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We propose a top-down approach to construct recurrent neural circuit dynamics for the mathematical

problem of monotone inclusion (MoI). MoI in a general optimization framework that encompasses a

wide range of contemporary problems, including Bayesian inference and Markov decision making. We

show that in a recurrent neural circuit/network with Poisson neurons, each neuron’s firing curve can

be understood as a proximal operator of a local objective function, while the overall circuit dynamics

constitutes an operator-splitting system of ordinary differential equations whose equilibrium point

corresponds to the solution of the MoI problem. Our analysis thus establishes that neural circuits are

a substrate for solving a broad class of computational tasks. In this regard, we provide an explicit

synthesis procedure for building neural circuits for specific MoI problems and demonstrate it for the

specific case of Bayesian inference and sparse neural coding.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding the computational strategies embedded within

neural circuits is a central question in neuroscience (Maass,

1997). The normative, or top-down approach to this problem pre-

supposes that neural circuits act in a way that optimizes a certain

objective function, e.g., minimization of free energy (Friston,

010). One can synthesize a set of neural dynamics that enacts

he optimization objective, then assess whether the synthesized

ynamics are compatible with actual neural biophysics. This

aper falls within this paradigm, with the goal of examining how

general-purpose mathematical objective – monotone inclusion,

hich underpins many ubiquitous functions – might be achieved

hrough a generic set of biologically interpretable spiking dy-

amics. Deriving such an understanding would not only pro-

ide new hypotheses regarding neural function, but would also
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rovide leverage on the problem of configuring neuromorphic

omputational architectures (Schuman et al., 2017).

Our work follows a wide thread of research that studies how

ifferent computational tasks might be completed by recurrent,

piking neural networks (SNNs). Recurrent neural dynamics has

een investigated with the help of ODE methods, see Hu, Yi, and

ou (2020), Huang, Cao, Wen, and Yang (2016), Kudu (2018), Li,

iu, Li and Tisdell (2019) and Song, Fei, Cao, and Huang (2019)

for the recent advances. In recent years, some scholars have dealt

with recurrent neural dynamics with impulse inputs and time-

delay. Some recent progress can be found in Chen, Zhang, Cao,

and Huang (2020), Huang, Long, and Cao (2020), Huang, Zhang,

Cao and Hu (2019), Huang, Zhang and Huang (2019), Li, Huang

and Ji (2019), Zhang and Huang (2020) and Zhou, Wan, Huang,

and Yang (2020). We focus specifically on the ubiquitous leaky

integrate-and-fire (LIF) neural dynamics. Networks of LIF neurons

have been configured to solve Bayesian causal inference (Moreno-

Bote & Drugowitsch, 2015) by showing that the LIF dynamics can

approximate a firing rate ODE for solving quadratic optimization.

Similarly, Tang, Lin, and Davies (2017) show that a SNN with

modified LIF spiking dynamics can approximate a locally compet-

itive ordinary differential equation (ODE) to solve a LASSO (least

absolute shrinkage and selection operator) problem, a schema

that has been translated to LIF-based neuromorphic hardware.

Other demonstrations of functions enacted via LIF-SNNs include

L1 minimization (Chou, Chung, & Lu, 2018), constrained quadratic
ptimization (Gangopadhyay & Chakrabartty, 2017), predictive
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coding and control (Huang & Ching, 2019; Pérez, Cabrera, Castillo,
& Velasco, 2018) and sparse communication (Yoon, 2016; Zam-
brano, Nusselder, Steven Scholte, & Bohté, 2018). Another model
class, SNNs with generalized linear response voltage dynam-
ics and Poisson/Bernoulli spiking, has also been studied in the
context of various computational tasks. For example, Friedrich
and Lengyel (2016) configure an SNN with Poisson firing model
to solve an infinite-horizon Markov decision problem, showing
that the synthesized dynamics closely resemble experimental
observations. Hao, Huang, Dong, and Xu (2020), Jang, Simeone,
ardner, and Grüning (2018), Rezende, Wierstra, and Gerstner
2011) and Taherkhani et al. (2020) investigate the learning of
probabilistic temporal sequence model with Poisson/Bernoulli
NN.
The case-by-case successes are suggestive of a general schema

y which neural dynamics might be synthesized or configured.
e posit the mathematical problem of monotone inclusion (MoI)

s one such schema. MoI encompasses a range of important func-
ions, such as quadratic optimization, Markov decision-making,
on-cooperative games and as we will later demonstrate,
ayesian inference, Bauschke, Combettes, et al. (0000). The split-
ing algorithms developed for MoI are an efficient approach for
athematical programming (Beck & Teboulle, 2009; Combettes
Pesquet, 2011; Kafashan & Ching, 2017). Our premise is that

eural circuits may embody a similar computational strategy for
olving these decision making problems.
In particular, we study the widely adopted SNNmodel wherein

eurons exhibit generalized linear response membrane voltage
ynamics and Poisson firing rates. Using a mean-field approxi-
ation, we show that the differential–algebraic system of SNN
quations has an equilibrium point that is a solution of an MoI.
ence, the SNN dynamics essentially enacts the well-known
perator splitting algorithm in optimization and signal process-
ng, Bauschke et al. (0000), Beck and Teboulle (2009) and Com-
ettes and Pesquet (2011). This realization allows systematic
op-down synthesis of SNNs to finding zeros of structured MoI
roblems.
The specific novel contributions of this paper are:
(1) Using the MoI/operator splitting formalism, we show that

he nonlinear Poisson firing curves of individual neurons amount
o proximal operators of different local regularizers. The ob-
ervation that activation functions can enact a proximal opera-
or has recently been made in the context of feedforward net-
orks (Combettes & Pesquet, 2020), but our work does so in a
ecurrent setting with a well-defined and generic computational
bjective. Indeed, relating SNN dynamics to operator splitting
DEs has, to the best of our knowledge, not been previously
iscussed in the literature.
(2) We propose a systematic approach for configuring SNNs to

omplete specific MoI problems. We demonstrate this by config-
ring an SNN to solve linearly constrained quadratic optimization
sing a Lagrangian saddle point formulation. This is in contrast
o existing work that does not include such constraints (Barrett,
enève, & Machens, 2013; Moreno-Bote & Drugowitsch, 2015;
ang et al., 2017).
(3) We demonstrate the proposed SNN methodology by nu-

erical studies of a particularly relevant MoI problem: Bayesian
ausal inference. With an independent prior, the configured SNN
ynamics resembles the well-studied locally competitive algo-
ithm for sparse coding or LASSO in Rozell, Johnson, Baraniuk,
nd Olshausen (2008) and Tang (2016). However, by arriving at
hese dynamics from a top-down MoI synthesis we are able to
scribe functional significance to individual neuronal dynamics,
.g., relating Poisson firing curves directly to parameters of the
ayesian prior. In addition, we consider a causal inference with a
tructural prior by configuring SNN to solve linearly constrained
uadratic programming.
 f
The remainder of the paper is organized as follows. Section 2
ses a reverse-engineering analysis to show that a recurrent SNN
an be treated as an ODE for solving MoI. Section 3 gives a
op-down synthesis to hard-wire a recurrent SNN for computa-
ional tasks. Section 4 illustrates the proposed methodology with
ayesian causal inference and numerical simulations. Conclusions
re provided in Section 5.

. Top-down analysis of the recurrent SNN dynamics

Our first result involves reverse engineering a typical recurrent
NN as an operator-splitting-based ODE system that solves MoI.
elevant mathematical notation and background regarding MoI
re found in Appendix.

.1. Recurrent SNN dynamics

Membrane voltage dynamics: Following Gerstner, Kistler, Naud,
nd Paninski (2014), Jolivet, Rauch, Lüscher, and Gerstner (2006)
nd Pillow, Paninski, Uzzell, Simoncelli, and Chichilnisky (2005),
e consider a recurrent spiking neural network as a group of

nterconnected neurons N = {1, . . . ,N}, each of which has
ynamics:

m
dui

dt
= −ui(t) +

∑
j∈N

wij

∫
∞

0
Xj(t − τ )ϵ(τ )dτ − ηiXi(t) + Iexti (1)

ere, ui is the membrane voltage of neuron i, and τm is the
embrane time constant. wij is the synaptic weight from neuron
to neuron i (self-connections are allowed). Xi(t) =

∑
s δ(t − tsi )

s the spiking train of neuron i represented as a sum of Dirac δ-
unctions. And ϵ(τ ) is the postsynaptic impulsive response kernel
ith the form of ϵ(τ ) = ϵ0 exp(− τ

τs
) for τ ≥ 0. τs is the synaptic

time constant and ϵ0 = τ−1
s ensures normalization to

∫
ϵ(t)dt =

. The after-hyperpolarization is modeled as an instantaneous
urrent pulse with a negative sign and magnitude ηi ≥ 0. Iexti
s the external input current. The physical units of the variables
nd constants are omitted since we consider only the theoretical
roperties of the dynamics.
Poisson firing curve: The spiking train of neuron i can be mod-

led as an inhomogeneous Poisson point process with the instan-
aneous firing rate λi(t) as a function of membrane voltage. In
ther words, the number of spikes in a fixed short interval ∆t
ollows P{

∑
t ′∈[t,t+∆t]{δ(t

′
− tsi ) ̸= 0} = n} =

[λi(t)∆t]n

n! e−λi(t)∆t .
he firing curve for neuron i is a nonlinear mapping from its
embrane voltage to the instantaneous firing rate: λi(u) : u(t) ↦→

i(t). A typical firing curve that has been observed in biological
eurons is the rectified linear with a silent zone(SReLU):

i(t) = ki[ui(t) − θi]+ (2)

here ki ≥ 0 is the amplification factor and θi ≥ 0 is the voltage
hreshold. [x]+ = x if x ≥ 0, and [x]+ = 0, otherwise. A figure of
2) is shown in Fig. 1.

.2. Mean-field approximation and equilibrium point analysis

An analytical challenge associated with the above formula-
ion comes from the non-continuity of the membrane dynamics
nd stochasticity of the spikes. However, since the membrane
ime-scale is much slower than the synapse response time-scale,
.e., τm ≫ τs, and the neurons are interacting in a dense pop-
lation, the network membrane voltage dynamic can be well
pproximated with a smooth ordinary differential equation (ODE)
rom a mean-field analysis (see, e.g., Friedrich & Lengyel, 2016).
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Fig. 1. The firing curve of the rectified linear with a silent zone.

That is the overall SNN dynamics can be approximated as follows:

τmu̇ = −u + Wλ − diag{η}λ + Iext ,
λi(t) = ki[ui(t) − θi]+, i = 1, . . . ,N (3)

where u = col(u1, . . . , uN ) ∈ RN , W = [wij] ∈ RN×N , λ =

col(λ1, . . . , λN ), η = col(η1, . . . , ηN ) and Iext = col(Iext1 , . . . , IextN ).
The equilibrium point/steady state (u∗, λ∗) of (3) satisfies the

ollowing equation:
∗

= Wλ∗
− diag{η}λ∗

+ Iext ,
∗

i = ki[
∑

j∈N wijλ
∗

j − ηiλ
∗

i + Iexti − θi]+
(4)

n other words, when the recurrent SNN converges to its equi-
ibrium point, the steady firing rate λ∗

i , i ∈ N is a fixed point
olution of a group of nonlinear equations in (4).

.3. Equilibrium analysis from MoI perspective

We aim to understand what type of computational task can
e fulfilled by the fixed point equation (4). We show that (4)

is closely related to the operator splitting methods in optimiza-
tion and signal processing (Bauschke et al., 0000; Combettes &
Pesquet, 2011).

Definition 2.1 (Proximal Operator). The proximal operator of a
function f (x) : Rn

→ R is defined as

proxf (x) : x ∈ Rn
↦→ argmin

y∈Rn
f (y) +

1
2
∥y − x∥2

2. (5)

Note, especially, that the SReLU curve in (2) is a proximal
operator:

Lemma 2.2. The SReLU operator x ↦→ k[x − θ ]+ for x ∈ R with
k ∈ R+, θ ∈ R+ can be regarded as the proximal operator of

r(x) =
1
2
ρx2 + ϱx + ιR+

(x). (6)

with ρ ≥ 0, ϱ ≥ 0 that k =
1

1+ρ
and θ = ϱ. Here, ιR+

(x) is the
ndicator function that takes zeros when x ≥ 0 and takes ∞ when
< 0.

roof. r(x) in (6) is a lower semi-continuous convex function by
efinition. From the definition of proximal operator, proxr (x) =

rgminy∈R
1
2ρy

2
+ϱy+ ιR+

(y)+ 1
2 (y− x)2. Suppose y∗

= proxr (x),
nd then at y∗ we have

∈ ρy∗
+ ϱ + NR+

(y∗) + (y∗
− x). (7)

with NR+
as the normal cone of R+. Therefore, we can rewrite the

bove equation as 0 ∈ y∗
+ NR+

(y∗) +
ϱ

ρ+1 −
1

ρ+1x or

1
x −

ϱ
∈ (Id + NR+

)(y∗) (8)

1 + ρ ρ + 1
Therefore, y∗
= (Id+NR+

)−1( 1
1+ρ

x−
ϱ

1+ρ
) = [

1
1+ρ

x−
ϱ

1+ρ
]+. Since

1 + ρ ≥ 0, we have y∗
=

1
1+ρ

[x − ϱ]+. Therefore, taking k =
1

1+ρ

and θ = ϱ, we have k[x − θ ]+ = Proxr (x). □

Hence, the firing curve of neuron i, λi = ki[ui − θi]+ in (2) can
e treated as a proximal operator λi = ProxRi (ui) with

i : ui ↦→
1
2
(1/ki − 1)u2

i + θiui + ιR+
(ui). (9)

emark 2.3. ρ = (1/ki − 1) ≥ 0 or equivalently 0 < ki ≤

1 is needed to ensure that Ri(ui) in (9) is a convex function.
his always can be achieved by scaling the units of all physical
ariables. Therefore, we will assume 0 < ki ≤ 1, i ∈ N for the
iring curve in (2).

Given the membrane dynamics (1) and firing curve (2) with
ixed parameters, we denote

i : λi ↦→
1
2
ρiλ

2
i + ϱiλi + ιR+

(λi), R(λ) =

N∑
i=1

Ri(λi) (10)

ith ρi = 1/ki − 1 and ϱi = θi. Then we define two operators A
nd B as following.

: λ ↦→ (I + diag{η})λ − Wλ − Iext ,B : λ ↦→ ∂R(λ). (11)

ith assuming 0 < ki ≤ 1, i ∈ N , R(λ) in (10) is a convex
function, and B is (strongly) monotone. Since R(λ) is a sum of de-
composable functions, we know ∂R(λ) =

∏
i∈N ∂Ri(λi). Therefore,

ProxR(z) = (Id+∂R)−1(z) =
∏

i∈N (Id+∂Ri)−1(zi) =
∏

i∈N ProxRi (zi).
With (4), at the equilibrium point λ∗

λ∗

i = ki[λ∗

i − ((1 + ηi)λ∗

i −

∑
j∈N

wijλ
∗

j − Iexti ) − θi]+, ∀i ∈ N .

We put zi = λ∗

i − ((1 + ηi)λ∗

i −
∑

j∈N wijλ
∗

j − Iexti ), then at
the equilibrium point λ∗

i = ProxRi (zi). Therefore, the fixed point
equation (4) can be reformulated as

λ∗
= ProxR

[
λ∗

−
(
(I + diag{η})λ∗

− Wλ∗
− Iext

)]
= (Id + B)−1(Id − A)λ∗

In other words, (Id−A)λ∗
∈ (Id+B)λ∗ since B is a maximally

monotone operator as a sub-differential of a convex function.
Therefore, the equilibrium firing rate λ∗ is a solution to the
following generalized equation

0 ∈ (A + B)(λ). (12)

Thus, the nonlinear fixed point equation (4) is essentially a gen-
eralized inclusion problem.

The operator B is decomposable and can be interpreted as a
combination of each neuron’s local objective. Then, the nonlinear
firing curve can treated as the proximal operator of each local
regularizer, i.e., (Id + Bi)−1. The operator A is a linear operator
specified by the interaction among neurons. To understand the
computational versatility of the formulation (12), we will impose
a further structure on the operators.

Definition 2.4 (Monotone Operator and Monotone Inclusion). An
operator M : x ↦→ Mx is monotone if ⟨x−y,Mx−My⟩ ≥ 0, ∀x, y ∈

dom(M). Finding a point x that 0 ∈ Mx is called a monotone
inclusion(MoI).

The operator B is monotone since it is the subgradient of a
convex function. When A is also monotone, the equilibrium point
λ∗ is a solution to a MoI (12) with the operator being a sum of two
monotone operators. The monotonicity of A is dependent on W ,
the synaptic weights of the network. Thus, we have the following:
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Proposition 1. Assume a recurrent SNN with membrane dynamics
(1) and firing curve (2) with fixed parameters. Suppose 0 < ki ≤

, i ∈ N and the synaptic weights W ensures that A in (11) is
onotone. Then, at the equilibrium point of (1)–(2), the steady firing
ate λ∗ is a solution to MoI (12) as the sum of operator A and B in
11).

emark 2.5. The above analysis assumes a fixed SReLU fir-
ng curve (2). However, we can also reverse engineer other fir-
ng curves as the proximal operator of different local objectives
Combettes & Pesquet, 2011 give a table of common functions
nd their proximal operators, and the composition rules of prox-
mal operator, like translation, scaling and conjugation). More-
ver, Proposition 2.4 in Combettes and Pesquet (2007) shows
hat any function φ defined from R to R that is non-expansive
1-Lipschitz) and increasing is a proximal operator of a func-
ion on R. The recent works (Combettes & Pesquet, 2019, 2020)
lso give more examples of relating various firing curves (also
nown as activation functions) to proximal operators of differ-
nt regularizers, for the purposes of deep learning. However,
here are still substantial difference with (Combettes & Pesquet,
020), since Combettes and Pesquet (2020) only consider the

static property of activation functions and treats the cascading
of layered feed-forward neurons as an iteration process for
solving variational inequalities. This work relates the dynamics
of a recurrent neural network as an ODE solver for monotone
inclusion.

2.4. Neural dynamics as an ODE that solves MoI

While we have shown that the fixed point of the SNN dynam-
ics is the solution of an MoI, we have not yet concluded that
dynamics converge to this equilibrium. To establish convergence,
an additional property is required as follows:

Definition 2.6 (Strongly Monotonicity). An operator M : x ↦→ Mx
is υ− strongly monotone if ⟨x− y,Mx−My⟩ ≥ υ∥x− y∥, ∀x, y ∈

dom(M). M is α−inverse strongly monotone if ⟨x−y,Mx−My⟩ ≥

α∥Mx − My∥, ∀x, y ∈ dom(M).

Remark 2.7. Intuitively speaking, monotonicity can be treated as
a type of rotational invariance of angles, while (inverse-)strongly
monotonicity is a requirement on the scaling property of the
operator, i.e., the operator will not shrink the distance of two
vectors too much.

For a MoI, 0 ∈ M(x)+ ∂Φ(x) with operator M being α-inverse
strongly monotone and Φ being a convex function, the following
Newton-type differential–algebraic dynamics is proposed in (Ab-
bas & Attouch, 2015),

u̇ = −u + λ − µMλ (13)
λ = (Id + µ∂Φ)−1(u) = ProxµΦ (u) (14)

Note that (13)–(14) are differential–algebraic dynamics, and the
existence of solution in the sense of ODE trajectory (the Cauchy
problem) has been discussed in Abbas and Attouch (2015) and At-
touch and Svaiter (2011), where the sufficient condition on the
global existence and uniqueness of solution/trajectory is given
in both Section 1 of Abbas and Attouch (2015) and Section 2
of Attouch and Svaiter (2011). It is shown that λ will converge
to a zero of M + ∂Φ with (13)–(14) if µ is 0 ≤ µ ≤

1
2α (see

heorem 1.8 of Abbas & Attouch, 2015). Since (13) and (14) use
ifferent strategies to handle operators, (13)–(14) is called an
perator-splitting ODE for solving MoI.
Thus, the mean-field approximated neural dynamics in (3)

mounts to the operator-splitting ODE (13)–(14), modulo a
roper parameter configuration.
heorem 2.8. Assume a recurrent SNN with mean-field dynamics
3) and fixed parameters, W , Iext , k, θ, η. Suppose 0 < ki ≤ 1, i ∈

N and suppose the synaptic weight W ensures that A in (11) is
monotone. If there exists µ and α such that 0 ≤ µ ≤

1
2α and

M : λ ↦→
1
µ
((I + diag{η} − W )λ − Iext ) (15)

is α-inverse strongly monotone, then the recurrent neural dynamics
3) converges to its equilibrium point, and the steady firing rate λ∗

s the zero of A + B in (11).

roof. With Proposition 1, the equilibrium point of the dynamics
3) is a zero of A + B in (11). To show the convergence, we
ill rewrite the neural dynamics (3) as the (13)–(14) by properly
etting M and Φ .
Since we assume τm ≫ τs in the mean-field dynamics (3), τm

can be properly scaled to be 1. Therefore, withM in (15) and given
any fixed µ ≥ 0 the right hand of (3) can be written as

−u + Wλ − diag{η}λ + Iext = −u + λ − µMλ (16)

Denote Φ(λ) =
1
µ
R(λ) with R(λ) in (10). We already know that

Φ(λ) =
1
µ
∂R(λ). Therefore,

Id + µ∂Φ)−1
= (Id + µ

1
µ

∂R)−1
= (Id + B)−1,

ith B in (11). We have already shown in Proposition 1 that
i(t) = ki[ui(t) − θi]+, i = 1, . . . ,N is the same as λ = (Id +

)−1(u). Therefore, the neural dynamics (3) can be written as
13)–(14) with M in (15) and Φ =

1
µ
R(λ).

When there exist µ and α such that 0 ≤ µ ≤
1
2α and M

in (15) is α-inverse strongly monotone, the neural dynamics (3)
onverges to a zero of M + ∂Φ by Theorem 1.8 of Abbas and
ttouch (2015). Since M =

1
µ
A and ∂Φ =

1
µ
B, M + ∂Φ has

he same zeros as A + B. Note that B is strongly monotone as
he sub-differential of a strongly convex function R(λ) in (10),
herefore, the zero of A+B is unique. Hence, the neural dynamics
3) converges to its equilibrium as the zero of A + B in (11). □

emark 2.9. It may be apparent that the MoI: 0 ∈ (A+B)(x) can
e solved by alternative, gradient-based dynamics. For example,
he differential inclusion ẋ ∈ Ax+Bx converges to zer(A+B) with
strongly monotonicity assumption on A and B (see Attouch,
abot, & Czarnecki, 2018). The proximal gradient dynamics ẋ =

Id+ηB)−1(Id−ηA)x−x is also shown to converge to zer(A+B)
ith a monotone B and an α−inverse strongly monotone A

nd proper step-size η (see Boţ & Csetnek, 2018). However, the
differential–algebraic system of (1)–(2) cannot be mapped to the
above two dynamics.

It is important to note that Theorem 2.8 relies on a sufficient
ondition to guarantee the convergence (strong monotonicity).
uch an assumption is derived purely from a mathematical view-
oint, while whether the biological synaptic weights could ensure
uch an assumption still needs experimental validation. However,
s we will later see in our simulations, this assumption could be
elaxed in specific settings.

. Top-down synthesis of spiking networks

Equipped with the above analysis, we are now able to synthe-
ize SNNs for a variety of decision-making problems. We proceed
o demonstrate this for the case of linearly constrained quadratic
rogramming (QP).
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3.1. Synthesis of SNNs for MoI

Consider a computational problem (e.g., Markov decision mak-
ing) that can be solved by means of MoI:

0 ∈ (A + B)λ. (17)

Here, the decision variable is λ ∈ RN , and the operator A is
assumed to be monotone and linear A : λ ∈ RN

→ Qλ + c
with Q ∈ RN×N and c ∈ RN . The operator B has a Cartesian
product form as B : λ ↦→

∏N
i=1 Bi(λi). We assume each Bi(λi) is

monotone and has a closed form resolvent RBi = (Id + Bi)−1.
Clearly, by Theorem 2.8, we can configure a SNN with its

mean-field dynamics to solve the MoI in (17). In particular:

Corollary 3.1. Suppose the operator A in (17) is α−inverse strongly
monotone. Then, we can set a parameter ϵ that 0 ≤ ϵ ≤

1
2α ,

and configure a SNN with its mean-field dynamics as follows. The
membrane voltage dynamics (1) has the parameters:

W − diag{η} = I − ϵ ∗ Q , Iext = −ϵc, (18)

with τm ≫ τs to ensure the validity of the mean-field approximation
(3). The firing curve of each neuron i is set as

λi(t) = (Id + ϵBi)−1(ui(t)). (19)

Then, the firing rate λi(t), i ∈ N of the configured SNN converges to
a zero of MoI in (17).

Again, it is important to note that the condition on strong
monotonicity is sufficient but not necessary. We will see this
come into play in the subsequent section.

3.2. Synthesis of SNN for constrained quadratic optimization

Quadratic optimization (or, programming (QP)) is important
for a variety of decision making problems (Nocedal & Wright,
2006), and can be used as a basic building block for solving
general optimization problems, Boggs and Tolle (1995) and Gill,
Murray, and Saunders (2005).

We can configure an SNN to solve a QP as follows:

min
x∈RN

+

1
2
xTEx + qT x s.t. Ax ≤ b (20)

with E ∈ RN×N being positive definite, A ∈ Rm×N , q ∈ Rm and
m < N . We consider its Lagrangian function with a multiplier
µ ∈ Rm

+

L(x, µ) =
1
2
xTEx + qT x + µT (Ax − b) + ιRN

+
(x) + ιRm

+
(µ). (21)

According to the Lagrangian duality, the optimal solution with
the optimal multiplier (x∗, µ∗) is a saddle point of the Lagrangian
function L(x, µ) and should satisfy the following KKT condition

0 ∈ Ex + q + ATµ + ∂ιRN
+
(x)

∈ −Ax + b + ∂ιRm
+
(µ)

By putting the decision variable x and the multiplier µ together
as λ = col(x, µ), then the above KKT condition can be written as
an MoI of the form (17):

A : λ ↦→

(
E AT

−A 0

)
λ +

(
q
b

)
,B : λ ↦→ ∂ιRN+m

+

(λ) (22)

The operator A in (22) cannot be directly shown to be inverse
strongly monotone. However, notice that the MoI in (22) shares a
similar structure to (17). Thus, we can still configure an SNN with
(18)–(19) by choosing a small step-size ϵ. Specifically, letting the
firing rate of neurons be x and µ and with ϵ ≪ 1 and a fixed
η = col(ηx, ηµ), we can set the parameters W , Iext as

W =

(
I + diag{ηx} − ϵ ∗ E −ϵ ∗ AT

ϵ ∗ A I + diag{ηµ}

)
,

ext
=

(
−ϵ ∗ q
−ϵ ∗ b

) (23)

oreover, we obtain the firing curve of each neuron as λj(t) =

uj]+. While our analytical guarantees of convergence no longer
pply (due to aforementioned lack of strong monotonicity), we
onetheless find empirically that the configured SNN has its firing
ate converge to optimal primal–dual solution of the QP (20). We
will demonstrate this in the simulation Section 4.

4. Neural Bayesian causal inference

In this section, we illustrate the proposed synthesis method-
ology for the problem of maximum a posteriori (MAP) Bayesian
causal inference, a fundamental task that could be a building
block for many cognitive functions, such as object recognition or
odors detection when the number of potential sensory stimuli
is enormous (Knill & Richards, 1996; Tenenbaum, Griffiths, &
Kemp, 2006). We can configure the synaptic interaction strengths
of a recurrent neural network to perform Bayesian inference
without noisy samplings. Our approach is consistent with a recent
suggestion in Dold et al. (2019) that spiking neural networks
may have no need for noise to perform sampling-based Bayesian
inference. The experimental results of pilot examples show how
the theoretical results could explain the functionality of neural
networks.

The goal of MAP inference is to infer a latent cause of a given
observation. Specifically, we assume a probabilistic generative
model of the latent cause λ ∈ RN and the observation y ∈ Rm

as p(y, λ) = p(y|λ)p(λ). Once y is observed, the MAP problem
becomes:

max
λ∈RN

log p(λ|y) ∝ log p(y|λ) + log p(λ). (24)

e consider a linear-Gaussian likelihood: y = Qλ + ϵ. Here Q =

q1, . . . , qN ] ∈ Rm×N is assumed to be known or has been learned,
hile each qi ∈ Rm is called a feature vector. Each component of
is an i.i.d. Gaussian noise with zero mean and unit variance.
ence, in (24) we have log p(y|λ) ∝ −

1
2 (y − Qλ)T (y − Qλ).

It remains to specify the prior p(λ), for which we consider two
examples, below.

4.1. Independent sparsity prior

First, we consider the following heavy tailed prior that pro-
motes sparsity:

p(λ) ∝

N∏
i=1

exp(−ϱi|λi| −
ρi

2
λ2
i )H(λi). (25)

Here H(x) is the Heaviside function with H(x) = 1 if x ≥ 0
and H(x) = 0 otherwise, which imposes that each coordinate
of the latent cause is nonnegative. The parameters ϱi > 0 and
i > 0 weight Laplacian and Gaussian contributions to the prior
nd serve to regularize the sparsity and strength of the ith cause,
espectively.

Then, combined with the likelihood, the causal inference prob-
em is

min
∈RN

, 1/2(y − Qλ)T (y − Qλ) +

N∑
Ri(λi) (26)
i=1
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Fig. 2. The tuning of the inferred latent cause λ̂ with sparsity prior parameter ϱ. A: The tuning of the angular error between λ∗ and λ̂, λ̂Tλ∗/(∥λ̂∥∥λ∗
∥). B: The

tuning of L0 norm error, ∥λ∗
− λ̂∥0 . C: The tuning of L2 norm error, ∥λ∗

− λ̂∥2 . D: The tuning of the stationary firing rate of λ̂20 and λ̂50 .
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ith Ri(λi) defined in (10). Note that for consistency we turn the
aximization in (24) to minimization. The optimization prob-

em (26) and its variants have been widely studied in neural
oding (where it is often referred to as sparse coding Balavoine,
omberg, & Rozell, 2012; Kafashan & Ching, 2017; Olshausen &
ield, 1997; Rozell et al., 2008; Tang, 2016; Tang et al., 2017),
ignal processing and image science (e.g., Beck & Teboulle, 2009).
Solving (26) is equivalent to finding the solution to the MoI,

∈ (A + B)λ with

: λ ↦→ Q TQλ − Q Ty;B : λ ↦→

N∏
i=1

∂Ri(λi).

herefore, we can configure a recurrent SNN with Corollary 3.1
o solve this problem. We set τm = 1, η = 1 and ϵ = 1, then

= 2I − Q TQ and Iext = Q Ty. Then, with (3) and Lemma 2.2,
he mean-field dynamics of the configured network is

u̇ = −u + λ − Q TQλ + Q Ty (27)

i(t) =
1

1 + ρi
[ui(t) − ϱi]+, i = 1, . . . ,N (28)

Thus, starting with MoI as a general top-down objective, we
arrive at a recurrent network with properties that are inter-
pretable from a neural circuit perspective. For example, the pa-
rameter ϱi appears in (28) as an activation threshold (which
romotes sparsity). Indeed, the overall derived dynamics resem-
les the locally competitive algorithm (LCA) studied in the con-
ext of sparse coding (e.g., Balavoine et al., 2012; Rozell et al.,
008). The LCA is built on physiological and functional intuition
nd then analyzed for convergence using a post-hoc Lyapunov ap-
roach. Here, we have shown that the sparse coding is a specific
ase of MoI and as such LCA-like dynamics can be synthesized
irectly with implicit convergence guarantees.

xample 4.1. Consider λ ∈ R100 and y ∈ R10. The feature vectors
= [q1, . . . , q100] and an observation y are randomly generated

s follows. Each element of Q is first independently and uniformly
rawn from [0, 1], and then each qi ∈ R10 is normalized to 1,
qi∥2 = 1. The feature vectors are over-complete and linearly
ependent. y is generated as y = 9 ∗ q20 + 4 ∗ q50 + ε. Here
ach element of ε is an i.i.d. Gaussian noise with zero mean and
ariance of 0.001. The true latent cause λ∗

∈ R100 is a sparse
igh dimensional vector with λ∗

20 = 9, λ∗

50 = 4 and all other
oordinates are zero. Then we configure the SNN to infer the
atent cause with (27)–(28).

Firstly, we study how the inferred latent cause λ̂ varies with
ifferent sparsity prior ϱi or the threshold in (28). We take a fixed
i and set ki =

1
1+ρi

=
1

1+0.001 for all neurons. We let ϱi = ϱ

across all neurons, and tune ϱ to change from 0.002 to 2 in steps
of 0.002. We run the configured SNN and take the stationary firing
rate as the inferred λ̂. Figs. 2 and 3 show how the hand-wired SNN
performs with ϱ. Fig. 2A shows how the angular error between λ∗

and λ̂, i.e., λ̂T λ∗

∥λ̂∥∥λ∗∥
varies with ϱ. Fig. 2B shows how the number

f nonzero elements of λ∗
− λ̂, i.e., ∥λ∗

− λ̂∥0 varies with ϱ. It
ndicates that ∥λ∗

− λ̂∥0 decreases as we increase sparsity prior
or the threshold. After a certain threshold (ϱ = 0.2 in Fig. 2B),

he inferred latent cause λ̂ has the same nonzero coordinates as
he true latent cause λ∗, implying that the configured network
iscriminates the identity of the true latent cause, validating
he effectiveness of the proposed methods in Bayesian inference.
ig. 2C shows how L2 norm error, ∥λ∗

− λ̂∥2 tunes with ϱ.
ig. 2D shows how the firing rate of λ̂20 and λ̂50 tune with ϱ.
herefore, Fig. 2 shows that there is a performance tradeoff with
espect to ϱ, involving the identity and strength of the inferred
atent cause. Fig. 3 gives the firing rate trajectories when ϱ is set
o 0.002, 0.02, 1, 2, respectively, to evaluate the SNN transient
esponse (from zero initial condition) with respect to ϱ. It shows
hat a larger ϱ (a stronger thresholding nonlinearity) corresponds
o faster convergence. The studies examine how the algorithm
arameter influences the inference results.

.2. Tolerance to noise

Next, we study the robustness of the configured dynamics to
oise. Since (27)–(28) is a mean-field approximation of a Poisson
piking dynamics, there exist approximation errors in λ on the
ight of (27). Further, due to the Poisson spiking randomness,
he threshold parameter ϱ might also be corrupted. The synaptic
eights might drift due to plasticity or stochasticity in molecular
ynamics of neurotransmitters. Hence, we simulate the following
NN dynamics:

u̇ = −u + λ − (Q TQ + ε (t))(λ + ε (t)) + Q Ty (29)
1 2
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Fig. 3. The firing rate transition trajectories vary with four different sparsity prior parameter ϱ.
Fig. 4. The tuning of neural dynamics with sparsity prior parameter ϱ subject to random noises. A: The tuning of the angular error between λ∗ and λ̂, λ̂Tλ∗/(∥λ̂∥∥λ∗
∥).

B: The tuning of L0 norm error, ∥λ∗
− λ̂∥0 . C: The tuning of L2 norm error, ∥λ∗

− λ̂∥2 . D: The tuning of stationary firing rate of λ̂20 and λ̂50 . E: The firing rate
trajectories when ϱ = 0.3. F: The firing rate trajectories when ϱ = 3.
λi(t) =
1

1 + ρi
[ui(t) − (ϱi + ε3(t))]+, i = 1, . . . ,N (30)

1(t), ε2(t), ε3(t) are time-varying noises matrix or vectors with
roper dimensions, while each element of them is independently
rawn from [−0.05, 0.05]. The inference problem has the same
arameter setting as before. We let ϱi = ϱ across all neurons,
nd tune ϱ to change from 0.03 to 3 in steps of 0.03. Here, we
ake the average of the last one percentage of elapsed time as the
nferred latent cause λ̂. Fig. 4 shows how the configured neural
dynamics varies with ϱ for this setup. From Fig. 4A and B, a
larger ϱ leads to a network that is more robust to noise with
a better inference performance. In fact, Fig. 4B shows that the
inferred latent cause is almost nonzero in each coordinate when ϱ

is small (ϱ = 0.03), but is a sparse vector with the same nonzero
coordinates as the true latent cause when ϱ is large (ϱ = 3).
However, Fig. 4C and D show that the inference of the latent
causes strength deteriorates as ϱ increases. Fig. 4E and F show
that a larger ϱ will not only speed up the transient response but
can also suppress trajectory variance due to the noise. Finally,
comparing Figs. 2–3 and 4, the SNN can still discriminate the
identities of latent causes with properly chosen ϱ. The simula-
tion example demonstrates that the synthesized neural dynamics
based on monotone operator theory enjoys certain robustness
with respect to noises and parameter uncertainties, validating the
effectiveness of the proposed method.

4.3. Structural prior

There could be additional structural prior information,
describing the interaction among different latent causes. For
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example, when inferring a human face image from a linear
composition model, we know some components must appear
together (e.g., eyes, nose and mouth.) or some components cannot
appear at the same time (e.g., more than two eyes). The struc-
tural prior information could be modeled as a linear inequality
constraint

Aλ − b ≤ 0. (31)

with A = [a1, . . . , aJ ]T ∈ RJ×N and b ∈ RJ . Incorporation of such a
structural prior information properly in the inference is desirable
since it limits the search space. To be consistent with the previous
Bayesian framework, we change the independent prior in (25) to

p(λ) ∝

N∏
i=1

exp(−ϱi|λi| −
ρi

2
λ2
i )H(λi) ×

J∏
j=1

H(bj − aTj λ) (32)

Then, the MAP inference problem in (26) becomes:

min
λ∈RN

,
1
2
(y − Qλ)T (y − Qλ) +

N∑
i=1

Ri(λi), s.t., (31) (33)

Note that (33) deviates from the sparse coding problem and
thus the LCA algorithm does not directly apply here. However,
from the MoI perspective, we can configure a SNN using the
method in Section 3.2. The configured network has a total of
N + J neurons with firing rates λ = col(λc, λµ) ∈ RN+J and
corresponding membrane voltages u = col(uc, uµ). We let λc

∈
N stand for the inferred latent causes, and let λµ stand for the
ultipliers of the linear constraints. We set τm = 1, η = 1 and
= 1. Then with (3) and Lemma 2.2, the mean-field dynamics of
he configured SNN is

u̇c
= −uc

+ λc
− Q TQλc

− ATλµ
+ Q Ty (34)

u̇µ
= −uµ

+ λµ
+ Aλc

− b (35)

λc
i (t) =

1
1 + ρi

[uc
i (t) − ϱi]+, i = 1, . . . ,N (36)

µ

j (t) = [uµ

j (t)]+, j = 1, . . . , J (37)

emark 4.2. The structural prior can help to prune the la-
ent space in posterior inference, which is believed to be used
y neural networks for efficiently performing cognition tasks.
owever, how to synthesize a recurrent neural network to per-
orm inference with structural prior is not known yet. With the
roposed methods, we can easily synthesize the mean-field neu-
al dynamics like (34)–(37) to accommodate more complicated
tructural prior in Bayesian inference, which is not achieved by
ther neural dynamics synthesis methods, such as Moreno-Bote
nd Drugowitsch (2015), Tang (2016), and Tang et al. (2017). In
act, the proposed monotone operator framework can be treated
s a generalization of the synthesis method in Moreno-Bote and
rugowitsch (2015), Tang (2016) and Tang et al. (2017), since
onotone inclusion can cover general decision making problems
ther than optimization problems. With the synthesis methods of
his work, more practical decision making problems can be solved
ith a synthesized recurrent neural dynamics, such as the Nash
ame, the saddle point problem, the Markovian decision process,
tc.

xample 4.3. As in Example 4.1, we take N = 100,m = 10. We
enerate feature vectors Q = [q1, . . . , q100] and a observation y as
ollows. We first generate {q1, . . . , q50} with each element of the
eature vector being independently and uniformly drawn from
0, 1]. And then we set qi = qi−50 + εi for i = 51, . . . , 100 with
ach coordinate of εi being an i.i.d. Gaussian noise of zero mean
nd variance of 0.001. Then each feature vector is normalized to
, ∥qi∥2 = 1. Hence, the feature vector qi is highly correlated with
i+50 for i = 1, . . . , 50. Then, y is generated as y = 9 ∗ q20 + 4 ∗

50 + ε with each element of ε being an i.i.d. Gaussian noise with
ero mean and variance of 0.001. The true latent cause λ∗

∈ R100

s a sparse high dimensional vector with λ∗

20 = 9, λ∗

50 = 4 and all
ther coordinates being zeros.
We incorporate additional structural information (31) by set-

ing A = [a1, a2]T ∈ R2×100 and b = (b1, b2)T ∈ R2 with
1 = col(−150, 050) and a2 = col(050, 150). This structural prior
mposes that the sum of first 50 latent causes is larger than −b1
hile the sum of last 50 latent causes is smaller than b2. We

et b to be b1 = (−5, 4)T , b2 = (−8, 3)T , b3 = (−11, 2)T ,
espectively. This could be treated as a refinement of structural
rior when b changes from b1 to b2 and finally to b3, during
hich the true latent cause gets closer to the boundary of the set
pecified by Aλ ≤ b. For each given b, we set ρi = ρ = 0.001
nd ϱi = ϱ for all neurons. We tune ϱ to change from 0.05
o 5 to study the interplay of the constraint parameter b and
he sparsity parameter ϱ. We configure an SNN with (34)–(37)
or each parameter setting. The stationary firing rate is denoted
s λ̂ = col(λ̂c, λµ) with λ̂c as inferred latent cause and λ̂µ as
ptimal multiplier. For comparison, we also configure an SNN
sing (27)–(28) (i.e., without structural prior). We set the same
i = ρ = 0.001 and tune ϱi = ϱ the same as before.
Fig. 5 compares the inference error with structural prior (32)

nd with independent prior (25) as a function of ϱ. Fig. 6 gives
he inferred 20th, 50th, 70th, and 100th latent causes with (32)
r (25) when tuning ϱ. Both Fig. 5A and B show that with the
ncrease of ϱ the inferred latent cause vector becomes sparser
nd gets closer to the true latent cause in term of L0 norm
rror. However, Fig. 5B indicates that with only the independent
rior we cannot distinguish q20, q50 from q70, q100, therefore, the
0 norm error ∥λ∗

− λ̂∥0 can only decreases to 4. This is also
vident in Fig. 6D, where all λ̂20 λ̂50, λ̂70, λ̂100 are nonzero when
nferring with (25). The above comparative analysis validates that
or practical casual inference problem with subtle features, the
ncorporation of a structural prior can significantly improve the
nference fidelity. Moreover, Fig. 5A shows that incorporating (31)
an further decrease the L0 norm error with suitable choice of
. Combining Fig. 6B and C, we see λ̂c

70 and λ̂c
100 will decrease

o zero and ∥λ∗
− λ̂c

∥0 can decrease to 2 with b2 and b3 if ϱ is
arge enough, implying the identities of nonzero latent causes are
orrectly discriminated. Fig. 5A also shows that a more refined
rior with b3 leads to a better inference performance than a
oarse prior with b2 or b1. Fig. 5C and D show the tuning of L2
orm error with ϱ when inferring with (32) and (25), respectively.
ig. 5D shows that ∥λ∗

−λ̂∥ increases as ϱ get larger when only an
ndependent prior (25) is used. Fig. 5C shows that ∥λ∗

− λ̂c
∥ can

e bounded if (31) is also incorporated, which can also be found
n Fig. 6A,B, and C. Moreover, combining Figs. 5C and 6C, we see
he ∥λ∗

− λ̂c
∥ is non-increasing as ϱ gets larger with a refined

arameter b3. We conclude that with a proper ϱ the structural
rior (31) can help to improve the inference of both the identity
nd strength of the latent causes.
Fig. 7 shows how the multiplier λµ tunes with different con-

traint parameter b and sparsity parameter ϱ when inferring with
rior (32). Fig. 7A, B and C give the tuning of the steady state
ultipliers λ̂µ with ϱ when b is b1, b2 and b3, respectively. When
= b1 the true latent cause λ∗ is far away from the boundary
f the constraint set specified by (31), and Fig. 7A indicates that
31) does not influence the inference in this case. Fig. 7B and C
how that (31) starts to play a role in the inference only if ϱ
s large enough. Since the threshold nonlinearity in (36) makes
he inferred latent cause sparser as ϱ gets larger, the values of
20, λ50, λ70 and λ100 has to increase to explain the observation.
owever, when b equals to b2 or b3, the true latent cause λ∗ is
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n
∥

Fig. 5. The comparison of inference results with structural prior (32) and with independent prior (25) when tuning the sparsity parameter ϱ. A: The tuning of L0
orm error with ϱ, ∥λ∗

− λ̂c
∥0 , with (32) and different b. B: The tuning of L0 norm error with ϱ, ∥λ∗

− λ̂∥0 , with (25). C: The tuning of L2 norm error with ϱ,
λ∗

− λ̂c
∥2 , with (32) and different b. D: The tuning of L2 norm error with ϱ, ∥λ∗

− λ̂∥2 , with (25).
Fig. 6. The stationary firing rate as the inferred λ̂c
20 λ̂c

50 , λ̂c
70 , λ̂c

100 with different constraint parameters when tuning the sparsity parameter ϱ. (A), (B), (C) are the
inferred causes with structural prior (32) when tuning ϱ with b1 , b2 and b3 , respectively. D: The inferred causes with independent prior (25) when tuning ϱ.
closer to the boundary of the constraint set specified by (31).
Once (31) is violated, the multiplier λµ becomes nonzero and
starts to help the network to only increase the correct causes
to explain away the observation. Fig. 7D, E, F give the transition
trajectories of the firing rates for λµ with ϱ = 5 when b is b1, b2
and b3, respectively. They show that the firing rates standing for
multiplier λµ can converge to a stationary equilibrium quickly.

Fig. 8 shows transient firing rates for λc with different combi-
nation of structural prior parameter b and sparsity prior param-
eter ϱ.

By comparing the rows of Fig. 8 (for example Fig. 8C and I), the
dynamics converges to equilibrium faster with a larger sparsity
parameter ϱ. This implies that the threshold nonlinearity in (36)
can promote inference sparsity and accelerate convergence. By
comparing the columns of Fig. 8 (for example Fig. 8G and I ),
we see with a more refined structural prior b, the transient is
prolonged, but converges to a more accurate inference of latent
causes. This is because it takes time for the multiplier of the
structural prior to evolve before affecting the inference. The figure
shows the convergence of the configured dynamics with different
parameters.

5. Conclusion

We provided a normative theory regarding the ability of recur-
rent neural circuits to embed the problem of monotone inclusion,
which encompasses a wide range of optimization problems. We
show that in a rate-based Poisson SNN, each neuron’s firing
(activation) curve can be treated as a proximal operator of a
local regularizer and hence the overall dynamics amounts to an
operator-splitting type ODE solver for MoI. We are then able
to give a top-down approach to synthesize SNN for MoI as a
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b

Fig. 7. The steady state and transition behavior of the multiplier λµ in (34)–(37) with different b and ϱ. (A), (B) and (C) are the tuning of steady λ̂µ with ϱ when

= b1 , b = b2 , b = b3 , respectively. (D), (E), and (F) are the transition trajectories of λµ with ϱ = 5 when b = b1 , b = b2 , b = b3 , respectively.
Fig. 8. The transition trajectories of the neural firing rates for λc by dynamics (34)–(37) with a different combination of constraint prior b and sparsity prior ϱ.
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surrogate for salient functions. To illustrate this, we performed
numerical studies in the context of Bayesian causal inference,
including treatment of a structural prior that falls outside of the
scope of existing works on sparse neural coding.

The key contribution of our work is a perspective on the
unifying framework to understand the ability of neural circuits
to carry out optimization. Indeed, the MoI framework could be
used to synthesize networks for other problems of interest in
neuroscience and neural computation, including Nash equilib-
rium calculation and Markov decision problems. As well, the ease
of our synthesis procedure makes it potentially appealing for
neuromorphic instantiations.

There remain several open questions regarding out results,
including more detailed validation of the fidelity of the mean-
field approximation, as well as convergence and rate analysis
under a weaker assumption. As well, it is of obvious interest to
consider the possibility of treating more complicated nonlinear
problems. For this, one intriguing possibility is to successively ap-
proximate a nonlinear problem with linear approximations using
a process analogous to synaptic plasticity, thus accommodate the
normative theory of this work to the adaption and plasticity of
biological neurons.
 a
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Appendix. Monotone operator and fixed points

Let A : Rm
→ 2R

m
be a set-valued operator. Denote Id as

the identity operator, i.e, Id(x) = x. The graph of A is graA =

(x, u)|u ∈ Ax}, then the inverse of A is defined through its graph
s graA−1

= {(u, x)|(x, u) ∈ graA}. The zero set of A is zerA =

x ∈ Rm
|0 ∈ Ax}. A is called monotone if ∀(x, u), ∀(y, v) ∈ graA,

e have ⟨x−y, u−v⟩ ≥ 0. Define the resolvent of A as RA = (Id+

)−1. For a proper lower semi-continuous convex (l.s.c.) function f ,
ts sub-differential operator ∂ f is x ↦→ {g|f (y) ≥ f (x) + ⟨g, y −

⟩, ∀y}. ∂ f is a monotone operator. Then Proxf = R∂ f is called the
roximal operator of f , i.e., Proxf : x ↦→ argminu∈domf f (u)+ 1

2∥u−

x∥2
2. Define the indicator function of Ω as ιΩ (x) = 0 if x ∈ Ω and

ιΩ (x) = ∞ if x /∈ Ω . For a closed convex set Ω , ιΩ is a proper l.s.c.
function. ∂ιΩ is also the normal cone operator of Ω , i.e., NΩ (x),
where NΩ (x) = {v|⟨v, y − x⟩ ≤ 0, ∀y ∈ Ω} and domNΩ = Ω .
or a single-valued operator T : Rm

→ Rm, a point x ∈ Rm is
fixed point of T if Tx = x, and the set of fixed points of T is
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denoted as FixT . Assume A is single-valued and B is monotone,
then zer(A + B) = FixRB ◦ (Id − A).

References

Abbas, Boushra, & Attouch, Hedy (2015). Dynamical systems and forward–
backward algorithms associated with the sum of a convex subdifferential
and a monotone cocoercive operator. Optimization, 64(10), 2223–2252.

Attouch, Hedy, Cabot, Alexandre, & Czarnecki, Marc-Olivier (2018). Asymptotic
behavior of nonautonomous monotone and subgradient evolution equations.
Transactions of the American Mathematical Society, 370(2), 755–790.

Attouch, H., & Svaiter, B. F. (2011). A continuous dynamical newton-like approach
to solving monotone inclusions. SIAM Journal on Control and Optimization,
49(2), 574–598.

Balavoine, Aurèle, Romberg, Justin, & Rozell, Christopher J. (2012). Conver-
gence and rate analysis of neural networks for sparse approximation. IEEE
Transactions on Neural Networks and Learning Systems, 23(9), 1377–1389.

arrett, David G., Denève, Sophie, & Machens, Christian K. (2013). Firing rate
predictions in optimal balanced networks. In Advances in neural information
processing systems (pp. 1538–1546).

auschke, Heinz H., Combettes, Patrick L., et al. Convex analysis and monotone
operator theory in Hilbert spaces, Vol. 408. Springer.

eck, Amir, & Teboulle, Marc (2009). A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1),
183–202.

Boggs, Paul T., & Tolle, Jon W. (1995). Sequential quadratic programming. Acta
Numerica, 4, 1–51.

oţ, Radu Ioan, & Csetnek, Ernö Robert (2018). Convergence rates for forward–
backward dynamical systems associated with strongly monotone inclusions.
Journal of Mathematical Analysis and Applications, 457(2), 1135–1152.

hen, Dingyuan, Zhang, Weiwei, Cao, Jinde, & Huang, Chuangxia (2020). Fixed
time synchronization of delayed quaternion-valued memristor-based neural
networks. Advances in Difference Equations, 2020(1), 1–16.

hou, Chi-Ning, Chung, Kai-Min, & Lu, Chi-Jen (2018). On the algorithmic power
of spiking neural networks. arXiv preprint arXiv:1803.10375.

ombettes, Patrick L., & Pesquet, Jean-Christophe (2007). Proximal threshold-
ing algorithm for minimization over orthonormal bases. SIAM Journal on
Optimization, 18(4), 1351–1376.

ombettes, Patrick L., & Pesquet, Jean-Christophe (2011). Proximal splitting
methods in signal processing. In Fixed-point algorithms for inverse problems
in science and engineering (pp. 185–212). Springer.

ombettes, Patrick L., & Pesquet, Jean-Christophe (2019). Lipschitz Certificates
for neural network structures driven by averaged activation operators. arXiv
preprint arXiv:1903.01014.

ombettes, Patrick L., & Pesquet, Jean-Christophe (2020). Deep neural network
structures solving variational inequalities. Set-Valued and Variational Analysis,
1–28.

old, Dominik, Bytschok, Ilja, Kungl, Akos F, Baumbach, Andreas, Bre-
itwieser, Oliver, Senn, Walter, et al. (2019). Stochasticity from function why
the bayesian brain may need no noise. Neural Networks, 119, 200–213.

Friedrich, Johannes, & Lengyel, Máté (2016). Goal-directed decision making with
spiking neurons. Journal of Neuroscience, 36(5), 1529–1546.

Friston, Karl (2010). The free-energy principle: a unified brain theory?. Nature
Reviews Neuroscience, 11(2), 127–138.

angopadhyay, Ahana, & Chakrabartty, Shantanu (2017). Spiking, bursting, and
population dynamics in a network of growth transform neurons. IEEE
Transactions on Neural Networks and Learning Systems, 29(6), 2379–2391.

erstner, Wulfram, Kistler, Werner M., Naud, Richard, & Paninski, Liam (2014).
Neuronal dynamics: From single neurons to networks and models of cognition.
Cambridge University Press.

ill, Philip E., Murray, Walter, & Saunders, Michael A. (2005). Snopt: An
sqp algorithm for large-scale constrained optimization. SIAM Review, 47(1),
99–131.

ao, Yunzhe, Huang, Xuhui, Dong, Meng, & Xu, Bo (2020). A biologically plausible
supervised learning method for spiking neural networks using the symmetric
stdp rule. Neural Networks, 121, 387–395.

u, Haijun, Yi, Taishan, & Zou, Xingfu (2020). On spatial-temporal dynamics of a
fisher-kpp equation with a shifting environment. Proceedings of the Americal
Mathematical Society, 148(1), 213–221.

uang, Chuangxia, Cao, Jie, Wen, Fenghua, & Yang, Xiaoguang (2016). Stability
analysis of sir model with distributed delay on complex networks. PLOS ONE,
11(8), 1–22.

uang, Fuqiang, & Ching, ShiNung (2019). Spiking networks as efficient
distributed controllers. Biological Cybernetics, 113(1–2), 179–190.

uang, Chuangxia, Long, Xin, & Cao, Jinde (2020). Stability of antiperiodic recur-
rent neural networks with multiproportional delays. Mathematical Methods
in the Applied Sciences, 43(9), 6093–6102.

uang, Chuangxia, Zhang, Hua, Cao, Jinde, & Hu, Haijun (2019). Stability and hopf
bifurcation of a delayed preycpredator model with disease in the predator.
International Journal of Bifurcation and Chaos, 29(07), Article 1950091.
uang, Chuangxia, Zhang, Hua, & Huang, Lihong (2019). Almost periodicity
analysis for a delayed nicholson’s blowflies model with nonlinear density-
dependent mortality term. Communications on Pure & Applied Analysis, 18(6),
3337–3349.

ang, Hyeryung, Simeone, Osvaldo, Gardner, Brian, & Grüning, André (2018).
Spiking neural networks: A stochastic signal processing perspective. arXiv
preprint arXiv:1812.03929.

olivet, Renaud, Rauch, Alexander, Lüscher, Hans-Rudolf, & Gerstner, Wulfram
(2006). Predicting spike timing of neocortical pyramidal neurons by simple
threshold models. Journal of Computational Neuroscience, 21(1), 35–49.

afashan, MohammadMehdi, & Ching, ShiNung (2017). Recurrent networks with
soft-thresholding nonlinearities for lightweight coding. Neural Networks, 94,
212–219.

nill, David C., & Richards, Whitman (1996). Perception as Bayesian inference.
Cambridge University Press.

udu, Mustafa (2018). A parameter uniform difference scheme for the param-
eterized singularly perturbed problem with integral boundary condition.
Advances in Difference Equations, 2018(1), 1–12.

i, Wenjie, Huang, Lihong, & Ji, Jinchen (2019). Periodic solution and its
stability of a delayed beddington-deangelis type predator-prey system with
discontinuous control strategy. Mathematical Methods in the Applied Sciences,
42(13), 4498–4515.

i, Xiuwen, Liu, Zhenhai, Li, Jing, & Tisdell, Chris (2019). Existence and con-
trollability for nonlinear fractional control systems with damping in hilbert
spaces. Acta Mathematica Scientia, 39(1), 229–242.

aass, Wolfgang (1997). Networks of spiking neurons: the third generation of
neural network models. Neural Networks, 10(9), 1659–1671.

oreno-Bote, Rubén, & Drugowitsch, Jan (2015). Causal inference and explaining
away in a spiking network. Scientific Reports, 5, 17531.

ocedal, Jorge, & Wright, Stephen (2006). Numerical optimization. Springer
Science & Business Media.

lshausen, Bruno A., & Field, David J. (1997). Sparse coding with an overcomplete
basis set: A strategy employed by v1?. Vision Research, 37(23), 3311–3325.

érez, Javier, Cabrera, Juan A., Castillo, Juan J., & Velasco, Juan M. (2018).
Bio-inspired spiking neural network for nonlinear systems control. Neural
Networks, 104, 15–25.

illow, Jonathan W., Paninski, Liam, Uzzell, Valerie J., Simoncelli, Eero P., &
Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell
responses with a probabilistic spiking model. Journal of Neuroscience, 25(47),
11003–11013.

ezende, Danilo J., Wierstra, Daan, & Gerstner, Wulfram (2011). Variational
learning for recurrent spiking networks. In Advances in neural information
processing systems (pp. 136–144).

ozell, Christopher J., Johnson, Don H., Baraniuk, Richard G., & Ol-
shausen, Bruno A. (2008). Sparse coding via thresholding and local
competition in neural circuits. Neural Computation, 20(10), 2526–2563.

chuman, Catherine D., Potok, Thomas E., Patton, Robert M., Birdwell, J. Douglas,
Dean, Mark E., Rose, Garrett S., et al. (2017). A survey of neuromorphic
computing and neural networks in hardware. arXiv preprint arXiv:1705.
06963.

ong, Chao, Fei, Shumin, Cao, Jinde, & Huang, Chuangxia (2019). Robust syn-
chronization of fractional-order uncertain chaotic systems based on output
feedback sliding mode control. Mathematics, 7(7), 599.

aherkhani, Aboozar, Belatreche, Ammar, Li, Yuhua, Cosma, Georgina,
Maguire, Liam P., & McGinnity, T. Martin (2020). A review of learning
in biologically plausible spiking neural networks. Neural Networks, 122,
253–272.

ang, Ping Tak Peter (2016). Convergence of lca flows to (c) lasso solutions. arXiv
preprint arXiv:1603.01644.

ang, Ping Tak Peter, Lin, Tsung-Han, & Davies, Mike (2017). Sparse coding
by spiking neural networks: Convergence theory and computational results.
arXiv preprint arXiv:1705.05475.

enenbaum, Joshua B., Griffiths, Thomas L., & Kemp, Charles (2006). Theory-
based bayesian models of inductive learning and reasoning. Trends in
Cognitive Sciences, 10(7), 309–318.

oon, Young C. (2016). Lif and simplified srm neurons encode signals into spikes
via a form of asynchronous pulse sigma–delta modulation. IEEE Transactions
on Neural Networks and Learning Systems, 28(5), 1192–1205.

ambrano, Davide, Nusselder, Roeland, Steven Scholte, H., & Bohté, Sander M.
(2018). Sparse computation in adaptive spiking neural networks. Frontiers in
Neuroscience, 12.

hang, Jian, & Huang, Chuangxia (2020). Dynamics analysis on a class of delayed
neural networks involving inertial terms. Advances in Difference Equations,
2020(1), 1–12.

hou, Ya, Wan, Xiaoxiao, Huang, Chuangxia, & Yang, Xinsong (2020). Finite-
time stochastic synchronization of dynamic networks with nonlinear
coupling strength via quantized intermittent control. Applied Mathematics
and Computation, 376(C).

http://refhub.elsevier.com/S0893-6080(20)30289-6/sb1
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb1
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb1
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb1
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb1
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb2
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb2
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb2
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb2
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb2
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb3
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb3
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb3
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb3
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb3
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb4
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb4
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb4
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb4
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb4
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb5
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb5
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb5
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb5
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb5
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb7
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb7
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb7
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb7
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb7
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb8
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb8
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb8
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb9
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb9
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb9
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb9
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb9
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb10
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb10
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb10
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb10
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb10
http://arxiv.org/abs/1803.10375
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb12
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb12
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb12
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb12
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb12
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb13
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb13
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb13
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb13
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb13
http://arxiv.org/abs/1903.01014
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb15
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb15
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb15
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb15
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb15
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb16
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb16
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb16
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb16
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb16
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb17
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb17
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb17
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb18
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb18
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb18
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb19
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb19
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb19
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb19
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb19
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb20
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb20
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb20
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb20
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb20
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb21
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb21
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb21
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb21
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb21
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb22
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb22
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb22
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb22
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb22
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb23
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb23
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb23
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb23
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb23
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb24
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb24
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb24
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb24
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb24
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb25
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb25
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb25
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb26
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb26
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb26
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb26
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb26
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb27
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb27
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb27
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb27
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb27
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb28
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb28
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb28
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb28
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb28
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb28
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb28
http://arxiv.org/abs/1812.03929
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb30
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb30
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb30
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb30
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb30
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb31
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb31
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb31
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb31
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb31
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb32
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb32
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb32
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb33
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb33
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb33
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb33
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb33
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb34
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb34
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb34
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb34
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb34
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb34
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb34
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb35
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb35
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb35
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb35
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb35
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb36
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb36
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb36
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb37
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb37
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb37
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb38
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb38
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb38
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb39
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb39
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb39
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb40
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb40
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb40
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb40
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb40
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb41
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb41
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb41
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb41
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb41
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb41
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb41
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb42
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb42
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb42
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb42
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb42
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb43
http://arxiv.org/abs/1705.06963
http://arxiv.org/abs/1705.06963
http://arxiv.org/abs/1705.06963
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb45
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb45
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb45
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb45
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb45
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb46
http://arxiv.org/abs/1603.01644
http://arxiv.org/abs/1705.05475
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb49
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb49
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb49
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb49
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb49
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb50
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb50
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb50
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb50
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb50
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb51
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb51
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb51
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb51
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb51
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb52
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb52
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb52
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb52
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb52
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb53
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb53
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb53
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb53
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb53
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb53
http://refhub.elsevier.com/S0893-6080(20)30289-6/sb53

	Synthesis of recurrent neural dynamics for monotone inclusion with application to Bayesian inference
	Introduction
	Top-down analysis of the recurrent SNN dynamics
	Recurrent SNN dynamics
	Mean-field approximation and equilibrium point analysis
	Equilibrium analysis from MoI perspective
	Neural dynamics as an ODE that solves MoI

	Top-down synthesis of spiking networks
	Synthesis of SNNs for MoI
	Synthesis of SNN for constrained quadratic optimization

	Neural Bayesian causal inference
	Independent sparsity prior
	Tolerance to noise
	Structural prior

	Conclusion
	Declaration of competing interest
	Appendix. Monotone operator and fixed points
	References


