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In this study, we consider the problem of localizing focal brain injuries from surface electroencephalogram (EEG)
recordings. To this end, we introduce a new analysis technique termed frequency-based intrinsic network dy-
namic reactivity (FINDR), which quantifies the extent to which different brain regions (defined in EEG channel
space) are responsive to each other in terms of their frequency-domain activity. The technique generalizes the
idea of EEG reactivity, a measure of how well EEG signals react/respond to exogenous stimuli. In the present
work we generalize this notion to endogenous ‘stimuli,” defined as short-time window frequency domain motifs
that are most predominant on a per channel basis. For each of these predominant motifs, we quantify the
variance of the activity in all other channels as a measure of ‘intrinsic reactivity’, under the hypothesis that
channels proximal to injured regions will be systematically disassociated from other brain areas. We use this
method as a front-end to a neural network classifier to predict injury location in a cohort of etiologically het-
erogeneous comatose patients. We achieve a 0.6 correlation between the predicted injury location and the actual

brain injury. These results suggest a possibility of precise localization of brain injury using EEG.

1. Introduction

Brain injury is a leading cause of death, long-term disability, and
cognitive impairment [1-3]. Because the cause of brain injuries can be
quite varied, diagnosis, including mapping the spatial extent of injury, is
a paramount clinical issue. Among various neuroimaging techniques
used for diagnosis and prognosis of brain injury, the electroencephalo-
gram (EEG) has the advantage of high temporal resolution, lower cost,
and ease of use in clinical settings. The cost factor is especially relevant
for critical care settings in smaller hospitals and developing countries
where access to expensive imaging equipment such as computerized
tomography (CT) or magnetic resonance imaging (MRI) is limited. In
these settings, having access to a low-cost and easily deployable diag-
nostic technology could greatly enhance standard of care. Relatedly, for
certain patients, including those who suffer from severe brain injury, it is
usually preferable to minimize the transportation of patients from the
ICU setting. In these situations, having bedside EEG-based diagnostic
could offer considerable advantages relative to neuroimaging that

would require moving the patient to a specialized facility. However,
because EEG is recorded at the scalp, it offers only modest spatial res-
olution, which makes it challenging to use this recording modality for
mapping the spatial details of brain injury.

Our central hypothesis is that deploying new advancements in signal
processing and classification can maximize the explanatory power of
this modality, despite the physical limitations of EEG. In so doing, EEG
may provide a useful and advantageous means of assaying the spatial
extent of injury, a key step in effective treatment and diagnosis [4]. In
particular, we posit that EEG-based diagnostics may be able to detect
aberrations that are less clearly delineated in structural imaging. Indeed,
certain injuries — especially less severe ones — may be harder to detect via
structural imaging, but could potentially lead to electrophysiological
alterations that are detectable by means of EEG [5,6], given their finer
temporal resolution. The overall goal of our study is to evaluate the
possibility of new EEG processing techniques to delineate spatial infor-
mation about brain injury. In order to promote validity testing, we focus
here on injuries where confirmatory neuroimaging is available, though
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our long-term goal is to develop this technology as a complement to such
imaging.

Previous attempts to extract spatial properties of brain lesions from
EEG signals have used the concept of hemispherically asymmetric power
between EEG channels. The asymmetry index [7] relies on the hypoth-
esis that the relative difference of average power spectral density of the
left-right hemispheres in the healthy resting state should be close to
zero, but that this symmetry gets disrupted due to abnormalities such as
brain injury. For example, Yi and colleagues proposed symmetrical
channel EEG signal analysis (SESA) that aims to map the location of
brain injury using spectral density values of left versus right hemi-
spheres [8]. A challenge with such methods is that they require a pre-
defined threshold regarding how much asymmetry is abnormal.

An alternative approach to infer spatial information from EEG is to
estimate the current density of sources that generate measured electrical
activity at the scalp [9]. This is known as the inverse localization
problem, which involves modeling the observed measurements as a
linear combination of underlying dipolar time series and then estimating
the inverse solution matrix (spatial filters) from the data. This inverse
problem is mathematically ill-posed and has an infinite number of so-
lutions. Therefore, an a priori constraint such as the number of sources is
typically imposed to limit the solution space, allowing for the deploy-
ment of numerical inference techniques [10,11]. These methods have
been previously used to localize post-traumatic epilepsy (PTE) in acute
TBI patients [12,13]. However, they involve secondary magnetic reso-
nance imaging (MRI) to determine the a priori constraints needed for
solving the inverse problem. This step mitigates the ease-of-deployment
advantage of EEG alone.

In this paper, we introduce a different approach to identify the
location of brain injury from EEG that is based on our previous work
[14]. In that prior work, we developed a method called the Intrinsic
Network Reactivity Index (INRI) that aims to capture the traditional
notion of EEG reactivity [15] without relying on exogenous stimulation.
More specifically, INRI measures how rare electrophysiological events
(defined channel-wise) impact brain electrical activity in both proximal
and distal channels. We have shown that INRI is correlated with the
severity of injury (in terms of the Glasgow coma scale). Here, we
introduce a variation on INRI that we call frequency-based intrinsic
network dynamic reactivity (FINDR) that is developed under the
premise that a lesioned area of the brain is limited in its responsiveness.
Succinctly, FINDR seeks to capture whether most dominant spectral
events in a channel are systematically associated with those of other
channels, thus suggesting whether that channel is (or is not) engaged
with other brain regions. We formally define this technique and show
that it indeed is informative with respect to brain injury location by
using it as a front-end feature to a neural network classifier that we
evaluate using a formal validation experiment.

2. Materials and methods
2.1. Data description and preprocessing

The retrospective EEG data, including complete medical records,
were collected for 15 comatose patients with focal brain injury during
three years (2013-2016). The patients underwent EEG recording for
routine monitoring purposes in the Neurological and Neurosurgical
Intensive Care Unit (NNICU) at Barnes-Jewish Hospital, which is affili-
ated with the Washington University School of Medicine in St. Louis.
Trained neurointensivists administered the clinical ratings and Glasgow
coma scale evaluation. The study was approved by Washington Uni-
versity Institutional Review Board. Table 1 provides a summary of the
patient information including age, gender, and injury location.

Head CT or MRI images were examined to identify dominant focal
and supratentorial lesions. The patients history and clinical images were
examined and only patients that had one clearly dominant lesion
(radiologically-presumed to be the etiological cause of the coma) with
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Table 1
Summary of the study population.
Variable Distribution
Age 62 +17
Gender Male (7) and female (8)
Injury Left (8), right (7)
location
Injury type® Ischemic stroke (6), intraparenchymal hemorrhage (8), subdural

hematoma (2), aneurysmal subarachnoid hemorrhage (1), traumatic
brain injury (1), brain tumor (1)

# Some patients had more than one type of injury.

no other confounders were included (confounders that might mask/
make the EEG not reliable, like sedation, hx suggestive of seizures).
Exclusion criteria were multiple lesions of similar size, injuries expected
to result in diffuse pathology based on clinical/radiological character-
istic, and severe slowing of EEG signals marked by epileptologists
indicative of severe global dysfunction.

Lesion laterality and the lobar location were defined for each patient.
The size of the lesion was measured using the abc/2 score [16] and the
radius calculated as the average of four images. The coordinates in 3D
space were determined with the center of the brain serving as a refer-
ence. For the X-axis, the radiologic left was defined as a positive and
radiologic right was defined as negative. For Y-axis, anterior was defined
as positive, and posterior was defined as negative. The Z coordinate was
normalized as a distance measured from the vertex. A 2D topographical
map was made from this information, which was then matched to the
images.

The retrospective data was recorded using 19 electrodes positioned
according to the standard 10-20 system of electrode placement and
included at least 15 minutes of recordings for each patient. The signals
were recorded at either 250 or 500 Hz against a common reference
electrode and re-referenced to 18 bipolar channels (FP1-F7, F7-T7, T7-
P7, P7-01, Fpl-F3, F3-C3, C3-P3, P3-01, Fz-Cz, Cz-Pz, Fp2-F4, F4-C4,
C4-P4, P4-02, Fp2-F8, F8-T8, T8-P8, and P8-02) to reduce the sensi-
tivity of EEG signals to external noise [17].

EEG preprocessing steps included manual artifact removal by visual
inspection, downsampling, and bandpass filtering. More specifically, we
looked for eye movement, muscle movement, and electrode artifacts
patterns according to reference patterns in [18] and then removed sec-
tions of the data that was contaminated with these artifacts. We then
downsampled the data that was initially recorded at 500 Hz to 250 Hz,
in order to make the sampling rate of all the recordings consistent. Next,
as a first step of the proposed framework we calculated the power
spectrum of EEG signals in the 1-35 Hz frequency range using a three
second long Hanning window with no overlap. The Hanning window
was used to take care of discontinuities in the signal introduced by
artifact removal, and the non-overlapping sliding windows were used to
avoid clustering of events in the first step of the proposed framework.
We set the lower cutoff frequency to 1 Hz to avoid potential muscle
movement and skin artifacts [19,20]. It should be noted that the pro-
posed approach does not directly use statistics derived from the power
spectrum and hence is robust to power spectrum parameter settings such
as the window size as shown in Section 3.3 [18,21].

2.2. Localizing injury using FINDR features

The FINDR framework for injury localization involves four main
steps: (i) identifying intrinsic spectral events, (ii) obtaining proximal and
distal ‘responses’ to these identified events, (iii) quantifying the diver-
gence of these responses in channel-space, and (iv) feeding the diver-
gence measure into a classifier to determine the final spatial location of
injury (Fig. 1).

2.2.1. Intrinsic event identification
The first step of the FINDR calculation involves identifying the events
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Fig. 1. Frequency-based intrinsic network dy-
namic reactivity (FINDR). (a) For a given seed
channel i (here, i = 9), we obtain a time-
frequency spectrogram. We then identify
‘events’ as being those temporal windows
whose spectra explain the most variance (over
all windows). (b) The procedure for identifying
windows is repeated for a non-seed channel j
(here, j = 10). The average spectrum S;;(f) is
then obtained by averaging all spectra from
channel i from event windows that are common
to channels i, j. (c) Step (b) is repeated for all
non-seed channels, resulting in a set of average
spectra S, Si 2, etc. We then obtain the spectral
variance, oi(f), which is the variance across
these spectra. This quantity summarizes the
heterogeneity in the frequency content at the
seed channel during the significant events
elsewhere in the EEG montage. (d) Procedure
(a)-(c) are iterated so that each channel is
treated as a seed, resulting in o1(f), ..., 618(f).

Power

So.10( f)

Freq.

These spectral variances are fed into a long short-term memory (LSTM) recurrent neural network to classify each channel as injury or no injury. The classification step

is expanded in Fig. 2.

in each channel that are most significant insofar as they account for the
most variance of spectral content across time. For a given channel, we
calculate the spectral density over sliding windows (Hanning window of
length three seconds with no overlap). Then, we apply principal
component analysis (PCA) to identify the component that explains the
greatest variance. This component is a linear combination of constituent
windowed spectra. We then pick the 100 windows with the highest
magnitude weights contributing to the first principal component. These
selected windows have the most influence on power spectral variation
(across windows) and therefore we consider them as the dominant
intrinsic windows, or events (Fig. 1 Part (a)).

2.2.2. Calculation of spectral ‘responses’

The next step of the FINDR framework is to ascertain the activity in
other EEG channels during these intrinsic events. This step begins by
performing the above event identification for each channel in the EEG
montage. We then use an iterative process to ‘scan’ the montage to look
at how events in one channel are associated with events in other chan-
nels. We first fix a seed channel i, then determine the events in a different
channel j that temporally overlap with those of the seed. We define the
‘response spectrum’ Sj(f) as the average spectrum of seed channel i over
these common windows (Fig. 1 Part (b)). Hence, the response signal
Si(f) captures the spectral content in the seed channel during the
dominant events of all other channels j = 1, ..., 18. This process is
iterated over seed channels until the response value is calculated for
each channel pair i, j.

2.2.3. Variance of spectral responses

After obtaining S;i(f) for each i, j, we proceed to calculate the vari-
ance of these spectra across the j dimension. That is, for each seed
channel, we want to understand how its responses vary relative to the
dominant events across the rest of the EEG montage. In order to focus on
only the dominant axes of variation, we first use PCA to identify the
three most significant spectral components, denoted §i71 o), §i72 (f) and

§i,3(f), respectively. We then calculate the variance as a function of
frequency across these components, i.e.,

1 3 R . 2
al) =33 (300 -70)) M
z=1
where 7i(f) denotes the mean of the three component spectra.
Thus, oi(f) summarizes the heterogeneity present in the power
spectrum of channel i at times when other channels are producing

likewise significant activity. A key premise of this work is that such
heterogeneity can inform the extent to which a given channel is (or is
not) associated with others, and therefore, act as a surrogate for the
extent of injury proximal to that channel.

2.2.4. Spatial classification

To build on the above premise, we feed the spectral variance o;(f)
into a neural network classification architecture (Fig. 2). We specifically
chose a long-short term memory (LSTM) classifier design which pro-
cesses the matrix

Ty =[01(f),02(f)s s 015 ()] (&)

sequentially along the f dimension. Using an LSTM in this way, while
nonstandard, allows for the classifier to build associations across both
space and frequency by leveraging the memory (wherein the classifier
retains information about each sequentially fed frequency components).
More specifically, for each patient, we have N x M matrix I's where N is
the number of channels and M is the maximum sample frequency. Each
element of I'y represents the spectral variance at channel i in frequency f
calculated using the FINDR framework. Next we have an N dimensional
binary vector ® = [61, ..., 0;] that represents the location of the brain
injury inferred from the MRI/CT scans. Each element of vector © is
either zero or one depending on whether it is aligned with the location of
the brain injury.

The I'rand O are then used to train the LSTM network model, which
consists of an LSTM layer with 50 hidden units, a 20% Dropout layer,
and a dense layer with Softmax activation function. In order to train the
model, we used the five-fold cross validation scheme. During each
iteration of cross validation, we divided the data into five mutually
exclusive groups of recordings where one group was used for testing and
the rest for training. Hence, at each iteration of the cross validation we
train the LSTM model using a 12 x N x M tensor of spectral variances (c)
and a 12 x N matrix of class labels (0). The trained model is then tested
using the 3 x N x M tensor of spectral variances for the remaining
subjects.

The output of the LSTM network for each patient is the N dimen-
sional probability vector P = [ps, ..., p;i], where p; represents the prob-
ability of channel i belonging to class label one (injury). Since we are
dealing with a multi-class problem and to avoid thresholding we assess
the performance of this classifier by calculating the correlation (r) be-
tween the predicted probability vector P and the ground truth class la-
bels ©. Hence, the correlation value shows how much the predicted
injury locations coincide with the actual injury location. This process is
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Fig. 2. Predicting location of injury using
spectral variance features. (a) For each subject,
the spectral response variances I'y = [o1(f),
o2(f), ..., 018(N] and the injury location in
channel space ® = [0y, ..., 015] are extracted
using the EEG signals and MRI/CT scans,
respectively. (b) At each iteration of the five-
fold cross validation scheme, the LSTM
network is trained using a 12 x N x M tensor of
spectral variances extracted from 12 training
subjects and then tested using the 3 x N x M
tensor of spectral variances for the remaining
three testing subjects. The output of the LSTM
network for each patient is an N dimensional
vector P = [py, ..., pi], where p; represents the
probability that channel i coincides with the
injury location.

l’u13

‘10

ro.29
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Fig. 3. Correlation between predicted injury locations using FINDR features and the actual brain injury location inferred from MRI/CT scans. Each box represents
one fold of the k-fold cross validation scheme. The top row in each box shows the actual MRI/CT scan of the testing subjects, the second row shows the inferred injury
location from the corresponding MRI/CT scans, and the third row shows the predicted injury location from trained LSTM networks. For each fold, the LSTM network
is tested on the subjects denoted by (S) and trained by the rest of the subjects. The correlation values between the actual brain injury locations in the second row and

the predicted injury locations in the third row are denoted by (r).
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3. Results
3.1. FINDR spectral variance predicts injury location

Fig. 3 shows the correspondence between the predicted injury
location by the FINDR framework and the actual injury location inferred
from the MRI/CT scans. Each box represents the testing set in one fold of
the five-fold cross validation process. Within each fold, the top row
depicts the actual MRI scan from patients, the second row shows a 2D
topographical map of injury location inferred from the MRI/CT scans
(see Section 2.1), and the final row shows the predicted injury location
by the trained LSTM network. For each pair of topographical maps, the
subject number (S) and corresponding correlation (r) are presented. In
8/15 test trials we observe r > 0.5, with only one case resulting in a
negative correlation.

3.2. The results of prediction are not due to random chance

To validate the above finding, we performed a series of control
bootstrapping experiments. Overall, these results support our hypothesis
that the spectral variance I'y obtained through the proposed FINDR
method can specifically inform the adjudication of injury location.

3.2.1. The predictions are specific to testing subject

First, we calculated the correlation between the injury location
predicted by the FINDR method and that of a different, randomly
selected patient within the dataset. That is, we tried to classify the
location of injury in patient A by feeding the data from patient B. As
shown in Fig. 4, such randomization results is a significant loss of per-
formance. This baseline sanity check establishes that the identified
correlations are not due simply to random chance and suggests that the
proposed method can indeed inform on injury location.

1 ‘ . ‘ ‘
**P=0.0047
**P=0.0047
*P=0.0168
< 0.5 1
c
2
=
Kot
[
= _
[<]
o or 1
.0.5 | \ . .
- 0 ’0\ o\
\\ 2 \

Fig. 4. Bootstrapping analysis of the FINDR framework. The baseline bar plot
(Original) shows the distribution of correlation values between the predicted
injury location and the actual injury location when the LSTM network is trained
using the proposed method. The second bar plot (Random Test Subjects) shows
the correlation between the predicted injury locations and a randomly selected
patient within the dataset. The third bar plot (Random Train Subjects) shows
the correlation between the predicted injury locations and actual injury loca-
tions when the LSTM network is trained using random injury locations instead
of the actual corresponding injury locations. Finally, the last bar plot (Random
Events) shows the correlation between the predicted injury locations and actual
injury locations when we use random sections of the data as events instead of
the spectral events used in the FINDR framework. p-values are based on a two-
sample Kolmogorov-Smirnov test.
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3.2.2. FINDR spectral variance is specific to classification performance

Next, to understand the specificity of the FINDR pipeline to the
resultant classification performance, we re-trained the classifier using
random injury locations (injury locations from randomly selected pa-
tients). The goal of this test was to assess whether the spectral variance
I’y of one patient could be associated with the injury location in another
patient. As shown in Fig. 4, such re-training results in a lower level of
classification accuracy. This is re-assuring as it suggests that the LSTM
cannot ‘overfit’ the injury location based on an incongruent I'y.

3.2.3. Event detection is critical to the mechanism of classification

Finally, to delve further into the mechanism of classification, we
focused on the step described in Section 2.2. Instead of using the
described procedure to identify salient frequency-based events within
each EEG channel, we simply picked random windows from which to
calculate the subsequent spectral variance. We then re-trained the
classifier based on these random events (with the correct patient used for
training). As shown in Fig. 4, such randomization and re-training
(random events) also leads to significant reduction is classification per-
formance. This finding implies that the identification of events through
the dimensionality reduction procedure in Section 2.2 is indeed a key
step that is meaningful and relevant to injury location.

3.3. FINDR Performance is robust to window size and number of events

Because FINDR relies on the choice of a moving window (to compute
short-time power spectra, i.e., in Section 2.2.1), we assessed the sensi-
tivity of the method to window size. As shown in Fig. 5 Part (a), there is
no significant difference in correlation performance for window lengths
ranging from 1 to 5s, suggesting robustness over this range. Interest-
ingly, increasing the window size did not improve the performance of
our framework. This is partly because by increasing the window size we
are potentially decreasing the variability across different windows,
which ultimately affects the spectral variance of the signal. As
decreasing the window size reduces the frequency resolution of the
signal, we selected a window size of three in this study as a compromise
between frequency resolution and spectral variability. We also assessed
the sensitivity of our framework to the number of selected windows
(events) as seen in Part (b) of Fig. 5. According to the results, setting the
number of windows below 100 degrades the overall performance. This is
expected, as lowering the number of windows makes it more difficult to
estimate the spectral responses in step 2 of the FINDR framework.
Finally, we assessed the sensitivity of FINDR framework to average
(CART), average of A1&A2, and single channel Cz re-referencing
methods in Part (c) of Fig. 5. Based on the results, both bipolar and
CART referencing methods performed well. In comparison, the re-
referencing to Cz and Average Al1/A2 did not perform as well as the
other methods. A plausible explanation for this might be the higher
sensitivity of these two approaches to noise, as well as different spatial
specificity associated with the referencing schemes. For a more detailed
comparison of different EEG re-referencing methods, the readers can
refer to [17,22,23].

4. Discussion

In this paper we adapt the classical idea of EEG reactivity (how the
EEG reacts to exogenous stimuli) and translate it into a paradigm for
injury localization that relies only on passive EEG measurement. The
paradigm proceeds by quantifying a ‘reaction’ of a channel in terms of
how heterogeneous its activity is during periods of significant activity in
other channels. Here, significant events are defined using a systematic
procedure of windowed power spectral density estimation followed by
dimensionality reduction. These quantification of spectral heterogeneity
are then fed to a machine learning classifier that predicts actual injury
locations. In a majority of tested patients, the predicted injury location
correlated to a significant level relative to chance and other validation
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Fig. 5. Sensitivity analysis of the FINDR framework. (a) The correlation be-
tween predicted injury location and actual injury location is calculated for
different window lengths. (b) The correlation between predicted injury location
and actual injury location is calculated for different number of windows
(events). (c) The correlation between predicted injury location and actual injury
location is calculated for different EEG re-referencing techniques.

tests, indicating that the proposed method indeed carries information
regarding injury location.

4.1. Interpretation of FINDR quantification of spectral variance

This study extends our prior work on intrinsic network reactivity
(INRI) [14], which discussed how to glean information on injury
severity and etiology from EEG recordings. More specifically, The INRI
approach was developed to characterize the reactivity of the EEG signal
to intrinsic events, thus generalizing the classical notion of EEG reac-
tivity to exogenous stimuli. The underlying hypothesis of the INRI
approach was that such “intrinsic reactivity” can be informative with
respect to extent of injury in comatose patients. From a technical
perspective, the INRI looks holistically at signals across the entirety of
the EEG montage relative to the intrinsic events in question. The FINDR
approach, on the other hand, is designed to quantify the interaction of
different brain regions with each other in a dynamical systems sense,
which we hypothesized would be informative with respect to spatial
properties (in this case location) of a brain injury. The overarching
premise of these approaches involves characterization of the ‘lability” of
brain regions, i.e., the extent to which they can and do produce diverse
patterns of electrical activation. The spectral variance that underlies the
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FINDR approach, i.e., I'ris designed as a surrogate quantity that captures
this idea.

It is important to note that the mapping from the spectral variance I'y
to actual spatial location of injury is not explicit in our framework, since
it is embedded within the LSTM network. Thus, we are not able to make
statements about whether particular values of I'y are more or less
attributed to injury location. However, we speculate that the LSTM may
in fact be embedding a ‘U’ shaped function wherein extremal values
within Ty are associated with injury. Indeed, we hypothesize that this
mapping may encapsulate two scenarios. In the first, an injured region is
suppressed on account of injury and thus exhibits very low spectral
variance relative to other regions. The second scenario is one in which
an injured region becomes completely disassociated from other regions
leading to high spectral variance. Clearly, the performance achieved by
the trained LSTM is not perfect and for several patients the classifier fails
to characterize injury location. The heterogeneity of injury etiologies
present in our dataset may mean that some patients fall outside of the
above premises regarding spectral variance and an important question
moving forward will be to understand when the method does or does not
work and to analytically characterize the transformation learned by the
LSTM classifier.

4.2. Novelty and significance of the proposed approach

There are few attempts in the literature to localize brain injury using
the scalp EEG data, but they usually rely on descriptive statistics on the
power spectrum (hence susceptible to frequency resolution) or depend
on extrinsic stimulation (hence less practical). Even though a major
component of FINDR approach is calculating the spectrum of the signal,
it is not as sensitive as other methods to the frequency resolution. This is
partly because unlike those methods such as asymmetry index [7], the
power spectrum here is just a tool to capture the responsiveness of
channels, and any resolution deficiency is globally distributed and
canceled out during the process. This could be seen in Fig. 5 where the
information content of the FINDR values doesn’t seem to depend on the
length of windows.

As alluded to in the introduction, the capability of our methodology
could become even more powerful for cases of mild traumatic brain
injury where the actual brain tissue is not damaged and therefore not
detectable by structural imaging techniques [24]. In such cases, it is
necessary to analyze the functional properties of the brain, which
generally involve capturing the brain’s response to an external stimuli.
These responses can be captured using functional imaging techniques
such as fMRI [25], but they suffer from the same limitations as structural
imaging techniques. They are time-consuming, costly, and not suitable
for rapid deployment. The rapid deployment is especially important for
at risk population such as athletes and military service members who
might not have immediate access to functional imaging equipment.
Hence, EEG is an important asset to study the functional properties of
the brain, including disruptions of interactions between different brain
regions caused by injury.

Perhaps a more significant advantage of the FINDR method is that it
does not depend on any external stimuli and the responsiveness of brain
is quantified in terms of intrinsic events. The application of such an
approach goes beyond localizing brain injury and includes a wider set of
problems that involve understanding the underlying mechanism of the
brain in resting state. For example, recently there has been a lot of in-
terest in studying large-scale brain networks called default mode net-
works which are known to be active during the resting state and relate to
various neurological disorders [26]. The FINDR approach is a great
candidate to study such networks and understand the underlying
mechanism that drive such networks. Finally, unlike source localization
methods, the FINDR approach does not require a priori information such
as the geometrical model of the head. The only parameters used in this
approach are the typical power spectrum parameters including the
number of windows, amount of overlap, and the length of each window,



S. Khanmohammadi et al.
which are easy to optimize.
4.3. Limitations and future directions

Our results establish that information regarding injury location may
be embedded in certain dynamical features of the EEG. Nonetheless, the
average correlation performance of 0.6 that we achieved clearly needs to
be improved to entertain the possibility of deploying this technique in a
real world setting. Thus, the current results should be viewed as an
initial proof of concept study toward the overall problem of brain injury
characterization from surface EEG recordings.

First and foremost, as noted above, while we have shown that the
spectral variance is informative with respect to injury location, more is
required to study the specific way that the machine learning algorithm
uses this quantity. Occlusion methods [27,28] and other emerging
techniques for interrogating the mechanisms of supervised classification
methods in healthcare applications [29,30] could be useful in this
regard.

In addition, there are a number of basic data processing issues that
need to be addressed before this method could be translated to a clinical
setting. The data preprocessing and artifact rejection steps were per-
formed offline and required manual inspection of the EEG traces. For a
fully automated system that can be used in remote locations (the most
likely application of this approach), an automated pre-processing pipe-
line needs to be developed.

Another limitation to the current study is that it only considers injury
location in two-dimensional space (x and y-axis), whereas the depth of
the injury is also clearly important for diagnosis and prognosis of brain

injury.
4.4. Conclusion

In summary, we developed a new method termed frequency-based
intrinsic network dynamic reactivity (FINDR) that quantifies the vari-
ance of neural response at different brain regions to intrinsic events in
other regions. We showed that despite some limitations, this technique
could be used to localize brain injury. The proposed method is a passive
technique that does not require administration of external stimuli,
making it potentially suitable for cases of brain injury where patients do
not respond to external stimuli or where there is no immediate access to
advanced neuroimaging equipment. The current results contribute to a
growing set of techniques for characterizing coma from brain electrical
dynamics and provide a foundation for automated and easily deployable
EEG-based injury diagnostics.
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