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We propose a top-down approach to construct recurrent neural circuit dynamics for the mathematical
problem of monotone inclusion (Mol). Mol in a general optimization framework that encompasses a
wide range of contemporary problems, including Bayesian inference and Markov decision making. We
show that in a recurrent neural circuit/network with Poisson neurons, each neuron’s firing curve can
be understood as a proximal operator of a local objective function, while the overall circuit dynamics
constitutes an operator-splitting system of ordinary differential equations whose equilibrium point
corresponds to the solution of the Mol problem. Our analysis thus establishes that neural circuits are
a substrate for solving a broad class of computational tasks. In this regard, we provide an explicit
synthesis procedure for building neural circuits for specific Mol problems and demonstrate it for the
specific case of Bayesian inference and sparse neural coding.
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1. Introduction

Understanding the computational strategies embedded within
neural circuits is a central question in neuroscience (Maass,
1997). The normative, or top-down approach to this problem pre-
supposes that neural circuits act in a way that optimizes a certain
objective function, e.g., minimization of free energy (Friston,
2010). One can synthesize a set of neural dynamics that enacts
the optimization objective, then assess whether the synthesized
dynamics are compatible with actual neural biophysics. This
paper falls within this paradigm, with the goal of examining how
a general-purpose mathematical objective - monotone inclusion,
which underpins many ubiquitous functions — might be achieved
through a generic set of biologically interpretable spiking dy-
namics. Deriving such an understanding would not only pro-
vide new hypotheses regarding neural function, but would also
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provide leverage on the problem of configuring neuromorphic
computational architectures (Schuman et al., 2017).

Our work follows a wide thread of research that studies how
different computational tasks might be completed by recurrent,
spiking neural networks (SNNs). Recurrent neural dynamics has
been investigated with the help of ODE methods, see Hu, Yi, and
Zou (2020), Huang, Cao, Wen, and Yang (2016), Kudu (2018), Li,
Liu, Li and Tisdell (2019) and Song, Fei, Cao, and Huang (2019)
for the recent advances. In recent years, some scholars have dealt
with recurrent neural dynamics with impulse inputs and time-
delay. Some recent progress can be found in Chen, Zhang, Cao,
and Huang (2020), Huang, Long, and Cao (2020), Huang, Zhang,
Cao and Hu (2019), Huang, Zhang and Huang (2019), Li, Huang
and Ji (2019), Zhang and Huang (2020) and Zhou, Wan, Huang,
and Yang (2020). We focus specifically on the ubiquitous leaky
integrate-and-fire (LIF) neural dynamics. Networks of LIF neurons
have been configured to solve Bayesian causal inference (Moreno-
Bote & Drugowitsch, 2015) by showing that the LIF dynamics can
approximate a firing rate ODE for solving quadratic optimization.
Similarly, Tang, Lin, and Davies (2017) show that a SNN with
modified LIF spiking dynamics can approximate a locally compet-
itive ordinary differential equation (ODE) to solve a LASSO (least
absolute shrinkage and selection operator) problem, a schema
that has been translated to LIF-based neuromorphic hardware.
Other demonstrations of functions enacted via LIF-SNNs include
Ly minimization (Chou, Chung, & Lu, 2018), constrained quadratic
optimization (Gangopadhyay & Chakrabartty, 2017), predictive
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coding and control (Huang & Ching, 2019; Pérez, Cabrera, Castillo,
& Velasco, 2018) and sparse communication (Yoon, 2016; Zam-
brano, Nusselder, Steven Scholte, & Bohté, 2018). Another model
class, SNNs with generalized linear response voltage dynam-
ics and Poisson/Bernoulli spiking, has also been studied in the
context of various computational tasks. For example, Friedrich
and Lengyel (2016) configure an SNN with Poisson firing model
to solve an infinite-horizon Markov decision problem, showing
that the synthesized dynamics closely resemble experimental
observations. Hao, Huang, Dong, and Xu (2020), Jang, Simeone,
Gardner, and Griining (2018), Rezende, Wierstra, and Gerstner
(2011) and Taherkhani et al. (2020) investigate the learning of
a probabilistic temporal sequence model with Poisson/Bernoulli
SNN.

The case-by-case successes are suggestive of a general schema
by which neural dynamics might be synthesized or configured.
We posit the mathematical problem of monotone inclusion (Mol)
as one such schema. Mol encompasses a range of important func-
tions, such as quadratic optimization, Markov decision-making,
non-cooperative games and as we will later demonstrate,
Bayesian inference, Bauschke, Combettes, et al. (0000). The split-
ting algorithms developed for Mol are an efficient approach for
mathematical programming (Beck & Teboulle, 2009; Combettes
& Pesquet, 2011; Kafashan & Ching, 2017). Our premise is that
neural circuits may embody a similar computational strategy for
solving these decision making problems.

In particular, we study the widely adopted SNN model wherein
neurons exhibit generalized linear response membrane voltage
dynamics and Poisson firing rates. Using a mean-field approxi-
mation, we show that the differential-algebraic system of SNN
equations has an equilibrium point that is a solution of an Mol.
Hence, the SNN dynamics essentially enacts the well-known
operator splitting algorithm in optimization and signal process-
ing, Bauschke et al. (0000), Beck and Teboulle (2009) and Com-
bettes and Pesquet (2011). This realization allows systematic
top-down synthesis of SNNs to finding zeros of structured Mol
problems.

The specific novel contributions of this paper are:

(1) Using the Mol/operator splitting formalism, we show that
the nonlinear Poisson firing curves of individual neurons amount
to proximal operators of different local regularizers. The ob-
servation that activation functions can enact a proximal opera-
tor has recently been made in the context of feedforward net-
works (Combettes & Pesquet, 2020), but our work does so in a
recurrent setting with a well-defined and generic computational
objective. Indeed, relating SNN dynamics to operator splitting
ODEs has, to the best of our knowledge, not been previously
discussed in the literature.

(2) We propose a systematic approach for configuring SNNs to
complete specific Mol problems. We demonstrate this by config-
uring an SNN to solve linearly constrained quadratic optimization
using a Lagrangian saddle point formulation. This is in contrast
to existing work that does not include such constraints (Barrett,
Denéve, & Machens, 2013; Moreno-Bote & Drugowitsch, 2015;
Tang et al., 2017).

(3) We demonstrate the proposed SNN methodology by nu-
merical studies of a particularly relevant Mol problem: Bayesian
causal inference. With an independent prior, the configured SNN
dynamics resembles the well-studied locally competitive algo-
rithm for sparse coding or LASSO in Rozell, Johnson, Baraniuk,
and Olshausen (2008) and Tang (2016). However, by arriving at
these dynamics from a top-down Mol synthesis we are able to
ascribe functional significance to individual neuronal dynamics,
e.g., relating Poisson firing curves directly to parameters of the
Bayesian prior. In addition, we consider a causal inference with a
structural prior by configuring SNN to solve linearly constrained
quadratic programming.

The remainder of the paper is organized as follows. Section 2
uses a reverse-engineering analysis to show that a recurrent SNN
can be treated as an ODE for solving Mol. Section 3 gives a
top-down synthesis to hard-wire a recurrent SNN for computa-
tional tasks. Section 4 illustrates the proposed methodology with
Bayesian causal inference and numerical simulations. Conclusions
are provided in Section 5.

2. Top-down analysis of the recurrent SNN dynamics

Our first result involves reverse engineering a typical recurrent
SNN as an operator-splitting-based ODE system that solves Mol.
Relevant mathematical notation and background regarding Mol
are found in Appendix.

2.1. Recurrent SNN dynamics

Membrane voltage dynamics: Following Gerstner, Kistler, Naud,
and Paninski (2014), Jolivet, Rauch, Liischer, and Gerstner (2006)
and Pillow, Paninski, Uzzell, Simoncelli, and Chichilnisky (2005),
we consider a recurrent spiking neural network as a group of
interconnected neurons A = {1,...,N}, each of which has
dynamics:

dui o
Ty = —u;(t) + Z w,j/ Xj(t — t)e(r)dr — niXi(t) + I7° (1)

t JEN 0
Here, u; is the membrane voltage of neuron i, and 1, is the
membrane time constant. wj; is the synaptic weight from neuron
j to neuron i (self-connections are allowed). X;(t) = >, 8(t — t)
is the spiking train of neuron i represented as a sum of Dirac §-
functions. And €(t) is the postsynaptic impulsive response kernel
with the form of €(t) = ¢ exp(—i) for t > 0. 7 is the synaptic
time constant and €y = ;! ensures normalization to f e(t)dt =
1. The after-hyperpolarization is modeled as an instantaneous
current pulse with a negative sign and magnitude »; > 0. I
is the external input current. The physical units of the variables
and constants are omitted since we consider only the theoretical
properties of the dynamics.

Poisson firing curve: The spiking train of neuron i can be mod-
eled as an inhomogeneous Poisson point process with the instan-
taneous firing rate A;(t) as a function of membrane voltage. In
other words, the number of spikes in a fixed short inEerval At
follows P{Y " cpe e a8t — &) # 0} = n} = BOAL a0
The firing curve for neuron i is a nonlinear mapping from its
membrane voltage to the instantaneous firing rate: A;(u) : u(t) —
Ai(t). A typical firing curve that has been observed in biological
neurons is the rectified linear with a silent zone(SReLU):

Ai(t) = ki[ui(t) — 6]+ (2)

where k; > 0 is the amplification factor and 6; > 0 is the voltage
threshold. [x], = x if x > 0, and [x]. = 0, otherwise. A figure of
(2) is shown in Fig. 1.

2.2. Mean-field approximation and equilibrium point analysis

An analytical challenge associated with the above formula-
tion comes from the non-continuity of the membrane dynamics
and stochasticity of the spikes. However, since the membrane
time-scale is much slower than the synapse response time-scale,
i.e, T, > 1, and the neurons are interacting in a dense pop-
ulation, the network membrane voltage dynamic can be well
approximated with a smooth ordinary differential equation (ODE)
from a mean-field analysis (see, e.g., Friedrich & Lengyel, 2016).
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Fig. 1. The firing curve of the rectified linear with a silent zone.

That is the overall SNN dynamics can be approximated as follows:

Tnll = —u + WA — diag{n}r + 1%

2(t) = kilu(t) — 614, i=1,...,N (3)
where u = col(uq,...,uy) € RV, W = [wy] € RVN A =
col(A1, ..., An), n =col(ny, ..., ny) and [#F = col(I§, ..., I).

The equilibrium point/steady state (u*, 1*) of (3) satisfies the
following equation:

u* = WA* — diag{n}k* + It 4)
)\ = kl[Z]EN wu 771)\* + IEXt 0il+

In other words, when the recurrent SNN converges to its equi-
librium point, the steady firing rate A],i € A is a fixed point
solution of a group of nonlinear equations in (4).

2.3. Equilibrium analysis from Mol perspective

We aim to understand what type of computational task can
be fulfilled by the fixed point equation (4). We show that (4)
is closely related to the operator splitting methods in optimiza-
tion and signal processing (Bauschke et al., 0000; Combettes &
Pesquet, 2011).

Definition 2.1 (Proximal Operator). The proximal operator of a
function f(x) : R" — R is defined as

_ 1
prox;(x) : x € R" > argg&l}f(y) + Elly — x5 (5)

Note, especially, that the SReLU curve in (2) is a proximal
operator:

Lemma 2.2. The SRelLU operator x — k[x — 0] for x € R with
k € R, 0 € Ry can be regarded as the proximal operator of

100 = 59+ 0X + tn, () (6)

with p > 0,0 > 0 that k = ﬁ and 6 = o. Here, 1z (x) is the
indicator function that takes zeros when x > 0 and takes oo when

x < 0.

Proof. r(x) in (6) is a lower semi-continuous convex function by
definition. From the definition of proximal operator, prox,(x) =
arg minyeg 30y* + 0y + tr, (¥) + 3(y — x)?. Suppose y* = prox(x),
and then at y* we have

0€py*+o0+Ne, () + (" —x). (7)

with Ng, as the normal cone of R, . Therefore, we can rewrite the

above equation as 0 € y* + Ng, (y*) + ;%5 — sigx or

1 0

1+p _p+l

€ (Id + N, )(y") (8)

171
Therefore, y* = (Id+Ng_ ) (mx—m) [W —m]Jr Smce

1+ p >0, we have y* = m[x o]+. Therefore, taking k = m
and 6 = o, we have k[x — 0], = Prox,(x). O

Hence, the firing curve of neuron i, A; = k;j[u; — 6;]+ in (2) can
be treated as a proximal operator A; = Proxg,(u;) with

1
Ri:ui— 5(1/’(1' — Duf + Oiu; + g, (). 9

Remark 2.3. p = (1/k; — 1) > 0 or equivalently 0 < k <
1 is needed to ensure that R;(u;) in (9) is a convex function.
This always can be achieved by scaling the units of all physical
variables. Therefore, we will assume 0 < k; < 1,i € N for the
firing curve in (2).

Given the membrane dynamics (1) and firing curve (2) with
fixed parameters, we denote

1
Rit kit 2o + oiki + te, O ZR (10)
with p; = 1/k; — 1 and o; = 6;. Then we defme two operators 2
and B as following.

A: A (I +diag{n})h — WA — I B : L — 9R(A). (11)

With assuming 0 < k < 1,i € N, R(A) in (10) is a convex
function, and %3 is (strongly) monotone. Since R(1) is a sum of de-
composable functions, we know 9R(L) = ]_[leN dR;i(A;). Therefore,
Proxg(z) = (Id+3R)"'(z) = [[;cy(1d+0R))~'(z:) = [,y Proxg,(z:).
With (4), at the equilibrium point 1*

A=k = (U nAf =D wgd —I7) = 611, Vi€ N.
JEN

We put z; = Af — (1 4+ m)A] — X jop wyh! — I*), then at

the equilibrium point A} = Proxg,(z;). Therefore, the fixed point
equation (4) can be reformulated as

A% = Proxg [x* — (I + diag{n})r*
= (Id + 28)~1(1d — 2A)*

In other words, (Id —20)A* € (Id+2)1* since B is a maximally
monotone operator as a sub-differential of a convex function.
Therefore, the equilibrium firing rate A* is a solution to the
following generalized equation

0 c (A + B)A). (12)

Thus, the nonlinear fixed point equation (4) is essentially a gen-
eralized inclusion problem.

The operator % is decomposable and can be interpreted as a
combination of each neuron’s local objective. Then, the nonlinear
firing curve can treated as the proximal operator of each local
regularizer, i.e., (Id + %B;)~'. The operator 2 is a linear operator
specified by the interaction among neurons. To understand the
computational versatility of the formulation (12), we will impose
a further structure on the operators.

— WA — Iext)]

Definition 2.4 (Monotone Operator and Monotone Inclusion). An
operator M : x — Mx is monotone if (x—y, Mx—My) > 0,Vx,y €
dom(M). Finding a point x that 0 € Mx is called a monotone
inclusion(Mol).

The operator 98 is monotone since it is the subgradient of a
convex function. When 2l is also monotone, the equilibrium point
A* is a solution to a Mol (12) with the operator being a sum of two
monotone operators. The monotonicity of 2( is dependent on W,
the synaptic weights of the network. Thus, we have the following:
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Proposition 1. Assume a recurrent SNN with membrane dynamics
(1) and firing curve (2) with fixed parameters. Suppose 0 < k; <
1,i € N and the synaptic weights W ensures that 21 in (11) is
monotone. Then, at the equilibrium point of (1)-(2), the steady firing
rate A* is a solution to Mol (12) as the sum of operator 2 and B in
(11).

Remark 2.5. The above analysis assumes a fixed SReLU fir-
ing curve (2). However, we can also reverse engineer other fir-
ing curves as the proximal operator of different local objectives
(Combettes & Pesquet, 2011 give a table of common functions
and their proximal operators, and the composition rules of prox-
imal operator, like translation, scaling and conjugation). More-
over, Proposition 2.4 in Combettes and Pesquet (2007) shows
that any function ¢ defined from R to R that is non-expansive
(1-Lipschitz) and increasing is a proximal operator of a func-
tion on R. The recent works (Combettes & Pesquet, 2019, 2020)
also give more examples of relating various firing curves (also
known as activation functions) to proximal operators of differ-
ent regularizers, for the purposes of deep learning. However,
there are still substantial difference with (Combettes & Pesquet,
2020), since Combettes and Pesquet (2020) only consider the
static property of activation functions and treats the cascading
of layered feed-forward neurons as an iteration process for
solving variational inequalities. This work relates the dynamics
of a recurrent neural network as an ODE solver for monotone
inclusion.

2.4. Neural dynamics as an ODE that solves Mol

While we have shown that the fixed point of the SNN dynam-
ics is the solution of an Mol, we have not yet concluded that
dynamics converge to this equilibrium. To establish convergence,
an additional property is required as follows:

Definition 2.6 (Strongly Monotonicity). An operator M : x — Mx
is v— strongly monotone if (x —y, Mx — My) > v|x —y|, Vx,y €
dom(M). M is e —inverse strongly monotone if (x—y, Mx—My) >
o||[Mx — My||, Vx,y € dom(M).

Remark 2.7. Intuitively speaking, monotonicity can be treated as
a type of rotational invariance of angles, while (inverse-)strongly
monotonicity is a requirement on the scaling property of the
operator, i.e., the operator will not shrink the distance of two
vectors too much.

For a Mol, 0 € M(x) 4+ 0&(x) with operator M being «-inverse
strongly monotone and ¢ being a convex function, the following
Newton-type differential-algebraic dynamics is proposed in (Ab-
bas & Attouch, 2015),

U= —u+Ai—puMr (13)
A = (Id + ud®) '(u) = Prox,e(u) (14)

Note that (13)-(14) are differential-algebraic dynamics, and the
existence of solution in the sense of ODE trajectory (the Cauchy
problem) has been discussed in Abbas and Attouch (2015) and At-
touch and Svaiter (2011), where the sufficient condition on the
global existence and uniqueness of solution/trajectory is given
in both Section 1 of Abbas and Attouch (2015) and Section 2
of Attouch and Svaiter (2011). It is shown that A will converge
to a zero of M + 0@ with (13)-(14) if u is 0 < pu < 5 (see
Theorem 1.8 of Abbas & Attouch, 2015). Since (13) and (14) use
different strategies to handle operators, (13)-(14) is called an
operator-splitting ODE for solving Mol.

Thus, the mean-field approximated neural dynamics in (3)
amounts to the operator-splitting ODE (13)-(14), modulo a
proper parameter configuration.

Theorem 2.8. Assume a recurrent SNN with mean-field dynamics
(3) and fixed parameters, W, 1%k, 0, n. Suppose 0 < k; < 1,i €
N and suppose the synaptic weight W ensures that 21 in (11) is
monotone. If there exists u and « such that 0 < u < ﬁ and

M:A— %((1 + diag{n} — W)A — Iex) (15)

is a-inverse strongly monotone, then the recurrent neural dynamics
(3) converges to its equilibrium point, and the steady firing rate A*
is the zero of 2 + B in (11).

Proof. With Proposition 1, the equilibrium point of the dynamics
(3) is a zero of A + B in (11). To show the convergence, we
will rewrite the neural dynamics (3) as the (13)-(14) by properly
setting M and .

Since we assume 7, >> 7s in the mean-field dynamics (3),
can be properly scaled to be 1. Therefore, with M in (15) and given
any fixed p > 0 the right hand of (3) can be written as

—u+ Wi —diag{n}r + 1" = —u+ 1 — uMA (16)
Denote @(1) = 1R(A) with R(A) in (10). We already know that

)2

Ad(1) = 5aR(x). Therefore,

1
(Id + ud®d) ' =(d+ p—aR)"' = (1d + B) ",
"

with B in (11). We have already shown in Proposition 1 that
Ai(t) = ki[ui(t) — 6;]4,i = 1,...,N is the same as A = (Id +
98)~!(u). Therefore, the neural dynamics (3) can be written as
(13)-(14) with M in (15) and @ = /lLR(A).

When there exist u and o such that 0 < u < i and M
in (15) is a-inverse strongly monotone, the neural dynamics (3)
converges to a zero of M + d¢® by Theorem 1.8 of Abbas and
Attouch (2015). Since M = 591 and 0@ = %%, M + 39 has
the same zeros as 2 + 9B. Note that B is strongly monotone as
the sub-differential of a strongly convex function R(A) in (10),
therefore, the zero of 20+ is unique. Hence, the neural dynamics
(3) converges to its equilibrium as the zero of A + 8B in (11). O

Remark 2.9. It may be apparent that the Mol: 0 € (2(+B)(x) can
be solved by alternative, gradient-based dynamics. For example,
the differential inclusion X € 2Ax+2x converges to zer(A+%) with
a strongly monotonicity assumption on 20 and 9B (see Attouch,
Cabot, & Czarnecki, 2018). The proximal gradient dynamics x =
(Id+n%8B)~1(I1d — n)x — x is also shown to converge to zer(2A+B)
with a monotone B and an «—inverse strongly monotone 2A
and proper step-size n (see Bot & Csetnek, 2018). However, the
differential-algebraic system of (1)-(2) cannot be mapped to the
above two dynamics.

It is important to note that Theorem 2.8 relies on a sufficient
condition to guarantee the convergence (strong monotonicity).
Such an assumption is derived purely from a mathematical view-
point, while whether the biological synaptic weights could ensure
such an assumption still needs experimental validation. However,
as we will later see in our simulations, this assumption could be
relaxed in specific settings.

3. Top-down synthesis of spiking networks

Equipped with the above analysis, we are now able to synthe-
size SNNs for a variety of decision-making problems. We proceed
to demonstrate this for the case of linearly constrained quadratic
programming (QP).
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3.1. Synthesis of SNNs for Mol

Consider a computational problem (e.g., Markov decision mak-
ing) that can be solved by means of Mol:

0 < (A+ B)r. (17)

Here, the decision variable is A € RY, and the operator 2 is
assumed to be monotone and linear A : A € RN — QA + ¢
with Q € RV*N and ¢ € RV. The operator % has a Cartesian
product form as B : A — 1_[?’:1 Bi(X;). We assume each B;(1;) is
monotone and has a closed form resolvent Ry, = (Id + B;)~ L.
Clearly, by Theorem 2.8, we can configure a SNN with its
mean-field dynamics to solve the Mol in (17). In particular:

Corollary 3.1. Suppose the operator A in (17) is « —inverse strongly
monotone. Then, we can set a parameter € that 0 < € < i

and configure a SNN with its mean-field dynamics as follows. The
membrane voltage dynamics (1) has the parameters:

W —diag{n} =1 — e % Q,I* = —ec, (18)

with t,, > T, to ensure the validity of the mean-field approximation
(3). The firing curve of each neuron i is set as

2i(t) = (Id + €B;) N(wi(t)). (19)

Then, the firing rate A;(t), i € N of the configured SNN converges to
a zero of Mol in (17).

Again, it is important to note that the condition on strong
monotonicity is sufficient but not necessary. We will see this
come into play in the subsequent section.

3.2. Synthesis of SNN for constrained quadratic optimization

Quadratic optimization (or, programming (QP)) is important
for a variety of decision making problems (Nocedal & Wright,
2006), and can be used as a basic building block for solving
general optimization problems, Boggs and Tolle (1995) and Gill,
Murray, and Saunders (2005).

We can configure an SNN to solve a QP as follows:

1
min ExTEx +q'x st.Ax<b (20)

xRN
with E € R¥*N being positive definite, A € R™N, g € R™ and

m < N. We consider its Lagrangian function with a multiplier
w € RY

1
Lx, n) = EXTEX +q"x+ 1 (A% = b) + 1y (%) + e (). (21)

According to the Lagrangian duality, the optimal solution with
the optimal multiplier (x*, u*) is a saddle point of the Lagrangian
function L(x, n) and should satisfy the following KKT condition

0 < Ex—i—q—i—AT,u—i-BtRzi(x)
0 € —Ax+b+3LRT(pL)

By putting the decision variable x and the multiplier u together
as A = col(x, ), then the above KKT condition can be written as
an Mol of the form (17):

. E A q) .
2[.Ar—><_A 0>}‘+<b>’%')"_)atﬂﬂ+m()‘) (22)

The operator 2l in (22) cannot be directly shown to be inverse
strongly monotone. However, notice that the Mol in (22) shares a
similar structure to (17). Thus, we can still configure an SNN with
(18)-(19) by choosing a small step-size €. Specifically, letting the

firing rate of neurons be x and u and with ¢ <« 1 and a fixed
n = col(ny, n,), we can set the parameters W, I*** as

W = I + diag{n,} — € xE —ex AT
- €exA I+ diag{n,} /"’ (23)
Iext — —€x(
—€*b

Moreover, we obtain the firing curve of each neuron as Aj(t) =
[uj]+. While our analytical guarantees of convergence no longer
apply (due to aforementioned lack of strong monotonicity), we
nonetheless find empirically that the configured SNN has its firing
rate converge to optimal primal-dual solution of the QP (20). We
will demonstrate this in the simulation Section 4.

4. Neural Bayesian causal inference

In this section, we illustrate the proposed synthesis method-
ology for the problem of maximum a posteriori (MAP) Bayesian
causal inference, a fundamental task that could be a building
block for many cognitive functions, such as object recognition or
odors detection when the number of potential sensory stimuli
is enormous (Knill & Richards, 1996; Tenenbaum, Griffiths, &
Kemp, 2006). We can configure the synaptic interaction strengths
of a recurrent neural network to perform Bayesian inference
without noisy samplings. Our approach is consistent with a recent
suggestion in Dold et al. (2019) that spiking neural networks
may have no need for noise to perform sampling-based Bayesian
inference. The experimental results of pilot examples show how
the theoretical results could explain the functionality of neural
networks.

The goal of MAP inference is to infer a latent cause of a given
observation. Specifically, we assume a probabilistic generative
model of the latent cause A € RN and the observation y € R™
as p(y,A) = p(y|A)p(A). Once y is observed, the MAP problem
becomes:

max log p(Aly) o log p(y|A) + log p(2.). (24)
€

We consider a linear-Gaussian likelihood: y = QA + €. Here Q =
[q1, ..., qn] € R™N is assumed to be known or has been learned,
while each g; € R™ is called a feature vector. Each component of
€ is an i.i.d. Gaussian noise with zero mean and unit variance.
Hence, in (24) we have logp(y|A) « —%(y — QM) (y — Q).
It remains to specify the prior p(A), for which we consider two
examples, below.

4.1. Independent sparsity prior

First, we consider the following heavy tailed prior that pro-
motes sparsity:

N
p(h) o Eexp(—@im,w — ZADH). (25)
Here H(x) is the Heaviside function with H(x) = 1ifx > 0
and H(x) = 0 otherwise, which imposes that each coordinate
of the latent cause is nonnegative. The parameters ¢o; > 0 and
pi > 0 weight Laplacian and Gaussian contributions to the prior
and serve to regularize the sparsity and strength of the ith cause,
respectively.

Then, combined with the likelihood, the causal inference prob-
lem is

N

min 172y = QW' (y = Q) + DR (26)

i=1
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with R;(A;) defined in (10). Note that for consistency we turn the
maximization in (24) to minimization. The optimization prob-
lem (26) and its variants have been widely studied in neural
coding (where it is often referred to as sparse coding Balavoine,
Romberg, & Rozell, 2012; Kafashan & Ching, 2017; Olshausen &
Field, 1997; Rozell et al., 2008; Tang, 2016; Tang et al., 2017),
signal processing and image science (e.g., Beck & Teboulle, 2009).

Solving (26) is equivalent to finding the solution to the Mol,
0 € (20 + B)A with

N
2A: 2> QA —QTy; B A [[oR(M)

i=1
Therefore, we can configure a recurrent SNN with Corollary 3.1
to solve this problem. We set 7, = 1, » = 1 and € = 1, then

W =21 —Q"Q and I®* = QTy. Then, with (3) and Lemma 2.2,

the mean-field dynamics of the configured network is
i=-u+r-QTQr+QTy (27)

Af(t)=]+ [ui(t) —oil+,i=1,....N (28)

Thus, starting with Mol as a general top-down objective, we
arrive at a recurrent network with properties that are inter-
pretable from a neural circuit perspective. For example, the pa-
rameter o; appears in (28) as an activation threshold (which
promotes sparsity). Indeed, the overall derived dynamics resem-
bles the locally competitive algorithm (LCA) studied in the con-
text of sparse coding (e.g., Balavoine et al., 2012; Rozell et al,,
2008). The LCA is built on physiological and functional intuition
and then analyzed for convergence using a post-hoc Lyapunov ap-
proach. Here, we have shown that the sparse coding is a specific
case of Mol and as such LCA-like dynamics can be synthesized
directly with implicit convergence guarantees.

Example 4.1. Consider » € R'® andy € R'°. The feature vectors

=[q1, ..., q100] and an observation y are randomly generated
as follows. Each element of Q is first independently and uniformly
drawn from [0, 1], and then each ¢; € R!° is normalized to 1,
llgill2 = 1. The feature vectors are over-complete and linearly
dependent. y is generated as y = 9 % g0 + 4 * qs0 + ¢. Here
each element of ¢ is an i.i.d. Gaussian noise with zero mean and
variance of 0.001. The true latent cause A* € R!% is a sparse

high dimensional vector with A5, = 9, AZ, = 4 and all other
coordinates are zero. Then we configure the SNN to infer the
latent cause with (27)-(28). A

Firstly, we study how the inferred latent cause A varies with
different sparsity prior i or the threshold in (28). We take a fixed
pi and set k; = T = 1+oloor for all neurons. We let o; = o
across all neurons, and tune o to change from 0.002 to 2 in steps
of 0.002. We run the configured SNN and take the stationary firing
rate as the inferred A. Figs. 2 and 3 show how the hand-wired SNN
performs with Q Fig. 2A shows how the angular error between A*
and 4, ie., varies with g. Fig. 2B shows how the number

IIMHI/\*II
of nonzero elements of A* — 1, i.e., [IA* — A||0 varies with o. It
indicates that ||A* — i||0 decreases as we increase sparsity prior
o or the threshold. After a certain threshold (¢ = 0.2 in Fig. 2B),
the inferred latent cause A has the same nonzero coordinates as
the true latent cause A*, implying that the configured network
discriminates the identity of the true latent cause, validating
the effectiveness of the proposed methods in Bayesian inference.
Fig. 2C shows how L, norm error, ||A* — A|, tunes with o.
Fig. 2D shows how the firing rate of )ALZO and )150 tune with p.
Therefore, Fig. 2 shows that there is a performance tradeoff with
respect to g, involving the identity and strength of the inferred
latent cause. Fig. 3 gives the firing rate trajectories when g is set
to 0.002, 0.02, 1, 2, respectively, to evaluate the SNN transient
response (from zero initial condition) with respect to . It shows
that a larger o (a stronger thresholding nonlinearity) corresponds
to faster convergence. The studies examine how the algorithm
parameter influences the inference results.

4.2. Tolerance to noise

Next, we study the robustness of the configured dynamics to
noise. Since (27)-(28) is a mean-field approximation of a Poisson
spiking dynamics, there exist approximation errors in A on the
right of (27). Further, due to the Poisson spiking randomness,
the threshold parameter ¢ might also be corrupted. The synaptic
weights might drift due to plasticity or stochasticity in molecular
dynamics of neurotransmitters. Hence, we simulate the following
SNN dynamics:

U=—-u+i—(Q7Q +e&1()r+e&(t)+Qly (29)
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trajectories when ¢ = 0.3. F: The firing rate trajectories when o = 3.

Ai(t)

= [ui(t) — (oi + es()]4,i=1,...,N (30)
1+ pi
g1(t), e2(t), e3(t) are time-varying noises matrix or vectors with
proper dimensions, while each element of them is independently
drawn from [—0.05, 0.05]. The inference problem has the same
parameter setting as before. We let o; = o across all neurons,
and tune o to change from 0.03 to 3 in steps of 0.03. Here, we
take the average of the last one percentage of elapsed time as the
inferred latent cause A. Fig. 4 shows how the configured neural
dynamics varies with o for this setup. From Fig. 4A and B, a
larger o leads to a network that is more robust to noise with
a better inference performance. In fact, Fig. 4B shows that the
inferred latent cause is almost nonzero in each coordinate when o
is small (o = 0.03), but is a sparse vector with the same nonzero
coordinates as the true latent cause when g is large (o = 3).

However, Fig. 4C and D show that the inference of the latent
causes strength deteriorates as ¢ increases. Fig. 4E and F show
that a larger ¢ will not only speed up the transient response but
can also suppress trajectory variance due to the noise. Finally,
comparing Figs. 2-3 and 4, the SNN can still discriminate the
identities of latent causes with properly chosen o. The simula-
tion example demonstrates that the synthesized neural dynamics
based on monotone operator theory enjoys certain robustness
with respect to noises and parameter uncertainties, validating the
effectiveness of the proposed method.

4.3. Structural prior

There could be additional structural prior information,
describing the interaction among different latent causes. For
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example, when inferring a human face image from a linear
composition model, we know some components must appear
together (e.g., eyes, nose and mouth.) or some components cannot
appear at the same time (e.g., more than two eyes). The struc-
tural prior information could be modeled as a linear inequality
constraint

Ar—b<0. (31)

withA = [a1, ..., q]" € R>*N and b € R Incorporation of such a
structural prior information properly in the inference is desirable
since it limits the search space. To be consistent with the previous
Bayesian framework, we change the independent prior in (25) to

N
o
1) o [ Texp(—ailail = S ADH(

i=1

J
i) x [ [H(b; — /) (32)
Then, the MAP inference problem in (26) becomes:

1
min, E(y oA (y—QA) +ZR 31) (33)

reRN

Note that (33) deviates from the sparse coding problem and
thus the LCA algorithm does not directly apply here. However,
from the Mol perspective, we can configure a SNN using the
method in Section 3.2. The configured network has a total of
N 4+ J neurons with firing rates A = col(A°, A*) € RV and
corresponding membrane voltages u = col(u®, u*). We let A €
RN stand for the inferred latent causes, and let A* stand for the
multipliers of the linear constraints. We set 7,; = 1, » = 1 and
€ = 1. Then with (3) and Lemma 2.2, the mean-field dynamics of
the configured SNN is

i = —u + 2 —QTQr  — AT +QTy (34)
" = —ut 4+ A* 4+ AL —b (35)

Remark 4.2. The structural prior can help to prune the la-
tent space in posterior inference, which is believed to be used
by neural networks for efficiently performing cognition tasks.
However, how to synthesize a recurrent neural network to per-
form inference with structural prior is not known yet. With the
proposed methods, we can easily synthesize the mean-field neu-
ral dynamics like (34)-(37) to accommodate more complicated
structural prior in Bayesian inference, which is not achieved by
other neural dynamics synthesis methods, such as Moreno-Bote
and Drugowitsch (2015), Tang (2016), and Tang et al. (2017). In
fact, the proposed monotone operator framework can be treated
as a generalization of the synthesis method in Moreno-Bote and
Drugowitsch (2015), Tang (2016) and Tang et al. (2017), since
monotone inclusion can cover general decision making problems
other than optimization problems. With the synthesis methods of
this work, more practical decision making problems can be solved
with a synthesized recurrent neural dynamics, such as the Nash
game, the saddle point problem, the Markovian decision process,
etc.

Example 4.3. As in Example 4.1, we take N = 100, m = 10. We
generate feature vectors Q = [qq, ..., Gi00] and a observationy as
follows. We first generate {qq, .. ., gso} with each element of the
feature vector being independently and uniformly drawn from
[0, 1]. And then we set q; = qi_so + & for i = 51, ..., 100 with
each coordinate of ¢; being an i.i.d. Gaussian noise of zero mean
and variance of 0.001. Then each feature vector is normalized to

1, |Igill2 = 1. Hence, the feature vector g; is highly correlated with
Qivso fori = 1,...,50. Then, y is generated asy = 9 * g9 + 4 *
@s0 + ¢ with each element of ¢ being an i.i.d. Gaussian noise with
zero mean and variance of 0.001. The true latent cause A* € R0
is a sparse high dimensional vector with A5, =9, Af, = 4 and all
other coordinates being zeros.

We incorporate additional structural information (31) by set-
ting A = [a;,a]" € R*>1%0 and b = (b, by)' € R? with
a; = col(—1s9, 0s9) and a; = col(0sq, 1s0). This structural prior
imposes that the sum of first 50 latent causes is larger than —b;
while the sum of last 50 latent causes is smaller than b,. We
let b to be b! = (=5,4)T, b» = (=8,3), b* = (—11,2),
respectively. This could be treated as a refinement of structural
prior when b changes from b! to b? and finally to b, during
which the true latent cause gets closer to the boundary of the set
specified by AA < b. For each given b, we set p; = p = 0.001
and go; = o for all neurons. We tune ¢ to change from 0.05
to 5 to study the interplay of the constraint parameter b and
the sparsity parameter o. We configure an SNN with (34)-(37)
for each parameter setting. The stationary firing rate is denoted
as A = col(A°, A*) with A¢ as inferred latent cause and A as
optimal multiplier. For comparison, we also configure an SNN
using (27)-(28) (i.e., without structural prior). We set the same
pi = p = 0.001 and tune g; = o the same as before.

Fig. 5 compares the inference error with structural prior (32)
and with independent prior (25) as a function of p. Fig. 6 gives
the inferred 20th, 50th, 70th, and 100th latent causes with (32)
or (25) when tuning . Both Fig. 5A and B show that with the
increase of o the inferred latent cause vector becomes sparser
and gets closer to the true latent cause in term of L, norm
error. However, Fig. 5B indicates that with only the independent
prior we cannot distinguish g9, gso from q7q, q100, therefore, the
Lo norm error ||A* — ):||0 can only decreases to 4. This is also
evident in Fig. 6D, where all Ay Asg, A70, A100 are nonzero when
inferring with (25). The above comparative analysis validates that
for practical casual inference problem with subtle features, the
incorporation of a structural prior can significantly improve the
inference fidelity. Moreover, Fig. 5A shows that incorporating (31)
can further decrease the Ly norm error with suitable choice of
0. Combining Fig. 6B and C, we see ACO and )‘100 will decrease

to zero and ||A* — A||o can decrease to 2 with b? and b if ¢ is
large enough, implying the identities of nonzero latent causes are
correctly discriminated. Fig. 5A also shows that a more refined
prior with b® leads to a better inference performance than a
coarse prior with b? or b'. Fig. 5C and D show the tuning of L,
norm error with o when inferring with (32) and (25), respectively.
Fig. 5D shows that ||)L*—):|| increases as o get larger when only an
independent prior (25) is used. Fig. 5C shows that ||A* — )A\C|| can
be bounded if (31) is also incorporated, which can also be found
in Fig. 6A,B, and C. Moreover, combining Figs. 5C and 6C, we see
the ||A* — A¢|| is non-increasing as o gets larger with a refined
parameter b®. We conclude that with a proper ¢ the structural
prior (31) can help to improve the inference of both the identity
and strength of the latent causes.

Fig. 7 shows how the multiplier A* tunes with different con-
straint parameter b and sparsity parameter o when inferring with
prior (32). Fig. 7A, B and C give the tuning of the steady state
multipliers A# with o when b is b', b2 and b, respectively. When
b = b! the true latent cause A* is far away from the boundary
of the constraint set specified by (31), and Fig. 7A indicates that
(31) does not influence the inference in this case. Fig. 7B and C
show that (31) starts to play a role in the inference only if o
is large enough. Since the threshold nonlinearity in (36) makes
the inferred latent cause sparser as o gets larger, the values of
A0, Aso, A70 and Aqgp has to increase to explain the observation.
However, when b equals to b? or b3, the true latent cause A* is
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Fig. 6. The stationary firing rate as the inferred 5\50 igo, 5\50, iﬁoo with different constraint parameters when tuning the sparsity parameter o. (A), (B), (C) are the
inferred causes with structural prior (32) when tuning ¢ with b', b* and b3, respectively. D: The inferred causes with independent prior (25) when tuning o.

closer to the boundary of the constraint set specified by (31).
Once (31) is violated, the multiplier A* becomes nonzero and
starts to help the network to only increase the correct causes
to explain away the observation. Fig. 7D, E, F give the transition
trajectories of the firing rates for A* with ¢ = 5 when b is b, b?
and b3, respectively. They show that the firing rates standing for
multiplier A* can converge to a stationary equilibrium quickly.

Fig. 8 shows transient firing rates for A° with different combi-
nation of structural prior parameter b and sparsity prior param-
eter g.

By comparing the rows of Fig. 8 (for example Fig. 8C and I), the
dynamics converges to equilibrium faster with a larger sparsity
parameter . This implies that the threshold nonlinearity in (36)
can promote inference sparsity and accelerate convergence. By
comparing the columns of Fig. 8 (for example Fig. 8G and I ),
we see with a more refined structural prior b, the transient is

prolonged, but converges to a more accurate inference of latent
causes. This is because it takes time for the multiplier of the
structural prior to evolve before affecting the inference. The figure
shows the convergence of the configured dynamics with different
parameters.

5. Conclusion

We provided a normative theory regarding the ability of recur-
rent neural circuits to embed the problem of monotone inclusion,
which encompasses a wide range of optimization problems. We
show that in a rate-based Poisson SNN, each neuron’s firing
(activation) curve can be treated as a proximal operator of a
local regularizer and hence the overall dynamics amounts to an
operator-splitting type ODE solver for Mol. We are then able
to give a top-down approach to synthesize SNN for Mol as a
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Fig. 8. The transition trajectories of the neural firing rates for A° by dynamics (34)-(37) with a different combination of constraint prior b and sparsity prior o.

surrogate for salient functions. To illustrate this, we performed
numerical studies in the context of Bayesian causal inference,
including treatment of a structural prior that falls outside of the
scope of existing works on sparse neural coding.

The key contribution of our work is a perspective on the
unifying framework to understand the ability of neural circuits
to carry out optimization. Indeed, the Mol framework could be
used to synthesize networks for other problems of interest in
neuroscience and neural computation, including Nash equilib-
rium calculation and Markov decision problems. As well, the ease
of our synthesis procedure makes it potentially appealing for
neuromorphic instantiations.

There remain several open questions regarding out results,
including more detailed validation of the fidelity of the mean-
field approximation, as well as convergence and rate analysis
under a weaker assumption. As well, it is of obvious interest to
consider the possibility of treating more complicated nonlinear
problems. For this, one intriguing possibility is to successively ap-
proximate a nonlinear problem with linear approximations using
a process analogous to synaptic plasticity, thus accommodate the
normative theory of this work to the adaption and plasticity of
biological neurons.
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Appendix. Monotone operator and fixed points

Let A : R™ — 2B" be a set-valued operator. Denote Id as
the identity operator, i.e, Id(x) = x. The graph of A is gra?l =
{(x, u)|u € 2Ax}, then the inverse of A is defined through its graph
as gra?2l~! = {(u, x)|(x, u) € gra}. The zero set of A is zer? =
{x € R™|0 € 2x}. 2 is called monotone if V(x, u), Y(y, v) € gra,
we have (x—y, u—v) > 0. Define the resolvent of 2( as Ry = (Id+
20)~'. For a proper lower semi-continuous convex (l.s.c.) function f,
its sub-differential operator of is x — {g|f(y) = f(x) + (g,y —
x), Vy}. of is a monotone operator. Then Prox; = Ry is called the
proximal operator of f, i.e., Prox; : x > arg minyedoms f(u)+ % [lu—
Xll%- Define the indicator function of £2 as ((x) = 0 if x € £2 and
to(x) = oo if x ¢ £2. For a closed convex set £2, i is a proper Ls.c.
function. dtp, is also the normal cone operator of £2, i.e., No(x),
where No(x) = {v|{v,y —x) < 0,Vy € 22} and domNg,p = £2.
For a single-valued operator T : R™ — R™, a point x € R™ is
a fixed point of T if Tx = x, and the set of fixed points of T is
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denoted as FixT. Assume 2/ is single-valued and 98 is monotone,
then zer(2A + B) = FixRy o (Id — 2A).
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