
UnchartIt: An Interactive Framework for
Program Recovery from Charts

Daniel Ramos
INESC-ID / IST, U. Lisboa

Lisboa, Portugal

daniel.r.ramos@tecnico.ulisboa.pt

Jorge Pereira
INESC-ID / IST, U. Lisboa

Lisboa, Portugal

jorge.m.s.pereira@tecnico.ulisboa.pt

Inês Lynce
INESC-ID / IST, U. Lisboa

Lisboa, Portugal

ines.lynce@tecnico.ulisboa.pt

Vasco Manquinho
INESC-ID / IST, U. Lisboa

Lisboa, Portugal

vasco.manquinho@tecnico.ulisboa.pt

Ruben Martins
Carnegie Mellon University

Pittsburgh, USA

rubenm@andrew.cmu.edu

ABSTRACT

Charts are commonly used for data visualization. Generating a chart

usually involves performing data transformations, including data

pre-processing and aggregation. These tasks can be cumbersome

and time-consuming, even for experienced data scientists. Repro-

ducing existing charts can also be a challenging task when infor-

mation about data transformations is no longer available.

In this paper, we tackle the problem of recovering data transfor-

mations from existing charts. Given an input table and a chart, our

goal is to automatically recover the data transformation program un-

derlying the chart. We divide our approach into four steps: (1) data

extraction, (2) candidate generation, (3) candidate ranking, and (4)

candidate disambiguation. We implemented our approach in a tool

called UnchartIt and evaluated it on a set of 50 benchmarks from

Kaggle. Experimental results show that UnchartIt successfully

ranks the correct data transformation among the top-10 programs

in 92% of the benchmarks. To disambiguate the top-ranking pro-

grams, we use our new interactive procedure, which successfully

disambiguates 98% of the ambiguous benchmarks by asking on

average fewer than 2 questions to the user.

CCS CONCEPTS

· Software and its engineering;

KEYWORDS

Recovering Data Transformations from Charts, Program Synthesis,

Interactive Disambiguation

ACM Reference Format:

Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, and Ruben Mar-

tins. 2020. UnchartIt: An Interactive Framework for Program Recovery

from Charts. In 35th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE ’20), September 21ś25, 2020, Virtual Event, Australia.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3324884.3416613

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE ’20, September 21ś25, 2020, Virtual Event, Australia

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6768-4/20/09.
https://doi.org/10.1145/3324884.3416613

1 INTRODUCTION

In the last decade, data analysis has become one of the most im-

portant tools for organizations to drive their decisions. The huge

demand for domain experts has led many data analysts with limited

programming knowledge to be recruited. Thus, in the last years,

several tools [13, 14, 23, 25, 39, 45] have been developed to aid inex-

perienced analysts in automating some programming tasks. These

tools work by example: the user provides a set of input-output ex-

amples, and the tool finds a program that maps the inputs into the

output. However, the development of tools that work directly with

visual elements has remained unexplored. Hence, if a user prefers

to express his intent through visual elements (e.g., providing an

input table and a bar chart), there is no tool that is able to reverse

engineer the necessary data manipulations in order to reproduce it.

In this paper, we propose UnchartIt, a tool for reverse engi-

neering the necessary table manipulations to generate a given chart.

Note that, to the best of our knowledge, this is the first tool for

automatic generation of data manipulations that directly uses vi-

sual elements. In this work, we consider that the user can provide

the image of a bar chart and the raw data from which the chart

was generated. Although we only consider bar charts (one of the

most common chart types [3]), the proposed ideas can be easily

generalized to other types of charts or graphical elements. More-

over, we also address how to automatically extract the necessary

information from the chart, how to adapt program synthesis tools

to this new challenging problem, as well as how to disambiguate

several programs while minimizing user interactions. Furthermore,

experimental results on real-world instances from Kaggle show

that UnchartIt is able to reverse engineer how to build the chart

presented by the user. Specifically, the correct data transforma-

tion program is ranked among the top ten programs returned by

UnchartIt in 92% of the instances. To select the user’s intended

program from the top ten ranked programs, UnchartIt interacts

with the user by asking either yes or no questions, or multiple-

choice questions, and successfully returns the correct program in

98% of the ambiguous instances.

This paper makes the following main contributions:

• The first fully automated tool called UnchartIt that syn-

thesizes table manipulations from bar charts.

• Automated input generation methods to disambiguate a set

of programs that minimize the number of user interactions.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

date_received product . . .

08/30/2013 Mortgage . . .

08/30/2013 Mortgage . . .

08/30/2013 Credit reporting . . .

08/30/2013 Student loan . . .

08/30/2013 Debt collection . . .

08/30/2013 Credit card . . .

08/30/2013 Credit card . . .

08/30/2013 Debt collection . . .

(a) Sample of the consumer complaints table (175.39MB).

2011 2012 2013 2014 2015 2016

0.44

0.89

1.33

1.77

·105

year

#
co
m
p
la
in
ts

(b) Bar chart with yearly number of consumer complaints.

Figure 1: Consumer complaints data from 2011 to 2016.

• Experimental results on real-world benchmarks that show

the success of the proposed approaches.

The paper is structured as follows: Section 2 defines the research

challenge and motivates the problem with a concrete example.

Section 3 addresses the problem of data extraction from visual

elements and Section 4 explains the necessary changes to program

synthesizers to solve this new research problem. Next, Section 5

addresses how to rank the programs generated by the synthesizer.

Section 6 proposes new models on how to disambiguate the top-𝑛

ranked programs for two different user interactionmodels. Section 7

presents the experimental results on a set of real data from different

domains. Section 8 briefly reviews related work. Finally, the paper

concludes in Section 9.

2 MOTIVATION

Consider the sample of the consumer complaints database shown

in Figure 1a. The database contains complaints submitted to the

Consumer Financial Protection Bureau between 2011 and 2016.

Figure 1b shows a bar chart with the number of complaints received

in each year.

Suppose that Alice, a data analyst with low programming skills,

needs to elaborate a report on an updated version of the consumer

complaints database.1 As a reference, she received an old report

written by a former employee. This report contains a variety of

charts, including Figure 1b, but not the programs from which the

charts originated. Therefore, Alice’s task is to recover the programs

necessary to reproduce the report’s charts. If Alice has the programs

to generate the charts, she can update them whenever new data is

added to the database.

In this paper, we describe UnchartIt, a new tool that can au-

tomatically recover a program from a given chart for people like

Alice. To recover a program from a chart, Alice needs to provide

the raw data from which the chart originated and an image of the

chart. Figure 2 illustrates the UnchartIt architecture. Given a pair

(data, chart), UnchartIt starts by extracting data from the chart,

thereby creating a tabular representation of the chart. Since this

step involves automatically interpreting a chart, the resulting table

is prone to contain imprecisions. For instance, from the chart of

1https://www.consumerfinance.gov/data-research/consumer-complaints/

Table 1: Table obtained from

the bar chart of Figure 1b.

col0 col1

bar0 2345.18

bar1 72255.90

bar2 108303.62

bar3 153090.18

bar4 168929.33

bar5 50954.98

Table 2: Real table inherent

to the bar chart of Figure 1b.

year # complaints

2011 2549

2012 72523

2013 108273

2014 153138

2015 168621

2016 50853

Figure 1b, UnchartIt generates Table 1. In contrast, Table 2 con-

tains the real table underlying the chart of Figure 1b. Note that the

numerical data of the extracted table is imprecise and the bar labels

are missing.

After obtaining a tabular representation of the chart, UnchartIt

starts the candidate program generation step. During this stage,

UnchartIt uses two major components: (1) the program generator,

and (2) the program decider. The program generator enumerates

candidate programs and provides them to the program decider.

The program decider evaluates the candidate programs, decides if

they are good candidates, and provides feedback to the program

generator. Note that the program decider does not have access to

the real table underlying the chart, but rather to an approximation

of the real table extracted from the chart image. Therefore, the

program decider cannot simply discard candidates because they do

not map the raw input data into the imprecise table it extracted in

the previous step. Instead, it decides to keep or discard candidates

using a weaker criterion: a candidate program is kept if and only

if its output on the input data has the same number of rows and

columns as the extracted table. For example, using the consumer

complaints data from Figure 1a and the extracted table shown in

Table 1, UnchartIt finds 7 different programs whose output on the

input data has the same structure as Table 1 (6 rows and 2 columns).

After generating a pool of candidates, UnchartIt assigns each

candidate program a score using a cost function and ranks the

programs according to their costs. Since it is possible that the best-

ranking program does not correspond to the program the user

UnchartIt: An Interactive Framework for Program Recovery from Charts ASE ’20, September 21–25, 2020, Virtual Event, Australia

Example 4.1. The following grammar represents a subset of the

DSL used by UnchartIt.

𝑡𝑎𝑏 → summarize(𝑡𝑎𝑏, 𝑜𝑝𝑡, 𝑐𝑜𝑙) | group_by(𝑡𝑎𝑏, 𝑐𝑜𝑙) | 𝑥0

𝑡𝑎𝑏 → count(𝑡𝑎𝑏) | top_n(𝑡𝑎𝑏, 𝑐𝑜𝑙) | bottom_n(𝑡𝑎𝑏, 𝑐𝑜𝑙)

𝑜𝑝𝑡 → mean | median | sum

𝑐𝑜𝑙 → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | . . .

where summarize, group_by, count, top_n, and bottom_n are func-

tions of the dplyr library for R, and 𝑥0 represents the program’s

input. summarize(group_by(𝑥0, 1), mean, 2) is an example of a pro-

gram in this DSL. This program groups all the lines with the same

first column representation and for each group it computes the

mean of the numerical values in the second column.

Our full DSL has extra primitives to support common table trans-

formations for bar charts. For instance, it allows cleaning data by

removing empty cells, supports ordering the values in a column,

normalization of values, and extraction of data within a given date.

Our DSL is functional, thus our programs do not contain loops.

Second, we wrote logical specifications for each library function

in our DSL using as properties the number of rows, columns, and

groups. These specifications are a complement to the DSL and

describe the relation on the number of columns, rows, and groups

between the input and output table after using a library function.

UnchartIt can then take advantage of the pruning and learning

techniques implemented in Trinity and prune equivalent infeasible

programs that share the same logical specifications.

Example 4.2. Consider the function summarise. This function

aggregates the data in each group, which is composed by a set

of rows. Let 𝑟 = summarise(𝑎, mean, 2) be the output of running

summarise on table a. For any execution of summarise, we know

that the number of columns of the resulting table r will be at most

the number of columns in table a. Moreover, the number of rows

and groups in table r will equal the number of groups in table

a. Hence, we can write the following logical specifications that

describe the relation on the number of columns, rows and groups

between table r and table a:

• columns(r) ≤ columns(a)

• rows(r) = groups(a)

• groups(r) = groups(a)

Third, since our output table has numerical imprecisions, we

modified the search of the program synthesizer to enumerate all

programs within a time limit that have an output table with the

same number of rows and columns as the extracted table. Even

though the extracted table has numerical imprecisions, the shape

of the table is usually correct. Instead of selecting a single program,

UnchartIt maintains a list of programs that satisfies the row and

column constraints. All programs are ranked using the metrics from

Section 5.

5 RANKING CANDIDATE SOLUTIONS

In order to rank the generated candidates, we assign a cost to each

program: the highest-ranking program is the program with the

lowest cost. In this section, we present two possible cost functions

to rank the candidate programs.

Table 3: Re-scaled extracted

table.

col0 col1

bar1 0.0106

bar2 0.3269

bar3 0.4901

bar4 0.6927

bar5 0.7644

bar6 0.2306

Table 4: Re-scaled output ta-

ble.

year # complaints

2011 0.0115

2012 0.3282

2013 0.4899

2014 0.6929

2015 0.7630

2016 0.2301

Recall that the data extraction mechanisms described in Section

3 do not extract labels, only the bar values. Thus, we only consider

the numerical data extracted from the chart to calculate a program’s

cost. We propose to measure the quality of programs by comparing

the extracted bar values to those of the program output. Before

calculating the cost of the program, we re-scale the bar values using

the axis maximum and minimum values of the chart. This scaling

allows us to have a standardized range of costs independent of the

chart’s scale. We re-scale each bar to a value between 0 and 1 using

the following function:

𝑓 (𝑦) =
𝑦 − 𝐿

𝐻 − 𝐿
(5)

where 𝐻 and 𝐿 are the axis maximum and minimum values, re-

spectively. Two possible cost functions are the mean absolute error

(MAE) and the mean squared error (MSE).

MAE =
1

𝑛

𝑛
∑

𝑖=1

|𝑓 (𝑦𝑖) − 𝑓 (𝑦𝑖) |
1 (6)

MSE =
1

𝑛

𝑛
∑

𝑖=1

|𝑓 (𝑦𝑖) − 𝑓 (𝑦𝑖) |
2 (7)

where 𝑛 is the number of bars, 𝑦𝑖 is the 𝑖’th bar value of the pro-

gram’s output, and 𝑦𝑖 is the 𝑖’th bar value obtained from the data

extraction mechanism.

Example 5.1. Consider a recovery task where the data extraction

mechanism generates Table 1 on the chart of Figure 1b. Consider

also that a candidate program outputs Table 2 when applied to the

input data. To calculate the program’s cost we start by re-scaling

the bars’ values. In this case, the chart’s maximum and minimum

values are 𝐻 = 2.21 × 105 and 𝐿 = 0, respectively. Thus, using

the re-scaling function (5), we get Tables 3 and 4. Using the mean

absolute error from (6), the program would have the following cost:

MAE =
1

6

(

|0.0106 − 0.0115| + |0.3269 − 0.3282|+

|0.4901 − 0.4899| + |0.6927 − 0.6929|+

|0.7644 − 0.7630| + |0.2306 − 0.2301|
)

= 0.00075

In order to rank the candidates, the cost of each program is

calculated and the candidates are ordered. If two different programs

have the same cost, the smaller program2 is ranked higher.

2A program P1 is considered smaller than a program P2 if P1 uses fewer operators
from the DSL than P2 .

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

1 int main() {

2 int a = read (); // (𝑎0 = 𝛼)

3 int b = read (); // (𝑏0 = 𝛽)

4 int c = 3; // (𝑐0 = 3)

5

6 if (a+b == 3) // (𝑎0 + 𝑏0 ≠ 3) =⇒ (𝑐1 = 𝑐0)

7 c += 10; // (𝑎0 +𝑏0 = 3) =⇒ (𝑐1 = 𝑐0 + 10)

8 return c; // (𝑜P = 𝑐1)

9 }

Figure 6: Symbolic representation of a program in C.

6 PROGRAM DISAMBIGUATION

The proposed ranking functions are helpful in selecting promising

candidate programs. However, in some cases, the highest ranked

program is not the desired solution. Therefore, given the top-𝑛

ranked programs, we propose to interact with the user in order to

select a program that corresponds to the user’s intent.

This section starts by briefly reviewing Satisfiability Modulo

Theories (SMT) and how SMT can be used to formalize a symbolic

execution of a program. Next, two different user interaction models

are presented. For each interaction model, we formalize how to

automatically generate an input test case that differentiates among

the candidate programs. Finally, we refer how fuzzing techniques

can also be used to this end.

6.1 Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is a generaliza-

tion of the well-known Propositional Satisfiability (SAT) problem.

Given a decidable first-order theory T , a T -atom is a ground atomic

formula in T . A T -literal is either a T -atom 𝑡 or its complement ¬𝑡 .

A T -formula is similar to a propositional formula, but a T -formula

is composed of T -literals instead of propositional literals. Given a

T -formula 𝜙 , the SMT problem consists of deciding if there exists

a total assignment over the variables of 𝜙 such that 𝜙 is satisfied.

Depending on the theory T , the variables can be of type integer,

real, Boolean, among other domains.

The Maximum Satisfiability Modulo Theories (MaxSMT) is the

optimization version of the SMT problem. In MaxSMT, the goal is

to find an assignment that optimizes a given objective function,

such that an SMT formula is satisfied. In the literature, MaxSMT is

sometimes defined over a set of hard and soft formulas [30]. How-

ever, it can also be defined as optimizing an objective function [5].

For ease of understanding, we use the latter formalization.

6.2 Symbolic Representation of Programs

Symbolic execution is a technique that allows executing a program

with symbolic values instead of concrete values. In essence, given a

program P, one can build an SMT formula 𝜙P that represents the

symbolic execution of P. Hence, 𝜙P represents all possible execu-

tions of program P when all possible input values are considered.

Example 6.1. Consider the program P in Figure 6 with two input

variables (a and b). To generate an SMT formula to represent the

symbolic execution of P, we start by converting the program to a

static single assignment (SSA) form. In SSA form, a new variable

is created for each assignment in the program. For example, since

variable c is assigned twice (lines 4 and 7), we create two instances of

c: 𝑐0, and 𝑐1, used to represent the value of c after each assignment.

Moreover, each input is assigned a symbolic value: 𝑎0 = 𝛼 , and

𝑏0 = 𝛽 . Note that the symbolic values 𝛼 and 𝛽 represent all possible

values that can be assigned to a and b, respectively. Finally, we

build the SMT formula that represents the program’s execution

flow. For program P the formula is as follows:

𝜙P := (𝑎0 = 𝛼) ∧ (𝑏0 = 𝛽) ∧ (𝑐0 = 3) ∧

((𝑎0 + 𝑏0 ≠ 3) =⇒ (𝑐1 = 𝑐0)) ∧

((𝑎0 + 𝑏0 = 3) =⇒ (𝑐1 = 𝑐0 + 10))

(𝑜P = 𝑐1)

Symbolic execution is often used to check a given property of a

program. Let P be a program and 𝑜P denotes the symbolic repre-

sentation of the return value of P. It is possible to check if there is

an execution of P that returns 0 by using an SMT solver to check

the satisfiability of 𝜙𝑟𝑒𝑡0, where 𝜙𝑟𝑒𝑡0 = 𝜙P ∧ (𝑜P = 0). Observe

that if the SMT solver finds 𝜙𝑟𝑒𝑡0 to be unsatisfiable, then there is

no input of P such that P returns 0. Otherwise, if the SMT solver

provides a satisfying assignment for 𝜙𝑟𝑒𝑡0, then the assignment to

the symbolic representation of the inputs of P contains the concrete

input values (i.e. the input test case) for when P returns 0.

Symbolic execution can also be used to differentiate between two

programs P1 and P2. Let 𝜙P𝑖
be the SMT formula that corresponds

to the symbolic execution of program P𝑖 . Let 𝐼𝑖 represent the input

and 𝑜𝑖 the output of P𝑖 . Hence, we can built a formula 𝜙𝑒𝑞 such as:

𝜙𝑒𝑞 = 𝜙P1
∧ 𝜙P2

∧ (𝐼1 = 𝐼2) ∧ (𝑜1 ≠ 𝑜2) (8)

Observe that if 𝜙𝑒𝑞 is satisfiable, then there is an input test case for

which P1 and P2 provide different outputs. As a result, one can ask

the user to answer which is the correct output and disambiguate

between P1 and P2. Otherwise, if 𝜙𝑒𝑞 is unsatisfiable, then there is

no input test case that differentiates between P1 and P2 and the

programs are deemed equivalent.

6.3 User Interaction Models

UnchartIt is able to rank candidate programs, but the best ranked

program might not correspond to the user’s intent. Moreover, it can

occur that the ranking value is the same for two different programs.

Hence, our goal is to interact with the user in order to correctly

select the desired program among the top ranked candidates.

In UnchartIt, we define two different user interaction mod-

els. The Options model shows the user an input table, as well as

several output options corresponding to the output of candidate

programs for that input table. In this case, the user selects the cor-

rect output among the several options. If the selected output still

corresponds to the output of several candidate programs, additional

rounds of questions are performed to disambiguate solely among

those programs. In the Options model, ideally, there is a single

input table such that each candidate program produces a different

output. In this best-case scenario, a single question is sufficient to

disambiguate among the candidate programs. On the other hand,

the Options model requires the user to solve the problem for the

given input table in order to select the correct option.

UnchartIt: An Interactive Framework for Program Recovery from Charts ASE ’20, September 21–25, 2020, Virtual Event, Australia

min.

𝑛
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1

𝑏𝑖 𝑗 (9)

s.t. 𝜙P1
∧ . . . ∧ 𝜙P𝑛

(10)

∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : 𝐼𝑖 = 𝐼 𝑗 (11)

∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : (𝑜𝑖 = 𝑜 𝑗) ⇔ (𝑏𝑖 𝑗) (12)

𝑛
∨

𝑖=1

𝑛
∨

𝑗=𝑖+1

¬𝑏𝑖 𝑗 (13)

Figure 7: Input generation for the Options model.

UnchartIt also implements the Y/N user interaction model. In

this case, the user is presented with an input table and an output.

Next, the user answers yes or no, depending if the output is correct

for that input table. Note that the user only needs to check the

correctness of a single output option. In the Y/N model, the goal is

to split the set of candidate programs in two, such that the output

of half the candidate programs matches the proposed output, while

the other half produces a different output. If it is always possible

to split the set of programs in two, the number of questions in the

Y/N interaction model would be 𝑂 (𝑙𝑔(𝑛)).

6.4 Model Formalization

Section 6.3 presented the Options and the Y/N user interaction

models implemented inUnchartIt. In this section, we propose two

MaxSMT formalizations that allow us to automatically generate

input examples for both user models.

In the Options user model, in order to minimize the number of

user interactions, the goal is to find a small input test case such that

all the top-𝑛 ranked programs provide a different output. Figure 7

presents a MaxSMT formulation to solve the problem of finding

an input that maximizes the pairwise differences between the 𝑛

programs to disambiguate. In this formula, we encode the symbolic

representation of all𝑛 candidate programs (10) and force the input of

all programs to be the same (11). Moreover, for each pair of programs

P𝑖 and P𝑗 we create a Boolean variable 𝑏𝑖 𝑗 that is assigned to 1 if

and only if the outputs of programs P𝑖 and P𝑗 are the same (12).

Note that inputs that do not differentiate any pair of programs are

excluded (13). Since the goal is to minimize the number of variables

𝑏𝑖 𝑗 assigned to 1 (9), any optimal solution of this formulation will

find an assignment to the input variables 𝐼𝑖 (corresponding to an

input test case) that maximizes the pairwise difference between the

𝑛 programs. Ideally, the solution for the formulation in Figure 7

contains all variables 𝑏𝑖 𝑗 assigned value 0.

On the Y/N interaction model, the goal is to identify an input

test case 𝐼 such that the set of 𝑛 programs is split into two sets 𝐴

and 𝐵 with half programs in each set. Moreover, for test case 𝐼 , all

programs P𝑖 ∈ 𝐴 would provide the same output P𝑖 (𝐼), and all

programs P𝑗 ∈ 𝐵 would provide a different output (i.e. P𝑖 (𝐼) ≠

P𝑗 (𝐼)) than the programs in 𝐴.

Figure 8 contains a formulation that splits a given set of 𝑛 pro-

grams into two sets (𝐴 and 𝐵). As in the previous model, this formu-

lation includes the symbolic representation of all 𝑛 programs (15),

the program inputs are constrained to be the same (16) and Boolean

min.

�

�

�

�

�

𝑛
∑

𝑖=1

𝑝𝐴𝑖 −

𝑛
∑

𝑖=1

𝑝𝐵𝑖

�

�

�

�

�

(14)

s.t. 𝜙P1
∧ . . . ∧ 𝜙P𝑛

(15)

∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : 𝐼𝑖 = 𝐼 𝑗 (16)

∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : (𝑜𝑖 = 𝑜 𝑗) ⇔ (𝑏𝑖 𝑗) (17)

∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : (𝑏𝑖 𝑗) ⇒
(

(𝑝𝐴𝑖 ∧ 𝑝𝐴𝑗) ∨ (𝑝𝐵𝑖 ∧ 𝑝𝐵𝑗)
)

(18)

∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : (¬𝑏𝑖 𝑗) ⇒ (¬𝑝𝐴𝑖 ∨ ¬𝑝𝐴𝑗) (19)

∀𝑖∈{1..𝑛} : 𝑝𝐴𝑖 + 𝑝𝐵𝑖 = 1 (20)

𝑛
∑

𝑖=1

𝑝𝐵𝑖 ≤ 𝑛 − 1 (21)

Figure 8: Input generation for the Y/Nmodel.

variables 𝑏𝑖 𝑗 are assigned to 1 if and only if the output of program

P𝑖 is equal to the output of program P𝑗 (17). Additionally, for each

program P𝑖 two new Boolean variables are created 𝑝𝐴𝑖 and 𝑝𝐵𝑖 ,

denoting if program P𝑖 belongs to set 𝐴 or to set 𝐵, respectively.

In our formulation, if two programs P𝑖 and P𝑗 produce the same

output, then they both have to be assigned to the same set (18).

Moreover, if two programs P𝑖 and P𝑗 produce different outputs

(i.e. variable 𝑏𝑖 𝑗 is 0), then at most one of them can be in set 𝐴 (19).

Therefore, as a result of constraints (18) and (19), all programs in

set 𝐴 must produce the same output. Furthermore, each program

must be assigned to one and only one set (20). Constraint (21)

is used to make sure that if there is an input that differentiates

among programs, then not all programs are assigned to set 𝐵 and a

partition is produced. Finally, our formulation’s goal is to minimize

the difference between the number of programs in each set (14).

6.5 Input Constraints

In the symbolic representation of a program, each input is associated

with a symbolic value that represents an arbitrary concrete value

that can be assigned to that input. Since the inputs of our programs

are tables, each symbolic value represents a table with a number of

rows and columns. However, allowing input tables with an arbitrary

structure can be a problem. For instance, it would not be feasible to

ask the user to verify or select the correct output for a large input

table. Therefore, we impose restrictions on the structure of the input

tables we allow in the symbolic representation of our programs. In

our case, the columns are restricted to those that are relevant in

at least one of the programs to disambiguate. For instance, if we

want to disambiguate 2 programs that only use the first and the

last columns of the input table, then the input table to be generated

only contains data for those 2 columns. Moreover, since we want to

obtain small input tables, the number of rows must also be bounded.

The table’s content must also be restricted since each table entry

should be associated with a meaningful value to the user. For in-

stance, if the user expects a given column to contain country names,

then the only concrete values we should allow on that column are

country names. In order to generate inputs that are familiar to the

user, we base our distinguishing inputs on the input table the user

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

provided. In UnchartIt, the following rules are used to decide

the available values for each column: (a) in columns of strings we

restrict the available values to those present in the respective col-

umn of the input table; (b) in columns of integers, floats, and dates

we restrict the values to the interval between the minimum and

maximum values of the respective column of the input table.

6.6 Input Generation

The MaxSMT formulations proposed in section 6.4 give us a theo-

retical guarantee that the resulting distinguishing input is the best

possible input for the respective interaction model. However, an

issue with both approaches is that our MaxSMT formulas grow

exponentially with the number of programs to disambiguate. In

scenarios where it is necessary to disambiguate a large number of

programs, one might sacrifice optimality in order to have a mean-

ingful user interaction.

There is a plethora of input generation methods commonly used

for program testing [9]. For example, in the context of UnchartIt,

one could apply delta debugging [42, 43] on the example input table

to try to generate a smaller input table that would differentiate the

programs. However, the input tables provided in our test cases can

be very large, resulting in a very time-consuming procedure.

Another alternative is to use fuzzing-based methods [31]. Instead

of building a MaxSMT formula, we can generate random inputs

(guided by the example input table) until we find an optimal solu-

tion for a given interaction model or a time limit is reached. For

example, using the Options interaction model, we can randomly

generate inputs until an example that disambiguates all programs

is found. Otherwise, if a time limit is reached, the generated input

that splits the programs in a larger number of sets is returned. In

UnchartIt, this technique was also implemented as a stand alone

method to disambiguate programs. Moreover, a hybrid method

was also developed that first applies fuzzing-based techniques and

then applies the proposed MaxSMT models when the number of

programs to disambiguate is small.

7 EXPERIMENTAL RESULTS

In order to evaluate our approach, we collected 50 benchmarks

from Kaggle,3 a popular website for data scientists with diverse

open datasets. Each benchmark is comprised of a pair (table, bar

chart). The experimental results presented in this section aim to

answer the following research questions:

Q1. How effectively can UnchartIt recover programs from real

data?

Q2. How long do we have to explore the search space to find

good candidates?

Q3. How does the Neural Network approach compare to the

WebPlotDigitizer’s approach?

Q4. How many questions do we have to ask the user in order

to distinguish the best ranking programs, using the two

interaction models?

The results described herein were obtained from an Intel(R)

Xeon(R) CPU E5-2630 v2 @ 2.60GHz, with 64GB of RAM, running

Debian GNU/Linux 10.

3https://www.kaggle.com/

Implementation. UnchartIt integrates several tools and tech-

nologies. In particular, our neural data extraction mechanism is

implemented using the Keras framework [6]. Furthermore, our can-

didate generator is implemented on top of the Trinity synthesis

framework [28]. While the candidate generator uses the R language

(version 3.5.2), the program disambiguation is performed in C. For

that, all of our DSL operators have an equivalent implementation

in C so that the symbolic representation of the programs can be

generated using CBMC [7], a Bounded Model Checker for C. Since

CBMC generates Boolean formulas, the final MaxSMT formula only

contains Boolean variables. As a result, the Open-LinSBPS [8] solver

was used instead of a generic MaxSMT solver. Finally, the number

of rows of the generated input tables was bounded to 5.

Benchmarks. The average and median size of the input table

files is 16.52MB and 1MB, respectively. However, there are much

larger instances in our benchmark set. The motivational example

in Section 2 has one of the largest input tables (Table 1a), con-

taining 175.39MB, 715,437 rows and 18 columns. Moreover, the

median number of rows and columns is 10,841 and 13, respectively,

whereas the mean number of rows and columns is 71,293.92 and

17.66, respectively. Regarding the bar charts, the number of bars of

each chart varies between 2 and 15 bars. Every solution involves

grouping the data by some column, and then summarizing each

group using an aggregate function (e.g., median, min or max). Some

solutions require operations such as calculating the days between

two dates or filtering null values. It might also be necessary to

normalize the values of a numerical column, or selecting only the

top ranking rows.

Data Extraction. When evaluating a data extraction procedure

for bar charts we must consider its two outputs: the number of

bars, and the bars’ values. Thus, to measure its accuracy we use

two metrics: the percentage of plots in which the procedure suc-

cessfully retrieved the number of bars, and the mean absolute error

of the bar’s values. To test both WebPlotDigitizer and the neural

network we used the bar charts of the benchmarks.

Recall that WebPlotDigitizer requires a considerable amount

of input. Before extracting the bars’ values, it is necessary to mark

the pixel location of two different points along the vertical axis of

each bar chart and the values of the respective points.WebPlotDig-

itizer’s bar extraction algorithm also requires tuning parameters

before extracting the bars. It was found that the parameters that

worked best with our benchmarks were Δ𝑥 = 30 and Δ𝑣𝑎𝑙 = 500.

Using these parameters, WebPlotDigitizer successfully retrieved

the number of bars in 96% of the instances and achieved a mean

absolute error of 0.002201.

To evaluate the accuracy of the neural-based data extraction, we

trained an adapted version of the EfficientNet-B1. We generated

a set of 90,000 bar charts of various forms and split it into train-

ing (90%) and validation (10%) sets. To train the network, we used

RAdam [27] coupled with Lookahead [44] using the default param-

eters of the respective papers. We used batch sizes of 15 and a max-

imum number of epochs of 100, but we performed early stopping

once the validation loss stopped decreasing. On the benchmarks,

EfficientNet-B1 retrieved the correct number of bars in 92% of the

instances. Considering the mean absolute error, the network has a

UnchartIt: An Interactive Framework for Program Recovery from Charts ASE ’20, September 21–25, 2020, Virtual Event, Australia

0 2 4 6 8 10
50

60

70

80

90

100

Timeout (min)

In
st
an
ce
s
so
lv
ed

(%
)

top-1

top-3

top-5

top-10

Figure 9: Success rate with different timeouts, using Web-

PlotDigitizer and the MAE ranking.

Table 5: Success rate for a time limit of 3 minutes.

WebPlotDigitizer EfficientNet-B1

MAE MSE MAE MSE

top-1 88% 86% 66% 66%

top-3 90% 88% 72% 72%

top-5 90% 88% 76% 74%

top-10 92% 92% 78% 80%

mean absolute error of 0.037356. Although the adapted EfficientNet-

B1 is not as accurate as WebPlotDigitizer, it is important to note

that it requires significantly less input from the user.

Candidate Generation and Ranking. Since it is not feasible to

explore the whole program space, UnchartIt terminates when

a given time limit is reached. In Figure 9, we show the success

rate for different timeouts. The top-1, top-3, top-5, and top-10 lines

show the number of benchmarks in which the correct solution was

ranked first (top-1), among the first three (top-3), five (top-5), and

ten (top-10) programs, respectively. We can see that UnchartIt

performs best when using a timeout of 3 minutes, and it does not

improve thereafter. In fact, the percentage of correct programs in

top-1 decreases with higher time limits. This occurs due to the

fact that if we explore the search space longer, we are more prone

to finding programs that overfit to the cost function (especially

programs with a high number of lines). Moreover, there might be

other programs with more lines of code that are equivalent to the

overfitting (e.g., adding a filter operation that does nothing on the

input table). Since these spurious programs have the same cost of

the overfitting program, they push the solution downwards. Overall,

UnchartIt is able to find programs up to 7 lines of code within

the time limit, which is the same order to magnitude as other state

of the art tools for table manipulation [14].

Table 5 shows the success rate with a timeout of 3 minutes,

using the two data extraction mechanisms, and the two ranking

functions. We can see that both ranking functions perform similarly,

regardless of the data extraction mechanism. The correct solution

is the top ranked program in 88% of the instances when using

WebPlotDigitizer, and the MAE ranking function. Using the

adapted EfficientNet-B1 neural network we obtain slightly worse

results. Nonetheless, we can still rank the correct solution on the

top-10 in 80% of the instances. When using WebPlotDigitizer

this value increases to 92%. Recall that WebPlotDigitizer is more

precise than EfficientNet-B1 with respect to the numerical extracted

values and number of extracted bars. However, EfficientNet-B1 is a

fully automated process, while WebPlotDigitizer needs the user

to indicate the precise location of two pixels in the chart image and

tune some parameters before extracting data.

In the best performing approach (WebPlotDigitizer + MAE),

there are 8% instances in which a correct solution was not ranked

among the top-10. These benchmarks correspond to 2 instances in

which the number of bars was incorrectly extracted and 2 instances

in which 3 minutes is not sufficient to find a correct candidate.

Program Disambiguation. To ascertain that UnchartIt returns

a correct program, the top-10 ranking programs are to be disam-

biguated by interacting with the user. UnchartIt integrates two

interaction schemes: the Options and the Y/N model. For each

model, questions can be generated using the following approaches:

(1) MaxSMT; (2) Fuzzing; (3) Hybrid Approach. In the hybrid ap-

proach, we combine fuzzing and MaxSMT as follows: if we need to

disambiguate more than 5 programs, then we use fuzzing. Other-

wise, we use MaxSMT. In our experiments, we consider the top-10

programs (usingWebPlotDigitizer) generated for each instance.

From the 50 instances, we consider 48 instances, since for one in-

stance we only generated one candidate, and there was another

instance for which we did not generate a single candidate.

Figure 10 shows the average time necessary to generate the best

possible question with a timeout of 3 minutes per question. We

can see that when using fuzzing, we either find the best question

very quickly, or we cannot find it within the time limit. In the Op-

tionsmodel, fuzzing can only stop early when it finds an input test

case for which all programs provide a different output. However,

that input test case might not exist. The same occurs for the Y/N

model, where an input test case that splits the set of programs

in half might not exist. However, the proposed MaxSMT formula-

tion is able to detect these cases. We can also see that the hybrid

approach generates questions faster than the MaxSMT approach.

This happens because the formulas generated by CBMC grow expo-

nentially with the number of programs to disambiguate. Thus, the

first MaxSMT call usually takes much longer than the remaining

calls. However, fuzzing is particularly effective when the number

of programs is larger. Hence, by using fuzzing in the first call, we

reduce the time necessary to generate the first question, thereby

reducing the average time to generate all questions.

Table 6 presents statistics on the number of questions asked to

the user using the two interaction models and the three different

implementations. Observe that we can disambiguate 47 out of the 48

instances using the hybrid approach. Although the average number

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

12 24 36 48
10−1

100

101

102

103

Instances solved

A
v
er
ag
e
ti
m
e
(s
)

MaxSMT Y/N

MaxSMT Options

Fuzzing Y/N

Fuzzing Options

Hybrid Y/N

Hybrid Options

Figure 10: Average time necessary to generate a question us-

ing the different interaction models and implementations.

Table 6: Median (𝑥), mean (𝑥), standard deviation (𝜎) of the

number of questions asked. Number of instances solved (𝑛).

MaxSMT Fuzzing Hybrid

Options Y/N Options Y/N Options Y/N

𝑥 1 3 1 3 1 3

𝑥 1.53 3.28 1.17 3 1.32 3.23

𝜎 0.631 0.854 0.537 0.698 0.556 0.813

𝑛 43 43 42 42 47 47

of questions using fuzzing is slightly smaller, fuzzing can only dis-

ambiguate 42 instances, since it cannot prove the bounded program

equivalence. Thus, fuzzing presents inconclusive results to the user

in 6 instances. The same happens to the MaxSMT approach, where

sometimes the given time limit is not enough to prove the program

equivalence for the bounded input.

Threats to Validity. Since our tool is limited to bar charts, our

techniques may not generalize for other types of charts. For other

types of charts, the data extraction stage must be adapted. However,

if the data extraction procedure from other chart types results in

imprecisions similar to those found in bar charts, one can expect a

similar success rate.

The other issue is the simulation of the user interaction. In this

paper, we assume the user would select the correct answer in each

question. However, it is not clear how difficult it is for the user to

answer the generated questions, since an empirical study of user

interaction was not performed. Additionally, we bound the time

limit to 3 minutes in order to generate a question. For tighter time

limits, the MaxSMT solver might produce a solution that is far from

optimal. As an alternative, an incomplete solver might be used

instead. In general, incomplete solvers cannot prove optimality,

but are able to provide a good enough solution within tighter time

limits.

8 RELATED WORK

In this section, we briefly discuss prior work that is closely related

to our approach, in the context of program verification, program

synthesis, and interactive program synthesis.

8.1 Program Verification

The goal of program verification is to formally prove that a cer-

tain specification or property holds for all executions of the pro-

gram. The last few decades have seen a significant improvement

in verification tools based on SAT and SMT [4]. In this work, we

leverage bounded model checking tools [7, 16] to either prove the

equivalence between programs or find a counterexample that dis-

ambiguates the programs. In our context, since the tables for the

disambiguation phase are small, it is possible to completely unroll

all loops and check if programs are equivalent to a bounded input.

Even though program equivalence of C programs has been studied

before [12, 18, 19], to the best of our knowledge this is the first appli-

cation of it for disambiguation of programs written in a real-world

programming language in the context of program synthesis.

8.2 Program Synthesis

Program synthesizers for table transformations work by combining

enumerative search and pruning techniques over a space of pro-

grams defined by a DSL. Scythe [39] generates SQL queries from

examples and prunes the search using equivalence classes. Mor-

pheus [14] synthesizes table transformations for the R language and

uses logical specifications for each library function combined with

SMT-based reasoning to prune the search space. Neo [13] general-

izesMorpheus to other domains and incorporates learning from

failed synthesis attempts which further prunes the search space.

Trinity [28] is a program synthesizer framework that makes it

easier to build new program synthesizers while taking advantage of

pruning and learning techniques based on SMT reasoning [13, 14].

Viser [40] is built on top of Trinity for the domain of plot

visualization. It takes as input a table and a trace that partially

describes the plot. For instance, in the case of a bar chart, the trace

describes the height of some bars. The specification used in Viser is

not as strong as in traditional PBE systems since it does not involve

a concrete output table but a set of table inclusion constraints. In

contrast, UnchartIt takes as input a chart image instead of a trace.

Given a chart image, we perform data extraction and our output

table will have numerical imprecisions that are not part of the

result of the table transformation program. Moreover, since we

are tackling the problem of recovering data transformations from

existing plots, the user would not be able to provide the trace of

the plot required by Viser.

Another application of program synthesis to visualization is

the inference of graphics programs from hand-drawn images and

synthesis of the corresponding LATEX code that generates that im-

age [11]. This approach combines techniques from deep learning

and program synthesis. They learn a convolutional neural network

that proposes a set of traces in the form of primitive drawings

(e.g., line, circle, rectangle) that explains the image. These primitive

drawings serve as specification, and a program synthesizer is then

used to generate a program that generalizes these traces with condi-

tionals and loops. Even though our approach can also use a neural

UnchartIt: An Interactive Framework for Program Recovery from Charts ASE ’20, September 21–25, 2020, Virtual Event, Australia

network for data extraction, our synthesis goal is very different

since it requires a sequence of table transformation operations and

not trace generalization.

8.3 Interactive Program Synthesis

Since PBE systems have incomplete specifications, it is often re-

quired to do an interactive step with the user in order to find the

correct program. There are different forms of user interaction, but

the most commonly used by program synthesizers are: (i) the user

provides additional examples to the program synthesizer until there

is no more ambiguity [29, 41], (ii) the synthesizer returns a ranked

list of programs to be selected by the user [17, 26, 41], (iii) the

synthesizer creates a distinguishing input and asks the user for

feedback [29, 32, 38].

There are different ways to create a distinguishing input, i.e. an

input for which at least two programs have a different output. One

approach is to randomly generate distinguishing inputs [29, 38].

This is similar to our input generation approach described in Sec-

tion 6.6. Another approach that is closer to our work is done by Ji

et al. [22]. They sample the space of valid programs and encode

the problem into SMT to determine an input that minimizes the

number of programs that have the same output for a given input.

Afterward, they ask the user to provide the correct output for that

input. This approach is similar to ourOptionsmodel where we also

minimize the number of different outputs for the same input. Our

interactive approach can be seen as a generalization of Ji et al. [22]

work. First, we show how to formalize the optimization problem

with MaxSMT. Second, we show that different user interactions can

be formalized in this way, namely the Options and Y/N user inter-

action models. Third, we use symbolic model checking to encode

programs written in real-world programming languages to SMT,

whereas the previous approach uses programs from the Syntax-

Guided Synthesis Competition (SyGuS) [1] that are expressed using

the SMT language and restricted to SMT constructs.

9 CONCLUSIONS AND FUTUREWORK

Data visualization is crucial for data analysts. However, many data

analysts are not proficient programmers and it is often the case that

data analysts are unable to generate a given chart from the data.

The main contribution of this paper is a comprehensive approach

to handle the problem of recovering data transformations from

charts. UnchartIt receives the input data and an output chart

(generated from the input data) and can automatically find the

underlying table transformation to build the chart. Experimental

results on real data from Kaggle show that UnchartIt can find

and rank the correct program in the top-10 programs in 92% of

instances. To reduce the ambiguity of the programs returned by

UnchartIt, we developed a new interactive synthesis procedure

that can disambiguate 98% of the ambiguous instances by asking

on average fewer than 2 questions to the user.

UnchartIt is the first tool for automatic generation of data

transformations that directly uses visual elements. An integrated

prototype of our tool will become available online soon.4

For future work, we propose to extend UnchartIt with other

visual elements in the input examples besides bar charts. Ideally,

4http://sat.inesc-id.pt/unchartit/

one should be able to use an hand-drawn image of a chart instead

of a digital chart image. Currently, the chart labels are not yet used.

However, labels provide useful information on the chart interpreta-

tion. Hence, we also propose to extend the data extraction model to

identify and use the labels in the chart image to direct the program

synthesis process.

ACKNOWLEDGMENTS

This work was partially supported by NSF award number 1762363

and by Portuguese national funds through FCT, Fundação para a

Ciência e a Tecnologia, under PhD grant SFRH/BD/150688/2020

and projects UIDB/50021/2020, DSAIPA/AI/0044/2018, and project

ANI 045917 funded by FEDER and FCT.

REFERENCES
[1] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit

Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund
Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-Guided Synthe-
sis. In Dependable Software Systems Engineering. IOS Press, 1ś25.

[2] Matej Balog, Alexander Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. 2017. DeepCoder: Learning to Write Programs. In Proc. Interna-
tional Conference on Learning Representations.

[3] Leilani Battle, Peitong Duan, Zachery Miranda, Dana Mukusheva, Remco Chang,
and Michael Stonebraker. 2018. Beagle: Automated Extraction and Interpreta-
tion of Visualizations from the Web. In Proc. Conference on Human Factors in
Computing Systems. ACM, 594.

[4] Dirk Beyer, Matthias Dangl, and Philipp Wendler. 2018. A Unifying View on
SMT-Based Software Verification. Journal of Automated Reasoning 60, 3 (2018),
299ś335.

[5] Nikolaj Bjùrner, Anh-Dung Phan, and Lars Fleckenstein. 2015. 𝜈Z - An Optimiz-
ing SMT Solver. In Proc. International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 194ś199.

[6] François Chollet et al. 2015 (accessed May 8, 2020). Keras. https://keras.io.
[7] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking

ANSI-C Programs. In Proc. International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 168ś176.

[8] Emir Demirovic and Peter J. Stuckey. 2019. Techniques Inspired by Local Search
for Incomplete MaxSAT and the Linear Algorithm: Varying Resolution and
Solution-Guided Search. In Proc. International Conference Principles and Practice
of Constraint Programming. Springer, 177ś194.

[9] Frank Elberzhager, Alla Rosbach, Jürgen Münch, and Robert Eschbach. 2012.
Reducing test effort: A systematic mapping study on existing approaches. Inf.
Softw. Technol. 54, 10 (2012), 1092ś1106.

[10] Kevin Ellis and Sumit Gulwani. 2017. Learning to Learn Programs from Examples:
Going Beyond Program Structure. In Proc. International Joint Conference on
Artificial Intelligence. ijcai.org, 1638ś1645.

[11] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. 2018.
Learning to Infer Graphics Programs from Hand-Drawn Images. In Proc. Annual
Conference on Neural Information Processing Systems. 6062ś6071.

[12] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mat-
tias Ulbrich. 2014. Automating regression verification. In Proc. International
Conference on Automated Software Engineering. ACM, 349ś360.

[13] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis
using conflict-driven learning. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 420ś435.

[14] Yu Feng, RubenMartins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017.
Component-based synthesis of table consolidation and transformation tasks from
examples. In Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 422ś436.

[15] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure
transformations from input-output examples. In Proc. ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 229ś239.

[16] Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C. Cordeiro, Bernd
Fischer, and Denis A. Nicole. 2018. ESBMC 5.0: An Industrial-Strength C Model
Checker. In Proc. International Conference on Automated Software Engineering.
ACM, 888ś891.

[17] Joel Galenson, Philip Reames, Rastislav Bodík, Björn Hartmann, and Koushik
Sen. 2014. CodeHint: dynamic and interactive synthesis of code snippets. In Proc.
International Conference on Software Engineering. ACM, 653ś663.

[18] Benny Godlin and Ofer Strichman. 2008. Inference rules for proving the equiva-
lence of recursive procedures. Acta Informatica 45, 6 (2008), 403ś439.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

[19] Benny Godlin and Ofer Strichman. 2009. Regression verification. In Proc. Design
Automation Conference. ACM, 466ś471.

[20] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In Proc. ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, 317ś330.

[21] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis.
Foundations and Trends in Programming Languages 4, 1-2 (2017), 1ś119.

[22] Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu. 2020. Ques-
tion Selection for Interactive Program Synthesis. In Proc. ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. ACM.

[23] Zhongjun Jin, Michael R. Anderson, Michael J. Cafarella, and H. V. Jagadish.
2017. Foofah: Transforming Data By Example. In Proc. International Conference
on Management of Data. ACM, 683ś698.

[24] Daekyoung Jung, Wonjae Kim, Hyunjoo Song, Jeongin Hwang, Bongshin Lee,
Bo Hyoung Kim, and Jinwook Seo. 2017. ChartSense: Interactive Data Extraction
from Chart Images. In Proc. Conference on Human Factors in Computing Systems.
ACM, 6706ś6717.

[25] Dmitri V. Kalashnikov, Laks V. S. Lakshmanan, and Divesh Srivastava. 2018.
FastQRE: Fast Query Reverse Engineering. In Proc. International Conference on
Management of Data. ACM, 337ś350.

[26] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive Visual Specification of Data Transformation Scripts. In Proc.
SIGCHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, 3363ś3372.

[27] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng
Gao, and Jiawei Han. 2019. On the Variance of the Adaptive Learning Rate and
Beyond. CoRR abs/1908.03265 (2019).

[28] Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019. Trinity:
An Extensible Synthesis Framework for Data Science. PVLDB 12, 12 (2019),
1914ś1917.

[29] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin G. Zorn, and Sumit Gulwani. 2015. User
Interaction Models for Disambiguation in Programming by Example. In Proc.
Symposium on User Interface Software & Technology. ACM, 291ś301.

[30] Robert Nieuwenhuis and Albert Oliveras. 2006. On SATModulo Theories and Op-
timization Problems. In Proc. International Conference on Theory and Applications
of Satisfiability Testing. Springer, 156ś169.

[31] Peter Oehlert. 2005. Violating Assumptions with Fuzzing. IEEE Secur. Priv. 3, 2
(2005), 58ś62.

[32] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani,
and Todd D. Millstein. 2018. FlashProfile: a framework for synthesizing data
profiles. Proc. ACM Program. Lang. 2, OOPSLA (2018), 150:1ś150:28.

[33] Mohammad Raza and Sumit Gulwani. 2017. Automated Data Extraction Using
Predictive Program Synthesis. In Proc. AAAI Conference on Artificial Intelligence.
AAAI Press, 882ś890.

[34] Ankit Rohatgi. 2019 (accessed May 8, 2020). WebPlotDigitizer, Version 4.2. https:
//automeris.io/WebPlotDigitizer.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Fei-Fei Li. 2015. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision 115, 3 (2015), 211ś252.

[36] Manolis Savva, Nicholas Kong, Arti Chhajta, Fei-Fei Li, Maneesh Agrawala, and
Jeffrey Heer. 2011. ReVision: automated classification, analysis and redesign of
chart images. In Proc. Annual ACM Symposium on User Interface Software. ACM,
393ś402.

[37] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. In Proc. International Conference on Machine
Learning. 6105ś6114.

[38] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Interactive Query
Synthesis from Input-Output Examples. In Proc. International Conference on
Management of Data. ACM, 1631ś1634.

[39] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Synthesizing highly
expressive SQL queries from input-output examples. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 452ś
466.

[40] Chenglong Wang, Yu Feng, Rastislav Bodík, Alvin Cheung, and Isil Dillig. 2020.
Visualization by example. PACMPL 4, POPL (2020), 49:1ś49:28.

[41] Kuat Yessenov, Shubham Tulsiani, Aditya Krishna Menon, Robert C. Miller, Sumit
Gulwani, Butler W. Lampson, and Adam Kalai. 2013. A colorful approach to
text processing by example. In Proc. Symposium on User Interface Software and
Technology. ACM, 495ś504.

[42] Andreas Zeller. 2001. Automated Debugging: Are We Close. IEEE Computer 34,
11 (2001), 26ś31.

[43] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183ś200.

[44] Michael R. Zhang, James Lucas, Jimmy Ba, and Geoffrey E. Hinton. 2019. Looka-
head Optimizer: k steps forward, 1 step back. In Proc. Annual Conference on Neural
Information Processing Systems. 9593ś9604.

[45] Sai Zhang and Yuyin Sun. 2013. Automatically synthesizing SQL queries from
input-output examples. In Proc. International Conference on Automated Software
Engineering. IEEE, 224ś234.

	Abstract
	1 Introduction
	2 Motivation
	3 Data Extraction
	3.1 WebPlotDigitizer
	3.2 Neural Data Extraction

	4 Program Synthesis
	5 Ranking Candidate Solutions
	6 Program Disambiguation
	6.1 Satisfiability Modulo Theories
	6.2 Symbolic Representation of Programs
	6.3 User Interaction Models
	6.4 Model Formalization
	6.5 Input Constraints
	6.6 Input Generation

	7 Experimental Results
	8 Related Work
	8.1 Program Verification
	8.2 Program Synthesis
	8.3 Interactive Program Synthesis

	9 Conclusions and Future Work
	Acknowledgments
	References

