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our long-term goal is to develop this technology as a complement to such 
imaging. 

Previous attempts to extract spatial properties of brain lesions from 
EEG signals have used the concept of hemispherically asymmetric power 
between EEG channels. The asymmetry index [7] relies on the hypoth
esis that the relative difference of average power spectral density of the 
left–right hemispheres in the healthy resting state should be close to 
zero, but that this symmetry gets disrupted due to abnormalities such as 
brain injury. For example, Yi and colleagues proposed symmetrical 
channel EEG signal analysis (SESA) that aims to map the location of 
brain injury using spectral density values of left versus right hemi
spheres [8]. A challenge with such methods is that they require a pre
defined threshold regarding how much asymmetry is abnormal. 

An alternative approach to infer spatial information from EEG is to 
estimate the current density of sources that generate measured electrical 
activity at the scalp [9]. This is known as the inverse localization 
problem, which involves modeling the observed measurements as a 
linear combination of underlying dipolar time series and then estimating 
the inverse solution matrix (spatial filters) from the data. This inverse 
problem is mathematically ill-posed and has an infinite number of so
lutions. Therefore, an a priori constraint such as the number of sources is 
typically imposed to limit the solution space, allowing for the deploy
ment of numerical inference techniques [10,11]. These methods have 
been previously used to localize post-traumatic epilepsy (PTE) in acute 
TBI patients [12,13]. However, they involve secondary magnetic reso
nance imaging (MRI) to determine the a priori constraints needed for 
solving the inverse problem. This step mitigates the ease-of-deployment 
advantage of EEG alone. 

In this paper, we introduce a different approach to identify the 
location of brain injury from EEG that is based on our previous work 
[14]. In that prior work, we developed a method called the Intrinsic 
Network Reactivity Index (INRI) that aims to capture the traditional 
notion of EEG reactivity [15] without relying on exogenous stimulation. 
More specifically, INRI measures how rare electrophysiological events 
(defined channel-wise) impact brain electrical activity in both proximal 
and distal channels. We have shown that INRI is correlated with the 
severity of injury (in terms of the Glasgow coma scale). Here, we 
introduce a variation on INRI that we call frequency-based intrinsic 
network dynamic reactivity (FINDR) that is developed under the 
premise that a lesioned area of the brain is limited in its responsiveness. 
Succinctly, FINDR seeks to capture whether most dominant spectral 
events in a channel are systematically associated with those of other 
channels, thus suggesting whether that channel is (or is not) engaged 
with other brain regions. We formally define this technique and show 
that it indeed is informative with respect to brain injury location by 
using it as a front-end feature to a neural network classifier that we 
evaluate using a formal validation experiment. 

2. Materials and methods 

2.1. Data description and preprocessing 

The retrospective EEG data, including complete medical records, 
were collected for 15 comatose patients with focal brain injury during 
three years (2013–2016). The patients underwent EEG recording for 
routine monitoring purposes in the Neurological and Neurosurgical 
Intensive Care Unit (NNICU) at Barnes-Jewish Hospital, which is affili
ated with the Washington University School of Medicine in St. Louis. 
Trained neurointensivists administered the clinical ratings and Glasgow 
coma scale evaluation. The study was approved by Washington Uni
versity Institutional Review Board. Table 1 provides a summary of the 
patient information including age, gender, and injury location. 

Head CT or MRI images were examined to identify dominant focal 
and supratentorial lesions. The patients history and clinical images were 
examined and only patients that had one clearly dominant lesion 
(radiologically-presumed to be the etiological cause of the coma) with 

no other confounders were included (confounders that might mask/ 
make the EEG not reliable, like sedation, hx suggestive of seizures). 
Exclusion criteria were multiple lesions of similar size, injuries expected 
to result in diffuse pathology based on clinical/radiological character
istic, and severe slowing of EEG signals marked by epileptologists 
indicative of severe global dysfunction. 

Lesion laterality and the lobar location were defined for each patient. 
The size of the lesion was measured using the abc/2 score [16] and the 
radius calculated as the average of four images. The coordinates in 3D 
space were determined with the center of the brain serving as a refer
ence. For the X-axis, the radiologic left was defined as a positive and 
radiologic right was defined as negative. For Y-axis, anterior was defined 
as positive, and posterior was defined as negative. The Z coordinate was 
normalized as a distance measured from the vertex. A 2D topographical 
map was made from this information, which was then matched to the 
images. 

The retrospective data was recorded using 19 electrodes positioned 
according to the standard 10–20 system of electrode placement and 
included at least 15 minutes of recordings for each patient. The signals 
were recorded at either 250 or 500 Hz against a common reference 
electrode and re-referenced to 18 bipolar channels (FP1-F7, F7-T7, T7- 
P7, P7-O1, Fp1-F3, F3-C3, C3-P3, P3-O1, Fz-Cz, Cz-Pz, Fp2-F4, F4-C4, 
C4-P4, P4-O2, Fp2-F8, F8-T8, T8-P8, and P8-O2) to reduce the sensi
tivity of EEG signals to external noise [17]. 

EEG preprocessing steps included manual artifact removal by visual 
inspection, downsampling, and bandpass filtering. More specifically, we 
looked for eye movement, muscle movement, and electrode artifacts 
patterns according to reference patterns in [18] and then removed sec
tions of the data that was contaminated with these artifacts. We then 
downsampled the data that was initially recorded at 500 Hz to 250 Hz, 
in order to make the sampling rate of all the recordings consistent. Next, 
as a first step of the proposed framework we calculated the power 
spectrum of EEG signals in the 1–35 Hz frequency range using a three 
second long Hanning window with no overlap. The Hanning window 
was used to take care of discontinuities in the signal introduced by 
artifact removal, and the non-overlapping sliding windows were used to 
avoid clustering of events in the first step of the proposed framework. 
We set the lower cutoff frequency to 1 Hz to avoid potential muscle 
movement and skin artifacts [19,20]. It should be noted that the pro
posed approach does not directly use statistics derived from the power 
spectrum and hence is robust to power spectrum parameter settings such 
as the window size as shown in Section 3.3 [18,21]. 

2.2. Localizing injury using FINDR features 

The FINDR framework for injury localization involves four main 
steps: (i) identifying intrinsic spectral events, (ii) obtaining proximal and 
distal ‘responses’ to these identified events, (iii) quantifying the diver
gence of these responses in channel-space, and (iv) feeding the diver
gence measure into a classifier to determine the final spatial location of 
injury (Fig. 1). 

2.2.1. Intrinsic event identification 
The first step of the FINDR calculation involves identifying the events 

Table 1 
Summary of the study population.  

Variable Distribution 

Age 62 ± 17 
Gender Male (7) and female (8) 
Injury 

location 
Left (8), right (7) 

Injury typea Ischemic stroke (6), intraparenchymal hemorrhage (8), subdural 
hematoma (2), aneurysmal subarachnoid hemorrhage (1), traumatic 
brain injury (1), brain tumor (1)  

a Some patients had more than one type of injury. 
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which are easy to optimize. 

4.3. Limitations and future directions 

Our results establish that information regarding injury location may 
be embedded in certain dynamical features of the EEG. Nonetheless, the 
average correlation performance of 0.6 that we achieved clearly needs to 
be improved to entertain the possibility of deploying this technique in a 
real world setting. Thus, the current results should be viewed as an 
initial proof of concept study toward the overall problem of brain injury 
characterization from surface EEG recordings. 

First and foremost, as noted above, while we have shown that the 
spectral variance is informative with respect to injury location, more is 
required to study the specific way that the machine learning algorithm 
uses this quantity. Occlusion methods [27,28] and other emerging 
techniques for interrogating the mechanisms of supervised classification 
methods in healthcare applications [29,30] could be useful in this 
regard. 

In addition, there are a number of basic data processing issues that 
need to be addressed before this method could be translated to a clinical 
setting. The data preprocessing and artifact rejection steps were per
formed offline and required manual inspection of the EEG traces. For a 
fully automated system that can be used in remote locations (the most 
likely application of this approach), an automated pre-processing pipe
line needs to be developed. 

Another limitation to the current study is that it only considers injury 
location in two-dimensional space (x and y-axis), whereas the depth of 
the injury is also clearly important for diagnosis and prognosis of brain 
injury. 

4.4. Conclusion 

In summary, we developed a new method termed frequency-based 
intrinsic network dynamic reactivity (FINDR) that quantifies the vari
ance of neural response at different brain regions to intrinsic events in 
other regions. We showed that despite some limitations, this technique 
could be used to localize brain injury. The proposed method is a passive 
technique that does not require administration of external stimuli, 
making it potentially suitable for cases of brain injury where patients do 
not respond to external stimuli or where there is no immediate access to 
advanced neuroimaging equipment. The current results contribute to a 
growing set of techniques for characterizing coma from brain electrical 
dynamics and provide a foundation for automated and easily deployable 
EEG-based injury diagnostics. 
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