
Structuring a Comprehensive Software Security
Course Around the OWASP Application Security

Verification Standard
Sarah E. Elder

Department of Computer Science)
North Carolina State University

Raleigh, USA
seelder@ncsu.edu

Nusrat Zahan
Department of Computer Science)

North Carolina State University
Raleigh, USA

nzahan@ncsu.edu

Val Kozarev
Department of Computer Science
North Carolina State University

Rui Shu
Department of Computer Science
North Carolina State University

Raleigh, USA
rshu@ncsu.edu

Tim Menzies
Department of Computer Science
North Carolina State University

Raleigh, USA
timm@ieee.org

Laurie Williams
Department of Computer Science
North Carolina State University

Raleigh, USA
laurie williams@ncsu.edu

Abstract—Lack of security expertise among software prac-
titioners is a problem with many implications. First, there
is a deficit of security professionals to meet current needs.
Additionally, even practitioners who do not plan to work in
security may benefit from increased understanding of security.
The goal of this paper is to aid software engineering educators in
designing a comprehensive software security course by sharing an
experience running a software security course for the eleventh time.
Through all the eleven years of running the software security
course, the course objectives have been comprehensive – ranging
from security testing, to secure design and coding, to security
requirements to security risk management. For the first time in
this eleventh year, a theme of the course assignments was to
map vulnerability discovery to the security controls of the Open
Web Application Security Project (OWASP) Application Security
Verification Standard (ASVS). Based upon student performance
on a final exploratory penetration testing project, this mapping
may have increased students’ depth of understanding of a wider
range of security topics. The students efficiently detected 191
unique and verified vulnerabilities of 28 different Common
Weakness Enumeration (CWE) types during a three-hour period
in the OpenMRS project, an electronic health record application
in active use.

Index Terms—Security and Protection, Computer and Infor-
mation Science Education, Industry-Standards

I. INTRODUCTION

Throughout the world, demand exceeds supply for trained
cybersecurity professionals. In the United States, the cyberse-
curity workforce has been deemed, in a Presidential Executive
Order [1], a “strategic asset that protects the American people,
the homeland, and the American way of life.” The Cyberseek1

This material is based upon work supported by the National Science
Foundation under Grant No. 1909516. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

1https://www.cyberseek.org

project, sponsored by the US National Institute of Standards
and Technology (NIST), highlights a dangerous shortage of
cybersecurity workers that puts the country’s digital privacy
and infrastructure at risk. To help address this problem, NIST
has created the National Initiative for Cybersecurity Education
(NICE) Cybersecurity Workforce Framework [2]. The mission
of the NICE Framework is to “energize and promote a
robust network and an ecosystem of cybersecurity education,
training, and workforce development.” The NICE Framework
establishes a taxonomy and common lexicon for describing
the cybersecurity workforce including tasks, skills, training,
and personnel; as well as a matrix of specialty areas for K-
12 through university degree programs. Similarly, the United
Kingdom National Cyber Security Programme supported the
development of the Cybersecurity Body of Knowledge (Cy-
BoK)2. The CyBoK codifies literature, such as textbooks,
academic research articles, technical reports, white papers and
standards on 19 essential knowledge areas of cybersecurity.

Higher education plays a key role in filling the gaps in
the cybersecurity workforce. In 2017, the two major computer
science professional societies, the Association for Computing
Machinery (ACM) and the IEEE Computer Society (IEEE-
CS), published Curriculum Guidelines for Post-Secondary
Degree Programs in Cybersecurity (CSEC2017 v1.0) [3]. A
key aspect of cybersecurity education is the area of software
security [4] which is considered to be the intersection of
software engineering and cybersecurity in which software
engineers “build security in” to products.

The goal of this paper is to aid software engineering
educators in designing a comprehensive software security
course by sharing an experience running a software security

2https://www.cybok.org/

course for the eleventh time. When this course was first offered
in 2009, few courses on software security existed. Through
all the eleven years of running the software security course,
the course objectives have been comprehensive – ranging
from security testing, to secure design and coding, to security
requirements to security risk management.

The course has always been designed to be experiential,
whereby students applied classroom topics on a system. Due
to the rapid evolutionary nature of cybersecurity, each year
the course was updated to include new tools, new techniques,
new standards, new regulations, and new research results. In
Spring 2020, a theme of the course assignments was to map
vulnerability discovery to the security requirements of the
Open Web Application Security Project (OWASP) OWASP
Application Security Verification Standard (ASVS). Of all the
changes made to the course offering over the eleven years, the
change toward structuring the course around the ASVS seemed
to be the most beneficial from a student learning perspective,
and we share our experiences in this paper.

With this paper, we make the following contributions:
• A software security course structure (topics and assign-

ments) that has matured over an eleven year period; and
• Our experience structuring a software security course

around the OWASP Application Security Verification
Standard (ASVS).

The rest of this paper is organized as follows. In Section II
and Section III, we present related work and key concepts,
respectively. In Section IV we provide background on the
ASVS standard which was the main innovative aspect added
to the class. We lay out the course topics in Section V and
course assignments in Section VI. We present the results of
the final exploratory penetration testing exercise in Section
VII. Finally, we present our lessons learned in Section VIII.

II. RELATED WORK

Previous work has been done on tools and techniques
for security education. For example, work has been done in
the use of serious games and the gamification of security
research, particularly for the purpose of education including
two summits on Gaming, Games, and Gamification in Security
Education (3GSE)3 and more recent works by Antonaci et
al and Švábenskỳ et al [5], [6]. Other work has looked
at the use of Massive Open Online Courses (MOOCs) to
teach cybersecurity [5], [7], [8]. Many organizations provide
online cybersecurity learning resources such as the Cyber
Security Body of Knowledge (CYBOK)4 and SAFECode5.
Several researchers, teachers, and organizations provide lists
of knowledge objectives or course outcomes such as work
by Mead et al [9] and the ACM/IEEE/AIS SIGSEC/IFIP
Cybersecurity Curricula Guideline [10] which map knowledge
objectives and learning outcomes to Bloom’s Taxonomy.

Two studies [11], [12] from the University of Maryland
(UMD) are particularly useful in understanding our own

3https://www.usenix.org/conferences/byname/885
4https://www.cybok.org/
5https://safecode.org/training/

experiences in Software Security education. The studies from
UMD examine how students perform in a Build It, Break It,
Fix It competition where teams of students attempt to build
the most secure software (the “Build It” phase), find the most
vulnerabilities in each other’s software (the “Break It” phase),
and fix the vulnerabilities in their own software that have been
found (the “Fix It” phase). The studies found that the reason
most teams implemented security vulnerabilities was lack of
knowledge. However, the impact of education on the vulner-
abilities introduced by students was mixed. The first study,
published in 2016 by Ruef et al. [11], found that students
who had taken an online course on cybersecurity performed
better than students who had not taken the course. The second
study found that while knowledge, or lack thereof, appeared
to be the main reason vulnerabilities were introduced in the
“Build It” phase of the competition, participation in the online
course on cybersecurity did not seem to influence whether
students introduced vulnerabilities. The authors suggest that
experience with a variety of different types of vulnerabilities
may help in reducing the number and types of vulnerabilities
introduced (in the “Build it” phase), as well as increasing the
number and types of vulnerabilities identified when looking
for vulnerabilities in software (in the “Break it” phase). The
results of these studies indicate the need for more strategies for
security education. Using a comprehensive standard, such as
ASVS, may be a helpful strategy, since students who utilize
the ASVS framework should be more familiar with a wide
variety of vulnerability types.

Other studies have examined the role of knowledge in
software verification and validation. Votipka et al’s study
on Hackers vs Testers [13] examines how white-hat hackers
approach security testing as compared to software testing
experts. The authors performed a series of interviews with
white-hat hackers and with testers. Based on the interviews,
the authors developed a model for the vulnerability discovery
process. They found that although both hackers and testers
follow similar processes for finding vulnerabilities, different
experience and knowledge between the two groups led to
different results. In a non-security-specific setting, Itkonen et
al [14] found that domain, system, and general software engi-
neering knowledge were all useful in performing exploratory
testing; and the ability to apply that knowledge “on the fly”
may contribute to exploratory testing being more efficient than
systematic, scripted testing.

This paper adds to existing work by providing our expe-
rience and lessons learned when using a standard, such as
ASVS, to structure assignments and lectures in a graduate-
level software security course at a public research university.
As can be seen in Section V, ASVS was incorporated into
existing course objectives and topics. The course website6

references many additional materials that were also used to
help students.

6https://sites.google.com/a/ncsu.edu/csc515-software-security/Schedule-of-
Subjects/Prelim

III. KEY CONCEPTS

In this section, we define terminology needed to understand
the rest of this paper.

A. Vulnerability

In the course, students were introduced to several definitions
of the term security vulnerability. While we do not think
that the differences between the definitions would impact the
student results, we provide these definitions for the reader.
Two informal definitions used at the beginning of the course
were that a security vulnerability is “a bug with security
consequences” or “a design flaw or poor coding that may allow
an attacker to exploit software for a malicious purpose”. More
formally, students were given the definition of a vulnerability
from the U.S. National Institute of Standards and Technology
(NIST) Security and Privacy Controls for Federal Information
Systems and Organizations Special Publication (SP) 800-53
[15]. NIST SP 800-53 defines a vulnerability as “a weakness
in ... an implementation that could be exploited by a threat
source”. The vulnerability counts in Section VII-D abide by
the definition of vulnerability from the Common Vulnerabili-
ties and Exposures (CVE)7 list that is also used by the U.S.
National vulnerability Database8. Namely, that a vulnerability
is a “flaw in a software, firmware, hardware, or service
component resulting from a weakness that can be exploited,
causing a negative impact to the confidentiality, integrity, or
availability of an impacted component or components”9.

B. Common Weakness Enumeration (CWE)

Per the CWE website, “CWE is a community-developed list
of software and hardware weakness types.”10. Many security
tools, such as the OWASP Application Security Verification
Standard (ASVS) and most vulnerability detection tools, use
CWEs to identify the types of vulnerabilities relevant to a
given security requirement, test case, or tool alert. Each CWE
type header describes the vulnerability, and each type has a
unique numeric value which we will refer to as the CWE
number. We use the vulnerability types in the CWE list to
better understand and describe the diversity of vulnerabilities
students found during their exploratory testing exercise in
section VII

IV. OWASP APPLICATION SECURITY VERIFICATION
STANDARD (ASVS)

The Open Web Application Security Project (OWASP)11 is a
non-profit organzation that promotes software security through
educational resources, open-source software, and other open-
source projects.

The OWASP Application Security Verification Standard
(ASVS) is an open standard for performing Web application
security verification. The ASVS provides a high-level set

7https://cve.mitre.org
8https://nvd.nist.gov/vuln
9https://cve.mitre.org/about/terminology.html
10https://cwe.mitre.org/
11https://owasp.org/

of “requirements or tests that can be used by architects,
developers, testers, security professionals, tool vendors, and
consumers to define, build, test and verify secure applications”
[16]. The ASVS Project12 intends for the standard to be
“commercially workable”, and to provide adequate coverage
so that ASVS can be used for a wide range of purposes
including as an internal metric for security, guidance for
developers when implementing new security features, or as
a security baseline when evaluating third-party software or
development contracts. The current version of OWASP ASVS
is Version 4.0.1 released in March 201913.

ASVS requirements are phrased in terms of what would
need to be verified. The requirements must be adapted to a
specific system under test to be effective. The requirements
are grouped into higher-level sections and sub-sections. Addi-
tionally, each ASVS requirement is mapped to a CWE type
using the CWE number. Where applicable, ASVS require-
ments are also mapped to applicable standards from the U.S.
National Institute of Standards and Technology (NIST). An
example ASVS requirement, ASVS 2.2.1, is shown in Figure
1. ASVS 2.2.1 is part of ASVS section V2: Authentication
Verification Requirements, subsection V2.2 General Authen-
ticator Requirements. ASVS requirements from section V2
are mapped to NIST Special Publication (SP) 800-63: Digital
Identity Guidelines. A violation of ASVS 2.2.1 would result in
a vulnerability of the type CWE-307: Improper Restriction of
Excessive Authentication Attempts. Additionally, ASVS 2.2.1
maps to sections 5.2.2, 5.1.1.2, 5.1.4.2, and 5.1.5.2 of NIST
SP 800-63.

The OWASP ASVS has three levels of requirements. If a
requirement falls within a level, it also falls within higher
levels. For example a requirement that is part of Level 2 is
also part of Level 3 of the standard. ASVS describes Level 1
as “the bare minimum that any application should strive for”
[16]. As of Version 4 of ASVS, Level 1 requirements can
all be verified manually. Level 2 should be addressed by any
applications handling sensitive information and is appropriate
for most applications. Addressing Level 3 requirements may
require more resources than organizations are willing or able
to spend on some systems. However, Level 3 requirements
should be met for critical systems. In the example in Figure
1, ASVS 2.2.1 is an L1 requirement, which means it must also
be verified to meet L2 and L3 requirements.

V. COURSE TOPICS

The graduate-level Software Security course introduces stu-
dents to the discipline of designing, developing, and testing se-
cure and dependable software-based systems. The course web-
site and resources can be accessed at https://sites.google.com/
a/ncsu.edu/csc515-software-security/

The four course learning objectives and topics taught to
achieve these objectives are as follows:

1) Security testing. Objective 1: Students will be able to
perform all types of security testing.

12https://owasp.org/www-project-application-security-verification-standard/
13https://github.com/OWASP/ASVS/tree/v4.0.1

Fig. 1. ASVS requirement 2.2.1

Description L1 L2 L3 CWE NIST§

2.2.1 Verify that anti-automation controls are effective at mitigating breached credential
testing, brute force, and account lockout attacks. Such controls include blocking
the most common breached passwords, soft lockouts, rate limiting, CAPTCHA,
ever increasing delays between attempts, IP address restrictions, or risk-based
restrictions such as location, first login on a device, recent attempts to unlock
the account, or similar. Verify that no more than 100 failed attempts per hour is
possible on a single account.

X X X 307 5.2.2/
5.1.1.2/
5.1.4.2/
5.1.5.2

• Penetration Testing (PT): Penetration testing is
a method for “gaining assurance in the security
of an IT system by attempting to breach some
or all of that system’s security, using the same
tools and techniques as an adversary might.” [17]
In the class, students performed exploratory pene-
tration testing in which the tester “spontaneously
designs and executes tests based on the tester’s
existing relevant knowledge” [18]. The students also
performed systematic penetration testing in which
the tester methodically develops and documents a
test plan in which the test cases comprehensively
address the security objectives of the system. The
test plan is then manually executed against the
System Under Test (SUT) [19]–[22] in academic
literature and in practice, penetration testing may
refer to any dynamic security testing, automated or
manual [23]–[25]. However, in practice testers may
use a combination of exploratory and systematic
testing [13]. Students also learned how to augment
their testing with the use of a proxy server, OWASP
ZAP14, that allows the user to manipulate traffic
outside the browser. Penetration testing can also be
referred to as pentesting and ethical hacking.

• Dynamic Application Security Testing (DAST):
DAST tools automatically generate and run a test
cases against the SUT, without any access to the
SUT source code15. DAST can also be be referred
to as fuzzing.

• Static Application Security Testing (SAST):
SAST tools automatically scan application source
code for defects [23]–[25]. SAST can also be re-
ferred to as static analysis.

• Interactive Application Security Testing (IAST).
IAST tools perform dynamic analysis but also have
access to source code. IAST tools require a tester
to interact with the application while the IAST
tool monitors what code is exercised during the
interactions16.

14https://www.zaproxy.org/
15https://insights.sei.cmu.edu/sei blog/2018/07/10-types-of-application-

security-testing-tools-when-and-how-to-use-them.html
16https://www.synopsys.com/glossary/what-is-iast.html

2) Secure design and coding practices. Objective 2:
Students will understand secure design and coding
practices to prevent common vulnerabilities from being
injected into software.

• Design. Approximately half of the vulnerabilities
in a software product are due to design flaws [4]
that can cause architectural-level security problems
and need to be fixed via redesigning a portion
of a product. The students learned about avoiding
the “Top 10 Software Security Design Flaws” [26]
according to the IEEE Center for Secure Design.

• Coding. Approximately half of the vulnerabilities in
a software system are due to implementation bugs
that are caused by code-level security problems.
Implementation bugs are usually fixed via altering
some lines of code. The students learned about
avoiding common implementation bugs such as
OWASP Top 10 Web Application Security Risks17

and CWE Top 25 Most Dangerous Security Weak-
nesses18.

• Process. Students learned about organizing their
secure design and coding practices around a Se-
cure Development Lifecycle such as the Microsoft
Secure Development Lifecycle (SDLC)19. Students
also learned about assessing the SDLC and/or the
security practices used by an organization via the
Building Security In Maturity Model (BSIMM)20

and the OWASP Software Assurance Maturity
Model (SAMM)21.

3) Security requirements. Objective 3: Students will be
able to write security and privacy requirements. Secu-
rity and privacy requirements include compliance with
necessary standards and regulations (such as GDPR22

or HIPAA23). These security and privacy requirements
must proactively include functionality to thwart at-
tacker’s attempts to exploit system functionality. In the

17https://owasp.org/www-project-top-ten/
18https://cwe.mitre.org/top25/archive/2020/2020 cwe top25.html
19https://www.microsoft.com/en-us/securityengineering/sdl
20https://www.bsimm.com/
21https://www.opensamm.org/
22https://gdpr-info.eu/
23https://www.hhs.gov/hipaa/index.html

class, students learned about formal security require-
ments, such as those that are specified in NIST 800-53
Security and Privacy Controls24. Additionally, students
used the following four techniques to aid in their ability
to “think like an attacker” and to specify this defensive
security functionality.

• Adversarial thinking. Students were exposed to the
tactics, techniques of procedures (TTP) of attackers
through the use of the MITRE ATT&CK®25, a
globally-accessible knowledge base of real-world
observations and analysis of the actions of adver-
saries.

• Threat modeling. Through the use of threat mod-
elling [27], students considered, documented and
discussed the security implications of design in
the context of their planned operational environ-
ment and in a structured fashion. Threats could be
enumerated using a systematic approach of con-
sidering each system component relative to the
STRIDE (Spoofing, Tampering, Repudiation, Infor-
mation Disclosure, Denial of Service, Elevation of
Privilege) Model [28]. Threat models could also
be collaboratively developed via the Elevation of
Privilege game26.

• Attack trees. Students created conceptual diagrams
of threats on systems and possible attacks to reach
those threats [29].

• Abuse cases. Students created abuse cases [30],
which describe the system’s behavior when under
attack by a malicious actor. To develop abuse cases,
students enumerated the types of malicious actors
who would be motivated to attack the system.

4) Security risk management. Objective 4: Students will
be able to assess the security risk of a system under
development. Students learned to assess security risk in
and a standardized and an informal way.

• Formal risk assessment. Students learned to as-
sess security risk using processes outlined in the
NIST Cybersecurity Framework27 and NIST 800-
30 Guide for Conducting Risk Assessments28.

• Informal, collaborative risk assessment. Students
played Protection Poker [31], [32], an informal
game for threat modeling, misuse case development,
and relative security risk quantification.

VI. COURSE ASSIGNMENTS

In this section, we provide information on the four-part
project the students completed. We first provide information on
the system the students worked on, followed by the structure
of the assignments.

24https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
25https://attack.mitre.org/
26https://www.usenix.org/conference/3gse14/summit-program/

presentation/shostack
27https://www.nist.gov/cyberframework
28https://www.nist.gov/privacy-framework/nist-sp-800-30

A. System Under Test (SUT)

The SUT is OpenMRS, an open-source medical records
system designed to be flexible so it could be adapted to
many contexts where other medical records systems were
not available29. OpenMRS has over 900,000 lines of code.
OpenMRS, as described by the developer’s manual is a “Java-
based web application capable of running on laptops in small
clinics or large servers for nation-wide use”30. OpenMRS
uses both java and javascript. The OpenMRS architecture is
modular.

B. Equipment

All student tasks were performed on a virtual machine using
the school’s virtual computing lab31. The use of a virtual
computing lab allowed researchers to create a system image
including the SUT (OpenMRS) and necessary testing tools.
Each student could then checkout their own copy of the SUT
and tools with minimal installation effort on the part of the
student. For client-server tools, the server was setup in a
separate VCL instance in advance by members of the research
team with assistance from the teaching staff. All students
accessed the same server instance through different accounts.
Student images were assigned 4 cores, 8G RAM, and 40G
disk space. One server instance had 4 cores, 8G RAM, and
60G disk space. The other server instance had 8 cores, 16G
RAM, and 80G disk space. These specifications were based on
the minimum requirements needed for students to complete the
tasks in their assignments. Full testing of the entire OpenMRS
system was outside the scope of student assignments.

C. Assignment Structure

Through the semester, the students completed a four-part
project in teams of 3-4 students. The four parts are as follows.

1) Project Part 1: This assignment had two sub-parts, both
involving the ASVS.

• Systematic Penetration Testing (SPT). The students
planned and executed 15 penetration test cases. Each test
case had to map to a unique ASVS Level 1 or Level 2
control. Student reported whether the test cases passed or
failed, and the CWE of the vulnerability that was being
tested for. Most teams had failing test cases, indicating
they found vulnerabilities in OpenMRS.

• SAST. Students ran two commercially-available SAST
tools on OpenMRS: Fortify32 and Synposys Coverity33.
For each tool, students randomly chose 10 alerts produced
by the tool and determined if the alert was a true or false
positive. If the alert was a true positive, the student had to
explain how to fix the vulnerability, map the vulnerability

29https://atlas.openmrs.org/
30http://devmanual.openmrs.org/en/Kick off/solving the health it

challenges our responsemd.html
31http://vcl.apache.org/
32https://www.microfocus.com/en-us/products/static-code-analysis-sast/

overview
33https://www.synopsys.com/software-integrity/security-testing/static-

analysis-sast.html

to the CWE, and map the vulnerability to an ASVS
control.

2) Project Part 2: This assignment had two sub-parts, the
first of which involved the ASVS.

• DAST. The students ran the OWASP ZAP DAST and
a commercially-available DAST, Synopsys Defensics34.
The students chose five true positive alerts produced by
each tool. For each of these, they wrote a structured black
box text to replicate the discovered vulnerability. Each of
these test cases were mapped to the associated ASVS
control and CWE.

• Vulnerable Dependencies. Modern software uses many
third-party libraries and frameworks as dependencies.
Known vulnerabilities in dependencies is a major secu-
rity risk. Students ran five tools (OWASP-Dependency-
Check35, RedHat Victims36, GitHub Security scanners37,
Sonatype DepShield38, and Snyk39) to identify the vul-
nerable dependencies in OpenMRS. Students compared
the output of the five tools.

3) Project Part 3: This assignment had four sub-parts, the
first three of which involved the ASVS directly.

• Logging. Students wrote 10 black box test cases for
ASVS Section V7: Error Handling and Logging Veri-
fication Requirements requirements for Levels 1 and 2.

• IAST. Students ran the Synopsys Seeker tool 40 using five
failing black box test cases from their earlier work to seed
the Seeker run. For five of the true positive vulnerabilities
identified by the tool, the students had to write a black
box test case to replicate each discovered vulnerability.
Each of these black box test cases were mapped to the
associated ASVS control and CWE.

• Test coverage. ASVS has 14 sections. Students computed
their test coverage for each of these sections for all the
test cases they had written during Parts 1-3 of the course.
The students then wrote 5 more test cases to increase the
coverage of ASVS controls that they did not have a test
case for.

• Vulnerability discovery comparison. Students com-
pared the effectiveness and efficiency of the four detection
techniques they had used (systematic penetration testing,
SAST, DAST, and IAST). They computed an efficiency
measure based upon true positive vulnerabilities detected
per hour. They also recorded all the CWEs detected
by each tool. Students were asked to reflect upon their
experience with these techniques, comparing their ability
of each technique to efficiently and effectively detect a
wide range of types of exploitable vulnerabilities.

34https://www.synopsys.com/software-integrity/security-testing/fuzz-
testing.html

35https://owasp.org/www-project-dependency-check/
36https://github.com/victims/maven-security-versions
37https://github.com/features/security
38https://depshield.github.io/
39https://snyk.io/
40https://www.synopsys.com/software-integrity/security-testing/interactive-

application-security-testing/demo.html

4) Project Part 4: This assignment had three sub-parts, the
first two of which involved the ASVS directly.

• Protection Poker. The students wrote 5 new functional
requirements for OpenMRS to add functionality that is
not in the system yet. The played Protection Poker, using
the OpenMRS database tables on these requirements and
reflected how to reduce the security risk.

• Vulnerability fix. Students submitted a fix for a vulner-
ability that had been detected earlier in the class.

• Exploratory Penetration Testing (EPT). Students were
assigned to individually spend three hours performing ex-
ploratory testing. Students produced a video recorded of
their three-hour session, noted any vulnerabilities found,
and created black box test cases (labeled with ASVS
control) based on the vulnerabilities found to document
their results in a replicable way.

VII. EXPLORATORY PENETRATION TESTING EXERCISE: A
VIEW INTO STUDENT LEARNING

While not a formal experiment and without a baseline
comparison to a prior semester, we consider the student’s
performance on the final exploratory penetration testing exer-
cise to be indicative of the skills they had learned during the
semester. We share the verbatim assignment and the student
results in this section.

A. Verbatim Assignment

The text below is the exact text students were given on how
to perform the final exploratory penetration testing exercise.

Each team member is to perform 3 hours of exploratory
penetration testing on OpenMRS. This testing is to be done
opportunistically, based upon your general knowledge of
OpenMRS but without a test plan, as is done by professional
penetration testers. DO NOT USE YOUR OLD BLACK BOX
TESTS FROM PRIOR MODULES. Use a screen video/voice
screen recorder to record your penetration testing actions.
Speak aloud as you work to describe your actions, such as,
“I see the input field for logging in. I’m going to see if 1=1
works for a password.” or “I see a parameter in the URL, I’m
going to see what happens if I change the URL.” You should
be speaking around once/minute to narrate what you are
attempting. You don’t have to do all 3 hours in one session, but
you should have 3 hours of annotated video to document your
penetration testing. There’s lots of screen recorders available –
if you know of a free one and can suggest it to your classmates,
please post on Piazza.

Pause the recording every time you have a true positive
vulnerability. Note how long you have been working so a log
of your work and the time between vulnerability discovery is
created (For example, Vulnerability #1 was found at 1 hour
and 12 minutes, Vulnerability #2 was found at 1 hour and 30
minutes, etc.) If you work in multiple sessions, the elapsed
time will pick up where you left off the prior session – like if
you do one session for 1 hour 15 minutes, the second session
begins at 1 hour 16 minutes. Take a screen shot and number

each true positive vulnerability. Record your actions such that
this vulnerability could be replicated by someone else via a
black box test case. Record the CWE for your true positive
vulnerability. Record your work as in the following table. The
reference info for video traceability is to aid a reviewer in
watching you find the vulnerability. If you have one video, the
“time” should aid in finding the appropriate part of the video.
If you have multiple videos, please specify which video and
what time on that video.

While students were graded on their video and results, only
the results were studied further. We discuss the results in the
next section.

B. Data Collection

The exploratory testing results were collected, alongside
other data as part of a separate study on vulnerability detection
techniques. Hence the data we discuss focuses on unique
vulnerabilities rather than student responses. For the same
reason, we did not retain the videos students created as they
were not necessary and not easily anonymized. Student data
was collected following North Carolina State University’s
Institutional Review Board Protocol 20569. The protocol
was amended to verify that the EPT vulnerabilities could
be discussed in this study. Sixty-three of seventy students
allowed their data to be used for the study by signing an
informed consent form. The data was collected during the
Spring Semester of 2020, the first semester the course was
structured around ASVS. As part of the original vulnerability
detection technique comparison, three researchers who are
authors on this paper reviewed the student results remove
erroneous vulnerability reports and duplicate vulnerabilities.

C. Students’ Previous Experience

At the beginning of the course, students were asked to fill
out a survey about their experience relevant to the course. The
four survey questions were as follows:
• Q1: How much time have you spent working at a profes-

sional software organization – including internships – in
terms of the # of years and the # of months?

• Q2: On a scale from 1 (none) to 5 (fully), how much
of the time has your work at a professional software
organization involved cybersecurity?

• Q3: Which of the follow classes have you already com-
pleted?

• Q4: Which of the following classes are you currently
taking?

Q1 was short answer. For Q2, students selected a single
number between 1 and 5. For Q3, the students could select as
many options as were appropriate from a list of five graduate-
level security or privacy courses and one undergraduate-level
security course offered at the institution. For Q4, the students
selected from the two graduate-level security courses that were
also offered in the Spring of 2020. These two courses had both
been offered previously, and were also part of the list for Q3.

Fifty-nine of the sixty-three students who agreed to let their
data be used for the study had responded to the survey. Four

Fig. 2. Student Industry Experience (Q1)

students’ responses to Q1 provided a numeric value but did not
specify whether the numeric value indicated years or months,
rendering the value unusable. For example, if a student sim-
ply put “3”, we did not know if the student had 3 years
of industry experience or 3 months of industry experience.
Consequently, industry experience from 55 participants was
used to approximate the average industry experience of the
student participants.

Figure 2 shows the student’s industry experience (Q1) in
years. We use set notation where (indicates exclusive and]
indicates inclusive. For example, in Figure 2, a student with
exactly 2 years of experience would fall within the category
(1, 2] and not within the category (2, 3]. The median industry
experience as indicated by answers to Q1 was 1 year. The
average industry experience was 1 year 8 months. Of the 55
respondents whose answer for industry experience was clear,
7 had no industry experience at all.

Figure 3 shows that, among the 48 students who had
industry experience, most students had some exposure to
security. In other words, most students answered at least 2
to Q2. However, 20 of the 48 students who had any industry
experience had no industry experience relevant to security.
Only 10 students indicated a 3 or higher in answer to Q2.
Students with more industry experience also had more security
experience. Possible reasons for this include students having
more time to gain security-related experience when they have
more industry experience generally, and students with more
industry experience in security being more likely to select a
security-related course than students who intend to follow a
career elsewhere within computer science.

Additionally, of the 59 students who responded to the
survey, only 8 had previously taken a course in security or
privacy (Q3). Nine students were currently taking a course in
security or privacy in addition to the course from which the
data was collected (Q4).

Fig. 3. Security-Related Industry Experience (Q2)

D. Student Results

Figure 4 shows student efficiencies as a boxplot. The data
shown in Figure 4 has been trimmed [33], [34], using the
median absolute deviation and median (MADN) to identify
the most extreme outlier for each technique. The most extreme
outlier for each technique was then removed from the dataset.
Additionally, we use the abbreviations EPT and SPT to indi-
cate exploratory penetration testing and systematic penetration
testing respectively.

As shown in Figure 4, for the last assignment students were
relatively efficient in using exploratory penetration testing to
find vulnerabilities. Exploratory testing is highlighted in dark
blue. The median, 2.47 vulnerabilities per hour in the case of
exploratory testing, is indicated by the line in the middle of
the boxplot. The average efficiency, 2.38 vulnerabilities per
hour in the case of exploratory testing, is shown by the red x.
Many factors clearly influenced student performance. Course
information alone does not account for the difference since
the vulnerability detection techniques used in Part 2 and Part
3 of the student project were less efficient than vulnerability
detection techniques used in Part 1 as well as Part 4. However,
the fact that the final exploratory testing assignment was the
most efficient vulnerability detection assignment for the stu-
dents is noteworthy. As discussed in Section II, knowledge is
thought to be a key factor in exploratory testing. Furthermore,
as described in Section VII-C, a majority of students had little
or no security experience prior to this course. Nevertheless,
the students were more efficient with exploratory testing than
with tool-based techniques (SAST, DAST, and IAST), or with
systematic penetration testing. The relatively high efficiency
of the students when applying exploratory testing at the end
of the course is promising.

In addition to high efficiency, students were able to find
many different types of vulnerabilities during their exploratory
testing exercise. Table I shows the unique vulnerabilities found
by students using exploratory testing alone. Students recorded

41

TABLE I
VULNERABILITIES FOUND THROUGH EXPLORATORY PENETRATION

TESTING

CWE # Unique
Vulns

16 - Configuration 2

20 - Improper Input Validation 13

79 - Improper Neutralization of Input During Web Page
Generation (’Cross-site Scripting’)

80

200 - Information Exposure 4

209 - Information Exposure Through an Error Message 10

269 - Improper Privilege Management 3

272 - Least Privilege Violation 1

280 - Improper Handling of Insufficient Permissions or Priv-
ileges

1

285 - Improper Authorization 23

308 - Use of Single-factor Authentication 1

319 - Cleartext Transmission of Sensitive Information 4

419 - Unprotected Primary Channel 3

434 - Unrestricted Upload of File with Dangerous Type 1

472 - External Control of Assumed-Immutable Web Parameter 1

509 - Replicating Malicious Code (Virus or Worm) 1

521 - Weak Password Requirements 7

532 - Information Exposure Through Log Files 3

544 - Missing Standardized Error Handling Mechanism 5

550 - Information Exposure Through Server Error Message 1

598 - Information Exposure Through Query Strings in GET
Request

6

601 - URL Redirection to Untrusted Site (’Open Redirect’) 2

602 - Client-Side Enforcement of Server-Side Security 1

613 - Insufficient Session Expiration 3

614 - Sensitive Cookie in HTTPS Session Without ’Secure’
Attribute

1

620 - Unverified Password Change 1

639 - Authorization Bypass Through User-Controlled Key 5

770 - Allocation of Resources Without Limits or Throttling 2

778 - Insufficient Logging 11

Total 191

over 450 vulnerabilities. Since teams worked independently,
many teams coincidentally found the same vulnerability. Ad-
ditionally some reported vulnerabilities were not actually vul-
nerabilities, e.g. a student reported an information disclosure
concern over the database URL being accessible. However, this
access was by an admin, on a page designed to give admin
users access to this sensitive information. In spite of the false
positives and overlap, the student teams collectively found 191
unique vulnerabilities from 28 different CWE types. These 191
unique vulnerabilities are quantified in Table I.

VIII. LESSONS LEARNED ABOUT THE USE OF ASVS

A. Improved Student Performance

Although we do not have a control group to formally
quantify an improved performance on efficiency and effec-

Fig. 4. Exploratory Penetration Testing Efficiency41

tiveness in finding vulnerabilities, we were not expecting stu-
dents to find as many unique vulnerabilities using exploratory
penetration testing as they did, particularly in such a short
timeframe. Student familiarity with the ASVS framework may
have contributed their productivity.

B. Assisted in Identifying Knowledge Gaps

One advantage of ASVS when students erroneously identi-
fied or classified vulnerabilities was that the student references
to ASVS could facilitate identifying knowledge gaps. For
example, several ASVS requirements are about the entropy
needed to secure authentication information and other secrets,
such as ASVS 3.2.2 which states “Verify that session tokens
possess at least 64 bits of entropy.”. Many students wrote
systematic test cases or logged exploratory tests vulnerabilities
against this requirement. Although most of the tests and
findings correctly identified the session token, most of the
tests or findings incorrectly measured 64 bits of entropy. By
referencing the original ASVS, we were sometimes able to
better understand the student’s intent. Entropy is outside the
scope of the course, and would be anticipated as a gap in this
case. Other gaps, such as a gap in what would be covered by
a prerequisite course, might be of greater interest.

C. Motivated Self-Learning or Knowledge Sharing

In the projects Parts 1-3, students wrote each test case based
on a single ASVS control, typically writing one test case per
control. The course did not provide the technical knowledge
for many of the ASVS controls. Additionally, the ASVS
assumes that the reader either already has some knowledge
of security concepts, or will obtain that knowledge elsewhere.
As a result, students may have had to do some research in
order to write a test case for a control, such as on entropy
to continue the above example, or to share knowledge about
security technology among team members.

D. Continued Need to Emphasize Repeatable Test Cases

In each project part, students were instructed to document
their security test cases via “Detailed and repeatable (the same
steps could be done by anyone who reads the instructions)
instructions for how to execute the test case”. This type of

repeatable steps to replicate a vulnerability is necessary when
reporting a discovered vulnerability to a product team. Since
a Software Engineering course was a prerequisite to Software
Security course, we assumed that students would be familiar
with writing repeatable test cases. However, we found that
students often did not specify their test cases to that level
of detail. Since ASVS is high-level, to our knowledge ASVS
alone cannot address this issue.

E. Awareness of Security Resources

Courses may instruct students on cybersecurity practices
and technologies. However, government and practitioner orga-
nizations are creating valuable resources, such as the ASVS,
and others mentioned in Section V. Students should learn to
look for resources which can aid them in conducting their
security work more systematically and based upon the input
of security experts.

IX. ACKNOWLEDGMENTS

We thank Jiaming Jiang for her support as teaching assistant
for this class. We are grateful to the I/T staff at the university
for their assistance in ensuring that we had sufficient com-
puting power running course. We also thank the students in
the software security class. Finally, we thank all the members
of the Realsearch research group for their valuable feedback
through this project.

This material is based upon work supported by the National
Science Foundation under Grant No. 1909516. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] D. Trump, “Executive Order on America’s Cybersecurity Workforce,”
https://www.whitehouse.gov/presidential-actions/executive-order-
americas-cybersecurity-workforce/, May 2, 2019, [Online; accessed
31-July-2019].

[2] National Institute of Standards and Technology (NIST), “National
initiative for cybersecurity education (nice) cybersecurity workforce
framework, nist special publication 800-181,” https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-181.pdf, August 2017, [On-
line; accessed 31-Jan-2020].

[3] Cybersecurity Curricula 2017: Curriculum Guidelines for Post-
Secondary Degree Programs in Cybersecurity, Association for Comput-
ingMachinery (ACM) and the IEEE Computer Society (IEEE-CS) Std.,
December 2017. [Online]. Available: https://cybered.hosting.acm.org/
wp/wp-content/uploads/2018/02/csec2017 web.pdf

[4] G. McGraw, Software Security. Addison Wesley, 2006.
[5] A. Antonaci, R. Klemke, C. M. Stracke, M. Specht, M. Spatafora, and

K. Stefanova, “Gamification to empower information security educa-
tion,” in International GamiFIN Conference 2017, 2017, pp. 32–38.

[6] V. Švábenskỳ, J. Vykopal, M. Cermak, and M. Laštovička, “Enhancing
cybersecurity skills by creating serious games,” in Proceedings of
the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education, 2018, pp. 194–199.

[7] C. Theisen, T. Zhu, K. Oliver, and L. Williams, “Teaching secure
software development through an online course.” in SecSE@ ESORICS,
2017, pp. 19–33.

[8] S. Laato, A. Farooq, H. Tenhunen, T. Pitkamaki, A. Hakkala, and
A. Airola, “Ai in cybersecurity education-a systematic literature review
of studies on cybersecurity moocs,” in 2020 IEEE 20th International
Conference on Advanced Learning Technologies (ICALT). IEEE, 2020,
pp. 6–10.

[9] N. R. Mead, J. H. Allen, M. Ardis, T. B. Hilburn, A. J. Kor-
necki, R. Linger, and J. McDonald, “Software assurance curriculum
project volume 1: Master of software assurance reference curriculum,”
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGI-
NEERING INST, Tech. Rep., 2010.

[10] J. T. F. on Cybersecurity Education, “Cybersecurity curricula 2017: Cur-
riculum guidelines for post-secondary degree programs in cybersecurity,”
New York, NY, USA, Tech. Rep., 2018.

[11] A. Ruef, M. Hicks, J. Parker, D. Levin, M. L. Mazurek, and P. Mardziel,
“Build it, break it, fix it: Contesting secure development,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2016, pp. 690–703.

[12] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek, and
M. Hicks, “Understanding security mistakes developers make: Qualita-
tive analysis from build it, break it, fix it,” in 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020, to Appear.

[13] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek, “Hackers
vs. testers: A comparison of software vulnerability discovery processes,”
in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 374–391.

[14] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “The role of the tester’s
knowledge in exploratory software testing,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 707–724, 2013.

[15] Security and Privacy Controls for Federal Information Systems and
Organizations, National Institute of Standards and Technology (NIST)
Special Publication 800-53, Rev. 4, April 2013. [Online]. Available:
http://dx.doi.org/10.6028/NIST.SP.800-53r4

[16] Application Security Verification Standard, OWASP Std., Rev. 4.0.1,
March 2019.

[17] Penetration Testing, UK National Cyber Security Center Std.,
August 2017. [Online]. Available: https://www.ncsc.gov.uk/guidance/
penetration-testing

[18] Software and systems engineering — Software testing — Part 1: Con-
cepts and definitions, ISO/IEC/IEEE Std. 29 119-1, 09 2013.

[19] B. Smith and L. A. Williams, “Systematizing security test planning using
functional requirements phrases,” North Carolina State University. Dept.
of Computer Science, Tech. Rep., 2011.

[20] A. Austin and L. Williams, “One technique is not enough: A comparison
of vulnerability discovery techniques,” in 2011 International Symposium
on Empirical Software Engineering and Measurement. IEEE, 2011, pp.
97–106.

[21] B. Smith and L. Williams, “On the effective use of security test patterns,”
in 2012 IEEE Sixth International Conference on Software Security and
Reliability. IEEE, 2012, pp. 108–117.

[22] A. Austin, C. Holmgreen, and L. Williams, “A comparison of the
efficiency and effectiveness of vulnerability discovery techniques,” In-
formation and Software Technology, vol. 55, no. 7, pp. 1279–1288, 2013.

[23] D. S. Cruzes, M. Felderer, T. D. Oyetoyan, M. Gander, and I. Pekaric,
“How is security testing done in agile teams? a cross-case analysis of
four software teams,” in International Conference on Agile Software
Development. Springer, Cham, 2017, pp. 201–216.

[24] R. Scandariato, J. Walden, and W. Joosen, “Static analysis versus
penetration testing: A controlled experiment,” in 2013 IEEE 24th inter-

national symposium on software reliability engineering (ISSRE). IEEE,
2013, pp. 451–460.

[25] M. Hafiz and M. Fang, “Game of detections: how are security vulnerabil-
ities discovered in the wild?” Empirical Software Engineering, vol. 21,
no. 5, pp. 1920–1959, 2016.

[26] IEEE Center for Secure Design, “Avoiding the top 10
software security design flaws,” https://cybersecurity.ieee.org/
blog/2015/11/13/avoiding-the-top-10-security-flaws, 2017. [Online].
Available: https://cybersecurity.ieee.org/blog/2015/11/13/avoiding-the-
top-10-security-flaws

[27] K. Tuma, G. Calikli, and R. Scandariato, “Threat analysis of
software systems: A systematic literature review,” Journal of Systems
and Software, vol. 144, pp. 275 – 294, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218301304

[28] M. Howard and D. E. Leblanc, Writing Secure Code. Microsoft Press,
2003.

[29] V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling using attack
trees,” J. Comput. Sci. Coll., vol. 23, no. 4, p. 124–131, Apr. 2008.

[30] P. Hope, G. McGraw, and A. I. Anton, “Misuse and abuse cases: getting
past the positive,” IEEE Security Privacy, vol. 2, no. 3, pp. 90–92, 2004.

[31] L. Williams, M. Gegick, and A. Meneely, “Protection poker: Structuring
software security risk assessment and knowledge transfer,” in Massacci
F., Redwine S.T., Zannone N. (eds) Engineering Secure Software and
Systems (ESSoS) 2009. Berlin, Heidelberg, Germany: Springer Lecture
Notes in Computer Science, vol 5429, 2009.

[32] L. Williams, A. Meneely, and G. Shipley, “Protection poker: The new
software security ”game”;,” IEEE Security Privacy, vol. 8, no. 3, pp.
14–20, 2010.

[33] R. R. Wilcox and H. Keselman, “Modern robust data analysis methods:
measures of central tendency.” Psychological methods, vol. 8, no. 3, p.
254, 2003.

[34] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton,
S. Charters, S. Gibbs, and A. Pohthong, “Robust statistical methods
for empirical software engineering,” Empirical Software Engineering,
vol. 22, no. 2, pp. 579–630, 2017.

