hidden from the learner. The goal is to

gradually learn 𝜽 and maximize the cumulative expected reward,

or equivalently, minimize the expected regret (i.e., the difference
between the received rewards and the rewards of the best actions in

hindsight, as later defined in (1)). For example, in clinical trial, the

candidate actions correspond to the 𝐾 involved treatments. At time

step 𝑡 , an individual patient arrives with the context vectors {𝒙𝑡𝑖 }𝑘𝑖=1
characterizing his/her response to the candidate treatments, and

the recovery probability given treatment 𝑖 is modeled by the linear

function 𝜽⊤𝒙𝑡𝑖 , which corresponds to the expected reward in linear

bandits.

There are two natural settings of the linear bandits: adversarial

and stochastic contexts. The first setting is harder for the learner,

as the context vectors are chosen by an adversary and the learner

has to minimize the regret in the worst case. In the second setting,

in contrast, the sets of context vectors are independently drawn

from an unknown distribution D (while correlation may still exist

among the contexts during the same time step), and the learner

aims at minimizing the expected regret over D. Note that in the

clinical trial example, the individual patients can often be viewed

as independent samples from the population which is characterized

by D.

Limited AdaptivityModels: Batch Learning and Rare Policy Switches.
We consider two popular models of adaptivity constraints. The first

model is batch learning, where the time steps are grouped into

pre-defined batches. Within a batch, the same (possibly random-

ized) policy is used to select actions for all data and the rewards are

observed only at the end of the batch. The amount of adaptivity

is measured by the number of batches, which is expected to be

as small as possible. A notable example is designing clinical trials,

where each phase (batch) of the trial involves simultaneously ap-

plying medical treatments to a batch of patients. The outcomes are

observed at the end of the phase, and may be used for designing

experiments in future phases. Finding the correct number and sizes

of the batches may achieve optimal efficiency for the trial by creat-

ing sufficient intra-batch parallelism while still providing sufficient

adaptivity at the inter-batch scale.

The other model is learning with rare policy switches, where

the amount of adaptivity is measured by the number of times al-

lowed for the learner to change the action-selection policy. For the

same amount of adaptivity measure, this model can be viewed as a

relaxation of the batch learning model, because the learner in the

batch learning model can only change the policy at the pre-defined

time steps.

Both of the above models are closely connected to parallel learn-

ing, as we will discuss at the end of Section 1.1. We also note that

another natural limited adaptivity model is “batch learning with

adaptive grid” [17]. This model allows the learner to adaptively

decide the size of a batch at the beginning of the batch, which is

a more relaxed constraint than batch learning with pre-defined

1
Implied by the lower bound for multi-armed bandits.

2
Implied by the lower bound for multi-armed bandits with rare policy switches. Note

that the lower bound by Simchi-Levi and Xu [31] is for deterministic action-selection

policies, and becomes Ω (𝐾 log log𝑇 ) . A simple adaptation of their argument will

prove the Ω (log log𝑇 ) policy switch lower bound for randomized action-selection

policies in multi-armed bandits, and imply the same lower bound for linear bandits.

batches (a.k.a., the static grid model) but more restricted than the

rare policy switch model, given the same amount of adaptivity

measure.
3
Simple arguments will show that the bounds for the

adaptive grid model are the same as the static grid model in both

linear bandit settings. Therefore, for succinct exposition, we omit

further discussions about the adaptive grid model.
4

Optimal Experiment Design. Optimal experiment design seeks

to minimize the estimation variances of parameters via intelli-

gently choosing queries to the given set of data points. Among

the multiple optimization criteria, the one most related to lin-

ear bandits is the G-optimality criterion which seeks to minimize

the maximum estimation variance among the given data points.

More precisely, given a set of data points 𝑋 ⊆ R𝑑 that spans

the full dimension, the goal is to find a distribution K supported

on 𝑋 , such that max𝒙∈𝑋 𝒙⊤ (E𝒚∼K 𝒚𝒚⊤)−1𝒙 is minimized. Here,

I(K) = E𝒚∼K 𝒚𝒚⊤ is the information matrix of the design K , and
𝒙⊤ I(K)−1𝒙 is the variance of the estimate for data point 𝒙 . TheGen-
eral Equivalence Theorem of Kiefer andWolfowitz [23] implies that

there always exists a design K such that max𝒙∈𝑋 𝒙⊤ I(K)−1𝒙 ≤ 𝑑
and such designs have been used for linear bandits with fixed can-

didate action set (see Chapter 22 of [24], and [16]). However, to

the best of our knowledge, traditional optimal design does not ad-

dress the problem when the candidate action set 𝑋 is stochastic. In

this work, motivated by the algorithmic needs from batch linear

bandits, we address this problem and develop a framework named

distributional optimal design that runs at the core of our algorithm.

We will introduce this framework in the next subsection.

1.1 Our Contributions
Adaptivity constraints in online learning and decision making have

attracted much attention recently. It has been shown that multi-

armed bandits only need𝑂 (log log𝑇 ) batches to achieve asymptot-

ically minimax-optimal regret [17, 28]. For linear contextual ban-

dits with adversarial contexts, when ln𝐾 ≥ Ω(𝑑), Abbasi-yadkori
et al. [1] showed an optimal-regret algorithmwith𝑂 (𝑑 log𝑇 ) policy
switches. In contrast, for the batch model, Han et al. [19] recently

showed that as many as Ω(
√
𝑇 ) batches are needed to achieve the

optimal regret bound, implying that batch learning is significantly

more restrictive than policy switch constraints for adversarial con-

texts.

In light of these partial results, quite a few questions are in-

triguing and remain to be explored – What makes the adaptivity

requirements of linear contextual bandits fundamentally different

from multi-armed bandits? What is the limitation for algorithms

with rare policy switches, or in other words, can we extend the algo-

rithm by Abbasi-yadkori et al. [1] to the full parameter range of 𝐾 ,

and further improve the number of policy switches to𝑂 (log log𝑇 )?
Do linear bandits with stochastic contexts require substantially less

adaptivity than the adversarial setting? We address these questions

and summarize our answers as follows.

3
Indeed, in the adaptive grid model, the time for a policy switch has to be decided

when the previous policy switch happens, while in the rare policy switch model, the

learner can freely switch the policy, as long as the total number of switches is limited.

4
A simple argument will prove the Ω (

√
𝑇 ) batch lower bound for achieving the

asymptotically minimax-optimal regret for the adaptive grid model with adversarial

contexts, and the rest bounds can be derived by direct corollaries of this work and the

existing results in [17, 19].
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Table 1: Amount of adaptivity needed in various models and settings for linear bandits.

Batch Learning Model Rare Policy Switch Model

Adversarial

Contexts

UB: 𝑂 (
√
𝑑𝑇 ) [19] UB: 𝑂 (𝑑 log𝑇 ) for ln𝐾 ≥ Ω(𝑑) [1]

𝑂 (𝑑 log𝑑 log𝑇 ) for ln𝐾 ≤ 𝑜 (𝑑) (by (C1))

LB: Ω(
√
𝑇 ) [19] LB: Ω( 𝑑 log𝑇

log(𝑑 log𝑇 ) ) (by (C1))

Stochastic

Contexts

UB: 𝑂 (log log𝑇 ) (by (C2)) UB: 𝑂 (log log𝑇 ) (implied by (C2))

LB: Ω(log log𝑇 ) [17]1 LB: Ω(log log𝑇 ) [31]2

(C1) (Contribution #1) For linear bandits with adversarial contexts,

we show that 𝑑 log𝑇 (up to poly(log𝑑, log log𝑇 ) factors) is
the tight amount of policy switches needed to achieve the

minimax-optimal regret. To this end, we first extend the algo-

rithm by Abbasi-yadkori et al. [1] to the case where ln𝐾 ≤
𝑜 (𝑑). Our algorithm achieves the asymptotically minimax-

optimal regret with𝑂 (𝑑 log𝑑 log𝑇 ) policy switches.We then

prove that our algorithm and the one by Abbasi-yadkori et al.

[1] achieve the near-optimal policy switch vs. regret trade-

off. In particular, Ω(𝑑 log𝑇 /log(𝑑 log𝑇 )) policy switches are
needed to achieve any

√
𝑇 -type regret.

(C2) (Contribution #2, an informal statement of Theorem 6) For

linear bandits with stochastic contexts, even in the more

restricted batch learning model, it is possible to achieve the

asymptoticallyminimax-optimal regret using only𝑂 (log log𝑇 )
batches. Our algorithm can be easily adapted to use𝑀 batches

and achieve

√
𝑑 log𝐾𝑇

1

2(1−2−𝑀 ) · poly log𝑇 regret, for any𝑀 .

Together with the known results in literature, we are able to present

an almost complete picture about the adaptivity constraints for

linear bandits in Table 1. Most interestingly, compared to ordinary

multi-armed bandits, linear bandits exhibit a richer set of adaptivity

requirements, and strong separations among different models and

settings. We also find that adversarially chosen context vectors are

the main source of difficulty for reducing adaptivity requirements.

Comparison of (C2) and [19]. Compared to (C1), our result in (C2)

requires substantially more technical effort and is also the main

motivation for us to develop the framework of distributional opti-

mal design (which will be elaborated soon). We note that Han et al.

[19] also studied batch learning for linear bandits with stochas-

tic contexts and showed an algorithm with 𝑂 (log log𝑇 ) batches.
However, their results are for a special case of the problem with

the following assumptions: the context vectors are drawn from a

Gaussian distribution, the ratio between the maximum and min-

imum eigenvalues of the Gaussian co-variance matrix should be

𝑂 (1), and the number of candidate actions 𝐾 cannot be greater

than a polynomial of 𝑑 . The design and analysis of their algorithm

crucially rely on these three assumptions and it seems not obvious

that their result can be directly extended to the general context set

distribution. Indeed, their algorithm can safely choose the action

to maximize the estimated mean reward, thanks to the isotropic

Gaussian assumption ensuring sufficient exploration towards other

directions. In contrast, without these assumptions, much effort in

our algorithm is spent on the careful design of the exploration pol-

icy using many candidate actions, which motivates the problem of

distributional optimal design.

Distributional Optimal Design. As mentioned above, to facilitate

the algorithm for stochastic contexts, we have to extend the tra-

ditional experiment design results to the regime where the set 𝑋

of contexts/data points is stochastic. Suppose that 𝑋 follows the

distribution D, the goal of our proposed distributional optimal de-
sign problem is to find a sample policy 𝜋 that maps any set 𝑋 to

a probability distribution supported on 𝑋 , so as to minimize the

distributional G-variation, defined as E𝑋∼D max𝒙∼𝑋 𝒙⊤ ID (𝜋)−1𝒙 ,
where ID (𝜋) = E𝑋∼D E𝒚∼𝜋 (𝑋 ) 𝒚𝒚⊤ is the information matrix of

sample policy 𝜋 overD.
5
Note that the traditional G-optimal design

is the special case of our problem when D is deterministic, which

was used in the algorithm for linear bandits with fixed candidate

action sets (see, e.g., Chapter 22 in [24]). In contrast, the stochastic-

ity of 𝑋 ∼ D in our problem arises due to the stochastic context in

linear bandits.

The first natural question about our proposed problem is on the

existence of a good sample policy. Regarding this, we prove the

following result.

(C3) (Contribution #3, an informal statement of Theorem 4) For any

D, there exists a sample policy 𝜋 such that the distributional

G-variance is bounded by 𝑂 (𝑑 log𝑑).6 Moreover, we can

construct such a policy from the class of so-called mixed-
softmax policies, which admits a succinct description using

𝑂 (𝑑3 log𝑑) real-valued parameters.

SinceD is not known beforehand in linear bandits, we have to learn

a good sample policy 𝜋 via finite samples from D. Since even the

input of 𝜋 lie in a continuous space with 𝑑𝐾 dimensions, proving

the existence of the succinct parametric form of 𝜋 in (C3) is a good

news to learning. However, we find that directly constructing a

policy based on the uniform distribution over empirical samples

does not generalize to the true distribution D. We will come up

with a more careful learning procedure to achieve the following

goal.

(C4) (Contribution #4, an informal statement of Theorem 5) For any

D, we design an algorithm to learn a good mixed-softmax

policy 𝜋 using only poly(𝑑) independent samples from D.
7

We remark that the introduction of the distribution D brings a

unique learning challenge to optimal experiment design. It is hope-

ful that our results and the future study on other criteria in distribu-

tional optimal design may lead to broader applications in machine

learning and statistics.

5
For simplicity of presentation, we assume that the vectors in the sets of D span the

full dimension, so that there always exists a sample policy with invertible information

matrix. Please refer to Theorem 5.1 for the general definition.

6
This bound can be improved to 𝑂 (𝑑) with additional techniques, which will be

included in the full version of the paper.

7
More precisely, the good policy here is defined by the distributional G-deviation. Please
refer to Theorem 5 for more details.
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Implications for Collaborative and Concurrent Learning. The idea
of letting multiple learning agents learn in parallel so as to save

overall running time has been studied a lot recently in online learn-

ing and decision making, which is also the main motivation of this

study (as mentioned in the very beginning of the paper). Below we

discuss the implications of our algorithmic results for a few parallel

learning models.

The first implication is for the collaborative learning with limited
interaction model, which was recently studied for pure exploration

(i.e., top arm(s) identification) in multi-armed bandits [20, 22, 37]. In

this model, there are 𝔎 learning agents, and the learning process is

partitioned into rounds of pre-defined time intervals. During each

round (which is also referred to as the communication round), each
of the 𝔎 agents learns individually like in the centralized model –

image that there is a global buffer of the context vectors, and the

agents repeatedly draw a set of context vectors from the buffer and

make corresponding decisions. Each play of an arm takes one time

step, and the agents may choose to skip a few time steps without

playing. The agents can only communicate at the end of each round.

The collective regret is defined to be the sum of the regret incurred

by each agent. Suppose there are 𝑇 sets of context vectors in the

global buffer, the goal is to finish the game in 𝑂 (⌈𝑇 /𝔎⌉) time (i.e.,

achieving the full speedup), while minimizing the collective regret

and the number of communication rounds 𝑅.

Observe that a batch learning algorithm with 𝑀 batches can

be easily transformed to a collaborative algorithm with 𝑅 = 𝑀

communication rounds, where in each round 𝑖 , each agent uses the

policy for the 𝑖-th batch to play for ⌊T𝑖/𝔎⌋ or ⌈T𝑖/𝔎⌉ times, whereT𝑖
is the size of the 𝑖-th batch. The total running time for collaborative

learning is at most𝑇 /𝔎+𝑀 , achieving the full speedupwhen𝑀 ·𝔎 ≤
𝑂 (𝑇 ). Therefore, when 𝔎 ≤ 𝑂 (𝑇 /log log𝑇 ), our algorithmic result

(C2) implies a collaborative algorithm for stochastic-context linear

bandits with full speedup and minimax-optimal collective regret,

using only 𝑂 (log log𝑇 ) communication rounds.

The second implication is for the concurrent learning model

which was recently studied in [8, 18, 41]. In this model, there is no

limit on the number of communication rounds and the 𝔎 learning

agents may communicate at the end of every time step. By a simple

reduction described in [8], any algorithm with at most 𝑀 policy

switches can be transformed to a 𝔎-agent concurrent learning

algorithmwith full speedup, and the collective regret is at most𝑀 ·𝔎
plus the original regret bound. Therefore, our algorithmic result in

(C1) implies a concurrent learning algorithm for adversarial-context

linear bandits with full speedup and minimax-optimal collective

regret, as long as 𝔎 ≤ 𝑂 (
√
(𝑇 log𝐾)/𝑑).

1.2 Additional Related Works
The linear contextual bandit problem is a central question in online

learning and decision making, and its regret minimization task has

been studied during the past decades [1, 2, 7, 10, 12, 25, 30]. The

minimax-optimal regret is proved to be

√
𝑑𝑇 min{log𝐾,𝑑} up to

poly log𝑇 factors, which is also the target regret for our algorithms

with limited adaptivity. When the candidate action set is fixed, the

task of identifying the best action has also been studied [34, 36, 40],

and many of these works borrow the idea of G-optimal design.

Batch regret minimization for multi-armed bandits was intro-

duced by Perchet et al. [28] with 2 arms, and the 𝐾-arm general

setting was recently studied by Gao et al. [17]. Simchi-Levi and

Xu [31] studied the 𝐾-arm setting with the rare policy switch con-

straint and achieved comparable results. For batch linear bandits,

Esfandiari et al. [16] and Han et al. [19] recently studied the problem

with aforementioned additional assumptions. For batch stochastic

contextual bandits, Simchi-Levi and Xu [32] recently proposed an al-

gorithm with 𝑂 (log log𝑇 ) batches to achieve the minimax-optimal

regret. We note that another usage of batch learning (mainly in

reinforcement learning) refers to learning from a fixed set of a

priori-known samples with no adaptivity allowed, which is very

different from the definition in our work.

For the rare policy switchmodel, Abbasi-yadkori et al. [1] showed

a rarely switching algorithm for linear bandits. Rare policy switch

constraints have also been studied for a broader class of online

learning and decision making problems, such as multinomial logit

bandits [14] and Q-learning [8].

Under the broader definition of adaptivity constraints including

batch learning and learning with low switching cost (which might

not exactly align with the models defined in this work), many

other online learning problems are studied, such as adversarial

multi-armed bandits [9, 13], the best (multiple-)arm identification

problem [4, 21], and convex optimization [15].

The optimal design of experiments is a fundamental problem in

statistics, with various optimality criteria proposed and many sta-

tistical models studied (see, e.g., [6, 29]). When the sample budget

is finite, finding the exact solutions to certain optimality criteria is

NP-Hard [11, 35, 39], thus a sequence of recent works have stud-

ied approximation algorithms for the problem [5, 26, 27, 33, 38].

However, to the best of our knowledge, all previous works have

considered the fixed set of all possible experiments. In contrast, we

propose and study the distributional optimal design problem where

the set of candidate experiments might be stochastic.

2 TECHNICAL OVERVIEW
Due to space constraints, we will only introduce the technical

details related to (C2) in the rest of this extended abstract. In this

section, we give an overview of the proof techniques developed

for (C2) in Section 4, Section 5 and Section 6. Along the way, the

proof techniques for (C3) and (C4) are also explained. In Section 7,

we combine all these technical components and prove the main

theorem.

The Batch Elimination Framework. All our algorithms are based

on batch elimination: at each time step, the confidence intervals

are estimated for each candidate action, and the actions whose

confidence intervals completely fall below those of other actions

are eliminated. All survived actions are likely to be the optimal

one, and the learner has to design an intelligent sample policy 𝜋 to

select the action from the survived set. In such a way, the incurred

regret can be bounded by the order of the length of the longest

confidence interval in the survived set.

We note that this elimination-based approach is not new: it is

adopted by the batch algorithms for multi-armed bandit (e.g., [17])

as well as the recent batch algorithm for linear bandits with fixed

action set [16]. However, thanks to the simple structures of the two
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problems, during each batch, both of their algorithms are able to

construct confidence intervals for survived actions with a uniform
length, so that the regret can be relatively more easily bounded.

Indeed, although the algorithm by Han et al. [19] does not explicitly

eliminate actions, their analysis relies on the uniform estimation

confidence for the actions (which requires the isotropic Gaussian

assumption for context vectors). In contrast, we have to deal with

confidence intervals with wildly different lengths because of the

inherent non-uniformity of the probability mass assigned to each

context direction in the general distribution D.

To deal with such non-uniformity, in Section 4, we provide an

analysis framework to relate the regret bound to the distributional

G-variation of 𝜋 over D, as introduced in Section 1.1. In partic-

ular, we show that if we let 𝜋 (𝑋 ) = 𝜋G (𝑋 ), which returns the

G-optimal design of the input context set 𝑋 (regardless of D), its

distributional G-variation can be bounded by 𝑑2 (for all D), lead-

ing to 𝑂 (𝑑
√
𝑇 log𝐾) × poly log𝑇 regret with 𝑂 (log log𝑇 ) batches.

This regret is

√
𝑑 times greater than the minimax-optimal target.

To achieve optimality, we need to improve the distributional G-

variation to 𝑂 (𝑑) (up to logarithmic factors), which requires to

optimize 𝜋 specifically according to D.

Existence of Distributional Optimal Design and its Parametric Form.
In Section 5, we show that, given D, there exists a sample policy

𝜋 whose distributional G-variation is 𝑂 (𝑑 log𝑑). Our proof is con-
structive and the algorithm involves an innovative application of

the rarely switching linear bandit algorithm [1]. We consider a long

enough sequence of independent samples from D: 𝑋1, 𝑋2, . . . , 𝑋𝑁 ,

and sequentially feed the context vector sets to the rarely switching

algorithm. Instead of minimizing the regret (as the reward is unde-

fined), the rarely switching algorithm selects the context vector 𝒙
that maximizes the variance according to the delayed information
matrix, and updates the total information matrix by adding 𝒙𝒙⊤ to

it.

Borrowing the regret analysis techniques in linear bandits litera-

ture, and together with an adapted form of the celebrated Elliptical

Potential Lemma, we are able to prove that, with the proper con-

figuration of the initial information matrix, the average maximum

confidence interval length throughout the𝑁 time steps is𝑂 (𝑑 log𝑑).
Moreover, the rarely switching trick makes sure that the delayed in-

formation matrix switches for at most𝑂 (𝑑 log𝑑) times. This allows

us to extract 𝑂 (𝑑 log𝑑) (deterministic) sample policies {𝜋 𝑗 } from
the execution trajectory of the algorithm, each of which chooses

the variance maximizer according to a delayed information matrix

in the trajectory. We also associate each 𝜋 𝑗 with a probability mass

𝑝 𝑗 , which is proportional to the number of time steps when the

corresponding delayed information matrix is used in the trajectory.

We can then construct a so-calledmixed-argmax policy 𝜋 as follows:

with probability 1/2, 𝜋 acts the same as 𝜋G; otherwise, 𝜋 acts the

same as 𝜋 𝑗 with probability 𝑝 𝑗 .

We are then able to prove that the distributional G-variance of 𝜋

overD is𝑂 (𝑑 log𝑑). This is done mainly by showing that ID (𝜋) is
comparable to the final information matrix in the trajectory, so that

the distributional G-variance of 𝜋 can be bounded by the empiri-

cal average of the maximum confidence interval lengths. To lower

bound ID (𝜋) using the total information matrix in the trajectory,

while the portion corresponding to the larger switching window

(i.e., greater 𝑝 𝑗 ) in the trajectory can be directly compared, the

smaller switching window will be handled by the 𝜋G component

in 𝜋 . We note that the 𝜋G component is also crucial to configur-

ing the “proper” initial information matrix in the rarely switching

algorithm.

We finally observe that 𝜋 can be characterized by 𝑂 (𝑑3 log𝑑)
parameters, because each 𝜋 𝑗 is parameterized by a𝑑×𝑑 information

matrix. Since the argmax operator could be very sensitive to noise

when the top input elements are close, to facilitate learning, we

will also work on the mixed-softmax policy where each 𝜋 𝑗 uses the

softmax operator instead.

CoreLearning for Distributional Optimal Design. It is tempting

to build the natural learning algorithm that computes the distribu-

tional optimal design from the empirical samples, with the hope

that the Lipschitz-continuity property of the softmax policies pro-

vides a small covering of the policy space, which leads to uniform

concentration results, and finally prove that the learned policy

generalizes to the true distribution D. However, in Section 6, we

construct an example to show that such an approach requires much

higher sample complexity than we can afford.

To enable sample-efficient learning, we propose a new algorithm,

CoreLearning, that first identifies a core set, which is a subset of

the empirical samples, and then computes a mixed-softmax policy

from the core. To identify the core, we develop a novel procedure to

iteratively prune away the sets that contain less explored directions

among the empirical samples, so that the set of the remaining sam-

ples at the end of the procedure becomes the core. Via a volumetric

argument, we show that the directions in the core can be sufficient

explored even if only using the sets in the core, and the core is still

overwhelmingly large. Both properties are crucially used in the

CoreLearning algorithm.

The high-level idea behind CoreLearning is that, on one hand,

we can prove fast uniform concentration for the information ma-

trix if all directions are sufficiently explored, so that the directions

spanned by the core can be handled. On the other hand, the direc-

tions not included in the core are infrequent inD (because the core

is large enough), and can be dealt with by the 𝜋G component in

the mixed-softmax policy.

Much technical effort is devoted to the analysis of CoreLearn-

ing because (1) it seems not quite obvious whether a core with the

desired properties even exists, and (2) a careful analysis is needed

when combining the analysis for sufficiently explored directions

and infrequent directions, since the (possible) directions of the con-

text vectors are continuous, and the boundary between the two

types of directions may not be always clear. Please refer to Section 6

for more detailed explanation.

3 PRELIMINARIES
Notations. Throughout the paper, we denote [𝑁 ] def= {1, 2, . . . , 𝑁 }

for any integer 𝑁 . We define log𝑥
def

= log
2
𝑥 and ln𝑥

def

= log𝑒 𝑥 . We

use 1[·] to denote the indicator variable for a given event (i.e., the

value of the variable is 1 if the event happens, and 0 otherwise).

We use ∥·∥ to denote the 2-norm of matrices and vectors. Matrix

and vector variables are displayed in bold letters. For any discrete
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set 𝑋 , we use △𝑋 to denote the set of all probability distributions

supported on 𝑋 .

Linear Contextual Bandits. There is a hidden vector 𝜽 (∥𝜽 ∥ ≤ 1).

For a given time horizon 𝑇 , the context vectors {{𝒙𝑡𝑖 }𝐾𝑖=1}
𝑇
𝑡=1

are

drawn from the product distribution D1 ⊗ D2 ⊗ · · · ⊗ D𝑇 , where
D𝑡 is the distribution for the context vectors at time step 𝑡 . We

assume ∥𝒙𝑡𝑖 ∥ ≤ 1 for all 𝑖 and 𝑡 almost surely. Before the game

starts, the learner only knows 𝑇 .

At each time step of the game 𝑡 = 1, 2, . . . ,𝑇 , the learner has to

first decide a policy 𝜒𝑡 that maps any set of context vectors 𝑋 to a

distribution in △𝑋 . The learner then observes 𝑋𝑡 = {𝒙𝑡𝑖 }𝐾𝑖=1, sam-

ples an action 𝑖𝑡 from 𝜒𝑡 (𝑋𝑡 ),8 plays arm 𝑖𝑡 , and finally receives the

reward 𝑟𝑡 = 𝜽⊤𝒙𝑡,𝑖𝑡 + 𝜀𝑡 , where 𝜀𝑡 is an independent sub-Gaussian

noise with variance proxy at most 1.

The goal of the learner is to minimize the expected regret

𝑅𝑇
def

= E

[
𝑇∑
𝑡=1

max

𝑖∈[𝐾 ]
𝒙⊤𝑡𝑖𝜽 − 𝒙

⊤
𝑡,𝑖𝑡

𝜽

]
, (1)

where the expectation is taken overD1 ⊗D2 ⊗ · · · ⊗D𝑇 , the noises,
and the internal randomness of the learner. In our algorithmic

results, we also prove (1−𝛿)-high probability expected regret, which
is defined as sup𝐴 E

[
1[𝐴] ·∑𝑇𝑡=1max𝑖∈[𝐾 ] 𝒙

⊤
𝑡𝑖
𝜽 − 𝒙⊤

𝑡,𝑖𝑡
𝜽
]
where

the supremum is taken over all events 𝐴 such that Pr[𝐴] ≥ 1 − 𝛿 .
In this definition, setting 𝛿 = 𝑂 (1/𝑇 ) recovers the usual expected
regret up to an additive error of 𝑂 (1).

Settings of Adversarial and Stochastic Contexts. In the setting of

adversarial contexts, there are no additional constraints for the

distributions {D𝑡 }. Note that this corresponds to the oblivious ad-
versary in bandit literature, meaning that the adversary has to

choose all context vectors beforehand. In contrast, the stronger

non-oblivious adversary may adaptively choose context vectors for

any time step according to all game history before that time. Since

we only prove lower bounds for the adversarial context setting

in this work, dealing with a weaker adversary actually means a

stronger lower bound result.

In the setting of stochastic contexts, we have the additional

assumption that D = D1 = · · · = D𝑇 . However, correlation may

still exist among the contexts at the same time step.

4 BATCH ELIMINATION FRAMEWORK AND
THE G-OPTIMAL DESIGN

As a warm-up, in this section, we first present BatchLinUCB (Algo-

rithm 1) to illustrate the batch elimination framework for the linear

bandit problem with stochastic contexts. Later in Section 4.1, we

will introduce the G-optimal experiment design and show how it

helps to reduce the regret bound of the algorithm. While the regret

bound in Theorem 2 is improved, it still has an extra

√
𝑑 factor

compared to the optimal minimax regret bound (without adaptivity

constraints). The quest for optimal regret will be addressed in the

later sections.

We now introduce our first algorithm. BatchLinUCB (Algo-

rithm 1) uses 𝑀 = 𝑂 (log log𝑇 ) batches and a pre-defined static

8
When clear from the context, we interchangeably use the arm indices and their

corresponding context vectors.

Algorithm 1: BatchLinUCB

1: 𝑀 = ⌈log log𝑇 ⌉, 𝛼 ← 10

√
ln

2𝑑𝐾𝑇
𝛿

,

T = {T1,T2, . . . ,T𝑀 },T0 = 0,T𝑀 = 𝑇,∀𝑖 ∈ [𝑀 − 1] : T𝑖 =
𝑇 1−2−𝑖

;

2: for 𝑘 ← 1, 2, . . . , 𝑀 do
3: 𝜆 ← 16 ln(2𝑑𝑇 /𝛿),𝚲𝑘 ← 𝜆𝑰 , 𝝃𝑘 ← 0;
4: for 𝑡 ← T𝑘−1 + 1,T𝑘−1 + 2, . . . ,T𝑘 do
5: 𝐴

(0)
𝑡 ← [𝐾], 𝑟 (0)

𝑡𝑖
← 0, 𝜔

(0)
𝑡𝑖
← 1;

6: for 𝜅 ← 1, 2, . . . , 𝑘 − 1 do ⊲ Eliminate

7: ∀𝑖 ∈ 𝐴(𝜅−1)𝑡 : 𝑟
(𝜅)
𝑡𝑖
← 𝒙⊤

𝑡𝑖
ˆ𝜽𝜅 , 𝜔

(𝜅)
𝑡𝑖
←

𝛼

√
𝒙⊤
𝑡𝑖
𝚲
−1
𝜅 𝒙𝑡𝑖 ;

8: 𝐴
(𝜅)
𝑡 ← {𝑖 ∈ 𝐴(𝜅−1)𝑡 | 𝑟 (𝜅)

𝑡𝑖
+ 𝜔 (𝜅)

𝑡𝑖
≥

𝑟
(𝜅)
𝑡 𝑗
− 𝜔 (𝜅)

𝑡 𝑗
,∀𝑗 ∈ 𝐴(𝜅−1)𝑡 };

9: 𝐴𝑡 ← 𝐴
(𝑘−1)
𝑡 ;

10: play arm 𝑖𝑡 ∼ Unif (𝐴𝑡 ), and receive reward 𝑟𝑡 ;

11: 𝒙𝑡 ← 𝒙𝑡,𝑖𝑡 ,𝚲𝑘 ← 𝚲𝑘 + 𝒙𝑡𝒙⊤𝑡 , 𝝃𝑘 ← 𝝃𝑘 + 𝑟𝑡𝒙𝑡 ;
12: ˆ𝜽𝑘 ← 𝚲

−1
𝑘
𝝃𝑘 ;

grid T = {T1,T2, . . . ,T𝑀 }. For each batch 𝑘 , BatchLinUCB keeps

an estimate
ˆ𝜽𝑘 for the hidden vector 𝜽 , which is learned using the

samples obtained in the batch. To decide an arm during any time

𝑡 in the 𝑘-th batch, the algorithm first performs an elimination

procedure that is based on the estimate
ˆ𝜽𝜅 and the corresponding

confidence region for each previous batch 𝜅 ∈ {1, 2, . . . , 𝑘 − 1}. Let
𝐴𝑡 be the set of survived arms after the elimination. The algorithm

then plays a uniformly random arm from𝐴𝑡 . The following theorem

upper bounds the regret of BatchLinUCB.

Theorem 1. With probability at least (1 − 𝛿), the expected regret
of BatchLinUCB is

𝑅𝑇
BatchLinUCB

≤ 𝑂 (
√
𝑑𝐾𝑇 log(𝑑𝐾𝑇 /𝛿) × log log𝑇 ) .

To prove Theorem 1, we first introduce the following lemma that

constructs the confidence intervals of the estimated rewards.

Lemma 1. Fix any batch 𝑘 , for each time step 𝑡 in batch 𝑘 , with
probability at least (1 − 𝛿/𝑇 2), for all 𝜅 ∈ {1, 2, . . . , 𝑘 − 1} and all
𝑖 ∈ 𝐴𝑡 , we have that ���𝒙⊤𝑡𝑖 ˆ𝜽𝜅 − 𝒙⊤𝑡𝑖𝜽 ��� ≤ 𝜔 (𝜅)𝑡𝑖

.

The proof of Lemma 1 can be found in many papers in linear

bandit literature (e.g., [10, 25]), and will be included in the full

version of this paper.

We now start proving Theorem 1. Fix any batch 𝑘 such that

𝑘 ≥ 2, when conditioned on the first (𝑘 − 1) batches, we let D𝑘 be

the distribution of the survived candidate arms 𝑋 = {𝒙𝑡𝑖 : 𝑖 ∈ 𝐴𝑡 }
at any time 𝑡 during the 𝑘-th batch. We also let D0 = {𝒙𝑡𝑖 } be the
distribution of all candidate arms at any time 𝑡 .

Suppose that the desired event in Lemma 1 happens for every

time step during the 𝑘-th batch (which happens with probability at

least (1−𝛿T𝑘/𝑇 2) by a union bound), it is straightforward to verify

that for each time 𝑡 during the 𝑘-th batch, the optimal arm is not
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eliminated by the elimination procedure (Line 6 to Line 8) in Batch-

LinUCB. In other words, we have that 𝑖∗𝑡
def

= argmax𝑖∈[𝐾 ] 𝒙
⊤
𝑡𝑖
𝜽 ∈

𝐴𝑡 for each time step 𝑡 in the 𝑘-th batch. Therefore, we can now

upper bound the expected regret incurred during batch 𝑘 as

𝑅𝑘 = E
∑

𝑡 in batch 𝑘

( max

𝑖∈[𝐾 ]
𝒙⊤𝑡𝑖𝜽 − 𝒙

⊤
𝑡,𝑖𝑡

𝜽 )

≤ E
∑

𝑡 in batch 𝑘

(𝒙⊤
𝑡,𝑖∗𝑡

ˆ𝜽𝑘−1 − 𝒙⊤𝑡,𝑖𝑡 ˆ𝜽𝑘−1 + 𝜔
(𝑘−1)
𝑡,𝑖∗𝑡

+ 𝜔 (𝑘−1)
𝑡,𝑖𝑡

) (2)

≤ E
∑

𝑡 in batch 𝑘

2 · (𝜔 (𝑘−1)
𝑡,𝑖∗𝑡

+ 𝜔 (𝑘−1)
𝑡,𝑖𝑡

)

≤ 4E
∑

𝑡 in batch 𝑘

max

𝑖∈𝐴𝑡

𝜔
(𝑘−1)
𝑡𝑖

, (3)

where (2) is due to the successful events of Lemma 1, the both

inequalities in (3) are due to the elimination process and that 𝑖∗𝑡 ∈ 𝐴𝑡 .
By the definition of 𝜔

(𝑘−1)
𝑡𝑖

and the definition of D𝑘 , we further
have that

𝑅𝑘 ≤ 4𝛼 E
∑

𝑡 in batch 𝑘

max

𝑖∈𝐴𝑡

√
𝒙⊤
𝑡𝑖
𝚲
−1
𝑘−1𝒙𝑡𝑖

≤ 4𝛼 ×
∑

𝑡 in batch 𝑘

E
𝑋∼D𝑘

max

𝒙∈𝑋

√
𝒙⊤𝚲−1

𝑘−1𝒙 . (4)

We finally observe that 𝑋 ∼ D𝑘 can be sampled by drawing an

𝑋 ′ ∼ D𝑘−1 and performing an elimination process using
ˆ𝜽𝑘−1 as

well as the corresponding confidence region for 𝑋 ′. We note that

𝑋 ⊆ 𝑋 ′. Therefore, continuing with (4), we have that

𝑅𝑘 ≤ 4𝛼 ×
∑

𝑡 in batch 𝑘

E
𝑋∼D𝑘−1

max

𝒙∈𝑋

√
𝒙⊤𝚲−1

𝑘−1𝒙

= 4𝛼T𝑘 × E
𝑋∼D𝑘−1

max

𝒙∈𝑋

√
𝒙⊤𝚲−1

𝑘−1𝒙 . (5)

Now the goal is to upper bound E𝑋∼D𝑘−1 max𝒙∈𝑋
√
𝒙⊤𝚲−1

𝑘−1𝒙 .
The following lemma can be proved by matrix concentration in-

equalities, and the proof is deferred to the full version.

Lemma 2. For each batch 𝑘 (𝑘 < 𝑀), with probability (1 − 𝛿/𝑇 2),
we have that

𝚲𝑘 ≽
T𝑘
16

(
ln𝑇

T𝑘
𝑰 + E

𝑋∼D𝑘

E
𝒙∼Unif (𝑋 )

[𝒙𝒙⊤]
)
. (6)

Assuming that (6) holds for batch (𝑘 − 1), we have that

E
𝑋∼D𝑘−1

max

𝒙∈𝑋

√
𝒙⊤𝚲−1

𝑘−1𝒙 ≤ E
𝑋∼D𝑘−1

∑
𝒙∈𝑋

√
𝒙⊤𝚲−1

𝑘−1𝒙

≤ 4√
T𝑘−1

√√√
E

𝑋∼D𝑘−1

∑
𝒙∈𝑋

𝒙⊤
(
ln𝑇

T𝑘−1
𝑰 + E

𝑌∼D𝑘−1

1

|𝑌 |
∑
𝒚∈𝑌

𝒚𝒚⊤
)−1

𝒙

≤ 4√
T𝑘−1

√√√
Tr

((
ln𝑇

T𝑘−1
𝑰 + E

𝑌∼D𝑘−1

1

𝐾

∑
𝒚∈𝑌

𝒚𝒚⊤
)−1

E
𝑋∼D𝑘−1

∑
𝒙∈𝑋

𝒙𝒙⊤
)

≤ 4

√
𝑑𝐾/T𝑘−1 .

Together with (5), and collecting the probabilities, we have that

with probability at least (1 − 𝛿T𝑘/𝑇 2 − 𝛿/𝑇 2), the expected regret

incurred during batch 𝑘 (𝑘 ≥ 2) is

𝑅𝑘 ≤ 16𝛼T𝑘 ·
√
𝑑𝐾/T𝑘−1 ≤ 16𝛼

√
𝑑𝐾𝑇 . (7)

Note that (7) also holds for 𝑘 = 1 almost surely, because T1 ≤
√
𝑑𝑇

and the maximum regret incurred per time step is at most 1.

Finally, summing up the expected regret incurred across all

batches and collecting the probabilities, we have that, with proba-

bility at least (1 − 𝛿), the expected regret is bounded by

𝑅𝑇 ≤ 𝑀 × 16𝛼
√
𝑑𝐾𝑇 = 𝑂 (

√
𝑑𝐾𝑇 log(𝑑𝐾𝑇 /𝛿) × log log𝑇 ) .

This concludes the proof of Theorem 1.

4.1 Improved Regret via the G-Optimal Design
In this subsection, we show how a simple application of the G-

optimal design can help to replace the𝐾 factor in Theorem 1 by (the

usually smaller quantity) 𝑑 . To achieve this, we first introduce the

following lemma on G-optimal design, which is a direct corollary

of the General Equivalence Theorem of Kiefer and Wolfowitz [23].

Lemma 3. For any subset 𝑋 ⊆ R𝑑 , there exists a distribution K𝑋
supported on 𝑋 , such that for any 𝜀 > 0, it holds that

max

𝒙∈𝑋
𝒙⊤

(
𝜀𝑰 + E

𝒚∼K𝑋

𝒚𝒚⊤
)−1

𝒙 ≤ 𝑑. (8)

Furthermore, if 𝑋 is a discrete set with finite cardinality, one can find
a distribution such that the right-hand side of (8) is relaxed to 2𝑑 in
time poly( |𝑋 |).

We now describe the new BatchLinUCB-KW algorithm. It is

almost the same as BatchLinUCB, while the only difference is that

at Line 10 of Algorithm 1, letting 𝑋 = {𝒙𝑡𝑖 : 𝑖 ∈ 𝐴𝑡 }, we compute

a distribution K𝑋 satisfying (8) (up to the factor 2 relaxation) and

randomly select the action

𝑖𝑡 ∼ 𝜋G (𝑋 )
def

= K𝑋 . (9)

Theorem 2. With probability at least (1 − 𝛿), the expected regret
of BatchLinUCB-KW is

𝑅𝑇
BatchLinUCB-KW

≤ 𝑂 (𝑑
√
𝑇 log(𝑑𝐾𝑇 /𝛿) × log log𝑇 ) .

We now prove Theorem 2. Note that the analysis for BatchLin-

UCB also applies to BatchLinUCB-KW up to (5). Thus, we will

focus on bounding E𝑋∼D𝑘−1 max𝒙∈𝑋
√
𝒙⊤𝚲−1

𝑘−1𝒙 while keeping in

mind that 𝚲
−1
𝑘−1 is a different quantity due to 𝜋G.

Similarly to Lemma 2, for each batch 𝑘 (𝑘 < 𝑀), with probability

(1 − 𝛿/𝑇 2), we have that

𝚲𝑘 ≽
T𝑘
16

(
ln𝑇

T𝑘
𝑰 + E

𝑋∼D𝑘

E
𝒙∼𝜋G (𝑋 )

[𝒙𝒙⊤]
)
. (10)

Assuming that (10) holds for batch (𝑘 − 1), letting
𝒙∗ (𝑋 ) = argmax

𝒙∈𝑋
𝒙⊤𝚲−1

𝑘−1𝒙,

we have that

E
𝑋∼D𝑘−1

max

𝒙∈𝑋

√
𝒙⊤𝚲−1

𝑘−1𝒙 = E
𝑋∼D𝑘−1

√
(𝒙∗ (𝑋 ))⊤𝚲−1

𝑘−1𝒙
∗ (𝑋 )

≤
√

E
𝑋∼D𝑘−1

(𝒙∗ (𝑋 ))⊤𝚲−1
𝑘−1𝒙

∗ (𝑋 )
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=

√
Tr

(
𝚲
−1
𝑘−1 E

𝑋∼D𝑘−1
𝒙∗ (𝑋 ) (𝒙∗ (𝑋 ))⊤

)
, (11)

where the inequality is by Jensen’s inequality. By (8) (up to the

factor 2 relaxation), we have that

𝒙∗ (𝑋 ) (𝒙∗ (𝑋 ))⊤ ≼ 2𝑑 × E
𝒚∼𝜋G (𝑋 )

𝒚𝒚⊤ . (12)

Combining (11) and (12), we have that

E
𝑋∼D𝑘−1

max

𝒙∈𝑋

√
𝒙⊤𝚲−1

𝑘−1𝒙 ≤

√√√
2𝑑 × Tr

(
𝚲
−1
𝑘−1 E

𝑋∼D𝑘−1
E

𝒚∼𝜋G (𝑋 )
𝒚𝒚⊤

)
≤ 4

√
2𝑑/

√
T𝑘−1, (13)

where the last inequality is due to (10). Combining (13) and (5), we

have that with probability at least (1−𝛿T𝑘/𝑇 2−𝛿/𝑇 2), the expected
regret incurred during batch 𝑘 (𝑘 ≥ 2) is

𝑅𝑘 ≤ 4𝛼T𝑘 · 4
√
2𝑑/

√
T𝑘−1 ≤ 16

√
2𝛼𝑑
√
𝑇 .

Using the similar argument as the analysis for Algorithm 1, we

have that with probability at least (1 − 𝛿), the expected regret of

BatchLinUCB-KW is at most

𝑅𝑇 ≤ 𝑂 (𝑑
√
𝑇 log(𝑑𝐾𝑇 /𝛿) × log log𝑇 ),

proving Theorem 2.

5 DISTRIBUTIONAL G-OPTIMAL DESIGN:
EXISTENCE & PARAMETRIC FORMS

We now work towards removing the extra

√
𝑑 factor in the regret

of Theorem 2, so as to achieve the optimal

√
𝑑𝑇 -type regret. The

high level idea is to use a difference sample policy other than uni-

form sampling over all (survived) candidate arms or the G-optimal-

design-based 𝜋G.

Given a sample policy 𝜋 that maps any set of arms (𝑋 ⊆ R𝑑 )
to a distribution in △𝑋 , we will be interested in its performance,

defined as follows.

Definition 5.1 (𝜆-distributional G-variation and information ma-
trix). For any distribution D of the set of arms 𝑋 ⊆ R𝑑 and any

sample policy 𝜋 , we define the 𝜆-distributional G-variation, or 𝜆-
variation for short (𝜆 > 0), of 𝜋 over D as

V
(𝜆)
D (𝜋)

def

= E
𝑋∼D

max

𝒙∈𝑋
𝒙⊤ (𝜆𝑰 + ID (𝜋))−1 𝒙,

where we define the information matrix by

ID (𝜋)
def

= E
𝑋∼D

I𝑋 (𝜋), where I𝑋 (𝜋)
def

= E
𝒙∼𝜋 (𝑋 )

𝒙𝒙⊤ .

Since V
(𝜆)
D is non-increasing as 𝜆 grows, when the limit exists, we

also define

V
(0)
D (𝜋)

def

= lim

𝜆→0
+
V
(𝜆)
D (𝜋), (14)

and set V
(0)
D (𝜋) = +∞ otherwise.

Indeed, the arguments in Section 4 imply the following lemma.

Lemma 4. For any distribution D on the context vectors of the 𝐾
arms, we have that

V
(0)
D (Unif) ≤ 𝑂 (𝑑𝐾), and V

(0)
D (𝜋

G) ≤ 𝑂 (𝑑2). (15)

Algorithm 2: Algorithm for Computing a Distributional

G-Optimal Design

Input: A context set sequence 𝑋1, . . . , 𝑋Γ

Output: A mixed-argmax policy 𝜋

1: 𝑁 ← 2𝑑2 log𝑑,∀(𝑖, 𝑗) ∈ [𝑁 ] × [Γ] : 𝑋 (𝑖−1)Γ+𝑗 ← 𝑋 𝑗 ;

2: 𝑼0 ← 𝜆𝑁 Γ𝑰 + 𝑁
2

∑Γ
𝑖=1 E𝒙∼𝜋G (𝑋𝑖 ) [𝒙𝒙

⊤] ≽ 𝑰 , 𝑛 ← 1, 𝜏𝑛 ←
∅,𝑾𝑛 = 𝑼0;

3: for 𝑡 ← 1, 2, . . . , 𝑁 Γ do
4: 𝜏𝑛 ← 𝜏𝑛 ∪ {𝑡};
5: 𝒙𝑡 ← 𝜋A

𝑾−1
𝑛

(𝑋𝑡 ) = argmax𝒙∈𝑋𝑡
𝒙⊤𝑾−1𝑛 𝒙 ; ⊲ Ties are

broken in a deterministic manner.

6: 𝑼𝑡 ← 𝑼𝑡−1 + 𝒙𝑡𝒙⊤𝑡 ;
7: if det𝑼𝑡 > 2 det𝑾𝑛 then
8: 𝑛 ← 𝑛 + 1, 𝜏𝑛 ← ∅,𝑾𝑛 ← 𝑼𝑡 ;

9: for all 𝑖 ∈ [𝑛], if |𝜏𝑖 | < Γ then 𝜏𝑖 ← ∅;
10: for all 𝑖 ∈ [𝑛], set 𝑝𝑖 = |𝜏𝑖 |/

∑
𝑗

��𝜏 𝑗 ��;
11: return {(𝑝𝑖 , 𝑁 Γ𝑾−1

𝑖
) : 𝑖 ∈ [𝑛] and 𝑝𝑖 > 0}

In light of Lemma 4, the question whether the regret of our

algorithms can be improved to𝑂 (
√
𝑑𝑇poly log(𝐾𝑇 /𝛿)) boils down

to whether one can find a sample policy 𝜋 such that the bounds

in (15) are improved to 𝑂 (𝑑) × poly log𝑑 . In this section, we will

show that such policies not only exist, but also admit a succinct

parametric form so that we can later study how to efficiently learn

the relevant parameters.

To better explain our results, we first define the following class

of parameterized sample policies.

Definition 5.2 (Argmax and mixed-argmax policies). Suppose we
are given a positive semi-definite matrix 𝑽 ≽ 0. We define the

associated argmax policy by

𝜋A𝑽 (𝑋 ) = argmax

𝒙∈𝑋
𝒙⊤𝑽𝒙,

where in the argmax operator, ties are broken in a deterministic

manner.

In this subsection, we use 𝜋G to denote a fixed policywith respect
to (9) and satisfying (8) (up to the factor 2 relaxation). Suppose we

are given a setV = {(𝑝𝑖 , 𝑽𝑖 )}𝑛𝑖=1 such that 𝑝𝑖 ≥ 0 and 𝑝1+· · ·+𝑝𝑛 =

1. We define the associated mixed-argmax policy by

𝜋MA
V (𝑋 ) =

{
𝜋G (𝑋 ), with probability 1/2,
𝜋A𝑽𝑖
(𝑋 ), with probability 𝑝𝑖/2.

The following theorem states that for anyD, there exists a good

mixed-argmax policy with only 𝑂 (𝑑 log𝑑) argmax policies in the

mixture.
9

Theorem 3. Let 𝑆 = {𝑋1, 𝑋2, . . . , 𝑋Γ} be a (multi-)set and let
D = Unif (𝑆). For any 𝜆 ∈ (0, 1), there exists a mixed-argmax policy
with parametersV = {(𝑝𝑖 , 𝑽𝑖 )}𝑛𝑖=1 such that

(1) 𝑛 ≤ 4𝑑 log𝑑 ;
(2) for all 𝑖 ∈ [𝑛], 𝑝𝑖 ≥ 1/𝑑3 and 𝑑−1𝑰 ≼ 𝑽𝑖 ≼ 𝜆−1𝑰 ;

9
Note that although the theorem only works for the uniform distribution over a multi-

set, since the properties to be proved in the theorem statement do not truly depend

on Γ, the theorem can be generalized to any distribution via a simple discretization

argument.

81



Linear Bandits with Limited Adaptivity and Learning Distributional Optimal Design STOC ’21, June 21–25, 2021, Virtual, Italy

(3) V(𝜆)D (𝜋
MA
V ) ≤ 𝑂 (𝑑 log𝑑).

Proof. We will assume Γ > 𝜆−1 without loss of generality, as
the properties to be proved do not depend of Γ and 𝑆 is a multi-set so

that we can always duplicate the elements by finitely many times.

We prove the theorem constructively. We consider Algorithm 2,

which is very similar to the linear bandits algorithms in literature.

For 𝑁 = Θ(𝑑2 log𝑑), the algorithm creates Γ𝑁 times steps, which

includes 𝑁 blocks, each of which contains Γ consecutive time steps.

In each block, the Γ sets of arms 𝑋1, . . . , 𝑋Γ are sequentially pre-

sented. The algorithm then simulates the linear bandit algorithms,

where at each time step, the arm with the maximum variance (ac-

cording to the information matrix𝑾𝑛) is selected. Inspired by the

rarely switching algorithm for linear bandits [1], the information

matrix𝑾𝑛 is only updated when its determinant doubles. This sig-

nificantly reduces the number of updates and is crucial to upper

bounding the number of individual argmax policies in the returned

mixed-argmax policy. We refer to the consecutive time steps be-

tween two neighboring updates as a stage. Each of the information

matrices in a stage corresponds to an individual argmax policy in

the returned policy, and the corresponding probability weight is

proportional to the length of the stage. The only exception is that

we discard the stages that contain less than Γ time steps (i.e., the

ones that are shorter than a block).

Proof of Item (a). Note that

𝑼𝑁 Γ = 𝑼0 +
𝑁 Γ∑
𝑡=1

𝒙𝑡𝒙
⊤
𝑡 = 𝜆𝑁 Γ𝑰 + 𝑁 Γ

2

ID (𝜋G) +
𝑁 Γ∑
𝑡=1

𝒙𝑡𝒙
⊤
𝑡 . (16)

By (8) (up to the factor 2 relaxation), for all 𝑡 , we can show that

𝒙𝑡𝒙
⊤
𝑡 ≼ 2𝑑 × E

𝒚∈𝜋G (𝑋𝑡 )
𝒚𝒚⊤ . (17)

Combining (16) and (17), we have that 𝑼𝑁 Γ ≼ 𝜆𝑁 Γ𝑰+(1/2+2𝑑)𝑁 Γ×
ID (𝜋G) ≼ 4𝑑𝑼0. Therefore, we have

det𝑼𝑁 Γ ≤ det(4𝑑𝑼0) = 𝑑4𝑑 det𝑼0, (18)

and 𝑛 ≤ log

(
𝑑4𝑑

)
= 4𝑑 log𝑑 .

Proof of Item (b). Because we discard the stages whose lengths

are less than Γ, for 𝑝𝑖 > 0, we have that 𝑝𝑖 ≥ Γ
𝑁 Γ ≥

1

𝑑3
for large

enough 𝑑 .

For each𝑾𝑖 , we have𝑾𝑖 ≽ 𝑼0 ≽ 𝜆𝑁 Γ𝑰 , and𝑾𝑖 ≼ 3𝑁 Γ𝑰 . Since
𝑽𝑖 = 𝑁 Γ𝑾−1

𝑖
, we have that 𝑑−1𝑰 ≼ 𝑽𝑖 ≼ 𝜆−1𝑰 .

Proof of Item (c). We finally upper bound the 𝜆-variation of the

returned policy 𝜋 = 𝜋MA
V . Note that

V
(𝜆)
D (𝜋) = E

𝑋∼D
[max

𝒙∈𝑋
𝒙⊤ (𝜆𝑰 + E

𝑋∼D
E

𝒙∼𝜋 (𝑋 )
𝒙𝒙⊤)−1𝒙]

=

𝑁 Γ∑
𝑡=1

max

𝒙∈𝑋𝑡

𝒙⊤ (𝑁 Γ(𝜆𝑰 + ID (𝜋)))−1𝒙

=

𝑛∑
𝑖=1

∑
𝑡 ∈𝜏𝑖

max

𝒙∈𝑋𝑡

𝒙⊤ (𝑁 Γ(𝜆𝑰 + ID (𝜋)))−1𝒙

+
∑
𝑡 ∈B

max

𝒙∈𝑋𝑡

𝒙⊤ (𝑁 Γ(𝜆𝑰 + ID (𝜋)))−1𝒙, (19)

where we let B be the set of time steps that are discarded in Line 9

of Algorithm 2.

It remains to show that both terms are𝑂 (𝑑 log𝑑). For the second
term, we have∑

𝑡 ∈B
max

𝒙∈𝑋𝑡

𝒙⊤ (𝑁 Γ(𝜆𝑰 + ID (𝜋)))−1𝒙

=
1

𝑁 Γ

∑
𝑡 ∈B

max

𝒙∈𝑋𝑡

𝒙⊤ (𝜆𝑰 + ID (𝜋))−1𝒙

≤ 2

𝑁 Γ

∑
𝑡 ∈B

max

𝒙∈𝑋𝑡

𝒙⊤ (𝜆𝑰 + ID (𝜋G))−1𝒙, (20)

where the inequality is because by definition of a mixed-argmax

policy, with probability 1/2, 𝜋G is invoked, and therefore

ID (𝜋) = E
𝑋∼D,𝒙∼𝜋 (𝑋 )

𝒙𝒙⊤ ≽ E
𝑋∼D

1

2

× E
𝒙∼𝜋G (𝑋 )

𝒙𝒙⊤ .

Continuing with (20), since B contains at most 𝑛 stages that are

shorter than a block, therefore, we have that

2

𝑁 Γ

∑
𝑡 ∈B

max

𝒙∈𝑋𝑡

𝒙⊤ (𝜆𝑰 + ID (𝜋G))−1𝒙

≤ 2

𝑁 Γ
× 𝑛 ×

Γ∑
𝑡=1

max

𝒙∈𝑋𝑡

𝒙⊤ (𝜆𝑰 + ID (𝜋G))−1𝒙

=
2𝑛

𝑁
E

𝑋∼D
max

𝒙∈𝑋𝑡

𝒙⊤ (𝜆𝑰 + ID (𝜋G))−1𝒙

=
2𝑛

𝑁
V
(𝜆)
D (𝜋

G) ≤ 2𝑛

𝑁
×𝑂 (𝑑2) ≤ 𝑂 (𝑑 log𝑑), (21)

where the second inequality is due to (14), (15), and the monotonic-

ity of V
(𝜆)
D .

For the first term in (19), we claim that

ID (𝜋) ≽
1

4𝑁 Γ

𝑁 Γ∑
𝑡=1

𝒙𝑡𝒙
⊤
𝑡 , (22)

which will be established at the end of this proof. Once we have

(22), also noting that ID (𝜋) ≽ (1/2) ID (𝜋G) because of the 1/2
portion of 𝜋G in the definition of the mixed-argmax policy, we get

that

𝜆𝑰 + ID (𝜋) ≽ 𝜆𝑰 +
1

2

( 1
2

ID (𝜋G) +
1

4𝑁 Γ

𝑁 Γ∑
𝑡=1

𝒙𝑡𝒙
⊤
𝑡 )

≽
1

8𝑁 Γ
𝑼𝑁 Γ ≽

1

8𝑁 Γ
𝑾𝑛 . (23)

Therefore,

𝑛∑
𝑖=1

∑
𝑡 ∈𝜏𝑖

max

𝒙∈𝑋𝑡

𝒙⊤ (𝑁 Γ(𝜆𝑰 + ID (𝜋)))−1𝒙 ≤ 8

𝑛∑
𝑖=1

∑
𝑡 ∈𝜏𝑖

max

𝒙∈𝑋𝑡

𝒙⊤𝑾−1𝑛 𝒙

≤ 8

𝑛∑
𝑖=1

∑
𝑡 ∈𝜏𝑖

max

𝒙∈𝑋𝑡

𝒙⊤𝑾−1𝑖 𝒙 = 8

𝑛∑
𝑖=1

∑
𝑡 ∈𝜏𝑖

𝒙⊤𝑡 𝑾
−1
𝑖 𝒙𝑡

≤ 16

𝑛∑
𝑖=1

∑
𝑡 ∈𝜏𝑖

𝒙⊤𝑡 𝑼
−1
𝑡 𝒙𝑡 ≤ 16

𝑁 Γ∑
𝑡=1

𝒙⊤𝑡 𝑼
−1
𝑡 𝒙𝑡 (24)

≤ 32 ln

det𝑼𝑁 Γ

det𝑼0
≤ 𝑂 (𝑑 log𝑑) . (25)
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where the first inequality in (24) is by Lemma 12 in [1], the first

inequality in (25) is by the celebrated elliptical potential lemma

(Lemma 5, stated at the end of this subsection)
10
, and the second

inequality in (25) is due to (18).

It remains to establish (22). Note that

ID (𝜋) =
1

2

ID (𝜋G) +
1

2

𝑛∑
𝑖=1

|𝜏𝑖 |
|𝜏1 | + · · · + |𝜏𝑛 |

E
𝑋∼D

I𝑋 (𝜋A𝑾−1
𝑖

)

≽
1

2

ID (𝜋G) +
1

2

𝑛∑
𝑖=1

|𝜏𝑖 |
|𝜏1 | + · · · + |𝜏𝑛 |

1

2|𝜏𝑖 |
∑
𝑡 ∈𝜏𝑖

𝒙𝑡𝒙
⊤
𝑡

=
1

2

ID (𝜋G) +
1

4

1

𝑁 Γ − |B|

𝑛∑
𝑖=1

∑
𝑡 ∈𝜏𝑖

𝒙𝑡𝒙
⊤
𝑡 . (26)

By (17), we have

ID (𝜋G) =
1

𝑛Γ

Γ∑
𝑡=1

𝑛 × E
𝒙∼𝜋G (𝑋𝑡 )

𝒙𝒙⊤ ≽
1

𝑛Γ

∑
𝑡 ∈B

1

2𝑑
𝒙𝑡𝒙
⊤
𝑡 .

Therefore, continuing with (26), we have that

ID (𝜋) ≽
1

2𝑛𝑑Γ

∑
𝑡 ∈B

𝒙𝑡𝒙
⊤
𝑡 +

1

4𝑁 Γ

𝑛∑
𝑖=1

∑
𝑡 ∈𝜏𝑖

𝒙𝑡𝒙
⊤
𝑡

≽
1

4𝑁 Γ

∑
𝑡 ∈B

𝒙𝑡𝒙
⊤
𝑡 +

1

4𝑁 Γ

𝑛∑
𝑖=1

∑
𝑡 ∈𝜏𝑖

𝒙𝑡𝒙
⊤
𝑡 =

1

4𝑁 Γ

𝑁 Γ∑
𝑡=1

𝒙𝑡𝒙
⊤
𝑡 , (27)

which concludes the proof of the theorem. □

Now we state a generalized version of the elliptical potential

lemma. Compared to the usual version in literature (e.g., [1]), our

versions works for positive semi-definite matrices 𝑿1, . . . ,𝑿𝑛 with

traces upper bounded by 1 instead of just rank-1 positive semi-

definite matrices. However, we also need the extra assumption that

Tr

(
𝑿𝑖𝑽−1

0

)
≤ 1 for all 𝑖 ∈ [𝑛]. The proof of Lemma 5 is deferred to

the full version.

Lemma 5 (Generalized Elliptical Potential Lemma). Suppose
we are given a sequence of positive semi-definite matrices 𝑿1, . . . ,𝑿𝑛
such that Tr(𝑿𝑖 ) ≤ 1 for every 𝑖 ∈ [𝑛]. Let 𝚲0 be a positive semi-

definite matrix and let𝚲𝑖 = 𝚲𝑖−1+𝑿𝑖 for 𝑖 ∈ [𝑛]. WhenTr
(
𝑿𝑖𝚲

−1
0

)
≤

1 for 𝑖 ∈ [𝑛], we have ∑𝑛
𝑖=1 Tr

(
𝑿𝑖𝚲

−1
𝑖−1

)
≤ 2 ln

det𝚲𝑛

det𝚲0

.

5.1 The Mixed-Softmax Policies with More
Robustness

To make the sample policy learnable, instead of the mixed-argmax

policies, we will deal with the more robust mixed-softmax policies.

To define this class of policies, we first define the softmax function

as a distribution such that

softmax𝛼 (𝑠1, . . . , 𝑠𝑘 ) = 𝑖 with probability

𝑠𝛼
𝑖

𝑠𝛼
1
+ · · · + 𝑠𝛼

𝑘

,

where we assume that 𝑠𝑖 ≥ 0 for all 𝑖 ∈ [𝑘].
It is easy to check the following fact.

10
We invoke the lemma by letting 𝑿𝑡 in the lemma statement be 𝒙𝑡𝒙⊤𝑡 and letting

𝚲𝑡 in the lemma statement be 𝑼𝑡 . Note that 𝚲0 = 𝑼0 ≽ 𝑰 so that Tr

(
𝑿𝑡𝚲

−1
0

)
≤ 1 is

satisfied.

Fact 1. Suppose 𝛼 ≥ log𝑘 , then

E
𝑖∼softmax𝛼 (𝑠1,...,𝑠𝑘 )

[𝑠𝑖 ] ≥
1

4

×max{𝑠1, . . . , 𝑠𝑘 }.

Proof. Let 𝑖∗ be an index that maximizes 𝑠𝑖 . Note that for all 𝑗

such that 𝑠 𝑗 ≤ (1/2) × 𝑠𝑖∗ , the probability mass that softmax put

for 𝑗 is at most (1/𝑘) of that for 𝑖∗. Therefore,

Pr

𝑖∼softmax𝛼 (𝑠1,...,𝑠𝑘 )
[𝑠𝑖 ≥

1

2

× 𝑠𝑖∗ ] ≥
1

2

,

and the fact follows. □

We now define the class of mixed-softmax policies.

Definition 5.3 (Softmax and mixed-softmax policies). Fix 𝛼 =

log𝐾 (where 𝐾 is the number of arms per time step). Suppose

we are given a positive semi-definite matrix 𝑴 ≽ 0. We define the

softmax policy

𝜋S𝑴 (𝑋 ) = 𝒙𝑖 , where 𝑋 = {𝒙1, . . . , 𝒙𝑘 }, 𝑘 ≤ 𝐾,
and 𝑖 ∼ softmax𝛼 (𝒙⊤1 𝑴𝒙1, . . . , 𝒙

⊤
𝑘
𝑴𝒙𝑘 ) .

Suppose we are given a setM = {(𝑝𝑖 ,𝑴𝑖 )}𝑛𝑖=1 such that 𝑝𝑖 ≥ 0

and 𝑝1 + · · · + 𝑝𝑛 = 1. We define the mixed-softmax policy

𝜋MS
M (𝑋 ) =

{
𝜋G (𝑋 ), with probability 1/2,
𝜋S𝑴𝑖
(𝑋 ), with probability 𝑝𝑖/2.

Similarly to Theorem 3, we prove the following theorem on the

existence of good mixed-softmax policies.

Theorem 4. Let 𝑆 = {𝑋1, 𝑋2, . . . , 𝑋Γ} be a (multi-)set and let
D = Unif (𝑆). For any 𝜆 ∈ (0, 1), there exists a mixed-softmax policy
𝜋MS
M with parametersM = {(𝑝𝑖 ,𝑴𝑖 )}𝑛𝑖=1 such that

(1) 𝑛 ≤ 4𝑑 log𝑑 ;
(2) for all 𝑖 ∈ [𝑛], 𝑝𝑖 ≥ 1/𝑑3 and 𝑑−1𝑰 ≼ 𝑴𝑖 ≼ 𝜆

−1𝑰 ;
(3) V(𝜆)D (𝜋

MS
M ) ≤ 𝑂 (𝑑 log𝑑).

The proof of Theorem 4 is very similar to that of Theorem 3, and

is deferred to the full version.

6 LEARNING THE DISTRIBUTIONAL
G-OPTIMAL DESIGN

In this section, we present an algorithm to learn a good mixed-

softmax policy using only poly(𝑑) log𝛿−1 samples with success

probability at least (1 − 𝛿).

The Natural Idea and its Counterexample. The most natural idea

is to first draw 𝛾 independent samples 𝑋1, . . . , 𝑋𝛾 ∼ D and form an

empirical distribution S = Unif{𝑋1, . . . , 𝑋𝛾 }, learn a good policy 𝜋

for S according to Theorem 4, and hope that 𝜋 also works well for

D (i.e., 𝜋 generalizes to the true distribution). Unfortunately, such

an approach is unlikely to work. Below we illustrate an example

where, even when the number of samples 𝛾 is very large, a good

policy for S still fails to generalize toD with significant probability.

Let {𝒆𝑖 }𝑑𝑖=1 be the set of canonical basis, and 𝜀 > 0 be a parameter

to be determined later. Let 𝑌1 = {𝒆1} and 𝑌𝑖 = {
√
1 − 𝜀2𝒆𝑖 + 𝜀𝒆1, 𝒆𝑖 }

for 𝑖 ∈ {2, 3, . . . , 𝑑}. Consider D supported on {𝑌1, . . . , 𝑌𝑑 } the
probability mass for 𝑌1 is 1/(𝑑𝛾) and the probability for 𝑌𝑖 (𝑖 ≥ 2)

is 𝑞 = (1 − 1/(𝑑𝛾))/(𝑑 − 1). If we make 𝛾 independent samples
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Algorithm 3: CoreLearning for the Distributional G-

Optimal Design

Input: 𝜆 ∈ (exp(−𝑑), 1), and 𝑆 = {𝑋1, . . . , 𝑋𝛾 }
Output: A mixed-softmax policy 𝜋

1: Set constant 𝑐 = 6;

2: Find a core 𝐶 ⊆ 𝑆 = {𝑋1, . . . , 𝑋𝛾 } (using
CoreIdentification (Algorithm 4), see Lemma 6) such

that

max

𝑋 ∈𝐶
max

𝒙∈𝑋
{𝒙⊤ (𝜆𝑰 + I

Unif (𝐶) (𝜋G))−1𝒙} ≤ 𝑑𝑐 , (28)

and

|𝐶 |
𝛾
≥ 1 −𝑂 (𝑑3−𝑐 log 𝜆−1), (29)

which is at least 1/2 for sufficiently large 𝑑 ;

3: Compute the mixed-softmax policy 𝜋 for the samples in 𝐶

(according to Theorem 4) and return 𝜋 ;

𝑋1, . . . , 𝑋𝛾 ∼ D, with probability Ω(1/𝑑), we will see 𝑌1 once

among the samples, and the probability mass of 𝑌1 in S becomes

1/𝛾 , which is 𝑑 times its true probability mass. Due to this discrep-

ancy, we will show that a good sample policy for the empirical

distribution S does not work as well on true distribution D.

We consider the sample policy 𝜋 such that 𝜋 (𝑋 ) = 𝒆𝑖 when
𝑋 = 𝑌𝑖 . When the event above happens, we have that IS (𝜋) =
diag(1/𝛾, 𝑝2, . . . , 𝑝𝑑 ) where 𝑝𝑖 is the probability mass for 𝑌𝑖 in S
(for 𝑖 ≥ 2). When 𝜀 =

√
𝑑/𝛾 , we can verify that 𝜋 is a good policy

for the empirical distribution S since

V
(0)
S (𝜋) = E

𝑋∼S
max

𝒙∈𝑋
𝒙⊤ IS (𝜋)−1𝒙

=
1

𝛾
· 𝛾 +

𝑑∑
𝑖=2

𝑝𝑖 ·max{𝜀2𝛾 + (1 − 𝜀2) · 1
𝑝𝑖
,
1

𝑝𝑖
} ≤ 𝑂 (𝑑).

However, for the true distribution D, we have that ID (𝜋) =
diag(1/(𝑑𝛾), 𝑞, . . . , 𝑞), and for any 𝜆 ∈ [0, 1/(𝑑𝛾)), it holds that

V
(𝜆)
D (𝜋) = E

𝑋∼D
max

𝒙∈𝑋
𝒙⊤ (𝜆𝑰 + ID (𝜋))−1𝒙

=
1

𝑑𝛾
· 1

𝜆 + 1/(𝑑𝛾)

+ (1 − 1

𝑑𝛾
) ·max{𝜀2 · 1

𝜆 + 1/(𝑑𝛾) + (1 − 𝜀
2) · 1

𝜆 + 𝑞 ,
1

𝜆 + 𝑞 }

≥ Ω(𝑑2) .

Note that in this example, the only constraint for𝛾 is that 1/(𝑑𝛾) >
𝜆 ⇔ 𝛾 < 1/(𝑑𝜆). Therefore, we have illustrated that, even when𝛾 is
greater than an arbitrary polynomial of 𝑑 , with probability Ω(1/𝑑),
a good policy for the empirical distribution S does not generalize

to the true distribution D.
11

By adding more dimensions, we can

even strengthen this counterexample so that the failure probability

becomes (1 − 𝑜 (1)). Using similar tricks, we can also show that a

good mixed-softmax policy does not generalize well.

11
Although in our later algorithm, we only learn a policy with small 𝜆-deviation as

defined in (30), however, one can also verify that the 𝜆-deviation of 𝜋 over D in this

counterexample is also high.

Algorithm 4: CoreIdentification
Input: 𝜆 ∈ (0, 1), and 𝑆 = {𝑋1, . . . , 𝑋𝛾 }
Output: A core set 𝐶 ⊆ 𝑆

1: 𝐶1 = 𝑆 ;

2: for 𝜉 = 1, 2, 3, . . . do
3: if 𝐶𝜉 satisfies (39) then return 𝐶𝜉 ;
4: else 𝐶𝜉+1 = {𝑋𝑖 ∈ 𝐶𝜉 :

max

𝒙∈𝑋𝑖

𝒙⊤ (𝜆𝑰 + 1

𝛾

∑
𝑋𝑖 ∈𝐶𝜉

I𝑋𝑖
(𝜋G))−1𝒙 ≤ (1/2)𝑑𝑐 };

Our Algorithm: CoreLearning. The key message from the coun-

terexample above is that if a context direction in R𝑑 appears with

tiny probability in D, a limited amount of samples might greatly

change its probability in the empirical distribution S, and fail the

generalization argument. To address this issue, the idea of our new

algorithm is to prune these infrequent context directions, learn a

mixed-softmax policy over the remaining “core” directions, and

finally argue that the infrequent directions can be properly handled

by the 𝜋G component in the mixed-softmax policy.

In light of this idea, we propose CoreLearning (Algorithm 3).

In this algorithm, instead of directly learning the policy from the

whole set of samples, we first find a large enough core set 𝐶 at

Line 2, and then learn the mixed-softmax policy only using the

samples in 𝐶 . The key property of the core is specified by (28),

which is a technical realization of our pruning idea. The property

requires that every direction in 𝐶 should be well explored by the

𝜋G policy and only the context vectors within 𝐶 . To see how the

core set helps to resolve the issue in our counterexample, we note

that the infrequent set 𝑌1 is the main trouble-maker. However,

even if 𝑌1 happens to appear among the samples {𝑋1, . . . , 𝑋𝛾 }, it
will not be included in the core since its corresponding variation

max𝒚∈𝑌1 𝒚
⊤ (𝜆𝑰 + I

Unif (𝐶) (𝜋G))−1𝒚 ≥ (𝜆 + 1/𝛾)−1 > 𝑑𝑐 when 𝜆 is

sufficiently small and 𝛾 ≫ 𝑑𝑐 . Therefore, CoreLearning will learn

a sample policy with 𝑌1 pruned away, and void our counterexample.

While the core set property (28) is much desirable, even whether

such a core set with cardinality constraint (29) exists is not obvious.

In Section 6.1, we state Lemma 6 to show its existence, and provide

an efficient algorithm CoreIdentification to find one.

We now state the main theorem of this section (the guarantee

for Algorithm 3).

Theorem 5. Suppose that 𝜆 ∈ (exp(−𝑑), 1). Let 𝑋1, . . . , 𝑋𝛾 ∼ D
be i.i.d. drawn from the distribution D. Let 𝜋 be the returned policy
of Algorithm 3. We have that

Pr

[
Ṽ
(𝜆)
D (𝜋) ≤ 𝑂 (

√
𝑑 log𝑑)

]
≥ 1 − exp

(
𝑂 (𝑑4 log2 𝑑) − 𝛾𝑑−2𝑐 · 2−16

)
= 1 − exp

(
𝑂 (𝑑4 log2 𝑑) − 𝛾𝑑−12 · 2−16

)
,

where we define the 𝜆-deviation of 𝜋 over D by

Ṽ
(𝜆)
D (𝜋)

def

= E
𝑋∼D

√
max

𝒙∈𝑋
{𝒙⊤ (𝜆𝑰 + ID (𝜋))−1𝒙}. (30)
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Note that we are only able to provide the upper bound for

Ṽ
(𝜆)
D (𝜋) instead of V

(𝜆)
D (𝜋). However, this is still enough for our

linear bandit application.

We now sketch the proof of Theorem 5, and the details can be

found in the full version. For notational convenience, we define

S def

= Unif (𝑆), C def

= Unif (𝐶), and we define the mollifier

𝜑𝛽 (𝑥)
def

=


1, when 𝑥 ≤ 𝛽,
2𝛽−𝑥
𝛽
, when 𝛽 ≤ 𝑥 ≤ 2𝛽,

0, when 𝑥 > 2𝛽.

which is a continuous surrogate of the indicator function 1[𝑥 ≤ 𝛽].
The proof of Theorem 5 consists of the following four steps.

Step I: Lower Bounding the Information Matrix. Via uniform con-

centration inequalities, we are able to prove that with probability

1 − exp
(
𝑂 (𝑑3 log𝑑 log

(
𝑑𝜆−1

)
) − 𝛾𝑑−2𝑐 · 2−16

)
, it holds that

𝜆𝑰 + ID (𝜋) ≽
1

8

(𝜆𝑰 + IS (𝜋)) . (31)

Step II: Upper Bounding the Variation in the “Core Directions”. Let
𝑾 = 𝜆𝑰 +IS (𝜋) ≽ 1

2
(𝜆𝑰 +IC (𝜋)). The goal of this step is to establish

(36). Via uniform concentration inequalities, we can show that, with

probability 1 − exp
(
𝑂 (𝑑2 log

(
𝑑𝜆−1

)
) − 𝛾𝑑2−2𝑐/128

)
, it holds that

E
𝑋∼D

𝜑
4𝑑𝑐 (max

𝒙∈𝑋
{𝒙⊤𝑾−1𝒙}) ·

√
max

𝒙∈𝑋
{𝒙⊤𝑾−1𝒙}

≤ 𝑑 + 1

𝛾

𝛾∑
𝑖=1

√
max

𝒙∈𝑋𝑖

{𝒙⊤𝑾−1𝒙}. (32)

Let 𝜁 = 1 − |𝐶 |/|𝑆 | = 1 − |𝐶 |/𝛾 ≤ 𝑂 (𝑑3−𝑐 log(1/𝜆)). Note that

1

𝛾

𝛾∑
𝑖=1

√
max

𝒙∈𝑋𝑖

{𝒙⊤𝑾−1𝒙} ≤ 1

𝛾

∑
𝑋𝑖 ∈𝐶

√
max

𝒙∈𝑋𝑖

{2𝒙⊤ (𝜆𝑰 + IC (𝜋))−1𝒙}

+ 1

𝛾

∑
𝑋𝑖 ∈𝑆\𝐶

√
max

𝒙∈𝑋𝑖

{𝒙⊤ (𝜆𝑰 + (𝜁 /2) I
Unif (𝑆\𝐶) (𝜋G))−1𝒙}. (33)

For the first term in (33), by the guarantee of Theorem 4, we have

1

𝛾

∑
𝑋𝑖 ∈𝐶

√
max

𝒙∈𝑋𝑖

{2𝒙⊤ (𝜆𝑰 + IC (𝜋))−1𝒙} ≤ 𝑂 (
√
𝑑 log𝑑) . (34)

For the second term in (33), by the variation bound for𝜋G (Lemma 4),

we can prove that

1

𝛾

∑
𝑋𝑖 ∈𝑆\𝐶

√
max

𝒙∈𝑋𝑖

{𝒙⊤ (𝜆𝑰 + (𝜁 /2) I
Unif (𝑆\𝐶) (𝜋G))−1𝒙} ≤ 𝑂 (

√
𝑑).

(35)

Combining (32), (33), (34), (35), we have that

E
𝑋∼D

𝜑
4𝑑𝑐 (max

𝒙∈𝑋
{𝒙⊤𝑾−1𝒙}) ·

√
max

𝒙∈𝑋
{𝒙⊤𝑾−1𝒙} ≤ 𝑂 (

√
𝑑 log𝑑).

(36)

Step III: Upper Bounding the Variation in the “Infrequent Direc-
tions”. The goal of this step is to establish (38). Via concentration

inequalities, we can prove that, with probability

1 − exp
(
𝑂 (𝑑2 log

(
𝑑𝜆−1

)
) − 𝛾𝑑−2/2

)
,

it holds that

E
𝑋∼D

𝜑
4𝑑𝑐 (max

𝒙∈𝑋
{𝒙⊤𝑾−1𝒙}) ≥ 1 −𝑂 (𝑑−1).

Let 𝜏𝑋 = 1 − 𝜑
4𝑑𝑐 (max𝒙∈𝑋 {𝒙⊤𝑾−1𝒙}). We have that E𝑋∼D 𝜏𝑋 ≤

𝑂 (𝑑−1). Using Cauchy-Schwarz and by the variation bound for 𝜋G

(Lemma 4), we can show that

E
𝑋∼D

𝜏𝑋

√
max

𝒙∈𝑋
{𝒙⊤𝑾−1𝒙} ≤ 𝑂 (

√
𝑑). (37)

Altogether, we have that

E
𝑋∼D
(1 − 𝜑

4𝑑𝑐 (max

𝒙∈𝑋
{𝒙⊤𝑾−1𝒙})) ·max

𝒙∈𝑋
{𝒙⊤𝑾−1𝒙} ≤ 𝑂 (

√
𝑑).
(38)

Step IV: Putting Things Together. Combining (36) and (38), we

have

E
𝑋∼D

√
max

𝒙∈𝑋
{𝒙⊤𝑾−1𝒙} ≤ 𝑂 (

√
𝑑 log𝑑) .

By the definition of𝑾 , and together with (31), we have that

Ṽ
(𝜆)
D (𝜋) = E

𝑋∼D

√
max

𝒙∈𝑋
{𝒙⊤ (𝜆𝑰 + ID (𝜋))−1𝒙} ≤ 𝑂 (

√
𝑑 log𝑑),

proving Theorem 5.

6.1 Finding the Core
We now present our algorithm (CoreIdentification, Algorithm 4)

to find the core, and state the following lemma as its guarantee.

Lemma 6. Let 𝑆 = {𝑋1, . . . , 𝑋𝛾 } be a sequence/multi-set of context
sets. Algorithm 4 finds a core set 𝐶 ⊆ 𝑆 in 𝑂 (𝑑 log 𝜆−1) iterations
that satisfies (29) and

max

𝑋𝑖 ∈𝐶
max

𝒙∈𝑋𝑖

𝒙⊤ (𝜆𝑰 + 1

𝛾

∑
𝑋𝑖 ∈𝐶

I𝑋𝑖
(𝜋G))−1𝒙 ≤ 𝑑𝑐 . (39)

We remark that (39) implies (28), because
1

𝛾

∑
𝑋𝑖 ∈𝐶 I𝑋𝑖

(𝜋G) ≼
I
Unif (𝐶) (𝜋G). The proof of Lemma 6 is deferred to the full version

due to space constraints.

7 PUTTING EVERYTHING TOGETHER: THE
OPTIMAL BATCH ALGORITHM

Our final algorithm with 𝑂 (log log𝑇 ) static-grid batches and opti-

mal minimax expected regret (up to poly log𝑇 factors) is presented

in Algorithm 5. Compared with BatchLinUCB and BatchLinUCB-

KW, the main difference here is the addition of from Line 11 to

Line 16, which not only learns the new estimate
ˆ𝜽𝑘 , but also the

new sample policy 𝜋𝑘 . Learning of the two objects are done through

disjoint sets of samples (A and B). This is because thatD𝑘 depends
on

ˆ𝜽𝑘 (which is learned from A) and we have to make B disjoint

from A so as to ensure elements in 𝑆 are independently sampled

from D𝑘 . The following theorem bounds the expected regret of

Algorithm 5.
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Algorithm 5: BatchLinUCB-DG

1: 𝑀 = ⌈log log𝑇 ⌉ + 1, 𝛼 ← 10

√
ln

2𝑑𝐾𝑇
𝛿

, 𝜋0 = 𝜋G,

T = {T1,T2, . . . ,T𝑀 }, where T0 = 0, T1 =
√
𝑇 , T2 = 2

√
𝑇 ,

and T𝑖 = 𝑇 1−2−(𝑖−1)
for 𝑖 ∈ {3, . . . , 𝑀 − 1},T𝑀 = 𝑇 ;

2: for 𝑘 ← 1, 2, . . . , 𝑀 do
3: for 𝑡 ← T𝑘−1 + 1,T𝑘−1 + 2, . . . ,T𝑘 do
4: 𝐴

(0)
𝑡 ← [𝐾], 𝑟 (0)

𝑡𝑖
← 0, 𝜔

(0)
𝑡𝑖
← 1;

5: for 𝜅 ← 1, 2, . . . , 𝑘 − 1 do ⊲ Eliminate

6: ∀𝑖 ∈ 𝐴(𝜅−1)𝑡 : 𝑟
(𝜅)
𝑡𝑖
← 𝒙⊤

𝑡𝑖
ˆ𝜽𝜅 , 𝜔

(𝜅)
𝑡𝑖
←

𝛼

√
𝒙⊤
𝑡𝑖
𝚲
−1
𝜅 𝒙𝑡𝑖 ;

7: 𝐴
(𝜅)
𝑡 ← {𝑖 ∈ 𝐴(𝜅−1)𝑡 | 𝑟 (𝜅)

𝑡𝑖
+ 𝜔 (𝜅)

𝑡𝑖
≥

𝑟
(𝜅)
𝑡 𝑗
− 𝜔 (𝜅)

𝑡 𝑗
,∀𝑗 ∈ 𝐴(𝜅−1)𝑡 };

8: 𝐴𝑡 ← 𝐴
(𝑘−1)
𝑡 ;

9: Select 𝑖𝑡 such that 𝒙𝑡,𝑖𝑡 ∼ 𝜋𝑘−1 ({𝒙𝑡,𝑖 : 𝑖 ∈ 𝐴𝑡 }), play
arm 𝑖𝑡 , and receive reward 𝑟𝑡 ;

10: 𝒙𝑡 ← 𝒙𝑡,𝑖𝑡 ;

11: Evenly divide {T𝑘−1 + 1, . . . ,T𝑘 } into two sets A,B;
12: 𝜆 ← 32 ln(2𝑑𝑇 /𝛿),𝚲𝑘 ← 𝜆𝑰 +∑

𝜏 ∈A 𝒙𝜏𝒙⊤𝜏 ,
𝝃𝑘 ←

∑
𝜏 ∈A 𝑟𝜏𝒙𝜏 , ˆ𝜽𝑘 ← 𝚲

−1
𝑘
𝝃𝑘 ;

13: for 𝜏 ∈ B do

14: ∀𝑖 ∈ 𝐴(𝑘−1)𝜏 : 𝑟
(𝑘)
𝑡𝑖
← 𝒙⊤

𝑡𝑖
ˆ𝜽𝑘 , 𝜔

(𝑘)
𝑡𝑖
← 𝛼

√
𝒙⊤
𝑡𝑖
𝚲
−1
𝑘
𝒙𝑡𝑖 ;

15: 𝐴
(𝑘)
𝑡 ← {𝑖 ∈ 𝐴(𝑘−1)𝑡 | 𝑟 (𝑘)

𝑡𝑖
+ 𝜔 (𝑘)

𝑡𝑖
≥

𝑟
(𝑘)
𝑡 𝑗
− 𝜔 (𝑘)

𝑡 𝑗
,∀𝑗 ∈ 𝐴(𝑘−1)𝑡 };

16: Use the context sets 𝑆 = {{𝒙𝜏,𝑎 | 𝑎 ∈ 𝐴(𝑘)𝜏 }}𝜏 ∈B and

𝜆 = 1/𝑇 as the input of Algorithm 3 and learn the

sample policy 𝜋𝑘 ;

Theorem 6. Assume that 𝑇 ≤ Ω(max{𝑒𝑑 , 𝑑32 log4 𝑑 log2 𝛿−1}).
With probability at least (1 − 𝛿), the expected regret of Algorithm 5
is bounded as

𝑅𝑇
BatchLinUCB-DG

≤ 𝑂 (
√
𝑑𝑇 log𝑑 log(𝑑𝐾𝑇 /𝛿) × log log𝑇 ) .

Note that the assumption that 𝑇 ≤ exp(𝑑) is not restrictive
since otherwise we have log𝑇 ≥ Ω(𝑑) and BatchLinUCB-KW

(Theorem 2) already achieves the minimax optimal regret up to

poly log𝑇 factors. We also note that the 𝐾 in the regret bound

can be replaced by min{𝐾,𝑑 log𝑇 } by a simple 𝜀-net argument, so

that our regret bound becomes minimax-optimal for all 𝐾 (up to

poly log𝑇 factors).

Proof of Theorem 6. We adopt the notations in Section 4. Con-

ditioned on the batches 1, 2, . . . , 𝑘 − 1, we can bound the expected

regret incurred in batch 𝑘 similarly as (5), and have that with prob-

ability at least (1 − 𝛿T𝑘/𝑇 2),

𝑅𝑘 ≤ 4𝛼T𝑘 × E
𝑋∼D𝑘−1

max

𝒙∈𝑋

√
𝒙⊤𝚲−1

𝑘−1𝒙 . (40)

Furthermore, similar to Lemma 2, we can show that for each

batch 𝑘 (𝑘 < 𝑀), with probability (1 − 𝛿/𝑇 2), we have that

𝚲𝑘 ≽
T𝑘
32

(
ln𝑇

T𝑘
𝑰 + E

𝑋∼D𝑘−1
E

𝒙∼𝜋𝑘−1 (𝑋 )
[𝒙𝒙⊤]

)

≽
T𝑘
32

(
𝑇−1 · 𝑰 + ID𝑘−1 (𝜋𝑘−1)

)
. (41)

Note that compared with (6), (41) has a worse constant 32 since A
only contains half of the samples.

For each 𝑘 < 𝑀 , note that at Line 16, 𝑆 = {{𝒙𝜏,𝑎 | 𝑎 ∈ 𝐴(𝑘)𝜏 }}𝜏 ∈B
contains i.i.d. samples from D𝑘 , and |𝑆 | ≥ |T𝑘 − T𝑘−1 |/2 ≥

√
𝑇 /4.

By Theorem 5, we have that with probability 1−exp(𝑂 (𝑑4 log2 𝑑) −√
𝑇𝑑−12 · 2−18) ≥ 1 − 𝛿/𝑇 2

(since 𝑇 ≥ Ω(𝑑32 log4 𝑑 log2 (𝛿−1)), it
holds that

Ṽ
(1/𝑇 )
D𝑘
(𝜋𝑘 ) ≤ 𝑂 (

√
𝑑 log𝑑) . (42)

The expected regret incurred during batch 1 and batch 2 is at

most 2

√
𝑇 . For any 𝑘 ≥ 3, assuming (40) holds for batch 𝑘 , and (41)

and (42) hold for batch (𝑘 − 1), we have that

𝑅𝑘 ≤ 4𝛼T𝑘 E
𝑋∼D𝑘−1

max

𝒙∈𝑋

√
𝒙⊤𝚲−1

𝑘−1𝒙

≤ 4

√
32𝛼T𝑘√
T𝑘−1

E
𝑋∼D𝑘−1

max

𝒙∈𝑋

√
𝒙⊤

(
𝑇−1𝑰 + ID𝑘−2 (𝜋𝑘−2)

)−1 𝒙
≤ 32𝛼

√
𝑇 · E

𝑋∼D𝑘−2
max

𝒙∈𝑋

√
𝒙⊤

(
𝑇−1𝑰 + ID𝑘−2 (𝜋𝑘−2)

)−1 𝒙 (43)

≤ 32𝛼
√
𝑇 · Ṽ(1/𝑇 )D𝑘−1

(𝜋𝑘−1) ≤ 𝑂 (
√
𝑑𝑇 log𝑑 log(𝑑𝐾𝑇 /𝛿)),

where (43) is because that 𝑋 ∼ D𝑘−1 can be sampled via first

drawing 𝑋 ′ ∼ D𝑘−2, then performing one-step elimination on 𝑋 ′,
and getting 𝑋 ⊆ 𝑋 ′.

Finally, collecting the failure probabilities for all 𝑂 (log log𝑇 )
batches, we prove the desired regret bound. □
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