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Abstract
We introduce a new class of Runge–Kutta type methods suitable for time stepping to

propagate hyperbolic solutions within tent-shaped spacetime regions. Unlike standard

Runge–Kutta methods, the new methods yield expected convergence properties when

standard high order spatial (discontinuous Galerkin) discretizations are used. After pre-

senting a derivation of nonstandard order conditions for these methods, we show numerical

examples of nonlinear hyperbolic systems to demonstrate the optimal convergence rates.

We also report on the discrete stability properties of these methods applied to linear

hyperbolic equations.

Keywords Local time stepping � Spacetime � Causality

Mathematics Subject Classification 65M60 � 65M20

1 Introduction

For simulating wave phenomena, the state of the art relies heavily on efficient and

accurate numerical solution techniques for hyperbolic systems. This paper is concerned

with those solution techniques that proceed by subdividing the spacetime into tent-

shaped subregions satisfying a causality condition. Just as light cones are often used to

delineate what is causally possible and impossible in the spacetime, tent-shaped space-

time regions are natural to impose causality when numerically solving hyperbolic

equations. By constraining the height of the tent pole, erected vertically in an increasing

time direction, one can ensure that the tent encloses the domain of dependence of all its

points. This constraint on the tent pole height is a causality condition that a numerical

scheme using such tents should satisfy. The spacetime subdivision into tents may be

unstructured, thus allowing such schemes to advance in time by different amounts at

This article is part of the topical collection ‘‘Waves 2019 – invited papers’’ edited by Manfred Kaltenbacher
and Markus Melenk.

& Christoph Wintersteiger
christoph.wintersteiger@tuwien.ac.at

Extended author information available on the last page of the article

SN Partial Differential Equations and Applications

SN Partial Differ. Equ. Appl. (2020) 1:19
https://doi.org/10.1007/s42985-020-00020-4(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s42985-020-00020-4&amp;domain=pdf
https://doi.org/10.1007/s42985-020-00020-4


different spatial locations, i.e., local time stepping can be naturally built in while sub-

dividing the spacetime into tents.

The main contribution of this paper is a new explicit Runge–Kutta type time stepping

scheme for solving hyperbolic systems within a spacetime tent. Standard time stepping

methods cannot be directly applied on tents, since tents are generally not a tensor product

of a spatial domain with a time interval. A non-tensor product spacetime tent can be

mapped to a tensor product spacetime cylinder using a degenerate Duffy-like transfor-

mation. This is the basis of the Mapped Tent Pitching (MTP) schemes that we introduced

previously in Ref. [5]. As shown there, a spacetime Piola map can be used to pull back the

hyperbolic system from the tent to the spacetime cylinder. Being a tensor product domain,

the spacetime cylinder, admits the use of standard explicit time stepping schemes, like the

classical RK4 scheme. However, as we shall show here, expected convergence rates are not
observed when such standard explicit schemes are used. The cause of this problem can be

traced back to the degeneracy of the map. After illustrating this problem, we shall intro-

duce a new Structure Aware Runge–Kutta (SARK) scheme, which overcomes this

problem.

We first reported the above-mentioned order reduction in [6], where a fix was proposed

for linear hyperbolic systems, called the Structure Aware Taylor (SAT) scheme. In con-

trast, the new SARK schemes of this paper are applicable to both linear and nonlinear
hyperbolic systems.

Prior work on tent-based methods spans both the computational engineering literature

[2, 11] and numerical analysis literature [4, 12]. These works have clearly articulated the

promise of tent-based schemes, including local time stepping, even with higher order

spatio-temporal discretizations, and the opportunities to utilize concurrency. Recent

advances include tent-based Trefftz methods [13] and the use of asynchronous SDG

(spacetime discontinuous Galerkin) methods to new engineering applications [1]. One can

find explicit methods for conservation laws in the literature, like the finite volume approach

in [10], which incorporate local time stepping without the usage of a tent mesh. In contrast

to the presented MTP schemes, the extension to high order is yet to be done for those

methods.

To place the present contribution in the perspective of these existing works, a few words

regarding our focus on explicit time stepping are in order. The ratio of memory movements

to flops is very low for explicit schemes, making them highly suitable for the newly

emerging many-core processors. However, before the introduction of MTP schemes in Ref.

[5], it was not clear that such advantages of explicit time stepping could be brought to any

tent-based method. Now that we have an algorithmic avenue to perform explicit time

stepping within tent-based schemes, we turn to the study of accuracy and convergence

orders. Having encountered the unexpected roadblock of the above-mentioned conver-

gence order reduction, we have been focusing on developing time stepping techniques to

overcome it. This paper is an outgrowth of these studies.

In the next section, we quickly review the construction of MTP schemes, showing how

the main system of ordinary differential equations (ODEs) that is the subject of this paper

arises. In Sect. 3, we show why one should not use standard Runge–Kutta schemes for

solving this ODE system. Then, in Sect. 4, we propose our new SARK schemes for solving

the ODE system. Sect. 5 derives order conditions for these schemes. In Sect. 6, we study

the discrete stability of SARK schemes. Section 7 reports on the good performance of the

new schemes when applied to some standard nonlinear hyperbolic systems.
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2 Construction of mapped tent pitching schemes

In this section we give a brief overview of MTP schemes. Let T be a simplicial conforming

spatial mesh of a bounded spatial domain X0 � RN : Spacetime tents are built atop this

spatial mesh by vertically erecting tent poles at its vertices in a sequence of steps. At the ith
step, a tent Ki is added. It takes the form

Ki :¼ fðx; tÞ : x 2 xV ; si�1ðxÞ� t� sig ð1Þ

where xV is the vertex patch made up of all elements in T connected to a mesh vertex V. In

(1), the function siðxÞ is a continuous function of the spatial coordinate x that is piecewise

linear with respect to T . The graph of si represents the advancing spacetime front at the ith
step, so the tent Ki may be thought of as the spacetime domain between these advancing

fronts—see Fig. 1. Within Ki, the distance the central vertex V can advance in time is

restricted by the causality constraint

jrsij\
1

cmax

; ð2Þ

where cmax is an upper bound for the local wavespeed on Ki (clarified further below) of a

hyperbolic system under consideration. Such an upper bound is readily computable for

linear systems. It is also possible to compute such bounds for some nonlinear systems,

including the Euler system (without computing the full solution), as described in Ref. [8].

Once we have cmax, there are multiple algorithmic options for generating the advancing

fronts si satisfying (2). One such algorithm is written out in detail in our prior work [5].

The hyperbolic systems we have in mind are general systems with L unknowns in N
spatial dimensions, posed on the spacetime cylinder X :¼ X0 � ð0; tmaxÞ for some final

time tmax. To recall the standard settings in the literature, we follow [3], and assume we are

given some g : X� RL ! RL and f : X� RL ! RL�N . The standard hyperbolic problem

is to find u : X ! RL such that

otgðx; t; uÞ þ divxf ðx; t; uÞ ¼ 0 ð3Þ

where ot ¼ o=ot denotes the time derivative and divx denotes the row-wise divergence

operator. We assume that the system (3) is hyperbolic in t-direction, as defined in Ref. [3].

This implies, in particular, that the first order derivatives of components of g and f exist.

These derivatives, together with a direction vector, are then used to form a generalized

eigenproblem, whose eigenvalues are real whenever (3) is hyperbolic. The absolute values

τi

x

t

ωV

Fig. 1 Time slab in one spatial dimension with a local refinement at the left boundary, the advancing front si
at the ith step and tent Ki (red) pitched at vertex V (color figure online)
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of these eigenvalues, which depend on the direction vector and x, t, u, give wavespeeds.

Let c(x, t, u) denote the maximum of these wavespeeds over all directions. We choose the

quantity cmax in (2) to be any upper bound for these c(x, t, u) for all ðx; tÞ 2 Ki.

MTP schemes proceed by mapping each of the tents arising above to a spacetime

cylinder. To define the mapping, we consider a general tent K over any given vertex patch

xV , defined by

K :¼ fðx; tÞ : x 2 xV ;ubðxÞ� t�utðxÞg: ð4Þ

The functions ub and ut are continuous functions that are piecewise linear on the vertex

patch and may be identified as the bottom and top advancing fronts restricted to the vertex

patch xV . To map the tent K to the spacetime cylinder K̂ :¼ xV � ð0; 1Þ, we define the

transformation U : K̂ ! K by Uðx; t̂Þ :¼ ðx;uðx; t̂ÞÞ; where

uðx; t̂Þ :¼ ð1 � t̂ÞubðxÞ þ t̂utðxÞ: ð5Þ

Defining F : X� RL ! RL�ðNþ1Þ by

Fðx; t; uÞ :¼ ½f ðx; t; uÞ; gðx; t; uÞ� 2 RL�ðNþ1Þ;

we may write (3) as

divx;tFðx; t; uÞ ¼ 0:

The spacetime divergence divx;t is a row-wise operator which applies the spatial derivative

to the first N components and the temporal derivative to the last component. The well-

known Piola transformation of F, defined by F̂ ¼ detU0ð Þ F � Uð Þ U0ð Þ�T
can be simplified

after calculating the derivatives of U to

F̂ ¼ F � Uð Þ
dI �ru

0 1

� �
;

where dðxÞ ¼ utðxÞ � ubðxÞ and I 2 RN�N is the identity matrix. By the properties of the

Piola map, we then immediately have

divx;t̂ F̂ðx; t̂; ûÞ ¼ 0; ð6Þ

with û ¼ u � U and the spacetime divergence divx;t̂ on Hence we useK̂. Finally, as

described in Ref. [5], writing F̂ in terms of f and g, we find that (6) is equivalent to

ot̂ gðx; t̂; ûÞ � f ðx; t̂; ûÞruðt̂Þð Þ þ divx dðxÞf ðx; t̂; ûÞð Þ ¼ 0; ð7Þ

which is again a conservation law.

For readability, we omit the spatial variable x and pseudo-time t̂ from the arguments of

functions in (7) and simply write

ot̂ gðûÞ � f ðûÞruð Þ þ divx df ðûÞð Þ ¼ 0; ð8Þ

which describes the evolution of û along pseudo-time from t̂ ¼ 0 to t̂ ¼ 1. Since
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uðx; t̂Þ ¼ ð1 � t̂ÞubðxÞ þ t̂utðxÞ ¼ ubðxÞ þ t̂dðxÞ;

we may split gðûÞ � f ðûÞru into parts with and without explicit dependence on pseudo-

time, allowing us to rewrite (8) as

ot̂ gðûÞ � f ðûÞrubð Þ � t̂f ðûÞrdð Þ þ divx df ðûÞð Þ ¼ 0:

This equation is the starting point for our spatial discretization. We use a discontinuous

Galerkin method based on

Vh ¼ fv : vjK is a polynomial of degree � p on all spatial elements T 2 T g:

When restricted to the vertex patch xV we obtain VhðxVÞ ¼ fvjxV
: v 2 Vhg. Multiplying

(8) by a test function vh 2 Vh and integrating by parts over the patch xV , we obtain

Z
xV

d

dt̂

�
gðûÞ � f ðûÞru

�
� vh

¼
X
T�xV

Z
T

df ðûÞ : rvh �
X
F�xV

Z
F

dfnðûþ; û�Þ � svht;
ð9Þ

for all vh 2 Vh and all t̂ 2 ½0; 1�. Here and throughout, every facet F is assigned a unit

normal, simply denoted by n, whose direction is arbitrarily fixed, except when F � oX, in

which case it points outward. The traces ûþ and û� of û from either side are defined by

ûþ :¼ lim
s!0þ

ûðxþ snÞ and û� :¼ lim
s!0þ

ûðx� snÞ:

In (9), we also used a numerical flux fn on each facet F (that takes values in RL depending

on values ûþ; û� from either side) and the jump sv̂ht :¼ v̂þh � v̂�h . In these definitions,

whenever ûþ falls outside X, it is prescribed using some given boundary conditions.

Let m ¼ dimVhðxVÞ and let wi, i ¼ 1; . . .;m denote any standard local basis for

VhðxVÞ. Introducing U : ½0; 1� ! Rm, consider the basis expansion

ûðx; t̂Þ ¼
Xm
i¼1

Uiðt̂ÞwiðxÞ: ð10Þ

Equation (9) leads to an ODE system for Uðt̂Þ as follows. Define (possibly nonlinear)

operators M0 : Rm ! VhðxVÞ, M1 : Rm ! VhðxVÞ, and A : Rm ! VhðxVÞ byZ
xV

M0ðUÞvh ¼
Z
xV

gðûÞ � f ðûÞrxubð Þ � vh ð11aÞ

Z
xV

M1ðUÞvh ¼
Z
xV

f ðûÞrxd � vh ð11bÞ

Z
xV

AðUÞvh ¼
X
T�xV

Z
T

df ðûÞ : rvh �
X
F�xV

Z
F

d fnðûþ; û�Þ � svht; ð11cÞ

for all vh 2 VhðxVÞ, where û in all terms on the right hand sides above is to be expanded in

terms of U using (10).
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With these notations, problem (9) becomes the problem of finding U : ½0; 1� ! Rm

satisfying

d

dt̂
Mðt̂;Uðt̂ÞÞ ¼ AðUðt̂ÞÞ; ð12Þ

given some Uð0Þ ¼ U0 2 Rm: Here M : ½0; 1� � Rm ! VhðxVÞ is defined by

Mðt̂;WÞ ¼ M0ðWÞ � t̂M1ðWÞ; 0� t̂� 1; W 2 Rm: ð13Þ

3 Difficulty with standard time stepping

In this section, we describe the problem we must overcome, thus setting the stage for the

new schemes proposed in Sect. 4. The problem is that standard Runge–Kutta methods

when applied to the tent system (12)—after a standard reformulation—do not give

expected orders of convergence.

A standard approach to numerically solve (12) proceeds by introducing a new variable

Yðt̂Þ :¼ Mðt̂;Uðt̂ÞÞ: Then, using the inverse mapping M�1ðt̂; �Þ, the primary variable is

Uðt̂Þ ¼ M�1ðt; Yðt̂ÞÞ. Substituting this expression for U on the right hand side of (12), we

can bring (12) to the standard form

d

dt̂
Yðt̂Þ � AðM�1ðt̂; Yðt̂ÞÞÞ ¼ 0: ð14Þ

Standard ODE solvers, such as the classical explicit RK4 method, may now be directly

applied to (14). Unfortunately, this leads to reduced convergence order, as we shall now

see.

Consider the example of the one-dimensional Burgers’ equation

otuðx; tÞ þ oxuðx; tÞ2 ¼ 0; 8ðx; tÞ 2 ½0; 1� � ð0; tmax�; ð15aÞ

with initial values set by

uðx; 0Þ ¼ exp
�
� 50

�
x� 1

2

�2�
; 8x 2 ½0; 1�; ð15bÞ

an inflow boundary condition an x ¼ 0, and an outflow boundary condition at x ¼ 1. Let

uhðxÞ be the numerical solution of (15) at t ¼ tmax obtained using the DG spatial dis-

cretization with p ¼ 2 in (11) and solving the resulting semidiscretized ODE system using

one of the standard RK methods as mentioned above. The final time tmax ¼ 0:1 is chosen

such that the exact solution is still a smooth function (before the onset of shock). Therefore

no regularization or limiting is expected to be essential to witness high order convergence.

The exact solution at tmax shown in Fig. 2a is obtained by the method of characteristics

together with a Newton method. Thus one would expect the error

eh :¼ kuð�; 0:1Þ � uhkL2ð½0;1�Þ ð15cÞ

to go to zero at a rate of Oðh3Þ. However our observations in Fig. 2b run counter to that

expectation. Figure 2b reports the rates we observed when two standard time stepping

schemes were used to solve (14), namely the two-stage (RK2) and the four-stage (RK4)

explicit Runge–Kutta time stepping schemes. Although we see third order convergence for

the first few refinement steps, the rate eventually drops to first order for both methods. We
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shall return to this example in Sect. 7.1 after developing a method without this convergence

reduction.

4 Structure aware Runge–Kutta type methods

In this section, we develop specialized Runge–Kutta type schemes that do not show the

above mentioned order loss of classical Runge–Kutta schemes.

We motivate the definition of the new scheme by reformulating (12) in terms of two

variables Zðt̂Þ and Yðt̂Þ, defined by

Zðt̂Þ ¼ M0ðUðt̂ÞÞ; Yðt̂Þ ¼ Mðt̂;Uðt̂ÞÞ ¼ Zðt̂Þ � t̂M1ðUðt̂ÞÞ:

Then (12) implies

Y 0 ¼ AðUðt̂ÞÞ; Z 0 ¼ AðUðt̂ÞÞ þ ðt̂M1ðUðt̂ÞÞÞ0; ð16Þ

together with the initial conditions Yð0Þ ¼ Zð0Þ ¼ M0ðU0Þ: Here and throughout we use

primes (0) to abbreviate d=dt̂. The key idea is to avoid the inversion of the time-dependent

M at all t̂, limiting the inversion to just that of M0. Assuming we can compute the time-

independent inverse M�1
0 , we define

~A ¼ A �M�1
0 ; ~M1 ¼ M1 �M�1

0 :

Then, (16) yields the following ODE system for Y and Z on 0\t̂\1:

Z 0 ¼ ~AðZðt̂ÞÞ þ ðt̂ ~M1ðZðt̂ÞÞÞ0; ð17aÞ

Y 0 ¼ ~AðZðt̂ÞÞ; ð17bÞ

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

u(x, t = 0) u(x, t = 0.1)

(a) Initial values (15b) (solid) and exact
solution of (15) at tmax = 0.1 (dashed).

10−4 10−3 10−2 10−1
10−15

10−8

10−1

mesh size h

e h

RK2 RK4 O(h)
O(h2) O(h3)

(b) Convergence rates of the spatial error
at tmax for Ralston’s method (RK2) and
the classical RK4 method.

Fig. 2 Exact solution u and convergence rates of the error eh, defined in (15c), for the example of the
Burgers’ equation described in (15)
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where Y0 ¼ M0ðU0Þ.
Integrating the equations of (17) from 0 to s, we obtain

ZðsÞ ¼ Zð0Þ þ s ~M1ðZðsÞÞ þ
Z s

0

~AðZðsÞÞ ds; ð18aÞ

YðsÞ ¼ Yð0Þ þ
Z s

0

~AðZðsÞÞ ds: ð18bÞ

The new scheme, defined below, may be thought of as motivated by quadrature

approximations to the integrals above. Note that we are only interested in such quadratures

that result in explicit schemes. Moreover, we must also approximate s ~M1ðZðsÞÞ by an

extrapolation formula that uses prior values of Z, in order to keep the scheme explicit.

Definition 1 Given an initial condition Y0, an s-stage SARK method for (17) computes

Zi ¼ Y0 þ s
X
j\i

dij ~M1ðZjÞ þ s
X
j\i

aij ~AðZjÞ; 1� i� s; ð19aÞ

Ys ¼ Y0 þ s
Xs

i¼1

bi ~AðZiÞ: ð19bÞ

This explicit method is determined by the coefficient matrices b 2 Rs�1, A 2 Rs�s, and

D 2 Rs�s:

b ¼ ðb1; . . .; bsÞ; A ¼

0

a21 0

..

. . .
.

0

as1 . . . as;s�1 0

0
BBBB@

1
CCCCA; D ¼

0

d21 0

..

. . .
.

0

ds1 . . . ds;s�1 0

0
BBBB@

1
CCCCA:

Hence we use instead of the standard Butcher tableau to

express our scheme. Here we restrict ourselves to schemes where c 2 Rs is set by the

consistency condition

ci ¼
Xi�1

j¼1

aij:

In the next section, we shall develop a theory to choose appropriate values of aij; dij; and bi.

There, Sect. 5.4 contains some specific examples of SARK scheme tableaus.

5 Order conditions for the scheme

Appropriate values of aij; dij; and bi can be found by order conditions obtained by matching

terms in the Taylor expansions of the exact solution YðsÞ and the discrete solution Ys. To

derive these order conditions we follow the general methodology laid out in Ref. [9]. For

this, we need to first compute the derivatives of the exact flow (in Sect. 5.1), then the
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derivatives of the discrete flow (in Sect. 5.2), followed by the formulation of resulting order

conditions (in Sect. 5.3).

5.1 Derivatives of the exact solution

Continuing to use primes (0) for total derivatives with respect to a single variable like d=ds,
to ease the tedious calculations below, we shall also employ the nth order Frechet

derivative of a function g : D � Rm ! V , for some vector space V. It is denoted by

gðnÞðzÞ : Rm � � � � � Rm ! V and defined by the symmetric multilinear form

gðnÞðzÞðv1; . . .; vnÞ ¼
Xm

i1;i2;...;in¼1

ongðzÞ
oxi1 � � � oxin

½v1�i1 . . .½vn�in

for any v1; . . .; vn 2 Rm: Whenever g and z : ð0; 1Þ ! Rm are sufficiently smooth for the

derivatives below to exist continuously, we have the following formulae.

d

ds
gðzðsÞÞ ¼ gð1ÞðzðsÞÞðz0ðsÞÞ; ð20aÞ

d2

ds2
gðzðsÞÞ ¼ gð2ÞðzðsÞÞðz0ðsÞ; z0ðsÞÞ þ gð1ÞðzðsÞðz00ðsÞÞ; ð20bÞ

d3

ds3
gðzðsÞÞ ¼ gð3ÞðzðsÞÞðz0ðsÞ; z0ðsÞ; z0ðsÞÞ

þ 3gð2ÞðzðsÞÞðz0ðsÞ; z00ðsÞÞ þ gð1ÞðzðsÞÞðz000ðsÞÞ;
ð20cÞ

d4

ds4
gðzðsÞÞ ¼ gð4ÞðzðsÞÞðz0ðsÞ; z0ðsÞ; z0ðsÞ; z0ðsÞÞ

þ 6gð3ÞðzðsÞÞðz0ðsÞ; z0ðsÞ; z00ðsÞÞ þ 4gð2ÞðzðsÞÞðz0ðsÞ; z000ðsÞÞ
þ 3gð2ÞðzðsÞÞðz00ðsÞ; z00ðsÞÞ þ gð1ÞðzðsÞÞðz0000ðsÞÞ:

ð20dÞ

These formulae can be derived by repeated application of the chain rule (or by applying

the Faá di Bruno formula). We will also need to use

dk

dsk
�
sgðzðsÞÞ

�
¼ s

dk

dsk
gðzðsÞÞ þ k

dk�1

dsk�1
gðzðsÞÞ; ð21Þ

which is a simple consequence of the Leibniz rule.

We start by computing the derivatives of ZðsÞ at s ¼ 0. To express such derivatives

concisely, we introduce the notation

a ¼ ~AðZð0ÞÞ; aðnÞðv1; . . .; vnÞ ¼ ~A
ðnÞðZð0ÞÞðv1; . . .; vnÞ;

l ¼ ~M1ðZð0ÞÞ; lðnÞðv1; . . .; vnÞ ¼ ~M
ðnÞðZð0ÞÞðv1; . . .; vnÞ:

From (17a), it is immediate that Z 0ð0Þ ¼ ~AðZð0ÞÞ þ ~MðZð0ÞÞ. Thus,

Z 0ð0Þ ¼ aþ l: ð22aÞ
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For the next derivative, we differentiate (17a) twice to get Z 00ðsÞ ¼ ð ~AðZðsÞÞ0 þ
ðs ~M1ðZðsÞÞÞ00: Calculating the latter using (21), simplifying using (20), and evaluating at

s ¼ 0, we obtain

Z 00ð0Þ ¼ ðað1Þ þ 2lð1ÞÞðaþ lÞ: ð22bÞ

By the same procedure, starting with Z 000ðsÞ ¼ ð ~AðZðsÞÞ00 þ ðs ~M1ðZðsÞÞÞ000 and using (21)

and (20), we also have

Z 000ð0Þ ¼ ðað2Þ þ 3lð2ÞÞðaþ l; aþ lÞ þ ðað1Þ þ 3lð1ÞÞ
�
ðað1Þ þ 2lð1ÞÞðaþ lÞ

�
: ð22cÞ

Armed with (22), we proceed to compute the derivatives of Y . Obviously, (17b) implies

Y 0ð0Þ ¼ ~AðZð0ÞÞ ¼ a: ð23aÞ

Differentiating (17b) again, using (20), and evaluating at s ¼ 0 using the previously

computed derivatives of Z in (22), we also get

Y 00ð0Þ ¼ að1Þðaþ lÞ ð23bÞ

Y 000ð0Þ ¼ að2Þðaþ l; aþ lÞ þ að1Þ
�
ðað1Þ þ 2lð1ÞÞðaþ lÞ

�
: ð23cÞ

5.2 Derivatives of the discrete flow

The next task is to compute the coefficients of the Taylor expansion of the function Ys
defined in (19b). The arguments Zi in (19b) are also functions of s, as given by (19a).

Therefore, in what follows, we first differentiate Zi 	 ZiðsÞ and then Ys.
Obviously, Zið0Þ and Z(0) coincide, so we will focus on the first and higher derivatives

of Zi at s ¼ 0. To this end, we differentiate (19a) k times to get

dkZi
dsk

¼
X
j\i

�
dij

dk

dsk
ðs ~M1ðZjðsÞÞÞ þ aij

dk

dsk
ðs ~AðZjðsÞÞÞ

�
:

Using (21) for k ¼ 1; 2; 3, then (20), and evaluating at s ¼ 0 we obtain

Z 0
ið0Þ ¼

X
j\i

dijlþ aija ð24aÞ

Z 00
i ð0Þ ¼ 2

X
j\i

X
k\j

�
dijl

ð1Þ þ aija
ð1Þ�ðdjklþ ajkaÞ ð24bÞ

Z 000
i ð0Þ ¼ 3

X
j\i

X
k\j

X
l\j

�
dijl

ð2Þ þ aija
ð2Þ�ðdjklþ ajka; djllþ ajlaÞ

þ 6
X
j\i

X
k\j

X
l\k

�
dijl

ð1Þ þ aija
ð1Þ��ðdjklð1Þ þ ajka

ð1ÞÞðdkllþ alkaÞ
�
:

ð24cÞ

Next, we focus on Ys. By (19b),
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dkYs
dsk

¼
Xs

i¼1

bi
dk

dsk
ð ~AðZiðsÞÞÞ:

Using (20), and evaluating the resulting terms at s ¼ 0 by means of (24), we obtain

Y 0
sð0Þ ¼

Xs

i¼1

bia; ð25aÞ

Y 00
s ð0Þ ¼ 2

Xs

i¼1

X
j\i

bia
ð1Þðdijlþ aijaÞ; ð25bÞ

Y 000
s ð0Þ ¼ 3

Xs

i¼1

X
j\i

X
k\i

bia
ð2Þðdijlþ aija; diklþ aikaÞ

þ 6
Xs

i¼1

X
j\i

X
k\j

bia
ð1Þ�ðdijlð1Þ þ aija

ð1ÞÞðdjklþ ajkaÞ
�
:

ð25cÞ

5.3 Formulation of order conditions

To obtain a specific method, we find values for aij; dij and bi by matching the coefficients in

the Taylor expansions of YðsÞ and Ys. Note that Ysð0Þ ¼ Y0 ¼ Yð0Þ, so the 0th order

coefficients match.

The next terms in the Taylor expansions will match if Y 0ð0Þ ¼ Y 0
sð0Þ. For this it is

sufficient that

Xs

i¼1

bi ¼ 1: ð26Þ

because of (23a) and (25a). To match the third terms in the Taylor expansions, equating

(23b) and (25b),

að1ÞðaÞ þ að1ÞðlÞ ¼
Xs

i¼1

X
j\i

2bidija
ð1ÞðlÞ þ 2biaija

ð1ÞðaÞ:

Equating the coefficients of að1ÞðaÞ and að1ÞðlÞ, we conclude that Y 00ð0Þ ¼ Y 00
s ð0Þ if

2
Xs

i¼1

X
j\i

bidij ¼ 1 and 2
Xs

i¼1

X
j\i

biaij ¼ 1: ð27Þ

If one desires to further match the next higher order terms, Y 000
s ð0Þ ¼ Y 000ð0Þ, then the

expressions in (23c) and (25c) must be equated, i.e.,
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að2Þða;aÞ þ 2að2Þða;lÞ þ að2Þðl;lÞ

þ að1Þðað1ÞðaÞÞ þ að1Þðað1ÞðlÞÞ þ 2að1Þðlð1ÞðaÞÞ þ 2að1Þðlð1ÞðlÞÞ

¼
Xs

i¼1

X
j\i

X
k\i

�
3bidijdika

ð2Þðl;lÞ þ 6bidijaika
ð2Þðl; aÞ þ 3biaijaika

ð2Þða; aÞ
�

þ 6
Xs

i¼1

X
j\i

X
k\j

�
bidijdjka

ð1Þðlð1ÞðlÞÞ þ bidijajka
ð1Þðlð1ÞðaÞÞ

þ biaijdjka
ð1Þðað1ÞðlÞÞ þ biaijajka

ð1Þðað1ÞðaÞÞ
�
:

For this equality to hold, the following seven conditions are sufficient as can be seen by

equating the coefficients of að2Þða; aÞ; að2Þðl; lÞ; að2Þða; lÞ; að1Þðað1ÞðaÞÞ; að1Þðað1ÞðlÞÞ;
að1Þðlð1ÞðaÞÞ; and að1Þðlð1ÞðlÞÞ, respectively:

3
Xs

i¼1

bi

�X
j\i

aij

	2

¼ 1; ð28aÞ

3
Xs

i¼1

bi

�X
j\i

dij

	2

¼ 1; ð28bÞ

3
Xs

i¼1

bi

�X
j\i

aij

	�X
j\i

dij

	
¼ 1; ð28cÞ

6
Xs

i¼1

X
j\i

X
k\j

biaijajk ¼ 1; ð28dÞ

6
Xs

i¼1

X
j\i

X
k\j

biaijdjk ¼ 1; ð28eÞ

3
Xs

i¼1

X
j\i

X
k\j

bidijajk ¼ 1; ð28fÞ

3
Xs

i¼1

X
j\i

X
k\j

bidijdjk ¼ 1: ð28gÞ

Thus, we have proved the following result, which summarizes our discussions on order

conditions.

Theorem 1 Whenever ~A and ~M are smooth enough for the derivatives below to exist
continuously,

1. the condition (26) implies Y 0ð0Þ ¼ Y 0
sð0Þ;

SN Partial Differential Equations and Applications

19 Page 12 of 24 SN Partial Differ. Equ. Appl. (2020) 1:19



2. the conditions of (27) imply Y 00ð0Þ ¼ Y 00
s ð0Þ; and

3. the conditions of (28) imply Y 000ð0Þ ¼ Y 000
s ð0Þ.

5.4 Examples of methods up to third order

Observe that the standard order conditions of Runge–Kutta methods are a subset of the

order conditions derived in Sect. 5.3. Thus we base our SARK methods on existing Runge–

Kutta methods. Below, we shall refer to an s-stage SARK method based on an existing

Runge–Kutta method called ‘‘RKname’’ as ‘‘SARK(s, RKname)’’.

A second order two-stage SARK method can be derived from a second order Runge–

Kutta method once we find dij satisfying the additional condition

2
X2

i¼1

X
j\i

bidij ¼ 1 , b2d21 ¼ 1

2
; ð29Þ

which was introduced in (27). For example, one may start with the standard explicit

midpoint rule and select d21 ¼ 1=2 to satisfy (29), thus arriving at the ‘‘SARK(2, mid-

point)’’ method, listed first in Table 1. The table continues on to display further such

methods obtained from other well-known second order Runge–Kutta schemes.

The third order SARK methods in Table 2 are based on known third order Runge–Kutta

methods with three stages. The additional coefficients dij are chosen, such that (27)–(28)

are satisfied.

5.5 Application of multiple steps within a tent

Recall that the ODE system we need to solve within one mapped tent is (17) for 0\t̂\1:

Since the t̂ interval is not small, we subdivide it into r subintervals and use the previously

described s-stage SARK scheme within each subinterval, as described next.

We subdivide the unit interval [0, 1] into r subintervals

½t̂k; t̂kþ1�; k ¼ 0; 1; . . .; r � 1; where t̂k ¼
k

r
;

and apply (1) within each subinterval as described next.

Table 1 Two-stage SARK methods

0 0 0 0 0
1
2

1
2 0 1

2 0

0 1

(a) SARK(2, midpoint),
based on the explicit
midpoint rule

0 0 0 0 0
2
3

2
3 0 2

3 0
1
4

3
4

(b) SARK(2, Ralston),
based on Ralston’s sec-
ond order method

0 0 0 0 0

1 1 0 1 0
1
2

1
2

(c) SARK(2, Heun),
based on Heun’s second
order method
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First observe that the above splitting of the unit t̂-interval corresponds to subdividing the

original tent K, as given by (4), into r ‘‘subtents’’ (see Fig. 3) of the form

Kk ¼ fðx; tÞ : x 2 xV ; u
½k� � t�u½kþ1�g ð30Þ

where u½k� ¼ uðt̂kÞ. Clearly u½0� ¼ ub and u½r� ¼ ut.

We then apply (1) to each of these subtents. Accordingly, let M0;½k� be defined by (11a)

after replacing ub by u½k�. Keeping the same definition of A and M1, let ~M
½k�
1 ¼ M1 �M�1

0;½k�,

~A
½k� ¼ A �M�1

0;½k�, and s½k� ¼ t̂kþ1 � t̂k. Then the application of (1) on each interval ½t̂k; t̂kþ1�
results in the following algorithm.

Algorithm 1

1. If the input is Y0, an approximation to Y(0) at the tent bottom, then set Y ½0� ¼ Y0. If the

input is U0, an approximation to U(0) at the tent bottom, then set Y ½0� ¼ Y0 ¼ M0ðU0Þ.
2. For k ¼ 0; 1; . . .; r � 1 do:

(a) For i ¼ 1; 2; . . .; s, compute

ϕ[0] = ϕb

ϕ[r] = ϕt

ϕ[k]

ϕ[k+1]

Kk

ωV

x

t

Fig. 3 Illustration of the subtent Kk (shaded) defined in (30). It is the image under U of the tensor product

domain K̂k ¼ xV � ðt̂k; t̂kþ1Þ.

Table 2 Three-stage SARK methods

0 0 0 0 0 0 0
1
2

1
2 0 0 1

2 0 0

1 −1 2 0 −3 4 0
1
6

2
3

1
6

(a) SARK(3, Kutta) method, based
on Kutta’s third order method

0 0 0 0 0 0 0
1
3

1
3 0 0 1

3 0 0
2
3 0 2

3 0 − 2
3

4
3 0

1
4 0 3

4

(b) SARK(3, Heun) method, based
on Heun’s third order method
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Z
½k�
i ¼ Y ½k� þ s½k�

Xi�1

j¼1

dij ~M
½k�
1 ðZ ½k�

j Þ þ s½k�
Xi�1

j¼1

aij ~A
½k�ðZ ½k�

j Þ:

(b) Compute

Y ½kþ1� ¼ Y ½k� þ s½k�
Xs

i¼1

bi ~A
½k�ðZ ½k�

i Þ:

3. Set

Yr;s
1 ¼ Y ½r�:

Output this as the approximation to Y(1) at the tent top.

We conclude this section by defining the propagation operators of the above algorithm,

which we shall use later. At step k, we define the (generally nonlinear) partial propagation

operator T ½kþ1� : VhðxVÞ ! VhðxVÞ, using the intermediate quantities in the algorithm:

T ½kþ1�ðY ½k�Þ ¼ Y ½kþ1�: ð31aÞ

Let the total propagation operator on the tent T : VhðxVÞ ! VhðxVÞ be defined by

T ¼ T ½r� � � � � � T ½2� � T ½1�: ð31bÞ

Clearly, the input and output of the algorithm are related to T by

Yr;s
1 ¼ TðY0Þ: ð32Þ

6 Investigation of discrete stability

This section is devoted to remarks on the stability of the new SARK schemes. While it is

common to study stability of ODE solvers by applying them to a simple scalar ODE,

keeping our application of spatially varying hyperbolic solutions in mind, we consider

changes in an energy-like measure on the solution Uðt̂Þ. Recall that Uðt̂Þ 2 Rm is the

coefficient vector of the basis expansion of the mapped finite element solution

ûðx; t̂Þ 2 VhðxVÞ, as defined by (10). We limit ourselves to the case where the energy-like

quantity

kUðt̂Þk2
Mðt̂Þ :¼

Z
xV

Mðt̂;UÞ � û ¼
Z
xV

M0ðUÞ � t̂M1ðUÞð Þ � û ð33Þ

is a norm and (the generally nonlinear operators) M;M0 and M1 defined in (13), (11a) and

(11b), respectively, are linear, so that we may rewrite Mðt̂;UÞ ¼ Mðt̂ÞU using the linear

operator Mðt̂Þ :¼ M0 � t̂M1 : Rm ! VhðxVÞ. For many standard linear hyperbolic systems,

the causality condition—see (2)—can be used to easily show that Mðt̂Þ is identifiable with

a symmetric positive definite matrix so that (33) indeed defines a norm. In the special case

of gðvÞ ¼ v, we note that on flat advancing fronts, where uðx; t̂Þ is independent of x for

some fixed t̂, (33) reduces to
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kUðt̂Þk2
Mðt̂Þ ¼

Z
xV

û � û;

so kUðt̂ÞkMðt̂Þ becomes the familiar spatial L2 norm of ûð�; t̂Þ.

6.1 Our procedure to study linear stability

Stability of the scheme within a tent can be understood by studying the discrete analogue of

the ratio kUð1ÞkMð1Þ=kUð0ÞkMð0Þ for all possible initial data U(0). This amounts to

studying the norm of the discrete propagation operator for U, which we proceed to for-

mulate. First, recall the connection between U and Y, namely Yðt̂Þ ¼ Mðt̂ÞUðt̂Þ. Algorithm

1, takes as input an approximation U0 to U(0) at the tent bottom and outputs Yr;s
1 , an

approximation to Y(1) at the tent top. Hence the associated approximation to U(1) is

Ur;s
1 :¼ Mð1Þ�1Yr;s

1 :

Next, recall the discrete propagation operator defined by (31). It is now a linear operator

that maps Y0 ¼ Mð0ÞU0 to Yr;s
1 according to (32). Define the tent propagation matrix

S : Rm ! Rm by

S ¼ Mð1Þ�1TMð0Þ: ð34Þ

Clearly, (32) implies that

Ur;s
1 ¼ SU0: ð35Þ

The discrete analogue of kUð1ÞkMð1Þ=kUð0ÞkMð0Þ is kUr;s
1 kMð1Þ=kU0kMð0Þ which can be

bounded using the following norm of S:

kSkLðMð0Þ;Mð1ÞÞ ¼ sup
06¼W2Rm

kSWkMð1Þ
kWkMð0Þ

:

It is immediate from (35) that kUr;s
1 kMð1Þ � kSkLðMð0Þ;Mð1ÞÞkU0kMð0Þ. Thus the study of

stability of SARK schemes is reduced to computing estimates for the norm of S.

We now describe how we computed the norm of S for some examples below. Writing

v̂ðx; t̂Þ ¼
Pm

i¼1 Viðt̂ÞwiðxÞ and ŵðx; t̂Þ ¼
Pm

i¼1 Wiðt̂ÞwiðxÞ, in analogy with the basis

expansion of û in (10), let Mt̂ be the m� m symmetric positive definite matrix satisfying

W>Mt̂V ¼
R
xV

Mðt̂ÞV � ŵ. Then

kSk2
LðMð0Þ;Mð1ÞÞ ¼ sup

06¼W2Rm

ðSWÞ>M1ðSWÞ
W>M0W

¼ sup
06¼W2Rm

W>ðS>M1SÞW
W>M0W

¼ supfjkj : 90 6¼ X 2 Rm satisfying ðS>M1SÞX ¼ kM0Xg:

Thus, to investigate the stability of a scheme, we computed T ½k� from the scheme’s

Butcher-like tableau, then T by (31b), followed by S per (34), and finally, the square root of

the spectral radius of M�1
0 ðS>M1SÞ, which equals kSkLðMð0Þ;Mð1ÞÞ as shown above. We

expand on the first of these steps in the next few subsections by displaying T ½k� for some
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SARK schemes and end this section by reporting our numerical estimates for

kSkLðMð0Þ;Mð1ÞÞ for an example.

6.2 Propagation operator of two-stage SARK methods

For an arbitrary two-stage SARK method the only non-zero coefficients are b1; b2; a21; d21.

For a given Y ½k� ¼ M0;½k�U
½k� we obtain

Z
½k�
1 ¼ Y ½k�;

Z
½k�
2 ¼ Y ½k� þ s½k�d21

~M
½k�
1 Z

½k�
1 þ s½k�a21

~A
½k�
Z
½k�
1

¼ I þ s½k� d21
~M
½k�
1 þ a21

~A
½k�� 	� 	

Y ½k�;

with the identity matrix I 2 Rm�m. The propagation from t̂k to t̂kþ1 reads

Y ½kþ1� ¼ Y ½k� þ s½k� b1
~A
½k�
Z
½k�
1 þ b2

~A
½k�
Z
½k�
2

� 	

¼ I þ s½k�ðb1 þ b2Þ ~A
½k� þ ðs½k�Þ2 ~A

½k�
b2d21

~M
½k�
1 þ b2a21

~A
½k�� 	� 	

Y ½k�

¼ I þ s½k� ~A
½k� þ 1

2
ðs½k�Þ2 ~A

½k� ~M
½k�
1 þ ~A

½k�� 	� 	
Y ½k�;

where we used the order conditions (26) and (27) for second order methods. This results in

the propagation matrix

T ½k� ¼ I þ s½k� ~A
½k� þ 1

2
ðs½k�Þ2 ~A

½k� ~M
½k�
1 þ ~A

½k�� 	
;

such that Y ½kþ1� ¼ T ½k�Y ½k�.

6.3 Propagation operator of three-stage SARK methods

A similar calculation for three-stage SARK methods, using the order conditions (26)–(28),

leads to the propagation matrix

T ½k� ¼ I þ s½k� ~A
½k� þ 1

2
ðs½k�Þ2 ~A

½k� ~M
½k�
1 þ ~A

½k�� 	

þ 1

6
ðs½k�Þ3 ~A

½k�
2 ~M

½k�
1 þ ~A

½k�� 	
~M
½k�
1 þ ~A

½k�� 	
:

6.4 Discrete stability measure for a model problem

We report the practically observed values of the previously described stability measure

(namely the norm kSkLðMð0Þ;Mð1ÞÞ) for some SARK schemes applied to the two-dimensional

convection equation

otuðx; tÞ þ divx b uðx; tÞð Þ ¼ 0; 8ðx; tÞ 2 X0 � ð0; tmax�;

with X0 ¼ ½0; 1�2; tmax ¼ 0:05, the flux field b ¼ ð1; 1Þ> and periodic boundary conditions.

The time slab X ¼ X0 � ð0; tmaxÞ is filled with tents. Within each such tent Ki, let Ci denote
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the norm kSkLðMð0Þ;Mð1ÞÞ computed with S, M(0), and M(1) specific to that tent. We expect

Ci to be close to one for a stable method. Let

�C :¼ max
i

Ci � 1f g; ð36Þ

where the maximum is taken over all tents in the time slab. To gain an understanding of

practical stability, we examine the values of �C as a function of the number of SARK stages

(s), polynomial degree (p), and more importantly, the number of substeps per tent (r).
In all our numerical experiments, we observed that on each tent, for a fixed s, the norm

kSkLðMð0Þ;Mð1ÞÞ tends to 1 with increasing number of substeps r, and moreover, we dis-

covered a dependence of the following form

kSkLðMð0Þ;Mð1ÞÞ ¼ 1 þO r�sð Þ

on each tent Ki. Therefore, we organize our report on numerical stability observations into

plots of values of �C as a function of r. We do so for two SARK methods, one with s ¼ 2

and another with s ¼ 3. The results are displayed in Fig. 4. After a prominent

preasymptotic region, we observe that �C, as a function of r, exhibits the rate O r�sð Þ in all

cases, except one.

The exceptional case is the case p ¼ 2 in Fig. 4b, where the stability measure

approaches the ideal value of 1 much faster. We do not have an explanation for this

observation.

Note that all the plotted curves in Fig. 4 shift to the top and right as p increases, i.e., the

number of substeps r required to keep the same stability measure �C increases with p. This

behavior is akin to the p-dependence of the CFL-conditions of standard time stepping

schemes.

p = 2 p = 3 p = 4 p = 5 p = 6

p = 7 O(r−1) O(r−2) O(r−3)

100 101 102

100

substeps r

(a) Two-stage SARK method

100 101 102
10−14

10−3

108

substeps r

C̄

(b) Three-stage SARK method

Fig. 4 Observed dependence of �C on r for p ¼ 2; 3; 4; 5; 6; 7 and s ¼ 2; 3:
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7 Numerical results

In this section, we collect our observations on the performance of the new SARK schemes,

on the one-dimensional Burgers’ equation (in Sect. 7.1) and the two-dimensional Euler

system (in Sects. 7.2–7.3). While Sect. 7.2 focuses on the study of convergence rates for a

smooth Euler solution, Sect. 7.3 presents the application of SARK scheme on the com-

putationally challenging problem of simulating a Mach 3 wind tunnel with a forward-

facing step.

7.1 Convergence rates for Burgers’ equation

Let us begin by returning to the one-dimensional model problem of Sect. 3 to show that the

SARK methods do not suffer from the previously described convergence order reduction.

For this discussion, the equation and error eh are as in (15). We apply Algorithm 1 with

SARK schemes of s ¼ 2 and s ¼ 3 stages, collect values of eh for various h and plot them

in Fig. 5.

The data shown in Fig. 5 was generated with the polynomial order p ¼ 2 in space and

h ¼ 2�i=10 for i ¼ 0. . .12. The tents were built so that (2) is satisfied with cmax ¼ 2.

Algorithm 1 is applied with r ¼ 4 and r ¼ 10 substeps within each tent for s ¼ 2 and s ¼ 3

respectively. As h decreases, in Fig. 5a we eventually see quadratic convergence for the

two-stage SARK method (although the convergence rate seems to be slightly higher in a

preasymptotic regime), while the rate of the underlying standard Runge–Kutta method

drops to first order. The three-stage SARK method in Fig. 5b shows cubic convergence

while the rate of the underlying standard Runge–Kutta method drops to first order again.

These plots clearly show the benefit of using SARK scheme over the corresponding

standard Runge–Kutta scheme.

SARK(s) RK(s) O(h) O(h2) O(h3)

10−4 10−3 10−2 10−1
10−15

10−8

10−1

mesh size h

(a) Convergence rates obtained from
SARK(2, Ralston) method (see Table 1b)
and the standard Ralston method.

10−4 10−3 10−2 10−1
10−15

10−8

10−1

mesh size h

e h

(b) Convergence rates obtained from
SARK(3, Heun) method (see Table 2b)
and the standard Heun scheme.

Fig. 5 Plots of the error eh defined in (15c) for SARK and RK methods applied to the Burgers’ example
described in (15)
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7.2 Convergence rates for a 2D Euler system

Now we apply SARK methods to the Euler system. Similar to the Burgers’ example, which

we discussed in the previous section, we choose smooth initial data and fix a final time

before the onset of shock so that no limiting is needed.

Recall that the Euler system fits into (3) with

u ¼
q

m

E

0
B@

1
CA; gðuÞ ¼ u; f ðuÞ ¼

m

m
 m=qþ PI

ðE þ PÞm=q

0
B@

1
CA: ð37aÞ

Here the functions q : X0 ! R, m : X0 ! R2 and E : X0 ! R denote the density,

momentum, and total energy of a perfect gas in the spatial domain X0 ¼ ½0; 1�2. Further-

more, we use P ¼ 1
2
qT for the pressure, T ¼ 4

d

�
E
q � 1

2
jmj2
q2

�
for the temperature and d ¼ 5

denotes the degrees of freedom of the gas particles. The initial values are set by

q0 ¼ 1 þ e�100ððx�0:5Þ2þðy�0:5Þ2Þ; ð37bÞ

m0 ¼ ð0; 0Þ>; ð37cÞ

P0 ¼ 1 þ e�100ððx�0:5Þ2þðy�0:5Þ2Þ; ð37dÞ

and the final time tmax ¼ 0:1.

The data shown in Fig. 6 was generated with polynomial degree p ¼ 2 in space and

mesh sizes h ¼ 0:1 � 2�i, for i ¼ 0. . .6. For the tent generation cmax in (2) was set to 8 and

the number of substeps r ¼ 4. Since we do not have an exact solution in closed form, we

compare the numerical solution computed using cmax with a ‘‘reference solution’’

SARK(s) RK(s) O(h) O(h2) O(h3)

103 104 105 106 107
10−10

10−5

dof

(a) Convergence rates obtained from
SARK(2, Ralston) method (see Table 1b)
and the standard Ralston method.

103 104 105 106 107
10−9

10−6

10−3

dof

e h

(b) Convergence rates obtained from
SARK(3, Heun) method (see Table 2b)
and the standard Heun scheme.

Fig. 6 Error eh as defined in (37e) over spatial degrees of freedom (dof) for SARK and standard RK
methods applied to the Euler equation on tents as described in (37)
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computed with the higher characteristic speed 2 � cmax. The latter requires many more tents

to reach the final time. Let the former and latter approximations to uð�; tmaxÞ be denoted by

uh and uref
h , respectively. We define the error by

eh :¼ uh � uref
h



 


L2ðX0Þ: ð37eÞ

This is the quantity that is plotted in Fig. 6.

The errors of the two-stage SARK method and the underlying RK method is seen to

diverge already for the first refinement level in Fig. 6a. While the SARK method shows the

expected second convergence order, the rate of the RK method drops to first order. For the

three-stage methods in Fig. 5b, we see cubic convergence for both method for the first few

refinements. The convergence rate of the RK method eventually drops to first order while

the SARK converges at third order.

0 0.45 0.9 1.35 1.8

(a) Logarithmic density

0 2 4 6 8 ·10−3

(b) Entropy viscosity coefficient ν

Fig. 7 Solution of the Mach 3 wind tunnel with a forward-facing step at the final time tmax ¼ 4 solved on
4128 triangles with SARK(3, Heun) and spatial degree p ¼ 4:
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7.3 Mach 3 wind tunnel

We conclude with the well-known benchmark example [14] of the wind tunnel with a

forward-facing step onto which gas flows at Mach 3. The situation is modeled by the

already described Euler system (37a), but now with the initial values

q0 ¼ 1:4; m0 ¼ q0ð3; 0Þ>; P0 ¼ 1 ð38Þ

on a spatial domain X0 with a re-entrant corner at the edge of the forward-facing step —

the domain and the boundary conditions are exactly as illustrated in numerous previous

works, see e.g., [5, Fig. 4(a)]. Our numerical experience with this problem shows that it is

beneficial to use high order local time stepping. As in our prior study [5], we use a spatially

refined mesh near the re-entrant corner and let the tents adapt, providing automatic local

time stepping. In contrast to the standard time stepping used in Ref. [5], we now use one of

the newly proposed SARK schemes.

We shall apply the SARK(3, Heun) method. Unlike the study in Sect. 7.2, now we must

handle multiple shocks that develop over time, so it is necessary to add some stabilization

to the system. This is done by adding artificial viscosity based on the entropy residual as

suggested by [7]—details of this stabilization on tents are exactly as already described in

Ref. [5], so we omit them here.

One of the components of the computed solution is shown in Fig. 7. This was generated

with polynomial order p ¼ 4 in space, maximal characteristic speed cmax ¼ 10 and r ¼ 16

substeps within each tent. Figure 8 shows the spatial mesh with the locally refined corner.

The zoom in illustrates the local refinement of the tents which comes in naturally through

the causality constraint while pitching the tents. The solution component (logarithmic

density) shown in Fig. 7a is comparable with the solution we previously obtained using

Fig. 8 Locally refined spatial mesh (top) used for the Mach 3 wind tunnel example and a zoomed in view of
the spacetime tents at the refined corner showing the automatic local timestepping. (In the spacetime figure,
vertical direction represents time)
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standard methods in Ref. [5], but now due to the higher accuracy of the new SARK time

integration, we obtained a similar quality solution faster (with the overall simulation time

on the same processor reduced by a factor of 10). We also observed that the entropy

residuals calculated off the computed solution with SARK schemes led to a significantly

reduced addition of artificial viscosity. The artificial viscosity coefficients generated by the

entropy residual are shown in Fig. 7b, which is about half the size of what is shown in the

corresponding plot in our earlier work [5, Fig. 5].
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Jay Gopalakrishnan1 • Joachim Schöberl2 • Christoph Wintersteiger2

Jay Gopalakrishnan
gjay@pdx.edu

Joachim Schöberl
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