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Abstract

We introduce a new class of Runge—Kutta type methods suitable for time stepping to
propagate hyperbolic solutions within tent-shaped spacetime regions. Unlike standard
Runge—Kutta methods, the new methods yield expected convergence properties when
standard high order spatial (discontinuous Galerkin) discretizations are used. After pre-
senting a derivation of nonstandard order conditions for these methods, we show numerical
examples of nonlinear hyperbolic systems to demonstrate the optimal convergence rates.
We also report on the discrete stability properties of these methods applied to linear
hyperbolic equations.
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1 Introduction

For simulating wave phenomena, the state of the art relies heavily on efficient and
accurate numerical solution techniques for hyperbolic systems. This paper is concerned
with those solution techniques that proceed by subdividing the spacetime into tent-
shaped subregions satisfying a causality condition. Just as light cones are often used to
delineate what is causally possible and impossible in the spacetime, tent-shaped space-
time regions are natural to impose causality when numerically solving hyperbolic
equations. By constraining the height of the tent pole, erected vertically in an increasing
time direction, one can ensure that the tent encloses the domain of dependence of all its
points. This constraint on the tent pole height is a causality condition that a numerical
scheme using such tents should satisfy. The spacetime subdivision into tents may be
unstructured, thus allowing such schemes to advance in time by different amounts at
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different spatial locations, i.e., local time stepping can be naturally built in while sub-
dividing the spacetime into tents.

The main contribution of this paper is a new explicit Runge—Kutta type time stepping
scheme for solving hyperbolic systems within a spacetime tent. Standard time stepping
methods cannot be directly applied on tents, since tents are generally not a tensor product
of a spatial domain with a time interval. A non-tensor product spacetime tent can be
mapped to a tensor product spacetime cylinder using a degenerate Duffy-like transfor-
mation. This is the basis of the Mapped Tent Pitching (MTP) schemes that we introduced
previously in Ref. [5]. As shown there, a spacetime Piola map can be used to pull back the
hyperbolic system from the tent to the spacetime cylinder. Being a tensor product domain,
the spacetime cylinder, admits the use of standard explicit time stepping schemes, like the
classical RK4 scheme. However, as we shall show here, expected convergence rates are not
observed when such standard explicit schemes are used. The cause of this problem can be
traced back to the degeneracy of the map. After illustrating this problem, we shall intro-
duce a new Structure Aware Runge—Kutta (SARK) scheme, which overcomes this
problem.

We first reported the above-mentioned order reduction in [6], where a fix was proposed
for linear hyperbolic systems, called the Structure Aware Taylor (SAT) scheme. In con-
trast, the new SARK schemes of this paper are applicable to both linear and nonlinear
hyperbolic systems.

Prior work on tent-based methods spans both the computational engineering literature
[2, 11] and numerical analysis literature [4, 12]. These works have clearly articulated the
promise of tent-based schemes, including local time stepping, even with higher order
spatio-temporal discretizations, and the opportunities to utilize concurrency. Recent
advances include tent-based Trefftz methods [13] and the use of asynchronous SDG
(spacetime discontinuous Galerkin) methods to new engineering applications [1]. One can
find explicit methods for conservation laws in the literature, like the finite volume approach
in [10], which incorporate local time stepping without the usage of a tent mesh. In contrast
to the presented MTP schemes, the extension to high order is yet to be done for those
methods.

To place the present contribution in the perspective of these existing works, a few words
regarding our focus on explicit time stepping are in order. The ratio of memory movements
to flops is very low for explicit schemes, making them highly suitable for the newly
emerging many-core processors. However, before the introduction of MTP schemes in Ref.
[5], it was not clear that such advantages of explicit time stepping could be brought to any
tent-based method. Now that we have an algorithmic avenue to perform explicit time
stepping within tent-based schemes, we turn to the study of accuracy and convergence
orders. Having encountered the unexpected roadblock of the above-mentioned conver-
gence order reduction, we have been focusing on developing time stepping techniques to
overcome it. This paper is an outgrowth of these studies.

In the next section, we quickly review the construction of MTP schemes, showing how
the main system of ordinary differential equations (ODEs) that is the subject of this paper
arises. In Sect. 3, we show why one should not use standard Runge—Kutta schemes for
solving this ODE system. Then, in Sect. 4, we propose our new SARK schemes for solving
the ODE system. Sect. 5 derives order conditions for these schemes. In Sect. 6, we study
the discrete stability of SARK schemes. Section 7 reports on the good performance of the
new schemes when applied to some standard nonlinear hyperbolic systems.
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2 Construction of mapped tent pitching schemes

In this section we give a brief overview of MTP schemes. Let 7 be a simplicial conforming
spatial mesh of a bounded spatial domain ©, C R". Spacetime tents are built atop this
spatial mesh by vertically erecting tent poles at its vertices in a sequence of steps. At the ith
step, a tent K; is added. It takes the form

Ki:={(x,1) : x € oy, 1i-1(x) <t <71} (1)

where wy is the vertex patch made up of all elements in 7 connected to a mesh vertex V. In
(1), the function 7;(x) is a continuous function of the spatial coordinate x that is piecewise
linear with respect to 7. The graph of 7; represents the advancing spacetime front at the ith
step, so the tent K; may be thought of as the spacetime domain between these advancing
fronts—see Fig. 1. Within K;, the distance the central vertex V can advance in time is
restricted by the causality constraint

Ve < ——, 2)
max

where c¢nax is an upper bound for the local wavespeed on K; (clarified further below) of a
hyperbolic system under consideration. Such an upper bound is readily computable for
linear systems. It is also possible to compute such bounds for some nonlinear systems,
including the Euler system (without computing the full solution), as described in Ref. [8].
Once we have cp,y, there are multiple algorithmic options for generating the advancing
fronts 7; satisfying (2). One such algorithm is written out in detail in our prior work [5].
The hyperbolic systems we have in mind are general systems with L unknowns in N
spatial dimensions, posed on the spacetime cylinder Q := Qy X (0, t,x) for some final
time #yax. To recall the standard settings in the literature, we follow [3], and assume we are
given some g : @ x RE — RE and f : Q x RE — REN, The standard hyperbolic problem

is to find u : @ — R such that

0rg(x, t,u) + div,f (x,7,u) =0 (3)

where 0, = 0/0¢ denotes the time derivative and div, denotes the row-wise divergence
operator. We assume that the system (3) is hyperbolic in t-direction, as defined in Ref. [3].
This implies, in particular, that the first order derivatives of components of g and f exist.
These derivatives, together with a direction vector, are then used to form a generalized
eigenproblem, whose eigenvalues are real whenever (3) is hyperbolic. The absolute values

Y
8

S —
wy

Fig. 1 Time slab in one spatial dimension with a local refinement at the left boundary, the advancing front t;
at the ith step and tent K; (red) pitched at vertex V (color figure online)
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of these eigenvalues, which depend on the direction vector and x, ¢, u, give wavespeeds.
Let c(x, t, u) denote the maximum of these wavespeeds over all directions. We choose the
quantity ¢, in (2) to be any upper bound for these c(x, 7, u) for all (x,7) € K;.

MTP schemes proceed by mapping each of the tents arising above to a spacetime
cylinder. To define the mapping, we consider a general tent K over any given vertex patch
wy, defined by

K :={(x,1) : x € 0y, pp(x) <t < ¢ (x)}. (4)

The functions ¢, and ¢, are continuous functions that are piecewise linear on the vertex
patch and may be identified as the bottom and top advancing fronts restricted to the vertex
patch wy. To map the tent K to the spacetime cylinder K := wy x (0, 1), we define the
transformation @ : K — K by ®(x,7) := (x, ¢(x, 7)), where

@(x,1) == (1 = D)y (x) + fp, (x). (5)
Defining F : Q x RE — RE*VFD py
F(x,t,u) := [f(x,t,u), g(x, t,u)] € RN+
we may write (3) as
div, F(x,t,u) = 0.

The spacetime divergence div,, is a row-wise operator which applies the spatial derivative
to the first N components and the temporal derivative to the last component. The well-

known Piola transformation of F, defined by F = (det @')(F o ®)(@')"" can be simplified
after calculating the derivatives of @ to

F—(Fo¢)[51 _v"’},

0 1

where §(x) = ¢,(x) — ¢, (x) and I € R¥*V is the identity matrix. By the properties of the
Piola map, we then immediately have

difoF(x7 f7 I’Z) = Oa (6)

with @ =uo @ and the spacetime divergence div,; on Hence we useK. Finally, as
described in Ref. [5], writing F in terms of f and g, we find that (6) is equivalent to

Oi(g(x, £,10) — f(x,1,1) V(i) + divo(0(x)f (x, 1,1i)) = O, (7)

which is again a conservation law.
For readability, we omit the spatial variable x and pseudo-time 7 from the arguments of
functions in (7) and simply write

0(8(u) —f()V ) +div.( 9 () = 0, (8)

which describes the evolution of # along pseudo-time from 7 = 0 to 7 = 1. Since
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@(x, 1) = (1 = )@y (x) + 1@, (x) = @y (x) + 10(x),

we may split g(i) — f (i) V¢ into parts with and without explicit dependence on pseudo-
time, allowing us to rewrite (8) as

0:((g(it) —f )V ,) — if (1)) V0) + divy( of (1)) =

This equation is the starting point for our spatial discretization. We use a discontinuous
Galerkin method based on

Vi, = {v : v|¢ is a polynomial of degree <p on all spatial elements 7 € 7 }.

When restricted to the vertex patch wy we obtain V,(wy) = {v|,, :v € V,}. Multiplying
(8) by a test function v, € V}, and integrating by parts over the patch wy, we obtain

/ ) % (g(:z) - f(bz)v(,,> -

/5f S /5fn ) - ol
TCwy FCoy

for all v, € Vj, and all € [0,1]. Here and throughout, every facet F is assigned a unit
normal, simply denoted by n, whose direction is arbitrarily fixed, except when F C 02, in
which case it points outward. The traces #" and 1~ of i from either side are defined by

©)

it = 111(1)1+ d(x+sn) and 4 = 111;1)1 1(x — sn).
In (9), we also used a numerical flux f,, on each facet F (that takes values in R- depending
on values &, 4~ from either side) and the jump [V,] := ;" — v, . In these definitions,
whenever i falls outside Q, it is prescribed using some given boundary conditions.

Let m = dim V,(wy) and let ¥, i =1,...,m denote any standard local basis for

Vi(wy). Introducing U : [0, 1] — R™, consider the basis expansion

a(x,f) =Y Uil (x). (10)
i=1

Equation (9) leads to an ODE system for U(f) as follows. Define (possibly nonlinear)

operators My : R" — Vi (wy), My : R" — V,(wy), and A : R" — V,(wy) by
| Mo = [ (st = 0)Vi00) v (i1

wy @y
MI(U)V;,:/ F)Vo - vy (11b)
wy wy

/wvA Tcwv/éf Vv, — chv/éfn at i) - [l (11¢)

for all v;, € Vj,(wy), where # in all terms on the right hand sides above is to be expanded in
terms of U using (10).
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With these notations, problem (9) becomes the problem of finding U : [0, 1] — R"
satisfying
d

M U(@) = AU (), (12)

given some U(0) = Uy € R™. Here M : [0, 1] x R" — Vj,(wy) is defined by

M(f, W) = My(W) — iM (W), 0<i<1, WeR™ (13)

3 Difficulty with standard time stepping

In this section, we describe the problem we must overcome, thus setting the stage for the
new schemes proposed in Sect. 4. The problem is that standard Runge—Kutta methods
when applied to the tent system (12)—after a standard reformulation—do not give
expected orders of convergence.

A standard approach to numerically solve (12) proceeds by introducing a new variable
Y(f) :== M(f,U(f)). Then, using the inverse mapping M~!(7,-), the primary variable is
U(f) = M~'(¢,Y(f)). Substituting this expression for U on the right hand side of (12), we
can bring (12) to the standard form

CX(0) A GV (@) = 0. (14)

Standard ODE solvers, such as the classical explicit RK4 method, may now be directly
applied to (14). Unfortunately, this leads to reduced convergence order, as we shall now
see.

Consider the example of the one-dimensional Burgers’ equation

duue(x, 1) + deu(x, 1) =0, V(x,1) € [0,1] x (0, trmax], (15a)
with initial values set by

u(x,0) =exp (- 50(x—1)°), vrelo,1], (15b)
an inflow boundary condition an x = 0, and an outflow boundary condition at x = 1. Let
up(x) be the numerical solution of (15) at # = . obtained using the DG spatial dis-
cretization with p = 2 in (11) and solving the resulting semidiscretized ODE system using
one of the standard RK methods as mentioned above. The final time #,,,x = 0.1 is chosen
such that the exact solution is still a smooth function (before the onset of shock). Therefore
no regularization or limiting is expected to be essential to witness high order convergence.
The exact solution at f,,x shown in Fig. 2a is obtained by the method of characteristics
together with a Newton method. Thus one would expect the error

ep = [[u(,0.1) — upllr20.1)) e

to go to zero at a rate of O(h?). However our observations in Fig. 2b run counter to that
expectation. Figure 2b reports the rates we observed when two standard time stepping
schemes were used to solve (14), namely the two-stage (RK2) and the four-stage (RK4)
explicit Runge—Kutta time stepping schemes. Although we see third order convergence for
the first few refinement steps, the rate eventually drops to first order for both methods. We
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—s— RK2 —e— RK4 O(h)
—u(z,t =0)----u(z,t =0.1) O(h?) O(h3)

T T T T T T TTI T T I T T I T T 1T

s 8 - e {107t

L 110-8 ¢
x.uuml vl vl oyl 10715
10-% 1073 1072 107!
T mesh size h
(a) Initial values (15b) (solid) and exact (b) Convergence rates of the spatial error
solution of (15) at tmax = 0.1 (dashed). at tmax for Ralston’s method (RK2) and

the classical RK4 method.

Fig. 2 Exact solution u and convergence rates of the error ey, defined in (15¢), for the example of the
Burgers’ equation described in (15)

shall return to this example in Sect. 7.1 after developing a method without this convergence
reduction.

4 Structure aware Runge-Kutta type methods

In this section, we develop specialized Runge—Kutta type schemes that do not show the
above mentioned order loss of classical Runge—Kutta schemes.

We motivate the definition of the new scheme by reformulating (12) in terms of two
variables Z(f) and Y(f), defined by

Z(i) =Mo(U(r)),  Y(i) =M(i,U(1)) = Z(7) — iM (U (7).
Then (12) implies
Y =AU®),  Z'=AU®D)+ (@M UD)), (16)

together with the initial conditions Y (0) = Z(0) = My(Uy). Here and throughout we use
primes (') to abbreviate d/dt. The key idea is to avoid the inversion of the time-dependent
M at all £, limiting the inversion to just that of M,. Assuming we can compute the time-
independent inverse M I we define

A~=AoMal, A;IleloMal.
Then, (16) yields the following ODE system for ¥ and Z on 0 <7< 1:

7' = A(z(i)) + (M, (2(9)). (172)

Y = A(Z(7)), (17b)
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where Yy = My (Up).
Integrating the equations of (17) from O to 7, we obtain

Z(t) = Z(0) + M, (Z(x)) + /0 CA(Z(s)) ds, (18a)

Y(1) = Y(0) + /0 TA(Z(s) ) ds. (18b)

The new scheme, defined below, may be thought of as motivated by quadrature
approximations to the integrals above. Note that we are only interested in such quadratures
that result in explicit schemes. Moreover, we must also approximate tM;(Z(t)) by an
extrapolation formula that uses prior values of Z, in order to keep the scheme explicit.

Definition 1 Given an initial condition Yy, an s-stage SARK method for (17) computes

Z,':Y0+‘L'ZdUM1(Zj)+‘L’Za,jA~(Zj), 1<i<s, (193)
i<i i<i
bl ~
Ye=Yo+1 Y bA(Z) (19b)

i=1

This explicit method is determined by the coefficient matrices b € R™!, 4 € R™*, and
D € R

0 0
azy 0 do 0
b:(bla"'7bS)a A: . . ) D= . .
: : 0 : " 0
g B/ P | 0 dsl cee ds,sfl 0

Hence we use %‘A instead of the standard Butcher tableau L‘% to

express our scheme. Here we restrict ourselves to schemes where ¢ € R’ is set by the
consistency condition

i—1
C;i = E ajj.
J=1

In the next section, we shall develop a theory to choose appropriate values of a;;, d;;, and b;.
There, Sect. 5.4 contains some specific examples of SARK scheme tableaus.

5 Order conditions for the scheme

Appropriate values of a;;, d;;, and b; can be found by order conditions obtained by matching
terms in the Taylor expansions of the exact solution Y(z) and the discrete solution Y. To
derive these order conditions we follow the general methodology laid out in Ref. [9]. For
this, we need to first compute the derivatives of the exact flow (in Sect. 5.1), then the
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derivatives of the discrete flow (in Sect. 5.2), followed by the formulation of resulting order
conditions (in Sect. 5.3).

5.1 Derivatives of the exact solution
Continuing to use primes () for total derivatives with respect to a single variable like d/dr,
to ease the tedious calculations below, we shall also employ the nth order Frechet

derivative of a function g: D C R™ — V, for some vector space V. It is denoted by
g™ (z) : R™ x --- x R" — V and defined by the symmetric multilinear form

Y m ang(z)
g( )(Z)(V],...,Vn) = Z m[vl]il"'[vn]in

il yemig=1 11
for any vy,...,v, € R". Whenever g and z: (0,1) — R" are sufficiently smooth for the
derivatives below to exist continuously, we have the following formulae.
L (e(0)) = 8" () ), (200)
2
%8(&)) =8P @) (1), 7 (1) + 8" (D) (x)), (20b)
d3
T758((0) = ¢9((0)(Z (), £ (1), (7)) (200)
+38%(2(0))(Z (1), 7'(x)) + 8"V (2()) (2" (v)),
d4
a8 = g (D)@ (1),7(2),7(2),2(2))

+ 689 () (2 (2),2(), 2/(1)) + 4P (D) (), () 20
+ 3800 (2),2'(2)) + 8V @) (2):

These formulae can be derived by repeated application of the chain rule (or by applying
the Faa di Bruno formula). We will also need to use

d* k 4!
77 (18(2(0)) = 1 78(2(0) + ko 8(z(v)), (21)

which is a simple consequence of the Leibniz rule.
We start by computing the derivatives of Z(t) at 1 = 0. To express such derivatives
concisely, we introduce the notation

a=AZ(0)),  a"(vi,.. ) = A ZO0) (V1)
w=M(20), 1. v =" (Z0)) (1, v).
From (17a), it is immediate that Z'(0) = A(Z(0)) + M(Z(0)). Thus,

Z'(0) = o+ u (22a)
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For the next derivative, we differentiate (17a) twice to get Z”(t) = (A(Z(z)) +
(tM,(Z(7)))". Calculating the latter using (21), simplifying using (20), and evaluating at
7 = 0, we obtain

2"(0) = (V) +2uM) (2t + p). (22b)

By the same procedure, starting with 2" (t) = (A(Z(z))" + (tM(Z(7)))"” and using (21)
and (20), we also have

2"(0) = (@ +3u®) (@ + o+ ) + (6 +3u) (@ +2uD) (@ + ). (22¢)

Armed with (22), we proceed to compute the derivatives of Y. Obviously, (17b) implies
Y'(0) = A(Z(0)) = o (23a)

Differentiating (17b) again, using (20), and evaluating at T = 0 using the previously
computed derivatives of Z in (22), we also get

¥'(0) = & (o + ) (23b)
Y"(0) = o (o4 o+ ) + oV (0 4 2 (2 + ). (23¢)

5.2 Derivatives of the discrete flow

The next task is to compute the coefficients of the Taylor expansion of the function Y,
defined in (19b). The arguments Z; in (19b) are also functions of 7, as given by (19a).
Therefore, in what follows, we first differentiate Z; = Z;(t) and then Y.
Obviously, Z;(0) and Z(0) coincide, so we will focus on the first and higher derivatives
of Z; at T = 0. To this end, we differentiate (19a) k times to get
d'z;

dk _ d* ~
= X | (B 00) + oy (A )|

j<i

Using (21) for k = 1,2, 3, then (20), and evaluating at T = 0 we obtain

Z/(0) =) dyu+ ag (24a)
j<i
2/(0) =23 "> (djnV + ayoV) (diep + ap) (24b)
J<i k<j

7"(0)=3 Z Z Z (dyu® + ayo?) (djep + ajor, dapt + azor)

J<i k<j I<j

+6 Z Z Z (dtii:“(l) + “t’j“(l)> ((djk/l(l) + ajo) (dyp + aga)).

Jj<i k<j I<k

(24c)

Next, we focus on Y;. By (19b),
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k ko
= b )

Using (20), and evaluating the resulting terms at T = 0 by means of (24), we obtain

5
Y/(0) = b, (25a)
i=1
Y/(0) =2 bio) (dyu + az), (25b)
i=1 j<i

Yé//(()) =3 Z Z Z biOC<2> (d,]/l + ll,'jO(, dik,u + aikoc)

i=1 j<i k<i

+6ZZZ”°‘ (" + ayo D) (diepn + ).

i=1 j<i k<j

(25¢)

5.3 Formulation of order conditions

To obtain a specific method, we find values for a;;, d;; and b; by matching the coefficients in
the Taylor expansions of Y(r) and Y,. Note that Y,(0) = ¥y = Y(0), so the Oth order
coefficients match.

The next terms in the Taylor expansions will match if ¥'(0) = Y.(0). For this it is
sufficient that

ibi = 1. (26)
i=1

because of (23a) and (25a). To match the third terms in the Taylor expansions, equating
(23b) and (25b),

oV (o) + ZZZb dijoV (1) + 2biaoV ().

i=1 j<i
Equating the coefficients of o(!)(e) and a(!) (1), we conclude that ¥Y”(0) = ¥”(0) if
N N
23N bhdj=1 and 2 ba;=1. (27)
i=1 j<i =1 j<i

If one desires to further match the next higher order terms, Y!”(0) = Y"”(0), then the
expressions in (23c) and (25c) must be equated, i.e.,
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o0 (at,0) + 20 (e, 0) + o (0

+ o (@ (@) + oV (o6 () + 20 (1D () + 200 (1 ()

= Z Z Z l:?)bidijdik(x(z) (,U,‘Lt) + 6bidljaikac(2> (/,l, O() + 3bia,-jaikoc<2> (OC7 OC)

=1 j<i k<i

6 > > [bfdijd.fka“) (WD () + bidyaga) (M (@)

i=1 j<i k<j

+ biagdya) (@ (1)) + biaijajka(l)(a“)(a))} '

For this equality to hold, the following seven conditions are sufficient as can be seen by
equating the coefficients of o (o, ), a® (1, 1), o® (o, 1), oM (D (a)), o (aV(p)),

o (uM («)), and oM (V) (1)), respectively:

3ibi(2aﬁ)2 = 1,
i=1

j<i

3ibi(2d,-j)2=1,
i=1

j<i

s

33 bi(Da) (Yo dy) =1,

i=1 Jj<i Jj<i

6222@'(1,’1‘0]} = 1,

i—1 j<i k<j

6izzbiaijdjk =1,

i=1 j<i k<j

3izzbidijajk =1,

=1 j<i k<j

3ZS:ZZbid,-jd,-k = 1.

i=1 j<i k<j

(28a)

(28b)

(28¢)

(28d)

(28e)

(28f)

(28¢)

Thus, we have proved the following result, which summarizes our discussions on order

conditions.

Theorem 1 Whenever A and M are smooth enough for the derivatives below to exist

continuously,

1. the condition (26) implies Y'(0) = Y.(0),
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2. the conditions of (27) imply ¥”(0) = ¥”(0), and
3. the conditions of (28) imply Y"”(0) = Y (0).

5.4 Examples of methods up to third order

Observe that the standard order conditions of Runge—Kutta methods are a subset of the
order conditions derived in Sect. 5.3. Thus we base our SARK methods on existing Runge—
Kutta methods. Below, we shall refer to an s-stage SARK method based on an existing
Runge—Kutta method called “RKname” as “SARK(s, RKname)”.

A second order two-stage SARK method can be derived from a second order Runge—
Kutta method once we find d;; satisfying the additional condition

2
1
2 ; ; bidg=1 < by =2, (29)
which was introduced in (27). For example, one may start with the standard explicit
midpoint rule and select dp; = 1/2 to satisfy (29), thus arriving at the “SARK(2, mid-
point)” method, listed first in Table 1. The table continues on to display further such
methods obtained from other well-known second order Runge—Kutta schemes.
The third order SARK methods in Table 2 are based on known third order Runge—Kutta
methods with three stages. The additional coefficients d;; are chosen, such that (27)—(28)
are satisfied.

5.5 Application of multiple steps within a tent
Recall that the ODE system we need to solve within one mapped tent is (17) for 0<f<1.
Since the 7 interval is not small, we subdivide it into r subintervals and use the previously
described s-stage SARK scheme within each subinterval, as described next.
We subdivide the unit interval [0, 1] into r subintervals
JA .k
[tkvtk+1]7 k=0,1,...,r—1, where 7, = —,
,

and apply (1) within each subinterval as described next.

Table 1 Two-stage SARK methods

0 ‘ 0 0]0 O 0 ‘ 0 0 ‘ 0 0 010 0|0 O

1 1 1 2 2 2

5|3 0z O 515 035 O 111 01 O

1 3 1 1
o 1] B B

(a) SARK(2, midpoint), (b) SARK(2, Ralston), (¢) SARK(2, Heun),
based on the explicit based on Ralston’s sec- based on Heun’s second
midpoint rule ond order method order method
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Table 2 Three-stage SARK methods

0 0O 0 O 0 0 O 0]0 0 O 0 0 O
1 1 1 1 1 1
5 5 0 0 5 0 0 3135 0 O 5 0 0
2 2 2 4
1 (-1 2 0f-3 4 0 510 5 0]—-5 35 O
1 2 1 1 3
5 3 & i 0 3
(a) SARK(3, Kutta) method, based (b) SARK(3, Heun) method, based
on Kutta’s third order method on Heun’s third order method

First observe that the above splitting of the unit 7-interval corresponds to subdividing the
original tent K, as given by (4), into r “subtents” (see Fig. 3) of the form

K = {(x,1): x € oy, oM <1<ty (30)

where ¢l = (). Clearly ¢ = ¢, and ¢!l = o,

We then apply (1) to each of these subtents. Accordingly, let My ) be defined by (11a)

after replacing ¢, by ¢. Keeping the same definition of A and M, let M [lk] =M oM, [lk],

A — Ao My [Ik], and ©%l = f, | — ;. Then the application of (1) on each interval [, f,1]
results in the following algorithm.

Algorithm 1

1. If the input is Yy, an approximation to Y(0) at the tent bottom, then set YO = y,. If the
input is Uy, an approximation to U(0) at the tent bottom, then set Y o = Yo = My(Up).
2. Fork=0,1,...,r—1do:

(@) Fori=1,2,... s, compute

Fig. 3 TIllustration of the subtent K (shaded) defined in (30). It is the image under @ of the tensor product
domain Ky = oy X (f, frs1).
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(b) Compute

3. Set
ypt =yl

Output this as the approximation to Y(1) at the tent top.

We conclude this section by defining the propagation operators of the above algorithm,
which we shall use later. At step k, we define the (generally nonlinear) partial propagation

[k+1] .

operator T : Vi(wy) — Vi(wy), using the intermediate quantities in the algorithm:

Tt (y Ky =yl (31a)
Let the total propagation operator on the tent T : V,(wy) — V,(wy) be defined by
T=To...oT o7l (31b)
Clearly, the input and output of the algorithm are related to T by

Yr =T(Y,). (32)

6 Investigation of discrete stability

This section is devoted to remarks on the stability of the new SARK schemes. While it is
common to study stability of ODE solvers by applying them to a simple scalar ODE,
keeping our application of spatially varying hyperbolic solutions in mind, we consider
changes in an energy-like measure on the solution U(f). Recall that U(f) € R™ is the
coefficient vector of the basis expansion of the mapped finite element solution
i(x,f) € Vy(wvy), as defined by (10). We limit ourselves to the case where the energy-like
quantity

VO = [ MG0) = [ (o(v) =) - (33)

is a norm and (the generally nonlinear operators) M, M, and M, defined in (13), (11a) and
(11b), respectively, are linear, so that we may rewrite M (7, U) = M({)U using the linear
operator M(f) := My — tM, : R" — V,(wy). For many standard linear hyperbolic systems,
the causality condition—see (2)—can be used to easily show that M(7) is identifiable with
a symmetric positive definite matrix so that (33) indeed defines a norm. In the special case
of g(v) = v, we note that on flat advancing fronts, where ¢(x, ) is independent of x for
some fixed 7, (33) reduces to
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@I = /

v

so || U(t)||M(,) becomes the familiar spatial Z*> norm of (-, £).

6.1 Our procedure to study linear stability

Stability of the scheme within a tent can be understood by studying the discrete analogue of
the ratio [[U(1)|[y¢1)/IU(0)]|p ) for all possible initial data U(0). This amounts to
studying the norm of the discrete propagation operator for U, which we proceed to for-
mulate. First, recall the connection between U and Y, namely Y (7) = M(f)U(f). Algorithm
1, takes as input an approximation Uy to U(0) at the tent bottom and outputs Y;”, an
approximation to Y(1) at the tent top. Hence the associated approximation to U(1) is

Uy =M1y
Next, recall the discrete propagation operator defined by (31). It is now a linear operator
that maps Yo = M(0)Uy to Y;* according to (32). Define the tent propagation matrix
S:R" — R" by

S =M(1)"'TM(0). (34)
Clearly, (32) implies that

Ur* =S U. (35)
The discrete analogue of [|U(1)lly1)/[|U(0)]ly0) is HU{‘XHM(I)/||U0HM(O) which can be
bounded using the following norm of S:
N

IS = sup —i—.
| lL(M(O)”M(l)) 0AWER" |WHM(O)

It is immediate from (35) that [|U}"(|y1) < ISl zas0)ma(1)) /| Uolls(o)- Thus the study of
stability of SARK schemes is reduced to computing estimates for the norm of S.

We now describe how we computed the norm of S for some examples below. Writing
vx, ) =30, Vil (x) and W(x, 1) = S, Wi(),(x), in analogy with the basis
expansion of # in (10), let M, be the m x m symmetric positive definite matrix satisfying
WMV = [, M(f)V -». Then

||SH2 = sup W
LmOM) = S TN W

sup
orwerr  WTMoW

= sup{|4| : 30 # X € R™ satisfying (S'M;S)X = ZMoX}.
Thus, to investigate the stability of a scheme, we computed 7™ from the scheme’s

Butcher-like tableau, then T by (31b), followed by S per (34), and finally, the square root of
the spectral radius of M;'(STM;S), which equals ISl 230y m(1)) @s shown above. We

expand on the first of these steps in the next few subsections by displaying 7% for some
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SARK schemes and end this section by reporting our numerical estimates for
1Sl 220y (1)) Tor an example.

6.2 Propagation operator of two-stage SARK methods

For an arbitrary two-stage SARK method the only non-zero coefficients are by, by, azy, ds;.
For a given YW = My U M we obtain

7} = yW,

ng] = yW 4 (K dyy M[lk] Z{k] + 7l a1 A~[k] ng]

= (I + 74 (dle[lk] + a21A~[k]))Y[k]v

with the identity matrix I € R”*™. The propagation from # to #;,| reads

ylertl — yll 4 o (bl,af[k]

7V 4 hoA [”zg”)
= (1 + ‘E[k] (b] + bz)A~[k] + (‘L'[k])ZA{k] (bzdz]M[lk] + bzazlA[k]))Y[k]
— (1 LMgH % (k)2 4H (M[lk] n A“‘])) Y.

where we used the order conditions (26) and (27) for second order methods. This results in
the propagation matrix

T — 14 MAY 4 %(T[k])z e (M[lk] n AN[k]),

such that Yk+1I = 7Ky,

6.3 Propagation operator of three-stage SARK methods

A similar calculation for three-stage SARK methods, using the order conditions (26)—(28),
leads to the propagation matrix

TH — 1+ MM 4 %(T[k])2 n (M[lk] n A~[k1)

+ é(f[k])s n (ZM[IH + A[”) (M[Ik} " A”W).

6.4 Discrete stability measure for a model problem

We report the practically observed values of the previously described stability measure
(namely the norm [|S| ;o) s (1)) for some SARK schemes applied to the two-dimensional

convection equation
Quu(x, 1) + divy(bu(x, 1)) =0, V(x,) € Qo X (0, tmax],

with Qg = [0, 1]27 fmax = 0.05, the flux field b = (1, 1)T and periodic boundary conditions.
The time slab Q = Qg X (0, #1y4¢) is filled with tents. Within each such tent K, let C; denote
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the norm ||S([7s(0) (1)) computed with S, M(0), and M(1) specific to that tent. We expect
C; to be close to one for a stable method. Let

C:= max {c;, -1}, (36)

where the maximum is taken over all tents in the time slab. To gain an understanding of
practical stability, we examine the values of C as a function of the number of SARK stages
(s), polynomial degree (p), and more importantly, the number of substeps per tent (7).

In all our numerical experiments, we observed that on each tent, for a fixed s, the norm
N Lm(o)m(1)) tends to 1 with increasing number of substeps r, and moreover, we dis-

covered a dependence of the following form
IS/l zaa0) 1)) = 1+ O0)

on each tent K;. Therefore, we organize our report on numerical stability observations into
plots of values of C as a function of r. We do so for two SARK methods, one with s = 2
and another with s =3. The results are displayed in Fig. 4. After a prominent
preasymptotic region, we observe that C, as a function of r, exhibits the rate O(r~*) in all
cases, except one.

The exceptional case is the case p =2 in Fig. 4b, where the stability measure
approaches the ideal value of 1 much faster. We do not have an explanation for this
observation.

Note that all the plotted curves in Fig. 4 shift to the top and right as p increases, i.e., the
number of substeps r required to keep the same stability measure C increases with p. This
behavior is akin to the p-dependence of the CFL-conditions of standard time stepping
schemes.

——p=T o1 O(r—2) O(r—3)

TTTT T T T 11111 T T T 11T [T T

TTTTTT] T T T 11T

7 108

- 0 Q
10 i io-3
11l Lol Lol = Lol Lol *10_14
100 10t 102 10° 10t 102
substeps r substeps r
(a) Two-stage SARK method (b) Three-stage SARK method

Fig. 4 Observed dependence of C on r for p = 2,3,4,5,6,7 and s = 2,3.
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7 Numerical results

In this section, we collect our observations on the performance of the new SARK schemes,
on the one-dimensional Burgers’ equation (in Sect. 7.1) and the two-dimensional Euler
system (in Sects. 7.2-7.3). While Sect. 7.2 focuses on the study of convergence rates for a
smooth Euler solution, Sect. 7.3 presents the application of SARK scheme on the com-
putationally challenging problem of simulating a Mach 3 wind tunnel with a forward-
facing step.

7.1 Convergence rates for Burgers’ equation

Let us begin by returning to the one-dimensional model problem of Sect. 3 to show that the
SARK methods do not suffer from the previously described convergence order reduction.
For this discussion, the equation and error e; are as in (15). We apply Algorithm 1 with
SARK schemes of s = 2 and s = 3 stages, collect values of ¢, for various & and plot them
in Fig. 5.

The data shown in Fig. 5 was generated with the polynomial order p = 2 in space and
h= 2‘i/10 for i =0...12. The tents were built so that (2) is satisfied with ¢y = 2.
Algorithm 1 is applied with r = 4 and r = 10 substeps within each tent for s =2 and s = 3
respectively. As h decreases, in Fig. Sa we eventually see quadratic convergence for the
two-stage SARK method (although the convergence rate seems to be slightly higher in a
preasymptotic regime), while the rate of the underlying standard Runge—Kutta method
drops to first order. The three-stage SARK method in Fig. 5b shows cubic convergence
while the rate of the underlying standard Runge—Kutta method drops to first order again.
These plots clearly show the benefit of using SARK scheme over the corresponding
standard Runge—Kutta scheme.

—=— SARK(s) —e— RK(s) O(h) O(h?) O(h3)

T T TTI  T T T T T T TT T T T TTIm T T T T T TTI T T T T T T

i B B (U B 107!

<
- | 1078 B 1078 ®
T S Y Y Y I A M WA Y1 10715 T O T N WYY A M WA Y1 10715

104 1073 10=2 10! 10~* 1073 1072 10!

mesh size h mesh size h

(a) Convergence rates obtained from (b) Convergence rates obtained from
SARK(2, Ralston) method (see Table 1b) SARK(3, Heun) method (see Table 2b)
and the standard Ralston method. and the standard Heun scheme.

Fig. 5 Plots of the error ¢, defined in (15¢) for SARK and RK methods applied to the Burgers’ example
described in (15)
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7.2 Convergence rates for a 2D Euler system

Now we apply SARK methods to the Euler system. Similar to the Burgers’ example, which
we discussed in the previous section, we choose smooth initial data and fix a final time
before the onset of shock so that no limiting is needed.

Recall that the Euler system fits into (3) with

0 m
u=|m|, gw)=u fu=|mem/p+rl|. (37a)
E (E+P)m/p

Here the functions p:Qy — R, m:Qy — R? and E:Qy — R denote the density,
momentum, and total energy of a perfect gas in the spatial domain Qy = [0, 1}2. Further-
more, we use P = ipr for the pressure, 7 = 3(% — ;‘—’Z‘z) for the temperature and d =5
denotes the degrees of freedom of the gas particles. The initial values are set by

2

po =1+ o~ 100((x=0.5)+(y~0.5) ), (37b)
mo = (0,0) ", (37¢)
po =1+ e*100((x70.5)2+(y70.5)2)7 (37d)

and the final time 7, = 0.1.

The data shown in Fig. 6 was generated with polynomial degree p = 2 in space and
mesh sizes h = 0.1 x 27, for i = 0. . .6. For the tent generation ¢y, in (2) was set to 8 and
the number of substeps » = 4. Since we do not have an exact solution in closed form, we
compare the numerical solution computed using cpax with a “reference solution”

—=— SARK(s) —e— RK(s) O(h) O(h?) O(h3)
T T T T T T T T T T T T T TTTTT T T T T T T T T T T T T T T T
[ — 1073
[ — 10—5
&
[ — 1076
L K —10 ’
il vl vl vl 3Tl 10 Al vl vl 10—9
10®  10* 105 10 107 102 10* 105 10 107
dof dof

(a) Convergence rates obtained from
SARK(2, Ralston) method (see Table 1b)
and the standard Ralston method.

(b) Convergence rates obtained from
SARK(3, Heun) method (see Table 2b)
and the standard Heun scheme.

Fig. 6 Error ¢, as defined in (37e) over spatial degrees of freedom (dof) for SARK and standard RK
methods applied to the Euler equation on tents as described in (37)
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[N

0 0.45 0.9 1.35 1.8

(a) Logarithmic density

(b) Entropy viscosity coefficient v/

Fig. 7 Solution of the Mach 3 wind tunnel with a forward-facing step at the final time #,,x = 4 solved on
4128 triangles with SARK(3, Heun) and spatial degree p = 4.

computed with the higher characteristic speed 2 - cpax- The latter requires many more tents
to reach the final time. Let the former and latter approximations to u(-, f,.x ) be denoted by
uy and Ui, respectively. We define the error by

ey = ||uh — uffHLZ(QO). (37e)

This is the quantity that is plotted in Fig. 6.

The errors of the two-stage SARK method and the underlying RK method is seen to
diverge already for the first refinement level in Fig. 6a. While the SARK method shows the
expected second convergence order, the rate of the RK method drops to first order. For the
three-stage methods in Fig. 5b, we see cubic convergence for both method for the first few
refinements. The convergence rate of the RK method eventually drops to first order while
the SARK converges at third order.
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Fig. 8 Locally refined spatial mesh (top) used for the Mach 3 wind tunnel example and a zoomed in view of
the spacetime tents at the refined corner showing the automatic local timestepping. (In the spacetime figure,
vertical direction represents time)

7.3 Mach 3 wind tunnel

We conclude with the well-known benchmark example [14] of the wind tunnel with a
forward-facing step onto which gas flows at Mach 3. The situation is modeled by the
already described Euler system (37a), but now with the initial values

po=14, mo=py(3,0)", ro=1 (38)

on a spatial domain Qg with a re-entrant corner at the edge of the forward-facing step —
the domain and the boundary conditions are exactly as illustrated in numerous previous
works, see e.g., [5, Fig. 4(a)]. Our numerical experience with this problem shows that it is
beneficial to use high order local time stepping. As in our prior study [5], we use a spatially
refined mesh near the re-entrant corner and let the tents adapt, providing automatic local
time stepping. In contrast to the standard time stepping used in Ref. [5], we now use one of
the newly proposed SARK schemes.

We shall apply the SARK(3, Heun) method. Unlike the study in Sect. 7.2, now we must
handle multiple shocks that develop over time, so it is necessary to add some stabilization
to the system. This is done by adding artificial viscosity based on the entropy residual as
suggested by [7]—details of this stabilization on tents are exactly as already described in
Ref. [5], so we omit them here.

One of the components of the computed solution is shown in Fig. 7. This was generated
with polynomial order p = 4 in space, maximal characteristic speed cpax = 10 and r = 16
substeps within each tent. Figure 8 shows the spatial mesh with the locally refined corner.
The zoom in illustrates the local refinement of the tents which comes in naturally through
the causality constraint while pitching the tents. The solution component (logarithmic
density) shown in Fig. 7a is comparable with the solution we previously obtained using
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standard methods in Ref. [5], but now due to the higher accuracy of the new SARK time
integration, we obtained a similar quality solution faster (with the overall simulation time
on the same processor reduced by a factor of 10). We also observed that the entropy
residuals calculated off the computed solution with SARK schemes led to a significantly
reduced addition of artificial viscosity. The artificial viscosity coefficients generated by the
entropy residual are shown in Fig. 7b, which is about half the size of what is shown in the
corresponding plot in our earlier work [5, Fig. 5].
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