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Abstract:    80 

 81 

Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural 82 

basins and valleys worldwide. These episodes often arise following development of persistent 83 

cold-air pools (PCAPs) that limit mixing and modify chemistry.  While field campaigns targeting 84 

either basin meteorology or wintertime pollution chemistry have been conducted, coupling 85 

between interconnected chemical and meteorological processes remains an insufficiently studied 86 

research area.  Gaps in understanding the coupled chemical-meteorological interactions that 87 

drive high pollution events make identification of the most effective air-basin specific emission 88 

control strategies challenging. To address this, a September 2019 workshop occurred with the 89 

goal of planning a future research campaign to investigate air quality in Western U.S. basins.   90 
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Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop 91 

participants outlined the rationale and design for a comprehensive wintertime study that would 92 

couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within 93 

western U.S. basins. Participants concluded the study should focus on two regions with 94 

contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache 95 

Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale 96 

for a campaign that will acquire chemical and meteorological datasets using airborne platforms 97 

with extensive range, coupled to surface-based measurements focusing on sampling within the 98 

near-surface boundary layer, and transport and mixing processes within this layer, with high 99 

vertical resolution at a number of representative sites. No prior wintertime basin-focused 100 

campaign has provided the breadth of observations necessary to characterize the meteorological-101 

chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-102 

chemistry models.  103 

 104 

 105 

1. Introduction:  106 

 107 

Winter episodes of high aerosol concentrations occur frequently in urban and agricultural basins 108 

and valleys across the globe (e.g., Yamuna Basin, India (Tiwari and Kulshrestha, 2019); Tokyo 109 

Basin, Japan (Osada et al. 2019); Taiyuan Basin, China (Miao et al. 2018); and the San Joaquin 110 

and Salt Lake Basins, USA (Whiteman et al. 2014; Zhang et al. 2020)). These episodes may last 111 

from several days to several weeks and often arise due to the development of persistent cold-air 112 

pools (PCAPs), within which lateral and vertical mixing are inhibited due to sheltering by 113 
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surrounding topography and a stable temperature profile (Dorninger et al. 2011; Reeves et al. 114 

2011; Lareau et al. 2013; Sheridan et al. 2014; Holmes et al. 2015; Sun and Holmes, 2019; Ivey 115 

et al. 2019; Sun et al. 2020). While a number of field campaigns targeting either wintertime basin 116 

meteorology (e.g., Lareau et al. 2013; McCaffrey et al. 2019), or wintertime pollution chemistry 117 

(e.g., Brown et al. 2013; Franchin  et al. 2018; Young et al., 2016) have been conducted in the 118 

U.S., only a few of these campaigns have explicitly considered coupling between interconnected 119 

chemical and meteorological processes (e.g., e.g., Baasandorj et al. 2017; Prabhakar et al., 2017; 120 

Salvador et al. 2021). The upcoming ALaskan Pollution And Chemical Analysis (ALPACA) is 121 

specifically targeting this knowledge gap in cold and dark conditions.   122 

            Current gaps in our understanding of the coupled chemical-meteorological interactions 123 

that result in high pollution events in many basins worldwide make identification of the most 124 

effective air-basin specific emission control strategies challenging. Meteorological processes 125 

(thermodynamic, radiative, and dynamical) influence both pollution accumulation, dispersion, 126 

and transport, and aerosol pollution chemistry; while chemical processes in turn influence 127 

radiative transfer, cloud formation, and mixing processes. Figure 1 presents a graphical 128 

illustration of some of the coupled chemical-meteorological processes that occur in basins. Some 129 

key meteorological processes that control the formation, duration, and breakdown of PCAPs 130 

include: synoptic drivers such as high pressure and associated subsidence, which can precipitate 131 

elevated thermal inversions; warm air advection aloft and large-scale winds and turbulent 132 

mixing, alongside local drivers such as the surface energy and radiation budget, which strongly 133 

influence formation and dissipation of surface-based thermal inversions; characteristics of the 134 

underlying surface (e.g., snow cover, water, urban or non-urban landscape); low clouds and fog; 135 

and local boundary-layer flows near the surface. In turn, the location and types of urban 136 
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emissions, aerosol formation and growth processes, and chemical cycling processes influence 137 

and are influenced by the ambient meteorology (Fig. 1). The unique basin topography (e.g., 138 

slope, how enclosed the basin is, and the size of basin) also play an important role in modulating 139 

the rate of pollutant build-up and vertical profiles of temperature and moisture. The interactions 140 

between these numerous meteorological processes regulating the frequency, location, and speed 141 

of chemical processes in PCAPs, and complex wintertime chemistry, has not yet been observed 142 

with sufficient detail to provide satisfactory understanding of these complex pollution episodes 143 

and their evolution in time and space 144 

Ammonium nitrate (NH4NO3) is a major component of aerosol mass in many polluted 145 

boundary layers during wintertime episodes (e.g. Womack et al. 2019; Fu et al., 2020; Kelly et 146 

al., 2018; Kim et al., 2014; Aksoyoglu et al, 2017; Schaap et al., 2004). Organic aerosol (OA) 147 

can also contribute substantially (Chen et al., 2018). In some basins, the NH4NO3 contribution 148 

increases with the total aerosol loading while in others OA dominates at high loadings, often 149 

with differences between day and night. Understanding the factors that govern the evolution of 150 

pollution within a basin is critical for implementing effective emission control policies.  151 

Precursor emissions and chemical transformations leading to NH4NO3 formation are an area of 152 

ongoing research, as are a number of processes controlling OA production and loss.  While OA 153 

formation has been extensively studied in warm seasons with large emissions of volatile organic 154 

compounds (VOCs, precursors to secondary organic aerosol) often from biogenic sources, 155 

characterization for winter urban environments is lacking. Slower photochemistry occurs in the 156 

winter, and biogenic and evaporative emissions tend to decrease with temperature, suggesting 157 

that these emissions play a smaller role in wintertime OA formation. However, recent evidence 158 

of rapid and widespread OA formation (Shah et al. 2019; Schroder et al. 2018) indicate that 159 
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urban wintertime OA formation is an important contributor to PM2.5 mass. Sulfate is a small 160 

fraction of PM2.5 mass during winter in basins such as the Salt Lake Valley but is more important 161 

elsewhere (Wang et al., 2016).  Mechanisms leading to winter sulfate oxidation are a topic of 162 

current interest for which detailed studies in the western U.S. may serve as a test bed. 163 

Consequently, it is imperative to better understand the mechanisms that drive local nitrate, 164 

organic and sulfate formation, alongside the emission sources of key precursor gases—e.g., 165 

nitrogen oxides, ammonia, SO2 and VOCs.  This is particularly important given recent findings 166 

showing the importance of urban VOC emissions from evaporative sources relative to those from 167 

{Figure 1 here} 168 

fuel use (McDonald et al. 2018). Process-level understanding also requires investigation of 169 

radical cycling involving VOCs and NOx in the winter and its relationship to high pollutant 170 

levels in stagnant boundary layers.  171 

In recent decades, overall aerosol concentrations have declined in the U.S. owing to 172 

emissions changes driven by regulatory policies (Bennett et al. 2019).  However, a recent study 173 

has conclusively demonstrated that particulate levels across the U.S. are associated with 174 

mortality impacts and loss of life expectancy, with the highest rates observed within the San 175 

Joaquin Valley in California (Bennett et al., 2019).  Furthermore, particulate matter with 176 

diameters less than 2.5 microns (PM2.5) within major urban areas across the U.S.  has declined 177 

more slowly in winter than in summer, and average winter levels are now higher in winter than 178 

in summer (Chan et al. 2019).  These trends are particularly pronounced in basins across the 179 

Western U.S., where wintertime aerosol concentrations regularly approach or exceed regulatory 180 

standards (Green et al. 2015).  Gaps in understanding the coupled chemical-meteorological 181 

interactions that result in high pollution events may preclude identifying the most effective 182 
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emission control strategy for a given air basin.  With this challenge at the forefront, a workshop 183 

took place in September 2019 at the University of Utah with the goal of planning a future winter 184 

research campaign to investigate mountain basins of the western U.S.  With funding from the 185 

National Science Foundation (NSF) Atmospheric Chemistry Program and the National Oceanic 186 

and Atmospheric Administration (NOAA) Atmospheric Chemistry, Climate and Carbon Cycle 187 

Program, the workshop brought together ~120 air quality experts and meteorologists from across 188 

the globe, representing 50 institutions and 5 countries. 189 

As summarized in this article, the workshop outlined the rationale and design for a 190 

comprehensive study that couples atmospheric chemistry and meteorology for wintertime poor 191 

air quality episodes in mountain basins across the western U.S. The campaign framework is laid 192 

out in Section 2.  The existing uncertainties and opportunities for this campaign are summarized 193 

in Sections 3-7, organized by science sub-themes. Finally, an integrated perspective on 194 

measurements and modeling is presented, along with next steps, in Section 8. 195 

 196 

2. Design of the Research Study  197 

 198 

The two western U.S. regions with the most severe winter aerosol pollution are Northern Utah 199 

(comprised of the Salt Lake, Utah and Cache Valleys) and the San Joaquin Valley (SJV) in 200 

California.  The workshop concluded that while winter meteorology and a mix of urban and rural 201 

emissions affect basins across the western U.S. (see Figure 2), a comprehensive study should 202 

focus on these two regions, which exhibit contrasting aerosol chemistry, basin topography, 203 

climate, agricultural practices and meteorological-chemical interactions.  In the Salt Lake City 204 

area, ammonium nitrate is the major contributor to wintertime PM, whereas in the SJV primary 205 
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and secondary organic aerosol (SOA) are also major contributors (Baasandorj et al. 2017; 206 

Lurmann et al. 2006; McDuffie et al. 2019; Chow and Watson, 2002).  Furthermore, historical 207 

databases and previous studies provide context for an air quality study in both of these regions, 208 

as PM regulatory standard exceedances in wintertime are common to both.  Finally, strong 209 

science capacity is available in these areas to conduct this research.  Figure 2 shows a long-term 210 

record of PM2.5 at the Hawthorne monitoring site in Salt Lake City, the SJV (Bakersfield), and, 211 

for comparison, a site in California’s South Coast basin (Riverside-Rubidoux). The decreasing 212 

trend in PM2.5 in the South Coast basin is visually apparent from Figure 2, in contrast to the SJV 213 

and Salt Lake City sites, which still regularly experience regulatory exceedances during winter, 214 

despite modestly decreasing PM2.5 trends (Green 2015).   215 

{Figure 2 here} 216 

The onset and evolution of wintertime pollution episodes in the SJV of California differs 217 

in many respects from those in the colder, smaller and frequently snow-covered Intermountain 218 

West basins.  Additionally, western U.S. mountain valleys show significant variability in 219 

emissions. Emissions of nitrogen oxides (NOx), VOCs, and ammonia (NH3) are highly 220 

dependent on the nature of the agricultural and industrial sectors in each valley (Kelly et al. 221 

2013; Wang et al. 2015), and their chemical transformations are dependent on many 222 

meteorological and topographical factors (Green et al. 2015; Wang et al., 2015; Kleeman et al. 223 

2005; Pusede et al. 2016).  224 

The proposed field program focuses on understanding how variations in coupled 225 

meteorological and chemical processes contribute to the production, transformation, cycling, and 226 

destruction of chemical species in each locale. This paper highlights the need for acquisition of 227 

chemically and meteorologically comprehensive datasets using airborne platforms with sufficient 228 
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range, coupled to extensive surface-based measurements that provide continuous, chemically 229 

detailed data at ground level where human exposure occurs.  Sampling of the boundary layer at 230 

high vertical resolution will provide representative profiles that reflect regional topographical, 231 

meteorological, and emissions variability. The chemical measurements will be combined with 232 

comprehensive meteorological measurements to characterize the influences of a wide range of 233 

meteorological and land surface processes and parameters (e.g, transport and mixing, surface 234 

albedo) and topography on chemical processes during the PCAP episode. 235 

 236 

3. Understanding the Coupling between “Cold-Air Pool” Meteorology and Air Quality 237 

 238 

The complex cold-air pool basin meteorology that impacts pollutant dispersion and air pollution 239 

chemistry remains an active area of research worldwide (Giovannini et al. 2021). Many of the 240 

meteorological processes and their effects on air pollution transport and chemistry are still not 241 

well documented, understood, or adequately modelled despite having contributed to poor air 242 

quality in western U.S. basins for over a century (Fig. 1: see Lareau et al. 2013; Giovannini et al. 243 

2021; Lighthall and Capitman, 2007; Mitchell, in prep). Figure 1 illustrates the coupling of 244 

chemical and meteorological processes wherein the atmospheric state impacts the atmospheric 245 

chemistry and, in some cases, results in feedbacks between the two (e.g., aerosols affect cloud 246 

properties and lifetime and can absorb shortwave solar radiation, which leads to alteration of the 247 

vertical temperature profile and hence pollutant vertical transport).  Transport and mixing 248 

processes, insolation, and microphysical cloud processes all affect the type and extent of 249 

different chemical processes. In turn, weaker feedbacks between aerosol loading and cloud 250 

chemistry can have significant impact - via radiative feedbacks (e.g., longwave energy transfer 251 
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back to the surface from low clouds, net decreases in incoming shortwave radiation into the 252 

PCAP due to reflection of the shortwave solar energy back to space at cloud top) - on the vertical 253 

stratification and thus vertical mixing processes within the PCAPs.  254 

The complexity of interactions between topographical and other physical characteristics 255 

of basins, meteorological, and chemical processes introduced in Fig. 1 leads to pollution  with 256 

characteristics, severity, and duration differing both in time and space and across different 257 

basins. For example, variations in the vertical temperature profile and magnitude of turbulence 258 

and mixing from solar heating or wind shear can dramatically impact the amount of 259 

entrainment/dilution of pollutants and vertical layering of pollutant precursors within the basin 260 

atmosphere.      261 

           The workshop identified four critical couplings processes between meteorology and 262 

chemistry requiring investigation as part of the proposed field program : 1) surface fluxes of 263 

energy and momentum and chemistry; 2) moisture and fog, and heterogeneous, multi-phase and 264 

aqueous-phase chemistry; 3) PCAP vertical  thermodynamic profiles and vertical chemical 265 

profiles, and 4) meteorology and chemistry associated with thermally and dynamically-forced 266 

exchange processes.  No prior wintertime field campaign has provided the breadth of 267 

observations necessary to analyze the meteorological-chemical linkages outlined here or to 268 

validate complex processes within coupled atmosphere-chemistry models.  269 

            A critical tool for both basic research and air pollution control strategies are 270 

coupled meteorological and chemical models. Development of useful guidance for the research 271 

and regulatory communities requires improvements to both meteorological and chemical 272 

components of these models (Giovanni et al. 2021).  To improve meteorological model 273 

simulations of PCAPs, considerable work is underway or has been conducted in recent years 274 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-20-0017.1.Unauthenticated | Downloaded 08/05/21 04:34 PM UTC



 13 

(e.g., Saide et al. 2011, Lareau and Horel 2015b, Ahmadov et al. 2015, Saide et al. 2016, Tran et 275 

al. 2018, Sun and Holmes 2019; Kelly et al., 2018; Sun et al. 2020).  Some of the key 276 

meteorological processes that are very difficult to model in stable wintertime boundary layers 277 

include vertical temperature and humidity structure, cloudiness, turbulent mixing and boundary-278 

layer flows (Baklanov et al., 2011, Holmes et al., 2015).  Improvements in and testing of the 279 

representations of heterogeneous chemical processes (Holmes et al., 2019; Brown et al., 2006b), 280 

links between aerosol phase and gas-particle equilibration and partitioning (Shiraiwa et al., 281 

2013b, Zaveri et al., 2018), secondary organic aerosol lifecycles (Cappa et al., 2016) and organic 282 

compound oxidation pathways (Bianchi et al., 2019), especially as they occur within colder 283 

wintertime environments, is needed to accurately understand and predict both aerosol and gas-284 

phase abundance and composition, discussed further later on.  285 

 The coupled meteorological and chemical models parameterize vertical mixing using 286 

relationships between turbulent fluxes and mean thermodynamic profiles that have significant 287 

impacts on predicted atmospheric composition. It is therefore paramount that meteorological 288 

(e.g., temperature and wind speeds to quantify mixing and transport, relative humidity and 289 

downwelling radiance to estimate liquid water path and boundary-layer moisture) and chemical 290 

vertical profile measurements be collocated with observations of the radiative and turbulent 291 

components of the surface energy balance. This approach will allow a detailed quantification of 292 

mass, moisture, heat, and chemical budgets within basins.  It is also important that variations in 293 

the surface energy balance across the basins be well captured using flux sites and satellite data. 294 

Important land surface parameters to observe include the depth and age of snow (which can 295 

impact the amount of reflected solar radiation and rates of photochemical reactions), and soil 296 
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temperature and moisture (which can impact fog formation and vertical mixing processes, both 297 

which impact chemistry).  298 

Sufficient data, both temporally and spatially, are needed to ensure that spatial gradients 299 

are captured across the basins of interest to form a three-dimensional representation of the 300 

atmospheric state for both chemical and meteorological properties. Chemical processes driven by 301 

mixing also need to be resolved alongside the meteorological measurements for turbulence, 302 

mixing, and transport, to allow linking of these two processes. A holistic, interdisciplinary, and 303 

multi-agency approach will be used in this study where existing infrastructure such as National 304 

Weather Service daily rawinsonde launches, weather stations from public and private sectors 305 

available from MesoWest (Horel et al. 2002), wind sodars, lidar profilers, and ceilometers will 306 

be supplemented with instrumentation dedicated to this field study.   307 

        One study design approach is a process-focused deployment, targeting regions of interest 308 

within a basin to investigate and quantify coupled chemical-meteorological processes. Three 309 

examples of targeted meteorological processes and their impacts on the chemistry include: 1) 310 

inter-basin exchange, 2) sidewall- and canyon-flow transport, and 3) vertical layering and 311 

exchange (Fig. 1). 312 

        In addition to using frequent rawinsonde launches and vertical-profiling wind lidars, sodars, 313 

ceilometers, and acoustic-sounding systems at fixed locations, use of mobile vertical profilers 314 

and tall buildings as instrument platforms can help resolve the vertical structure of the basin 315 

atmosphere. Mobile ground-based systems measuring both meteorology and chemistry, such as 316 

the California Air Resources Board (CARB) Mobile Measurement Platform (Park et al. 2011), or 317 

the TRAX air quality light-rail train (Mitchell et al. 2018; Mendoza et al. 2019), will fill gaps in 318 

the fixed-instrumentation networks. Mobile ground-based systems driven up canyons and slopes 319 
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can provide measurements along topographic sidewalls, and drones can obtain shallow but 320 

highly resolved vertical profiles in areas with limited topography. Coupled meteorological data 321 

(including turbulence and the surface energy balance) collected on towers and high buildings at 322 

multiple locations within the basins would also provide valuable observations in the lowest 100 323 

m of the PCAP atmosphere. A potential exists for deploying airborne Doppler wind lidar to 324 

provide similar vertical wind-flow information along a 2-D transect, during times and in 325 

locations where fog and low stratus do not impede operations. Lidar-based vertical wind profiles 326 

at basin boundaries would greatly assist in quantifying background pollution and meteorological 327 

parameters as well as transport processes within a single basin and between adjacent basins. 328 

 The field deployment will also include modeling teams, using tools that span the scales 329 

from large eddy simulations (meters resolution) to regional coupled meteorological and chemical 330 

models (kilometers resolution), to forecast PCAP events and contribute to flight planning; this 331 

will help ensure the measurements address the modelers’ needs. Complementing research-grade 332 

models and forecasts, operational air quality forecasts used to warn the public about pollution 333 

events will be evaluated to identify deficiencies and accelerate the transition of any 334 

improvements from research to operations. 335 

 336 

4. Emissions of Relevant Short-Lived Pollutants 337 

 338 

Within basins that experience adverse air quality in winter, direct emissions of aerosols 339 

are of interest, as well as emissions of short-lived gases, including reactive nitrogen species (e.g., 340 

NOx and NH3) and intermediate-volatility/volatile organic compounds (I/VOCs; e.g., 341 

hydrocarbons, amines, oxidized and reduced sulfur compounds, and oxygenated organic 342 
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compounds). Such emissions are largely from urban, agriculture, and biomass burning sources. 343 

Here, residential wood combustion is considered an urban emissions source, and biomass 344 

burning is limited to wildland fires (wildfires and prescribed burns).  Different sources emit at 345 

different elevations above the surface, with consequent implications for the fate of emitted 346 

compounds and their impacts on surface air quality. For example, emissions from vehicles occur 347 

at the surface, whereas emissions from some industrial sources or the power sector may occur at 348 

elevations 10’s to 100’s of meters above the surface.  349 

Mobile sources and residential wood combustion contribute significantly to primary and 350 

secondary aerosols in Salt Lake City in wintertime (e.g., Kelly et al. 2013). Similar sources 351 

contribute to elevated aerosol concentrations in the SJV; in addition to local transportation and 352 

residential wood combustion, cooking was identified as significant source of aerosols, 353 

particularly in the evening (Young et al. 2016). While emissions reductions from passenger 354 

vehicles have led to a continuing decline in on-road vehicle contributions to NOx and aerosols 355 

(Dallman and Harley 2010; Bishop et al. 2012; Utah DAQ 2019), the contributions of older and 356 

off-road vehicles to NOx and aerosols  are not well quantified. In addition, the temperature 357 

dependence of mobile source emissions is not well-constrained for real-world conditions. 358 

Previous in-use laboratory testing has shown that lower ambient temperatures can lead to higher 359 

gaseous and particulate mass emissions from gasoline and diesel vehicles, and to changes in 360 

chemical composition (Zielinska et al. 2004). In addition, vehicle operation specific to winter 361 

conditions, such as changes in the frequency of hot vs. cold starts and an increase in idling, can 362 

affect mobile source emissions and ambient concentrations. Finally, NH3 emissions from 363 

selective catalytic reduction systems may increase in winter, given the increase in NH3-forming 364 

deposits with decreases in ambient temperature (Strots et al. 2010).  365 
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Reductions in mobile source I/VOC emissions spanning several decades (e.g., Warneke 366 

et al. 2012) have led to an increase in the relative importance of other, under-studied sources of 367 

I/VOCs including cooking and volatile chemical products (VCPs) (McDonald et al. 2018). A 368 

large fraction of VCP emissions occur inside buildings. More restrictive air exchange between 369 

buildings and ambient air during the winter to conserve energy may affect VCP emissions 370 

(Pagonis et al. 2019); currently, there are few constraints regarding the seasonality in VCP 371 

emissions. Evaporative emissions of transportation fuels generally decrease as ambient 372 

temperature decreases (Harley et al. 1992; Rubin et al. 2006), which also may be observed for 373 

VCPs.  374 

Regarding residential wood burning, in areas affected by poor wintertime air quality, 375 

efforts have been made to reduce solid fuel combustion (wood, wood pellets, coal, etc.) through 376 

implementation of burn restrictions when poor air quality is forecast, and incentives to exchange 377 

wood-burning devices for natural gas heating options. Such strategies appear to be reducing the 378 

prevalence of solid-fuel burning, including wood (Kotchenruther, 2020); however it has been 379 

demonstrated that primary and secondary aerosols originating from residential wood burning 380 

persist, even when solid-fuel burning is prohibited (Glisson et al. 2019; Kotchenruther, 2020). In 381 

addition, solid fuels used in wood stoves are poor in nitrogen, which affects the emissions of 382 

nitrogen-containing VOCs, NOx, and NH3 (Coggon et al. 2016).  383 

 Agricultural emissions have been directly linked to atmospheric aerosol formation 384 

(Bauer et al. 2016), mainly via the dominant contribution of agriculture to NH3 emissions both 385 

globally and in the study region (Bouwman et al., 1997; Paulot et al., 2014). Uncertainties in 386 

quantifying the contribution of NH3 to aerosols in winter are largely associated with 387 

parameterizations of emissions as a function of temperature. NH3 emissions from manure vary 388 
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non-linearly with temperature, with higher temperatures increasing volatility (e.g., Hempel et. al 389 

2016). For animals in heated housing, there is concern that process-based NH3 predictions for 390 

ambient temperature may underpredict winter emissions (Moravek et al. 2019). In addition to 391 

NH3, several recent studies have pointed to the importance of fertilized agricultural soils as a 392 

source of NOx (Almaraz et al. 2018; Trousdell et al. 2019), which could have a particularly large 393 

impact in California where crop fertilization occurs in the winter months.  394 

A number of individual agricultural VOCs have been identified, and include aliphatic and 395 

aromatic hydrocarbons, phenols, alcohols, aldehydes, ketones, esters, carboxylic acids, terpenes, 396 

heterocyclic compounds, amines, and reduced sulfur compounds (e.g., Blunden et. al. 2005; 397 

Filipy et al. 2006; Shaw et al. 2007; Turan et al. 2007; Trabue et al. 2008; Rumsey et al. 2012; 398 

Rumsey and Aneja, 2014). While past studies suggested that, relative to other anthropogenic 399 

sources, agricultural VOCs do not contribute significantly to O3 production, recent studies 400 

indicate their role has been overlooked (Pusede et al., 2014; Parrish et al., 2017; Trousdell et al., 401 

2019). Several of these identified compound classes are known aerosol precursors, particularly 402 

amines and reduced sulfur compounds. Amines have been reported as a significant component of 403 

the carbonaceous fraction of aerosol observed during cold wintertime inversion conditions in 404 

western agricultural valleys, in Utah (Silva et. al 2008), and Washington (Bottenus, et. al 2018). 405 

Reduced sulfur compounds (e.g., dimethylsulfide, dimethyldisulfide, and methanethiol) have 406 

received less attention (Trabue et al. 2008; Rumsey et al. 2014), but agricultural contributions of 407 

such compounds can be significant (Shaw et al. 2007). 408 

In certain states and regions, there may be unique agricultural sectors unaccounted for in 409 

emissions inventories and air quality models. For example, the state of Utah is the number two 410 

producer of mink pelts in the U.S., but such emissions are lacking in the National Emissions 411 
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Inventory because there are no data available. Also, rapid changes in agricultural source 412 

emissions may occur owing to the recent expansion of anaerobic digesters. California alone has 413 

dozens of digesters under construction for the dairy industry and they are being installed in other 414 

states as well. Few studies have been conducted to see how the digester processes might impact 415 

non-GHG emissions.  416 

Wildland fire emissions likely contribute to the elevated PM2.5 concentrations observed 417 

during the winter months. Fire activity in winter has become more prominent in the western U.S. 418 

For example, the Thomas Fire in California, which started in early December, became one of the 419 

largest wildfires recorded in California (Kolden and Abatzoglou, 2018). Higher summer 420 

temperatures and decreased precipitation in the fall could potentially continue to extend the 421 

western United States fire season into the winter (Guzman‐Morales and Gershunov, 2019). 422 

Transported emissions from these late fall/early winter wildfires in the western US could then 423 

contribute to enhanced PM2.5 concentrations in the SLC region. 424 

 425 

5. Winter Atmospheric Chemical Cycles 426 

 427 

Chemical transformations and subsequent phase partitioning of primary air pollutants 428 

such as NOx, VOCs, and reduced nitrogen are responsible for the conversion of these primary 429 

emissions into aerosols.  While the daily integrated solar radiation available to drive winter 430 

photochemistry is generally lower than summer, multiphase chemical reactions that are prevalent 431 

in winter can lead to photolabile radical sources that drive aerosol formation.  The nature and 432 

magnitude of radical sources impacts the sensitivity of chemical oxidation cycles to primary 433 

emissions of NOx and VOCs, leading to fundamental shifts in the prevalent chemical regime 434 
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during winter.  The shallow, stable boundary layer associated with PCAPs tends to concentrate 435 

primary emissions, further shifting the sensitivities of oxidation cycles. This section examines 436 

some of the features of winter chemical oxidation cycles in polluted boundary layers and 437 

identifies major uncertainties. 438 

Snow cover is conducive to the formation and intensification of PCAP conditions due to 439 

enhanced radiative cooling at the snow surface that strengthens the low-level wintertime stable 440 

layer.  In the SLV, for example, PM2.5 exceedances are observed four times as frequently on 441 

snow covered days compared to those without snow cover (Whiteman et al. 2014). The effect of 442 

snow cover is complex, since it changes both the boundary layer dynamics and atmospheric 443 

chemistry.  Reflection of solar radiation by snow increases actinic flux and photochemical 444 

reaction rates. Surface snowpacks also directly impact atmospheric composition by serving as a 445 

sink/reservoir for atmospheric trace gases and particles upon deposition and as a source from 446 

reactions on and within the snow grain surface (Grannas et al. 2007). For example, nitrate 447 

deposited on the snowpack undergoes photolysis to produce NOx and HONO released to the air 448 

above (Chen et al. 2019; Honrath et al. 2000; Michoud et al. 2015; Zatko et al. 2016). Snowpack 449 

photochemistry also contributes to near-surface OH through the production and subsequent 450 

photolysis of H2O2 and carbonyls, including formaldehyde, acetaldehyde, and acetone (Couch et 451 

al. 2000). Dinitrogen pentoxide (N2O5) reactions on saline snow grains can result in ClNO2 452 

formation, with the snowpack serving as a net source or sink of ClNO2 depending on temperature 453 

(Wang et al. 2020).   454 

The presence of large surface area in the particulate phase and in fogs also increases 455 

heterogeneous reaction rates during winter, altering levels of several criteria air pollutants 456 

including ozone (O3), nitrogen dioxide (NO2), SO2 and particulate matter (Sarwar et al. 2012; 457 
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Sarwar et al. 2014). One important heterogeneous reaction known to contribute to accumulation 458 

of aerosol mass is that of N2O5 on deliquesced aerosol particles. N2O5 chemistry occurs primarily 459 

during darkness, and is favored at lower temperatures and elevated NOx levels, which are 460 

characteristic of urban areas during winter (Chang et al. 2011). This reaction regulates the 461 

wintertime NOx lifetime and leads to the formation of nitric acid (HNO3) (Chang et al. 2011), 462 

which contributes to particulate nitrate levels in the presence of ammonia (McDuffie et al. 2019). 463 

Nitryl chloride (ClNO2), a photolytic source of chlorine radicals (Cl·) and NO2, is produced from 464 

N2O5 where chloride-containing particles are present (Osthoff et al, 2008).  Atomic chlorine is 465 

highly reactive and initiates VOC oxidation cycles and SOA formation (Wang and Hildebrandt 466 

Ruiz, 2018). The fate of the reactive uptake of N2O5 and subsequent impacts on oxidant and PM 467 

concentrations depend on individual particle surface composition (Gaston and Thornton 2016; 468 

McNamara et al. 2020), which remains poorly constrained. 469 

A second important wintertime heterogeneous and multiphase reaction is the production 470 

of nitrous acid (HONO), a radical reservoir whose photolysis may be a large OH source that 471 

affects urban air quality (e.g., Fu et al. 2019).  Numerous heterogeneous and multiphase HONO 472 

sources have been proposed, such as photochemical generation from snowpacks (Chen et al. 473 

2019) and photolysis of nitrate aerosol (Ye et al. 2017), although the latter remains controversial 474 

(Romer et al. 2018). Given the variety of potential HONO sources and associated uncertainties, 475 

future measurements are needed to ascertain dominant formation pathways. 476 

Dissolution of trace gases and subsequent aqueous-phase reactions within fog droplets 477 

and deliquesced aerosol can also lead to secondary aerosol formation, including sulfate and high 478 

molecular weight organic compounds (Ervens et al. 2011). Previous SJV wintertime studies have 479 

shown aqueous-phase formation of high molecular weight organic compounds (Qin and Prather 480 
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2006), as well as hydroxymethanesulfoante (Whiteaker and Prather 2003).  This compound has 481 

been suggested as a significant winter sulfate source in highly polluted regions such as China 482 

(Song et al. 2019).  Aqueous phase sulfur oxidation driven by NO2 at high aerosol pH has 483 

recently been proposed to explain rapid sulfate formation in China (Wang et al., 2011).  Fog pH 484 

has been increasing in recent years within the SJV, where ammonium nitrate is a major 485 

component in the north and sulfate is prevalent in the south (Herckes et al. 2015), providing a 486 

potential test of this and other known and proposed aqueous sulfur oxidation mechanisms 487 

(Alexander et al., 2009; Calvert et al., 1985; Green et al., 2019). Studies of the multiphase 488 

processes remain too sparse to accurately parameterize their contribution to winter air quality. 489 

O3 and NO2 are often collectively termed odd oxygen (Ox) and tracked together to 490 

determine the growth of O3 beyond its rapid interconversion with NO2 (Wood et al. 2009). Odd 491 

oxygen is frequently defined more broadly to include other nighttime reservoirs such as NO3, 492 

N2O5 and gas phase HNO3 (Brown et al. 2006c; Liu, 1977). Recent work has expanded the 493 

definition of Ox further (referred to as Ox,total) to include additional reactive nitrogen compounds 494 

and particulate nitrate (Womack et al. 2019). Tracking Ox,total allows for the investigation of the 495 

role that oxidation plays in the buildup of pollutants in boundary layers.  During the Utah Winter 496 

Fine Particulate Study (UWFPS) (Baasandorj et al. 2018), Ox,total increased dramatically above 497 

the 45 ppbv O3 background during pollution episodes and rapidly became dominated by NO2 and 498 

particulate nitrate under conditions of depleted O3. Box modeling demonstrated that the high 499 

ratio of NOx to VOCs in the SLV altered the traditional O3 photochemical cycle (Kleinman 500 

1994; Lin et al. 1988) to primarily form particulate nitrate (Womack et al. 2019). This finding 501 

contrasts with the adjacent Uintah Basin, UT, where high concentrations of VOCs from oil and 502 

gas extraction with relatively lower NOx levels have been shown to force the photochemical 503 
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cycle to produce Ox,total in the form of wintertime O3 (Ahmadov et al. 2015; Edwards et al. 2013; 504 

Edwards et al. 2014).  These two analyses of air pollution in adjacent basins, SLV and Uintah, 505 

demonstrated the important role of photochemistry during winter and the utility of Ox,total as a 506 

parameter for evaluating its role in the generation of both O3 and particulate nitrate pollution. 507 

The contrast between the two basins shows that particulate nitrate and O3 are closely coupled and 508 

can be regarded as chemically identical (Meng et al. 1997).  Modeling techniques that have long 509 

been used for evaluating mitigation strategies for ozone can also be used for particulate nitrate 510 

(Nguyen and Dabdub 2002; Pun et al. 2009). In the wintertime SLV, a NOx-VOC sensitivity 511 

isopleth demonstrated that the formation of Ox,total is most sensitive to reductions in VOCs, and is 512 

NOx-saturated, meaning that reductions in NOx emissions would initially increase aerosol 513 

pollution (Womack et al. 2019), a result that is counterintuitive since NOx is also the precursor to 514 

particulate nitrate, the dominant component of PM2.5 in SLV. However, the NOx-VOC 515 

relationship for particulate nitrate must be understood in detail in the context of the competing 516 

processes that govern particulate nitrate formation and chemical and meteorologically driven 517 

loss, which remain incompletely understood. 518 

 519 

6. Processes Governing Particulate Matter Formation and Loss  520 

 521 

The formation and loss of atmospheric aerosols is tightly linked to the partitioning of the 522 

chemical constituents between the particle and gas phases, and the multiphase reactions 523 

described in Section 5. Observations demonstrate that particulate nitrate and OA dominate 524 

wintertime composition in a variety of urban areas within valleys (e.g., Fresno, CA; Salt Lake 525 

City, UT; Beijing, China; Po Valley, Italy) (Bressi et al. 2016; Franchin et al. 2018; Lu et al. 526 
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2019; Young et al. 2016). Analysis of the OA composition indicates oxygenated OA, likely 527 

synonymous with SOA, often comprises a large fraction of the OA, along with OA derived from 528 

major primary sources, including biomass combustion, vehicles, and cooking (Bressi et al. 2016; 529 

Crippa et al. 2013; Lu et al. 2019; Young et al. 2016; Zhang et al. 2007; Paglione et al. 2020).  530 

Yet, substantial challenges remain regarding the ability of models to quantitatively predict 531 

ambient aerosol concentrations in these wintertime environments, especially of the secondary 532 

components (Fountoukis et al. 2016; Kleeman et al. 2019; Schroder et al. 2018). These 533 

challenges arise from the incomplete understanding of the physical, chemical, and 534 

thermodynamic processes that govern aerosol formation and partitioning, and how these are 535 

impacted by wintertime meteorological conditions. In addition, differences in the chemical 536 

environment and processes occurring within the nocturnal residual layer versus the surface layers 537 

are of particular importance in wintertime owing to shallower nocturnal boundary layers coupled 538 

with less available sunlight compared to other seasons (Baasandorj et al. 2017; Prabhakar et al. 539 

2017; Pusede et al. 2016; Wang et al. 2018).  540 

Dry deposition may influence ozone and particle loss rates, but particle deposition 541 

velocities in the key submicron particle range are generally small and thus dry deposition will 542 

likely only play a considerable role when the nocturnal boundary layer is particularly shallow 543 

(Emerson et al., 2020) and the aerodynamic resistance is low (i.e., vigorous turbulent mixing.) 544 

Dry deposition of gases such as HNO3 or oxygenated VOCs can drive evaporation of particulate 545 

nitrate and organic aerosol and thus indirectly contribute to loss of PM2.5 (Pusede et al., 2016; 546 

Knote et al., 2015). For HNO3, such indirect loss processes are most important in warmer, 547 

ammonia-deficient conditions, when HNO3 comprises a large fraction of the total nitrate, and 548 

when the boundary layer is particularly shallow (Prabhakar et al, 2017) and loss of OA will be 549 
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similarly enhanced in warmer conditions. Direct measurements of dry deposition of such gases 550 

can help constrain understanding of the importance of these loss processes (e.g., Nguyen et al., 551 

2015), and further examined through the use of process-level models (e.g., Prabhakar et al, 552 

2017). Ozone dry deposition is highly variable based on the surface characteristics and if not 553 

measured directly, it can presumably be parameterized. However, particle loss via scavenging by 554 

fog may be important in valley regions when the fog penetrates to the surface (Gilardoni et al., 555 

2014); chemical processing within fog may also play a role in transforming the ambient aerosol 556 

composition (Gilardoni et al., 2016). Improved treatment of scavenging by wet deposition that 557 

accounts for variability in in-cloud water has been shown to improve model skill at predicting 558 

nitric acid and particle phase nitrate under wintertime conditions (Luo et al., 2019). Strong, 559 

multi-day pollution events are often ended by a change in synoptic conditions that brings 560 

increased ventilation and, potentially, precipitation (Largeron and Staquet, 2016). 561 

One consideration is cold conditions with low absolute humidity but variable relative 562 

humidity characteristic of many wintertime valley environments. The limited availability of 563 

thermodynamic data for electrolyte solutions—especially mixtures containing organics—at low 564 

temperatures means that predictions of gas-particle partitioning and aerosol pH using existing 565 

thermodynamic models are extrapolations and may not be accurate. Direct measurements of the 566 

gas-particle distribution of inorganic and some organic species (e.g. organic acids) can serve to 567 

evaluate model predictions of equilibrium phase partitioning and aerosol pH (Murphy et al. 568 

2017; Guo et al., 2016; Nah et al., 2018). However, the low temperatures may give rise to long 569 

equilibration timescales, making assumptions of thermodynamic equilibrium on typical model 570 

timescales questionable. Comparison between sufficiently detailed observations and model 571 

predictions will allow for investigation of sensitivities to temperature and RH (Evanoski-Cole et 572 
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al. 2017).  The viscosity of particles varies over many orders of magnitude, dependent on the 573 

particle composition, ambient temperature, and relative humidity (Renbaum-Wolff et al. 2013). 574 

Consequently, particles exhibit material properties, e.g., diffusivities, ranging from liquid-like to 575 

solid (Koop et al. 2011), which affects gas-particle partitioning and equilibration timescales 576 

(Shiraiwa and Seinfeld 2012; Shiraiwa et al. 2013a), heterogeneous reactions (Gaston et al., 577 

2014; Li et al. 2018; Liu et al. 2018), and particle growth dynamics (Shiraiwa et al. 2013b; 578 

Zaveri et al. 2014; Zaveri et al. 2018).  Additionally, components within particles can undergo 579 

phase-phase separation into an organic-rich and inorganic/aqueous-rich phase, leading to 580 

unexpected internal morphologies within individual particles (Song et al. 2012; You et al. 2012). 581 

It is unclear how such phenomena impact rates of mass transfer between particles and the rates of 582 

aerosol-forming chemical processes, such as N2O5 reactive uptake, that occur on and within 583 

particles in the cold wintertime conditions.  584 

Observations of N2O5 reactive uptake coefficients exhibit complex dependencies on 585 

particle OA mass fraction (Bertram et al. 2009), along with the OA chemical composition (e.g., 586 

the O:C atomic ratio) and potential for liquid-liquid phase separation (Gaston et al. 2014).  The 587 

N2O5 reactive uptake coefficient may increase with decreasing temperature, perhaps owing to 588 

increased solubility of N2O5 (Abbatt et al. 2012; Hallquist et al. 2003; Schweitzer et al. 1998; 589 

Wagner et al. 2013), but requires further characterization for particle compositions reflective of 590 

wintertime valleys.   591 

Particle composition and abundance vary with size, with especially large differences 592 

between submicron and supermicron particles. Compositional differences consequently engender 593 

size-varying differences in aerosol water content—critical to N2O5 uptake and other 594 

heterogeneous processes. The importance of considering and characterizing refractory and 595 
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supermicron particles varies between regions. For example, supermicron particle contributions in 596 

the wintertime SJV are often small (Parworth et al. 2017), while in the colder SLV it can be 597 

substantial as a result of dust, road salt and lake salt (Hrdina et al. 2020). Compared to submicron 598 

particles, field observations of supermicron particle concentration, size, and composition are 599 

often limited, challenging model-measurement comparisons. Particle composition affects both 600 

N2O5 uptake and resulting products (HNO3 versus ClNO2), and often there are differences 601 

between laboratory parameterizations and field observations of ClNO2 yields (McDuffie et al. 602 

2018). McNamara et al. (2020) recently showed that ClNO2 production, driven by the surface 603 

reaction of N2O5 (Gaston and Thornton 2016), is explained by surface area-weighted single-604 

particle composition and developed a new parametrization that requires testing in other 605 

environments. Notably, the SLV has two unique chloride sources – playa dust and road salt – 606 

that likely contribute to ClNO2 (Mitroo et al. 2019; McNamara et al. 2020). Measurements 607 

completely characterizing the time and size-varying particle composition in wintertime valley 608 

environments are needed to accurately simulate nighttime production of HNO3 via N2O5 uptake.   609 

Gas-particle partitioning of HNO3 and other acids depends on size-varying particle and 610 

gas composition. In submicron particles, acid-anion phase partitioning is strongly controlled by 611 

NH3 availability, alongside temperature, RH, and aerosol pH, the latter of which depends on the 612 

identity and abundance of other aerosol constituents (e.g., particulate sulfate or organic aerosol) 613 

(Murphy et al. 2017). In contrast, HNO3 can react effectively irreversibly with supermicron dust 614 

or sea salt particles, displacing CO2 (from CaCO3) (Usher et al., 2003) or HCl (from NaCl) (Gard 615 

et al. 1998). As dry deposition is much faster for supermicron particles than accumulation mode, 616 

uptake to supermicron particles can thus suppress submicron nitrate formation. An 617 
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observationally constrained understanding of the dynamic links between HNO3, NH3, and sub- 618 

versus supermicron reactive uptake and partitioning is needed.   619 

Formation of SOA in valley environments during winter has received relatively little 620 

consideration compared to summer, although SOA can comprise a substantial fraction of aerosol 621 

dependent upon the conditions. Some observations indicate that the [SOA]/[NO3
-] ratio, or the 622 

[OA]/[NO3
-] ratio when the former is not available, decreases as the total aerosol loading 623 

increases, although the absolute SOA concentration tends to increase with aerosol loading 624 

(Bressi et al. 2016; Franchin et al. 2018; Lu et al. 2019; Young et al. 2016). This suggests some 625 

link between SOA and nitrate formation, potentially related to the dependence of aerosol liquid 626 

water content on particulate nitrate; higher aerosol water content can lead to enhanced uptake 627 

and reaction of water-soluble organic compounds--including at night (Hodas et al. 2014; Sullivan 628 

et al. 2016). Aqueous processing, especially of VOCs from residential wood combustion, lead to 629 

production of high molecular weight (Qin and Prather 2006) and absorbing organic aerosol (i.e., 630 

brown carbon, BrC) (Laskin et al., 2015; Gilardoni et al. 2016), which can influence the local 631 

and regional radiative budget (Mohr et al. 2013).  Understanding of SOA and BrC formation in 632 

wintertime environments is lacking, both within and outside of valleys, with large model-633 

measurement differences in some environments and a strong sensitivity to the particular SOA 634 

parameterization used (Chrit et al. 2018; Fountoukis et al. 2016; Meroni et al. 2017; Russell et al. 635 

2018; Schroder et al. 2018; Shah et al. 2019). It may be that current parameterizations, developed 636 

almost entirely using room-temperature experimental data, are not properly capturing T-637 

dependent changes in both gas- and particle-phase chemical pathways and in compound 638 

volatility (Bianchi et al. 2019; Stolzenburg et al. 2018; Ye et al. 2019). Winter SOA formation 639 

via reaction of NO3 radicals with VOCs, especially from sources such as VCPs and residential 640 
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wood combustion in poorly mixed nighttime boundary layer structures has received relatively 641 

little attention (Mohr 2013, Yuan 2016), even though NO3 chemistry has been proposed as a 642 

dominant SOA source during summer in the SJV (Rollins, 2012).  643 

Overall, the identity and contribution of major submicron aerosol constituents in 644 

wintertime valleys is well-known, with less known about the supermicron aerosol. Still, gaps in 645 

process-level understanding of the formation pathways and diurnally varying partitioning 646 

confront the development of clear control strategies and major improvements in wintertime air 647 

quality in such regions. Further, particulate matter loss processes, including wet and dry 648 

deposition, are poorly constrained by observations, as are the loss processes of PM precursors 649 

Targeted, comprehensive measurements that can be compared with models are necessary to close 650 

these gaps.  651 

 652 

7. Greenhouse Gas (GHG) Emissions  653 

 654 

The proposed field study will yield unique insights into wintertime GHG emissions and 655 

how they relate to air pollutant and associated precursor emissions in western U.S. basins.  656 

Wintertime emissions likely differ from other seasons owing to the presence of heating needs 657 

(Gurney et al. 2012; Mitchell et al. 2018).  Specifically, this field campaign will link GHG to 658 

emission sectors to understand how shifts in these emissions are associated with changes in 659 

short-lived pollutants and use GHG emissions as transport tracers to elucidate meteorological 660 

processes.    661 

Three GHG emissions sectors will be carefully considered: transportation, agriculture, 662 

and oil/gas and energy distribution. These are most relevant in the Western U.S.  The on-road 663 
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transportation sector is one of the largest emitters in urban settings, often accounting for nearly 664 

50% of CO2 and other pollutants, but is generally the least well-constrained sector within carbon 665 

emission inventories, with large uncertainties (Gately and Hutyra, 2017; Mendoza et al. 2013).   666 

Agriculture is an important source of GHG and air pollutants in the western U.S., in particular 667 

methane (CH4) and nitrous oxide (N2O), respectively comprising nearly 40% and 80% of total 668 

emissions (U.S. Environmental Protection Agency, 2019). Several studies have now shown that 669 

inventories underestimate methane emissions from oil and gas production (Alvarez et al. 2018; 670 

Robertson et al. 2017; Lyon et al. 2015). To constrain the contribution of all of these (and other) 671 

source types to degradation in air quality, will require monitoring a variety of trace gases.  672 

Changes in vehicle fleets and improvements in technology have reduced mobile-sector 673 

emissions of both CO2 (Gately et al. 2015) and air pollutants (McDonald et al. 2018).  For 674 

example, NOx and carbon monoxide (CO) emissions in cities have fallen (Parrish et al. 2011; 675 

Hassler et al. 2016), although the decline has slowed recently (Jiang et al. 2018).  Also, changes 676 

in the U.S. fuel mix (U.S. Energy Information Administration, 2019), may affect emissions of 677 

both GHGs and pollutants.  These trends point to changes in the urban atmospheric composition 678 

that might manifest themselves in observed concentrations.  Work in Salt Lake City (Lin et al. 679 

2018), with the longest running urban CO2 network, indicates that CO2 enhancements have 680 

remained flat in the urban core. This is despite population growth, implying energy efficiency 681 

improvements, and increased CO2 enhancements in the suburbs due to new anthropogenic 682 

emissions occurring where previously there were none (Mitchell et al. 2018a).   These long-683 

running data sets in Salt Lake City are complemented by a novel platform on the public transit 684 

light-rail trains that measure GHGs and air pollutants as the trains traverse the city (Mitchell et 685 

al. 2018b; Mendoza et al. 2019).  Concentration ratios from this platform have been used to 686 
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fingerprint NOx emission sources (Mitchell et al. 2018b) and characterize how fine scale 687 

meteorological phenomena, such as canyon flows and inter-basin transport, affect air pollution 688 

distributions (Baasandorj et al. 2018).  The proposed field campaign will utilize GHG and 689 

pollutant datasets from aircraft, mobile laboratories and ground sites.  690 

The chemical inertness of GHGs such as CO2 and CH4 allows for their use as passive 691 

tracers of atmospheric transport (Pataki et al. 2005).  This is particularly true in the wintertime, 692 

when photosynthetic uptake of CO2 is minimal (Pataki et al. 2003; Strong et al. 2011).  693 

Measurements of CO2 in the SLV have revealed strong relationships between levels of CO2 and 694 

atmospheric stability, with the presence of PCAPs associated with significant enhancements in 695 

CO2 concentrations (Pataki et al. 2005; Bares et al. 2018; Lin et al. 2018).  Therefore, if GHG 696 

emissions are constrained, levels of GHG can potentially be used to quantify the effects of 697 

atmospheric transport processes and separate the contributions of such transport effects from 698 

atmospheric chemistry.  699 

  700 

8. Campaign Design 701 

 702 

The recent 2017 Utah Winter Fine Particulate Study (UWFPS) in SLV was an aircraft and 703 

ground-based campaign utilizing the NOAA Twin Otter, a medium sized research aircraft 704 

(Bassandorj et al. 2018).  The study demonstrated the capability to conduct in-situ aircraft 705 

measurements in shallow winter boundary layers within complex terrain during periodic 706 

episodes of low visibility.  A clear lesson learned from the UWFPS study was that the 707 

complexity of the science governing wintertime air quality is better addressed through a broader 708 

suite of instrumentation and focal area than could be accommodated by the payload and range of 709 
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a Twin Otter.  A larger aircraft (e.g., NSF C-130, NOAA P-3) would allow for a more extensive 710 

payload providing detailed in situ and remote sensing instrumentation, as well as the ability to 711 

sample multiple basins within a domain that could encompass most or all of the western U.S. 712 

(see Figure 1).   713 

The workshop considered the optimal combination of both ground-based and airborne 714 

measurements and platforms required to address the science questions identified. A recurring 715 

theme was the importance of combining co-located, comprehensive meteorological and chemical 716 

measurements. The workshop attendees stressed the need for large aircraft to carry the payload 717 

required to characterize both the organic and inorganic gases and particle composition and 718 

understand their relationships. Participants also expressed the need for airborne and surface 719 

measurements of coupled meteorological and chemical processes to bring insight to not only the 720 

formation and dissipation of the PCAPs that allow for the build-up of these extreme air quality 721 

events, but especially the vertical and horizontal transport and mixing processes modulating the 722 

concentrations of pollutants and precursors and constraining chemical processes. Based on the 723 

climatology of PCAPs in these regions (Whiteman et al., 2014), the optimum period for an 724 

airborne field campaign is from approximately in mid-December early through mid-February. 725 

Measurements may not be continuous during this period and would depend on logistical 726 

considerations, such as total aircraft hour allocation to the project. 727 

Key measurements that will be needed onboard the aircraft includes standard 728 

meteorological parameters along with fast-response measurements of VOCs, most likely using 729 

chemical ionization mass spectrometry, the various NOx and NOy species (e.g., NO, NO2, HNO3, 730 

N2O5, HONO, NO3) and other important trace gases (e.g., O3, SO2, HCHO, CO) and greenhouse 731 

gases (CO2, CH4, N2O), and submicron and supermicron aerosol composition and size 732 
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distributions. A suite of ground-based measurements (in situ and remote sensing) will 733 

complement aircraft data to characterize the coupled meteorological-chemical system in three 734 

dimensions during the field campaign.  These include wind and aerosol lidars, radio acoustic 735 

sounders, rawinsonde, ceilometers, and long-path Differential Optical Absorption Spectroscopy 736 

(DOAS) to provide continuous observations of vertical profiles (e.g., temperature, wind speed 737 

and, trace gases such as NO2, SO2, O3, HONO, HCHO, and NO3).   Specifically, a western U.S. 738 

winter air quality study should include comprehensive measurements of major radical sources, 739 

including CH2O and other aldehydes, HONO, ClNO2, and O3, together with measurements of 740 

actinic flux to define photolysis rates and radical sources.  Measurements of major radical 741 

species, including OH, HO2 and preferably RO2, together with nighttime measurements of NO3 742 

radicals, must also be available to constrain diel radical cycles and concentrations and to 743 

compare with the process-level predictions.  Speciated measurements of these radicals and their 744 

precursors are most easily carried out from ground sites. However, measuring a subset of these 745 

compounds from a research aircraft allows for extension of the conclusions regionally and as a 746 

function of altitude. Comparison of continuous measurements at a single location to vertical and 747 

horizontal distributions of radicals and/or radical precursors provides a more complete view of 748 

the radical budget.   749 

Complete characterization requires fully instrumented aircraft measuring Ox,total and its 750 

partitioning between nitrogen and oxygen species (O3, NO2, NO3, HNO3, N2O5, ClNO2, etc.) 751 

within and above the boundary layer during daytime and nighttime.  In general, Ox,total budgets 752 

have not been fully quantified in valleys in the western U.S. However, it is clear that odd-oxygen 753 

species play a substantial role in the buildup of wintertime pollutants.  Owing to the significance 754 

and uncertainty in HONO sources, nitrous acid measurement via multiple techniques and from 755 
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ground and aircraft platforms will be an essential component of a future western U.S. winter air 756 

quality study. 757 

High temporal and spatial resolution measurements of NOx, VOCs from multiple sources 758 

(transportation, VCPS, cooking, wood combustion, biogenic, industrial, agriculture), NH3 and 759 

amines are required. Multiple tracers will enable quantitative attribution of GHG emissions to 760 

different sectors through their enhancement ratios.  These include enhancement ratios of CO 2 and 761 

CH4 relative to tracers such as CO and NOx.   For instance, using the CH4:CO ratio measured 762 

from aircraft, a recent study revealed that CH4 emissions from urban areas in the East Coast 763 

corridor were drastically underestimated by inventories (Plant et al. 2019).  Similarly, observed 764 

VOC:GHG correlations would allow attribution to oil/gas emissions (Petron et al. 2012). In 765 

addition, novel tracers like atmospheric O2 will be considered for source attribution as part of the 766 

planned field campaign.    767 

 768 

9.  Summary and Conclusions 769 

 770 

The interactions between complex wintertime chemistry and numerous meteorological 771 

processes regulating the occurrence and rates of chemical processes in PCAPs has not yet been 772 

observed in a detail needed to provide satisfactory understanding of the evolution of these 773 

complex pollution episodes.  This paper provides an outline of the comprehensive chemical and 774 

meteorological datasets needed from airborne platforms with extensive range, coupled to a 775 

variety of surface-based measurements with high vertical resolution at numerous representative 776 

sites to provide enhance understanding of these pollution episodes. The workshop has outlined 777 

the design and requirements for a field campaign investigating wintertime basins to provide the 778 
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breadth of observations necessary to characterize the meteorological-chemical linkages to 779 

validate complex processes within coupled atmosphere-chemistry models.  780 
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 2089 

 2090 

Figure 1.  Schematic of various coupled meteorological and chemical processes within 2091 

wintertime PCAPs.   Figure is not to scale. Importantly, stable nocturnal inversions can be 2092 

extremely shallow (10’s of meters) and elevated inversions can also be present depending on the large-2093 

scale synoptic flow. 2094 
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 94 

 2096 

Figure 2: Lower left: Elevation map of the Western U.S. showing selected air quality monitoring 2097 

sites (black dots) that exhibit winter maxima in PM2.5.  Colored markers show three sites that are 2098 

highlighted in the top figure.  Rings show the approximate ranges of a large research aircraft (P-3 2099 

or C-130) based out of Salt Lake City or smaller aircraft (Twin Otter) based out of either Salt 2100 

Lake City, UT or Fresno, CA.  Top: Daily PM2.5 at Salt Lake City, UT and Bakersfield, CA from 2101 

1999-2020.  The dashed lines are the 24-hour U.S. NAAQS for PM2.5 of 35 µg m-3.  Grey shaded 2102 

areas indicate November - February.  Lower Right: Median, 25th and 75th percentile, and 10th and 2103 

90th percentile PM2.5 at Salt Lake City, UT and Bakersfield, CA for each day of year from the 2104 

record in the top figure.  Dashed lines indicate the NAAQS, as in the top figure. 2105 
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