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Campana points of bounded height
on vector group compactifications

Marta Pieropan, Arne Smeets, Sho Tanimoto and Anthony Varilly-Alvarado

ABSTRACT

We initiate a systematic quantitative study of subsets of rational points that are integral with
respect to a weighted boundary divisor on Fano orbifolds. We call the points in these sets
Campana points. Earlier work of Campana and subsequently Abramovich shows that there are
several reasonable competing definitions for Campana points. We use a version that delineates
well different types of behavior of points as the weights on the boundary divisor vary. This
prompts a Manin-type conjecture on Fano orbifolds for sets of Campana points that satisfy a
klt (Kawamata log terminal) condition. By importing work of Chambert-Loir and Tschinkel to
our setup, we prove a log version of Manin’s conjecture for klt Campana points on equivariant
compactifications of vector groups.
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1. Introduction

Manin’s conjecture for rational points, extensively studied now for more than three decades,
predicts an asymptotic formula for the counting function of rational points of bounded
height on rationally connected algebraic varieties over number fields. The class of equivariant
compactifications of homogeneous spaces has proved to be a particularly fertile testing ground
for the conjecture [6, 8, 23, 36, 38—40, 61, 62, 66]. The related problem of counting integral
points on homogeneous spaces has received much attention as well, both classically (see, for
example, [33, 35]), and recently, as attested by [10, 25—27, 64, 65]. By choosing a suitable
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compactification, one can identify the set of integral points on the original variety with the
set of rational points on the compactification that are integral with respect to the boundary
divisor. Hence, this latter body of work represents progress toward a “logarithmic version” of
Manin’s conjecture for integral points. Regrettably, subtleties of a mostly geometric nature
have so far prevented a general formulation of a Manin-type conjecture for integral points.

In this paper, we focus on an intermediate notion: sets of rational points that are integral
with respect to a weighted boundary divisor [21], which we call Campana points. Such sets
depend on the choice of weights and “interpolate” between the set of integral points and the set
of rational points, which can both be recovered as sets of Campana points for suitable choices
of weights. If the weighted boundary divisor is Kawamata log terminal (klt for short), we say
that the Campana points are klt. The set of rational points is a set of klt Campana points,
while the set of integral points is not. However, the set of integral points can be written as an
infinite intersection of sets of klt Campana points.

To date, Manin-type problems for sets of Campana points have not been well studied. The
only results we are aware of are to be found in [16, 17, 71] and we believe that this research
direction is relatively new.

The purpose of this paper is to propose a Manin-type conjecture for the distribution of klt
Campana points on Fano orbifolds. We show that the conjecture holds for all smooth vector
group compactifications with a strict normal crossings boundary divisor for the weighted log-
anticanonical height and for many more choices of heights. We investigate also the case of
non-klt Campana points, and we observe that all the difficulties that one encounters when
dealing with integral points appear also in this setting.

1.1. Campana points

There are several ways to “interpolate” between the classical notions of rational and integral
points. Keeping Manin’s conjecture in mind, this article argues in favor of a compelling option
that arises from Campana’s theory of pairs, which he baptized orbifoldes géométriques.” There
are various competing notions of Campana points in the literature [1, 3], and they all agree
with the original definition of Campana [19, 21] on curves. On higher dimensional varieties, the
various notions can lead to significantly different sets of points, manifestly affecting the counting
problems addressed in this paper, as we explain in §3.2.1. We choose to work with Campana’s
original definition [21] because it best allows us to formulate a Manin-type conjecture which
shares many characteristics with the now classical conjectures for rational points [5, 54]. Our
study of local height integrals and Euler products for vector group compactifications shows
that the notion considered in this paper interacts well with the tools from harmonic analysis:
the regularization of the Euler product of local height integrals looks similar to the one used
for the study of Manin’s conjecture for rational points (see Proposition 7.4 and Corollary 7.5).

The notion of Campana points appearing in [3] is different from the one considered here.
That notion enjoys good functoriality properties, but it seems ill-suited to the study of points
of bounded height: for example, if one were to use the height zeta function method to count
points of bounded height on vector group compactifications, then the regularization of the
Euler product of local height integrals for the main term would require a newfound set of
ideas. We consider this clarification an important contribution of this paper.

1.2. A log Manin conjecture

Let (X, D) be a Campana orbifold (see §3.1) over a number field F'. Assume moreover that
X is projective and that —(Kx + D) is ample; a pair (X, D.) with this additional property

TUnlike the name suggests, such objects are not stacks, but simply pairs consisting of a variety equipped
with a Q-divisor of a specific type.
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is called a Fano orbifold. Recall that the effective cone Eff'(X) is finitely generated by [14].
Fix a finite set S of places of F' containing all archimedean places, as well as a good integral
model (X, D,) of (X, D) over the ring of S-integers Op s of F' (see §3.1). Write (X, D.)(OF.s)
for the set of Op s-Campana points of (X, D.) (see Definition 3.4), and assume that |D.| =0,
that is, every weight €, is strictly smaller than 1. This condition is equivalent to saying that
(X, D,) is klt in the sense of birational geometry (see [49, Definition 2.34] for a definition of
klt singularities, and [49, Lemma 2.30] for a characterization). Let

He: X(F) = Ry

be the height function determined by an adelically metrized big line bundle £ = (L,|| - ||) on
X as in [54, §1.3]. For any subset U C X (F) and positive real number T, we consider the
counting function

N(U,L,T) = #{P € U | H.(P) < T}.

CONJECTURE 1.1 (Manin-type conjecture for Fano orbifolds). Suppose that in addition to
being big, the divisor L is nef, and that the set of klt Campana points (X,D.)(OF ) is not
thin. Then there exists a thin set Z C (X, D.)(OF,s) as in §3.4 such that

N((X, D) (Ors)\ Z, L, T) ~ c(F, S, (X,D,.), L, Z)TXP)L) (Jog T)PUX D)L= (7 1)
as T — oo, where
a((X,D.),L) = inf{t e R|tL + Kx + D, € Eff' (X)}

is the Fujita invariant of (X, D.) with respect to L, b(F, (X, D.), L) is the codimension of the
minimal supported face of Eff'(X) that contains the class a((X, ), D)L+ [Kx + D] (cf.
[42, Definition 2.1]), and the leading constant ¢(F,S,(X,D.),L,Z) is a positive Tamagawa
constant, described in §3.3.

The definition of the exponents a((X, D.), L) and b(F, (X, D.),L) in the conjecture above
is analogous to the case of rational points [5]. This is the main reason for our choice among
various possible definitions of Campana points.

Although a((X, D), L) and b(F, (X, D.), L) do not depend on the choice of an integral model
for (X, D.), the leading constant does depend on such a choice. The description of the leading
constant is analogous to Peyre’s constant in [9, 54].

The removal of a thin subset of rational points in order to get a count that is not dominated
by accumulating subvarieties is a natural assumption, which is already present in the case of
Manin’s conjecture for rational points (see, for example, [52, 55]). In §3.5 we explain why
a recent example of Browning and Yamagishi [17] whose exceptional set cannot be a proper
closed subset is still compatible with Conjecture 1.1.

While the geometric properties of kIt singularities are not used in this paper, we believe
that they will play a prominent role in the analysis of the exceptional sets for Conjecture 1.1.
Indeed, in the classical case of rational points, one of the key ingredients in the proof of thinness
of the conjectural exceptional set in [52] is the BAB conjecture, which holds for klt log Fano
varieties (more precisely in the e-klt setting), proved in [13] and [12], but fails in the dlt case.
This is one of the main reasons for expecting that klt Campana points are easier to deal with
compared to integral points.

In attempting to formulate a conjecture for sets of Campana points that are not klt, we
encounter the same difficulties that have prevented the formulation of a conjecture in the
much more extensively studied case of integral points. For example, the exponents appearing
in the asymptotics of the counting functions in these results depend heavily on the divisor
chosen for the counting function, and not only on its numerical class (see, for example, [26] for
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integral points and § 10 for Campana points). It seems sensible to study explicit examples of
sets of Campana points that are “barely” non klt, for example, when exactly one of the weights
€, is equal to 1, as a step toward a better understanding of the distribution of integral points
on Fano varieties.

1.3. Evidence

We prove Conjecture 1.1 for equivariant compactifications of vector groups. This important
class of varieties satisfies Manin’s conjecture for rational points [23] and analogous asymptotics
for integral points [26]. It has also been studied for the motivic version of Manin’s conjecture
in [11, 22]. Hence, it provides an ideal testing ground for Conjecture 1.1.

Let F' be a number field and let G = G} be the n-dimensional vector group. Let X be a
smooth, projective, equivariant compactification of G defined over F, such that the boundary
divisor D = X \ G is a strict normal crossings divisor on X, with irreducible components
(Da)aca- Let S be a finite set of places of F', containing all archimedean places, such that
there is a good integral model (X, D) for (X, D) over the ring of S-integers Op s of F' in the
sense of §3.2. We choose a weight vector € = (€,)aec.a, Where

1
o 1—— Z u{1
€ G{ m‘me >1} {}
for all o, and we set

D, = Z eaDom D. = Z 60{th17

acA acA

where D, denotes the closure of D, in X. Let L be a big line bundle on X, and let £ denote
L equipped with a smooth adelic metrization.

Our first main result addresses the situation where all ¢, are strictly smaller than 1; we
refer to this case as the kIt case. In this situation, we get a precise result for “many” L. We
recall that a divisor is said to be rigid if it has litaka dimension zero; see [50, Section 2.1] for
a definition of ITitaka dimension.

THEOREM 1.2. With the notation above, assume that (X, D.) is klt. Let a = a((X, D.), L)
be defined as in Conjecture 1.1. If aL + Kx + D, is rigid, then the asymptotic formula in
Conjecture 1.1 holds for (X, D., L) with exceptional set

Z = (X\G)N(X,D)(Ors).

REMARKS 1.3. (i) The asymptotic (1.1) holds for a pair (X, D.) in Theorem 1.2 even if the
pair is not a Fano orbifold. See Theorem 9.4.

(ii) If L = —(Kx + D.), the rigidity condition in the statement is trivially satisfied, since
in that case a = 1. In this case, b is the Picard rank of X.

(iii) We prove the conclusion of Theorem 1.2 also when the adjoint divisor is not rigid, under
additional technical assumptions. See Theorem 9.5.

The more general case where some of the weights ¢, are allowed to be equal to 1 — to which
we refer as the dIt case — is more subtle. In this case, we have to restrict our attention to
the case where L is the “orbifold anticanonical line bundle,” due to subtleties arising in the
formulation of the main term.
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THEOREM 1.4. With notation as above, let L be the line bundle —(Kx + D.), and let
L denote L equipped with a smooth adelic metrization as above. There exists a geometric
invariant b = b(F, S, (X, D.), L) > 0, defined in § 10, such that

N((Xa’De)(OF,S)mG(F)WCaT) ~ T(lOgT)b71 aST%OO7

1)

for some positive constant ¢ that depends on F, S, (X,D.) and L.

It is important to observe that the logarithmic exponent b in Theorem 1.4 for dlt points
depends on the choice of S; this was not the case in Theorem 1.2 for klt Campana points. In
essence, when ¢, = 1 for at least one index «, the local zeta functions associated to places in S
can contribute positively to b. This is a typical feature observed in the literature about integral
points of bounded height. Moreover, if €, € {0,1} for all «, our result recovers [26].

We note that the pair (X, D) in the statement of Theorem 1.4 is not required to be a Fano
orbifold. In particular, Theorem 1.4 holds for all smooth compactifications of vector groups
with strict normal crossings boundary, and there are numerous such compactifications: indeed,
blowing-up invariant points always produces new examples. See §5 for more details.

1.4. Methods

To prove Theorems 1.2 and 1.4, we use the height zeta function method, as in the foundational
papers [23, 26]. Let

G(F)e = G(F) N (X,Dc)(OF.s)

be the set of rational points in G which extend to Campana Op s-points on (X, D,) in the
sense of §3.2. Even though the notation may suggest otherwise, the set G(F). does depend on
the choice of S and the Op g-model (X, D), which we have fixed once and for all. Then the

height zeta function is given by
Z H(x,s) Z H(x,s) '6.(x),
x€G(F). x€G(F)
where §.(x) is the indicator function detecting whether a given point in G(F') belongs to
G(F).. Our goal is to obtain a meromorphic continuation of this analytic function, and to
apply a Tauberian theorem. To this end, we consider the Fourier transform over the adeles:

~

H.(a,s) = /G(A” H(x,s) " (x)1a(x) dx

and we use the Poisson summation formula

ZHxslé ZHas

xeG(F) acG(F)

to obtain a meromorphic continuation of Z.(s). To prove the absolute convergence of the right-
hand side, we estimate H¢(a,s) by combining work from [23, 24, 26] on height integrals with
oscillating phase.

1.5. Structure of the paper

After setting up the notation in §2, we start § 3.1 by recalling the notion of Campana orbifold.
We discuss different notions of Campana points that appear in the literature in §3.2 — this is
crucial, since only one of these works well for our purposes. We include an example in § 3.2.1 that
shows how different notions lead to different asymptotics for point counts on a single orbifold.
In §3.2, we discuss a Peyre-type description of the leading constant in Conjecture 1.1, then we
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introduce a notion of thin set in the context of Campana points in § 3.4; in § 3.5 we discuss the
compatibility of Browning and Yamagishi’s example [17] with Conjecture 1.1. Finally, in § 3.6
we discuss the functoriality properties of Campana points under birational transformations.

In §4 we review a type of simplicial complex, called the Clemens complex, which helps to
keep track, in the presence of integrality conditions, of the contribution of local height integrals
to the rightmost pole of the height zeta function. We then use these complexes to give birational
invariance results (Lemmas 4.1 and 4.2) for the a and b-invariants that appear in the asymptotic
formula of the counting function for Campana points.

In §5, we specialize to Campana orbifolds that are equivariant compactifications of vector
groups. We recall basic facts about their geometry such as their Picard groups and effective
cones of divisors, as well as results from harmonic analysis. After a discussion on local and
global heights, in § 6.3 we define the height zeta function of an equivariant compactification of
a vector group, and explain how to reduce the Poisson summation formula to the convergence of
a sum of Fourier transforms of local height functions (local height integrals). Sections 7 and 8
contain the necessary estimates of local height integrals; before carrying on these technical
estimates, we have included an interlude with a detailed explanation of the calculations in
dimension 1, for the benefit of readers new to this type of analysis.

Theorems 1.2 and 1.4 are established, respectively, in §9 and § 10.

2. Notation

2.1. Number fields, completions, and zeta functions

Let F be an arbitrary number field. Denote by Op its ring of integers, by Qp its set of
places, by Q5 the set of all finite (non-archimedean) places, and by Q% the set of all infinite
(archimedean) places. For any finite set S C Qp containing Q%, we denote by Op s the ring
of S-integers of F'. For each v € Qp, we denote by F, the completion of F' with respect to v. If
v is non-archimedean, we denote by O, the corresponding ring of integers, with maximal ideal
m,, and residue field k, of size q,. We write Ap for the ring of adeles of F.

For each v € Qp, the additive group F, is locally compact, and carries a self-dual Haar
measure dz, = i, that we normalize as follows:

e dzx, is the ordinary Lebesgue measure on the real line if v is real,

e dx, is twice the ordinary Lebesgue measure on the plane if v is complex,

e dz, is the measure for which O, has volume N (®)~'/? if v is a nonarchimedean place,
where © denotes the absolute different of F,,, with norm N (D).

These Haar measures satisfy p,(0,) = 1 for all but finitely many non-archimedean places v;
they induce a self-dual measure dx = p on Ap. We denote by dx, the induced Haar measure
on F'. We also denote the product measure on A% by dx.

We define the absolute value |- |, by requiring that

po(xB) = |z, - py (B)
for any Borel set B C F,. When v is real, | - |, is the usual absolute value. When v is complex,

| - |, is the square of the usual norm on the complex numbers. For any prime number p, we
have |p|, = 1/p. For any finite extension F,/Q,, we have

|zl = INF, /0, (@)lp-
We define the local zeta function by
{51 if F, =R or C,

(1- q,;s)71 if v is non-archimedean.

Cr,(s) =
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For non-archimedean places, the local zeta functions fit together to give the Dedekind zeta
function

Cr(s)= JI ¢m (s

<oo
vEQR™

2.2. Varieties and divisors

Let F be a field with fixed algebraic closure F. An F-variety X is a geometrically integral
separated F-scheme of finite type. We denote by X the base change of X to F. If F is a
number field and v € Qp, we write X, for the base change of X to F,. Given a Weil R-divisor
D =3%.a;D; on X, we denote by | D] = >,|a;|D; its “integral part.” We denote the reduced
divisor Zaﬁéo D; by D.oq. Given a scheme X defined over a ring A, we denote by X ® 4 B the
base change of X under a ring extension A — B.

2.3. Conventions for complex numbers

We denote the real part of a complex number s by $(s), and the absolute value by |s|. Given
s = (s1,...,5,) € C" and c € R, by the expression R(s) > ¢ we mean that R(s;) > ¢ for all
ie{l,...,n}. We also write |s| := max?_, |s;|.

3. Campana orbifolds, Campana points, and the conjecture

In this section we recall two notions of Campana points, we discuss the leading constant and
the exceptional sets in Conjecture 1.1, and we investigate the functoriality properties of the
sets of Campana points.

3.1. Orbifolds

We recall Campana’s notion of orbifolds (“orbifoldes géométriques”), as introduced in his
foundational papers [18, 20]. In this article, we only consider those orbifolds which Campana
calls “smooth”; in this section, we allow F' to be any field.

DEFINITION 3.1. A Campana orbifold over F' is a pair (X, D) consisting of a smooth variety
X and an effective Weil Q-divisor D on X, both defined over F', such that

(i) we have

D= €D,

acA

where the D, are prime divisors on X, and €, belongs to the set of weights

1

for all @ € A;
(ii) the support Dieq = ), c 4 Do is a divisor with strict normal crossings on X.

Condition (2) in this definition implies that the irreducible components D, of D,.q are
smooth; it is important to note, however, that they may well be geometrically reducible. We
refer to [69, §41.21] for the definition of strict normal crossings. The definition also implies that
any Campana orbifold (X, D) is a dlt (divisorial log terminal) pair, in the sense of birational
geometry (see [49, Definition 2.37] for this notion). We say that (X, D) is kit (Kawamata log
terminal) if moreover €, # 1 for all a € A, that is, if all weights are strictly smaller than 1.
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Conversely, given a smooth F-variety X, a reduced divisor D = ., D, on X with strict
normal crossings and a weight vector € = (€,)aec.4, Where €, € 20 for all ., we obtain a Campana
orbifold (X, D) over F' by setting D = > . 4 €aDa-

In this paper, we consider only Campana orbifolds (X, D) with X proper over F.

3.2. Two types of Campana points

The notion of “orbifold rational point” is explored in Campana’s papers [18, §9], [19, §4],
[20, §12], [21, §7.6] and in Abramovich’s survey [1, Lecture 2]. The adjective “rational” may
create confusion, so we use the name Campana points here, to acknowledge that they are
an intermediate notion between rational and integral points. In fact, [1] defines two different
notions of Campana points, one more restrictive than the other. It is essential for us to separate
the two notions, since the orbifold analog of Manin’s conjecture seems to work well only for
the more restrictive version; this is the one to which we will refer to simply as Campana points
(Definition 3.4). The notion featuring in the recent paper [3] is (a slight variant of) the less
restrictive version, and we will refer to it as weak Campana points (Definition 3.3); it seems to
be ill-behaved for the problem studied in this paper (see §3.2.1).

REMARK 3.2. So far few results on the arithmetic of (weak) Campana points are available.
Work on points of bounded height goes back to [71], followed immediately by [16] and more
recently by [17]. Work of Schindler and the first author [56] investigates the distribution of
Campana points on toric varieties. Recent work of Xiao [72] extends our results to biequivariant
compactifications of the Heisenberg group.

In dimension 1, where both notions of Campana points coincide, the analog of Mordell’s
conjecture for Campana points has been proved over function fields, first in characteristic 0 by
Campana himself [19], and only recently in arbitrary characteristic [47]. Over number fields,
the only known result says that the abc conjecture implies Mordell’s conjecture for Campana
points; see [63, Appendix] for a detailed argument.

Let (X, D) be a Campana orbifold with X proper over F', where D, = , €¢o D, and the
€, belong to the usual set 20. Let S C Qp be a finite set containing 2%°. We say that (X, D,)
has a good integral model away from S if there exists a flat, proper model X over O g such
that X is regular. Given such a model, we denote by D, the Zariski closure of D, in X', and
we write (X', D.) for the model, where D, := 3 ., €4 Da.

Campana points can only be defined once a suitable model has been fixed, so let us choose
a good integral model (X, D) for (X, D.) over Ops. Any rational point P € X (F') extends
uniquely to an integral point P € X'(OF,s) by the valuative criterion for properness.

Let Ac ={a € A:e, #0}. Let X° = X\ (Uyeu, Do) If P € X°(F) and if v € S is a place
of F, then we get an induced point P, € X(0O,). For each o € A such that P, € D,, the
pullback of D, via P, defines a non-zero ideal in O,. We denote its colength by n,(D,, P);
this is the intersection multiplicity of P and D, at v. When P € D, for some « € A., we define
Ny (De, P) to be +oo.

The total intersection number of P with D is then

ny(De, P) = Y €any(Da, P).
ac A,

The following definition goes back to [1, §2.1.7] and features in [3] as well.

DEFINITION 3.3. With the notation introduced above, we say that P € X(F) is a weak
Campana Op s-point on (X, D,) if the following holds:

(i) for all @ with ¢, =1 and v ¢ S, n,(Da, P) = 0, that is, P € (X \ U, _; Da)(OF,s) and
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(ii) for v € S, if n,(D., P) > 0 then

ny(De, P) < <Z nv(Da,P)> ~1.

ac A,
In particular, if n,(D,, P) = +oo for some a € A, the inequality is trivially satisfied.
We denote the set of weak Campana Op g-points on (X, D) by (X, D)w(OF.s).

We obtain a more restrictive notion by imposing conditions for individual irreducible
components of the support of D, in the spirit of [1, Definition 2.4.17]:

DEFINITION 3.4. With the notation introduced above, we say that P € X (F') is a Campana
Op s-point on (X, D,) if the following hold:

(i) for all @ with ¢, =1 and v ¢ S, n,(Dy, P) = 0, that is, P € (X \ U, _; Da)(OF,s) and
(ii) for v ¢ S, and all « € A, with both ¢, < 1 and n,(D,, P) > 0, we have

1
ny(Da, P) = :
1—e€,
In other words, writing €, =1— %, we require n,(Da, P) > m, whenever

ny(Dy, P) > 0.

REMARK 3.5. Definition 3.4 implies that a point P € X (F') that lies in D, (F) for some
a € A, is a Campana Op g-point if it lies in the v-adic closure of X°(F,) N ((X,D.)(Op,s)) for
all places v ¢ S.

We denote the set of Campana O g-points on (X,D.) by (X,D.)(OF,s). We have
X(F) 2 (X, De)w(Ors) 2 (X, De)(OF,s) 2 X°(Or,s),

where X° = X'\ (3_,c 4. Da)- The leftmost two inclusions are equalities if e, = 0 for all a € A,
and the rightmost inclusion is an equality if ¢, = 1 for all a € A..

For v ¢ S, we denote by (X,D.)(O,) the set of points P, € X(F,) such that n,(D., P,)
satisfies the conditions in Definition 3.4. We also define the set of adelic Campana points by

(2. D) (Ar) = [[ (2. D(0) x ] X(E).

vgS veS

By Remark 3.5, the space (X, D.)(O,) is a closed subspace of the topological space X (F,); in
particular, it is compact.

3.2.1. An instructive example. The following example illustrates the difference between the
two notions of Campana points introduced above. We show that these notions yield different
asymptotics for counts of points of bounded height. Moreover, the difference is encoded not
only in the leading constant, but also in the exponent of the logarithm. In §3.6 we use this
example to discuss functoriality of Campana points under birational transformations.

Let X =P with coordinates (z : 1 : 2), and let D; = {z; = 0} for i € {0,1,2}. Taking
X = P2 and €, €1, €2 € 2, the Campana orbifold (X, Z?:o €;D;) has the obvious good integral
model (X, Z?:o €;D;) over Z in the sense of §3.2. For 0 < i < 2, we write ¢; =1 — i with the
convention that ﬁ =0if ¢, = 1. A point in X(Z), represented by coprime integer coordinates
(l’() Y {,CQ), is
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e a weak Campana Z-point if ; € {£1} for all 7 € {0, 1,2} such that ¢; = 1, and

H T, = Z %U,,(xﬁ}l

(2

0<i<2 0<i<2
65750 61#0
for every prime p, or equivalently, if x{"*"2x]"*™2x5"°"™" is momime-full (in the case

0 < e€g,€1,€2 < 1)
e a Campana Z-point if z; € {£1} for all i € {0,1,2} such that ¢; = 1, and

1
pla, = Evp(a:l) >1
for every prime p and every ¢ € {0, 1,2} such that ¢; # 1, or equivalently, if z; is m;-full
for all i € {0,1,2}, assuming e, €1, €2 < 1.

Note how a point on the boundary divisor can be a Campana point: for example, if €, €1, €2 <
1 and P=(0:x : x2) with x1, x5 coprime integers, then P is a weak Z-Campana point,
although it is a Z-Campana point only if for ¢ = 1,2, we have p | z; = v,(z;) > m,.

Let us specialize to the case where mg = m; = my = 2. We set X° = X \ (U?:o D;).

To count (weak) Campana points of bounded height, we use the exponential Weil height

H:P?*(Q) =R

(xo : 21 : x2) — max{|xo|, |z1], |x2|} whenever xg, 21,22 are coprime integers.

PROPOSITION 3.6. Let X,Dy,D:1,D> be as above and let D, :ZZ o ;D Then for
sufficiently large T > 0,

#{zx e (X, D)Z)NX°(Q): H(zx) < T} < T2, (3.1)
#{zx € (X, D)w(Z)NX°(Q): H(z) <T} > T ?logT. (3.2)

Proof. In this setting, the set of Campana Z-points on X° is in bijection with the set of
triples (zg,z1,22) € Z‘:’éo such that ged(xo,x1,22) =1 and z¢, 21 and zo are all squareful.
The counting function of Campana Z-points of Weil height bounded by T" has an upper bound
given by the Cardmahty of the set obtained by removing the coprimality condition, which grows
asymptotically like 72, up to multiplication by a positive constant, by [34] (see also [4]).

The set of weak Campana Z-points on X° is in bijection with the set of triples (xg, z1,22) €
Zio such that ged(xo, z1,22) = 1 and zoz122 is squareful. To prove the lower bound in (3.2),
we count points of bounded height in the subset A of coprime triples (xg,z1,22) € Z2, such
that x¢ is a square and x5 is a square. The size of this subset is estimated by

Z w(d) - #{1 < a9 <T: zsquare,d | xo} - #{1l < 21,22 < T : z122 square,d | z1,d | x2},

d<T
where p denotes the Mobius function. The number of squares up to T that is divisible by a
given squarefree integer d is T'/?/d + O(1). To estimate the cardinality of the set B of pairs
(21,72) € (dZ~0)? such that z1,22 <T and z125 is a square, we write u = ged(x1/d, z2/d)
and y; = z;/(du) for i € {1,2}. Then x4 is a square if and only if both y; and ys are squares.
Writing y; = 22 for i € {1,2}, we get

IS > |- T8/

2
uST/d 21,20 (T / (du))t/? C@( )
ged(z1,22)=1

Therefore, #A = (¢p(2)) 2 T%/?log T + Os(T?/?(log T)?) for all § > 0. O
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The upper bound (3.1) is in agreement with Conjecture 1.1. Indeed, for the line bundle
L = O(1), we have a((X, D), L) = 3/2 and b = b(F, (X, D.), L) = 1, so Conjecture 1.1 predicts
a counting formula for Campana points of bounded height that grows like ¢T%/? as T — oo,
which is correct. The upper bound is, in fact, sharp; see [56, Theorem 1.2]. The lower bound
(3.2) shows that counting Campana points and weak Campana points of bounded height in
the same setting can lead to different asymptotics. However, since the lower bound is based on
counting points in a thin set (denoted by A in the proof), it does not show that Conjecture
1.1 fails when counting weak Campana points. We are unaware of any successful attempt to
produce an asymptotic formula for the count of weak Campana points of bounded height in
an example where the sets of Campana points and weak Campana points do not coincide.

3.3. The leading constant

We keep the notation introduced in §1.2. In this section, we define the leading constant that
appears in Conjecture 1.1, in the case when the divisor a((X, D.), L)L + Kx + D, is Q-linearly
equivalent to a rigid effective divisor E. The construction here is analogous to [9, 54]. For
simplicity, we assume that the boundary divisor D contains all components of F; we denote
by A(L) the set of irreducible components of D that are not contained in the support of E.

Write U = X \ Supp(E), and let A be the image of Eff'(X) under the projection map
p: Pic(X) — Pic(U); this is a finitely generated, polyhedral cone since X is a Fano orbifold.
Let

(D) = [ e ax,
where A* C Pic(U)f is the dual cone to A and dx is the Lebesgue measure on Pic(U),
normalized by the dual lattice Pic(U)* C Pic(U)g (see [9, Definition 2.3.14]). The a-constant
of the pair (X, D.) with respect to L is

a((X, Do), L) == xalp(L))) [ (1-ea),

a€A(L)
and the S-constant of the pair (X, D.) with respect to L is
B((X, D.), T) = # T (T, Pic(D)).
The group H*(T', Pic(T)) is finite. Indeed, since X is a Fano orbifold, it follows from [41] that

X is rationally connected. Hence, Pic(X) is a free Z-module of finite rank. Furthermore since
E is rigid, its geometric components generate a primitive lattice in Pic(X). Thus, its cokernel
Pic(U) is torsion free. Hence we conclude that H' (T, Pic(T)) is finite.

The open set U can be endowed with a Tamagawa measure 7 [24, Definition 2.8]; fixing an
adelic metrization on each component of D and on Kx, we let 7y, p. = Hp 717, where Hp_ is

the height function associated to the divisor D.. We define the Tamagawa constant by

T(F’ S’ (X,D€)’£) = /

U(F),

H(x,a((X, DG)) L)L + KX + De)_l dTU,Dev

where U(F'), denotes either

(1) the topological closure of (X,D.)(Ops) NU(F) in U(AF), or
(2) the Brauer set U(AF)]SY(U> defined as follows: for any subset B C U(F),), let B, denote

the support of o, on B. The adelic Campana set is the restricted product

Uar).= [[ UF)

vEQR
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with respect to U(O,).. The set U(AF)EBr(U) is the zero locus of the Brauer-Manin
pairing. See [57, Chapter 8] for the definition of the Brauer-Manin pairing.

In Theorem 1.2, we use the latter definition of U(F)_; see Lemma 9.3. It is not known
whether the two sets coincide; see Question 3.9 below. We recall that already in the classical
case of rational points, it is not clear what domain should appear in the integral that defines
the Tamagawa constant; see [58, Remarks 6.13 and 7.8]. This integral converges in the general
setting of a Fano orbifold, by an analog of Denef’s formula (7.3) in this setting. Finally, the
leading constant for Conjecture 1.1 is

(X, D.), D)B((X, D), L)r(F. S, (X.D.),£)
(B 5 (X Do) L) = == X D), LY b(F (X, D). L) — ]

Our Theorem 1.2 agrees with Conjecture 1.1, including the prediction for the constant, as we
show in §9.1.

3.4. Thin exceptional sets

In the formulation of Conjecture 1.1, we expect that it is necessary to remove a thin set of
Campana points from the count in order to obtain a formula that reflects the global geometry of
the Campana orbifold; indeed, already for rational points, it has been understood for quite some
time that a version of Manin’s conjecture with only a closed — rather than thin — exceptional
set admits counterexamples, see [7, 15, 51]. Meanwhile, several authors have recently built
up evidence toward a version of Manin’s conjecture with a thin exceptional set, see [52, 53,
55, 59]. While we do believe that the set of klt Campana points is itself not thin, we are
unable at present to show this; however, we propose a problem that we hope will ameliorate
this circumstance.

Let (X, D.) be a Fano orbifold over a number field F', that is, a Campana orbifold such that
—(Kx + D.) is ample. Fix a finite set S C Qp containing all archimedean places of F, as well
as a good integral model (X, D) of (X, D) over Spec OF g, as in §3.2. Write (X, D.)(Op,s) for
the set of Op g-Campana points of (X, D).

DEFINITION 3.7. A thin subset of (X, D.)(Op,s) is a subset of a finite union of

(i) typeIsets: those of the form Z N (X, D.)(OF g) for a proper Zariski closed subset Z C X;
(i) type IIsets: those of the form f(Y(F)) N (X, D.)(OF,s), where f: Y — X is a generically
finite cover of degree at least 2, with Y a projective, integral F-variety.

It is natural to ask whether (X, D.)(Op,s) is itself not thin, possibly after a finite extension
of the ground field. After all, if a version of Manin’s conjecture with a thin exceptional set is
to hold for Campana points on Fano orbifolds, we would like to have something left to count
after the removal of a thin subset. We are thus forced to make what we hope is a superfluous
hypothesis in Conjecture 1.1, namely, that (X,D.)(Op,s) itself is not thin in our setting.

This shortcoming is already present in the traditional case of rational points on smooth
Fano varieties, where we expect the set of rational points to be not thin if it is non-empty.
This is known conditionally on Colliot-Thélene’s conjecture predicting that the Brauer—Manin
obstruction controls all failures of weak approximation on rationally connected varieties [29].
Indeed, this conjecture implies that smooth Fano varieties satisfy “weak weak approximation,”
which, in turn, implies that the set of rational points is not thin [60, Theorem 3.5.7].

On a positive note, Serre has shown that P™(F') is not thin [60, §3.4]. This prompts us to
ask the following question.
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QUESTION 3.8. Let I be a number field and let D =} _, D, be a divisor on P} with
strict normal crossings. For each a € A, pick ¢, € 20 with ¢, < 1 and set D, = ZaeA €D,
so that the Campana orbifold (P™, D,) is klt. Assume moreover that —(Kp» + D,) is ample.
Fix a good integral model (P, D.) of (P, D.), and a finite set .S of places of F that includes
all the archimedean places. Is the set (P", D.)(Op,s) of klt Campana points non-thin?

For some partial results, we refer to the recent paper of Browning—Yamagishi [17, §4]. A
version of this question for integral points on a log K3 surface is addressed in [28].

In a different direction, if the set of Campana points (X,D.)(Op g) were thin, then there
would exist a set of places 7" such that the image of this set in [, . X () is not dense, by [60,
Theorem 3.5.3]. Since we expect (X, D.)(Op,s) to be not thin, we ask the following question.

QUESTION 3.9. Is there a finite set So C Qp containing .S such that for any 7' C Qp a finite
set of places such that SoNT =0, (X,D.)(OF,s) is dense in [[, .- ((X,Dc)(O,))? In other
words, does the set of Campana points satisfy weak weak approximation?

3.5. Browning—Yamagishi’s example

In [17, Theorem 1.2], Browning and Yamagishi presented an illuminating example, which
illustrates in particular that in the formulation of Conjecture 1.1, it is important to exclude
a thin set to obtain the expected growth rate. We briefly recall the construction. We define
divisors on P = Proj Q[zo, 1, x2] by

Di:{Qqu:O}fOI'?;:O’l,Q, and D3={x0+x1+x220}.

We denote by H the hyperplane class, and we set D = U?:o D;. Consider the Campana orbifold
(P, D = S, 2D;), and extend it to the obvious good integral model (P2, D,) over Spec(Z).
A computation shows that

a((P*,D.),H) =1, bQ,(P* D.),H)=1.
On the other hand, Browning and Yamagishi show that
N((PZ,D.)(Z) N (F*\ D)(Q), H,T) > Tlog T,

a computation at odds with a closed-set version of Conjecture 1.1. As we explain below, the
unexpected rapid growth of the counting function is explained by a type II thin set.
Let Q C P? = Proj Q[wo, w1, ws, w3] be the smooth quadric defined by

wg —w%—i—wg :wg,

and consider the finite morphism of degree 8 given by
f:Q— IP’%
(wo : wy : wo : ws) = (Wi : —wi :wd).
Note that
f(Q(Q)  (BZ,De)(2),

and that, by the ramification formula, we have

Kq = f"(Kp2 + D).
From this, it follows that

a(@, fH)=1, bQ,Q,f H)=2.
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Therefore, the number of rational points on @) grows more quickly than the expected growth
rate on (P2, D,).
There are in fact infinitely many twists Q°/ Pé such that

a(Q7,H)=1, bQ,Q°,H)=

so it is a priori unclear whether the combined images of their rational points on IP’(% form a thin
set. This type of problem is already addressed in [52], using Hilbert’s irreducibility theorem.
We obtain the following auxiliary result.

LEMMA 3.10. The set

z=\Jr @),
where the union is taken over all 0 € H'(Gal(Q/Q), Aut(@/ﬂ%)) with the property that

b(@Q,Q%, (f7) H) =2

is thin.
The following proof is due to the referee.

Proof. The twists Q° are given by Qu.a,.0, = {G0Wi — a;wi + asw3 = w3} CP3 for
ap, a1, a2 € Q*, and Qqq,q4,,0, has Picard rank 2 if and only if apaias is a square. The
corresponding twists of f are

fao,(l,1,(1,2 . Qa,u,a,l,a,g — ]P)(Q@y (wO e ’UJ';) = (an(z) : _alwf : QQwS)-

We observe that for all ag, a1, as € Q* such that agajas is a square, the images of the Q-points
on Quy ay.a, Under fo, 4, q, are contained in the set of points (xg : 71 : x2) in P?(Q) such that
—xoT1x2 is a square, which is a thin set. O

3.6. Birational invariance and functoriality

We conclude this section by exploring the functoriality properties of sets of Campana points
under birational morphisms.

3.6.1. An instructive example (continued). To motivate our discussion, we appeal to the
example of §3.2.1: recall that X = Pg with coordinates (g : 1 : x2), D; = {x; = 0} for i €
{0,1,2}, and consider the Campana orbifold (X, Zfzo(l — --)D;) with Z-model X = P3.

Let ¢ : Y — X be the blow-up with center the intersection point of D; and Ds. Then ¢ is
an isomorphism over X° = X \ (U?:o D;). Let Y° = ¢~ 1(X°). Denote by E the exceptional
divisor and by D; the strict transform of D; for i € {0,1,2}. Then Y° =Y \ (E U (U?:o D;)).
The blow-up Y of X at the subvariety defined by {z; = 22 = 0} yields a smooth projective
Z-model of Y. We observe that given a point P € Y°(Q), the point ¢(P) is

e a weak Campana Z-point on (X, ZZ o(1 = -L)D;) if for every prime p, the sum

1 ~ 1 ~ 1 ~ 1
—n,(Dy, P) + —ny(D1, P) + —n,(Ds, P —|—<—|—)n E.P
mo p( 0 ) m p( 1 ) Mo p( 2 ) m Mo p( )

is either 0 or at least 1;
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e a Campana Z-point on (X, Z?:o(l — %)Dz) if for every prime p, the numbers

(Do, ), (D1 P) + (B P)). =0y (Da, P) + (B, P)

are either 0 or at least 1.

This description clearly shows that the set of (weak) Campana points is not invariant under
birational morphisms, that is, for general mg, m1, mo, there is no choice of positive integers
mo, M1, Mo, mp such that the restriction of the blow-up ¢ to Y° would induce a bijection
between the set of (weak) Campana points for (Y, (1 — ﬁ)é‘ + Z?:o(l - %)DZ) on the open

subset Y° and the set of (weak) Campana points for (X, Z?:O(l — -L)D;) on the isomorphic

open subset X°, where &, 50,51, 152 denote the closures in Y of E, 50, 151, 152, respectively.

Not all is lost, however: if we define m; = m; for i € {0,1,2} and mg = max{m;, my}, then
the set of (weak) Campana points on the resulting orbifold (Y, (1 — %E)E + Z?:o(l - -L)D;)
is mapped by ¢ into a subset of the set of (weak) Campana points on (X, Z?:o(l - -L)D,)).

3.6.2. The general picture. Let X be a rationally connected smooth projective variety
defined over a number field F' and let D =3 _ 4 D, be a strict normal crossings divisor on X.
Fix a weight vector € = (€4 )aca Where ¢, € W withe, =1 —1/my <1.Set D. =3 . 1 €aDa
and consider the Campana orbifold (X, D), which is a klt pair.

Let

@:X—>X

be a birational morphism from a smooth projective variety X , such that D= (¢*D)req is a
strict normal crossings divisor. We assume for simplicity that ¢ is an_isomorphism outside
of D and that both (X, D) and (X, D) admit good integral models (X, D) and (X, D) that
are compatible. We assign a weight vector € to D as follows. For the strict transform of a
component D, of D, we set €, = ¢,. If E3 is an exceptional divisor and if eg , denotes the
coefficient of Ej in ¢*D,, then we define

mg =max{|ma/es.al | €sa >0} and €& =1—1/mg.

Then ¢ : (X, D:) — (X, D) is a “morphisme orbifolde” in the sense of [20, Définition 2.3).
By construction, we have

(P((/;Ev 5€)(0F7S)) - (XvDE)(OF,S)a

but this inclusion need not be an equality. On the other hand, the a- and b-invariants are well
behaved for our choice of €, as we now explain. We observe that

K¢+ D: > ¢"(Kx + D.)
by [20, Corollaire 2.12]. Then the arguments of [42, § 2] show that
a((X,De), 9" L) = a((X,D,),L), b(F,(X,Ds),¢"L) = b(F,(X,D.),L).

We end by remarking that 7(F, S, (X,D.),£) and 7(F,S,(X,D.), L) will be different in
general because (X, D.)(OF,s) and (X, YSg)(OF, s) are different. Our overall conclusion is that
our Manin-type conjecture for klt Campana points is quite sensitive to birational modifications.
In particular, proving the asymptotic formula for the counting function after a birational
modification need not easily yield an asymptotic formula for the original variety.
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4. Analytic Clemens complexes

Clemens complexes are simplicial sets that keep track of containment relations between the
intersections of components of a divisor in a variety. As in [26], Clemens complexes will be
used in §10 to keep track of the contribution of the local height integrals to the pole of the
height zeta function when some integrality conditions appear, that is, when some component
of the boundary has weight 1. For a more detailed treatment, we refer the reader to [24, §3.1].

In this section, X is a smooth, proper variety over a number field F', and D = ZaeA_Da is a
reduced divisor on X with strict normal crossings. Let v € Qp, and fix an embedding F' C F,,
so that T',, := Gal(F,/F,) acts on X and D. Write A for the indexing set of D, and A, for the
set of orbits of A under the action of I',. Recall that X, denotes the base change of X to F;
write D, ;=D ®p F, = BeA, D, g, where the D, g are irreducible components.

Given a divisor D’ on X such that D’ = Uascw D,, for some o7 C A, we denote by <7, the
set of orbits of & under the action of T';,. As a set, the F),-analytic Clemens complex associated
to D’ consists of irreducible components Z of intersections () seB D, 3 for B C 4, such that
Z(F,) # 0. The complex enjoys additional structure, for example, as a poset; see [24, § 3.1] for
details. The dimension of the Clemens complex of D’ is

max{ #B:BC o, [| Dup(F,) #0p — 1.
peB

We may now define the a- and b-invariants of the pair (X, D) at v with respect to a linear
combination of boundary components with positive coefficients. These invariants will come up
in the calculation of the position and order of the rightmost pole of a local height integral of
X at v, in the case where X is an equivariant compactification of G = G.

Keeping the notation introduced above, we assume further that —Kx, ~> 5. 4 psDy s,
with pg € Z for all B, and we set L =735 , AgD, s with Ag >0 for all 8. We define the
a-invariant of the pair (X, D) at v with respect to L by

a((X,D),L) = max {p" - 1}.

Ag

Let us denote the sum of the boundary components that do not appear in the support of
a((X,D),L)L + Kx + D by D’; in other words, we set

D' =D — (a((X,D), L)L + Kx + D)yed.

Writing Ci#(D, L) for the F,-analytic Clemens complex associated to D', we define the b-
invariant of (X, D) at v with respect to L as follows:

b(F,,(X,D),L) = 1+ dimC3 (D, L).

We will now prove that the a- and b-invariants are birational invariants in a suitable sense.
While this result is certainly of independent interest, we will use it to prove the meromorphic
continuation of certain local height integrals in §7.

LEMMA 4.1. Let X, D and L be as above. Let ()A(:,E) be another pair satisfying the
same hypotheses as (X, D), namely: (i) D is a reduced divisor with strict normal crossings

on a smooth proper variety X over I and (ii) —K  is a linear combination of irreducible

components of D,,. Assume that there is a birational morphism ¢: X — X with o YD) = D
that is an isomorphism outside D. Then

a((X,D),L) =a((X,D),¢*L) and b(F,,(X,D),L)=b(F,,(X,D),¢"L).
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Proof. First, we observe that the birational invariance of the a-invariant follows from the
fact that the pair (X, D) is log canonical, that is, we can write

a((X,D),L)¢* L+ K5 + D = ¢*(a((X,D),L)L + Kx + D) + E,

where E > 0 is an effective divisor supported on the exceptional locus of ¢.

From now on, we denote a((X, D), L) simply by a and we work over F,, for a fixed place v.
To prove birational invariance of the b-invariant, we first use [2, Theorem 0.3.1] to reduce to
the case where the morphism ¢ is a blow-up of a smooth center having normal crossings with
D. Let E be an exceptional divisor of ¢.

First suppose that the image of E is not a component of the intersection of some of the
boundary components. Then [48, (3.11.1)] shows that the log discrepancy of the exceptional
divisor E is greater than —1, hence that I/ appears in the support of ap*L + K¢ + D. Let Z be
a maximal element in C3' (D, L) such that b(F,, (X, D), L) = codim Z. Let Z be a component of
i, Dy s, thus codim Z = r. If the image T of E does not contain Z, then b(F,,, (X,D),p*L) =
codim Z. Thus our assertion follows in this case. If T' contains Z, then by rearranging indices, we
may assume that T C D, g, for i <k and T' ¢ D, g, for ¢ > k. Denoting the codimension of T’
by t, we have k < t; hence, the strict transforms of D,, 5, for i < k meet in ¢~ !(Z). On the other
hand, the strict transforms of D, g, for i > k all contain p~'(Z). Thus, b(F,, ()~(, l~)), ©*L) =
r =b(F,, (X, D), L). Thus our assertion follows in this case too.

Next suppose that 7" is a component of the intersection of some of the boundary components.
Then E does not appear in the support of the difference of ap*L + K¢ + D and ¢*(aL +
Kx + D). We further distinguish two cases. First, if E does not appear in the support of
¢*(aL + Kx + D), we denote by Z a maximal element of C3" (D, L) so that b(F,, (X, D), L) =
codim Z and we assume that Z is a component of (;_; D, g,. Either T" and Z do not meet, or
T contains Z; in the former case, we have b(F,, ()~(, l~?), ¢*L) = codim Z. In the latter case, we
may assume that 7" is a component of ﬂle D, g, with k < 7. Then the strict transforms of the
divisors D,, 5, do not meet in p~1(Z), but E and the r — 1 strict transforms of D, g,,..., Dy 3,
intersect. Thus, we conclude that b(F,, ()?,f)),gp*L) =r. Second, if E¥ does appear in the
support of p*(aL + Kx + D), then T does not contain Z, and therefore, T'and Z do not meet.
This implies that b(F,, (X, D), ¢*L) = b(F,, (X, D), L). O

We will now introduce a version of the b-invariant for rational functions. If f is an arbitrary
rational function on X, then for every o € A, we denote by d,(f) the coefficient of D, in the
principal divisor div(f). Let D” be the sum of boundary components D, such that D, does
not appear in the support of aL + Kx + D and d,(f) <0. We denote by Ci'(D, L, f) the
F,-analytic Clemens complex associated to D", and we define the b-invariant by

b(F,,(X,D),L, f) =1+dimC: (D, L, ).
Using the same methods, we obtain the following analog of Lemma 4.1.

LEMMA 4.2. Let X, D, L and f be as above. Let (X, D) be another pair satisfying the
same hypotheses as (X, D), namely: (i) D is a reduced divisor with strict normal crossings
on a smooth proper variety X over F' and (ii) —K 3 is a linear combination of irreducible

components of D.,. Assume that there is a birational morphism ¢: X — X with ¢~ (D) = D
that is an isomorphism outside D. Then

b(Fv,(X,D),L,f) :b(Fva()?»ﬁ)v@*L»fO@)'
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5. Geometry of equivariant compactifications of vector groups

The geometry of vector group compactifications is worked out in [43], where equivariant
compactifications of a vector group on P" are classified. Surprisingly, there is more than one
such compactification. There are classification results of equivariant compactifications that
are del Pezzo surfaces and Fano 3-folds [31, 32, 44|, but equivariant compactifications of
vector groups need not be Mori dream spaces. Indeed, blow-ups of the standard equivariant
compactification on P™ along a smooth center on the boundary hyperplane inherit the
group compactification structure, so examples with a Cox ring that is not finitely generated
can be constructed by blowing up suitable centers (see [42, Example 2.17]). This feature
makes equivariant compactifications of vector groups difficult to study via universal torsors,
showing once more the power of the height zeta function method. In addition, equivariant
compactifications of vector groups admit deformations, whereas equivariant compactifications
involving reductive groups typically do not; this feature also makes the former class of
compactifications interesting objects from a geometric point of view.

We now recall some basic facts on the geometry of equivariant compactifications of vector
groups from [23, 43]. Let X be a smooth equivariant compactification of G = G defined over
a field F' of characteristic 0. By definition, X contains G as a dense Zariski open, and its
complement D = X \ G is divisorial, that is, it is a union of prime divisors:

D= U D,
acA

The irreducible divisors D, need not be geometrically irreducible, so we also consider the
decomposition of D into irreducible components:

D= D
acA
There is a natural action of the Galois group I' = Gal(F/F) on the index set A, and Galois
orbits are in one-to-one correspondence with elements of A.
5.1. Picard groups and the anticanonical class
PROPOSITION 5.1 [23, Proposition 1.1]. With the above notation, the following hold.
(i) There are natural isomorphisms of Galois modules
Pic(X @ ZD,, Ef'(X @ R>0D.,
acA acA

where Eff' (X) is the cone of effective divisors on X.
(ii) By taking T'-invariant parts, we have
Pic(X @ ZD,, Ef'(X @ R>0D.,
acA acA

where Eff*(X) is the cone of T-invariant effective divisors on X.

Let f be a non-zero linear form on G = G}, defined over F'. Considering f as an element of
the function field F(X), we can write div( f) uniquely as

div(f) =) da(
acA

where E(f) is the hyperplane along which f vanishes in G, and the d,,(f) are integers.
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PROPOSITION 5.2 [23, Lemma 1.4], [26, Before Lemma 3.4.1]. We have d,(f) > 0 for all
a € A, and the set of integral vectors

{(da(f))aca | f is a non-zero linear form on G}

is finite.

Finally, the anticanonical divisor turns out to be linearly equivalent to an integral linear
combination of boundary components: we have —Kx ~ 3 1 paD, for certain integers pq,
and by [23, Lemma 2.4], we know that p, > 2 for all a.

REMARK 5.3. With the above notation, if (€,)ac.4 is any vector of weights chosen from the
allowed set 20 = {1 — L |m € Z=,} U {1}, the orbifold anticanonical divisor —(K x + D.) of the
Campana orbifold (X, D.) is automatically big. This follows from the fact that the cone of big
divisors is the interior of the pseudo-effective cone, together with Proposition 5.1.

5.2. Harmonic analysis on vector groups

In this section, we recall some of the basic elements of harmonic analysis on adelic vector
groups as developed in [67]. Let G = G

For any non-archimedean place v such that the completion F;, is a finite extension of Q,,, we
define the local additive unitary character by

Uy () 1= exp(2mi - Trr, /g, (z)).

When v is an archimedean place, we define the local additive character by
Yy () := exp(—2mi - Trp, /r(x)).

The Euler product ¢ := [], %, is an automorphic character of Ap.

LEMMA 5.4 [23, Lemma 10.3], [26, Lemma 2.3.1]. Let v € Q5> and let us fix integers d > 0
and i > 1. Let j be an integer and ¢ = log, #(0,/(d®)). If j = 0, we have

(l-q") ifd=0,

wv(ﬂ;id+jxg) dz, = —q;l ifi=d=1,

0 otherwise.

_1
M(Ov) or

If j # 0 the integral above vanishes whenever id — j > ¢+ 2.

To each adelic point a € G(Ar), we associate the linear functional fa : G(Ar) — Ap that
sends an element x to the inner product a - x, which is the sum of the coordinatewise products
in the adelic ring. The composition 1, = ¥ o f, defines a Pontryagin duality

G(Ap) = G(Ap)”, G(F) = (G(Ap)/G(F))".

(Note that G(F) is discrete and cocompact in G(Ar).)
Given an integrable function ® on G(Ar), we define its Fourier transform by

THEOREM 5.5 [67, Theorem 4.2.1], Poisson summation. Let ® be a continuous function on
G(Ap). Assume that the series

Z o(x+Db)

x€G(F)
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converges absolutely and uniformly when b belongs to a fundamental domain for the quotient
G(Ar)/G(F), and that the infinite sum
> @)

acG(F)
converges absolutely. Then we have

dYooox)= Y oa).

x€G(F) acG(F)

6. Height zeta functions

In this section, we will establish some basic properties of height zeta functions. Let G = G}
and let X be a smooth equivariant compactification of G defined over a number field F. We
assume that the boundary D = X \ G is a strict normal crossings divisor on X. Let S C Qp
be a finite set containing all archimedean places, such that there exists a good integral model
(X,D) of (X, D) over Spec O g as in §3.2.

6.1. Height functions

We first recall some of the basic properties of height functions, referring to [24, §2] for more
details. Let us consider the decomposition of the boundary into irreducible components:

D= U D,.
acA

For each a € A, we fix a smooth adelic metrization on the line bundle O(D,,), and let f, be
a section corresponding to D,,. For each place v, we define the local height pairing by

H,: G(F,) x Pie(X)c — C*, <x7 > D> = T I (oIl

acA acA
This pairing varies linearly on the factor Pic(X)c and continuously on the factor G(F,). We
define the global height pairing H as the product of the local height pairings
H= J] H.: G(Ar) x Pic(X)c — C*.
veEQR

Again, this pairing varies continuously on the first factor and linearly on the second factor.
The following lemma plays a crucial role in the analysis of height zeta functions in general.

LEMMA 6.1 [23, Proposition 4.2]. For each non-archimedean place v € Qp, there exists a
compact open subgroup K, C G(O,) such that H, is K,-invariant, that is, such that for any
s € Pic(X)c, any g, € G(F,) C X(F,) and any k, € K,,, we have

Hv(gv + kv; S) = Hv(gvvs)~
Moreover, if

(i) the metric || - ||, is induced by our integral model (X, D),

(ii) our O,-model (X ®0,, s Oy, D @0, s Oy) is a smooth, projective, and relative strict
normal crossings pair over O, [45, §2], and it comes equipped with an action of the
O,-group scheme Gy, , ~extending the given action of G on X, and if

(iii) the unique linearization on O(D,) extends to O(D,,) for every o € A,

then we can choose K, = G(O,).
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In particular, for all but finitely many places v € Qp, we may simply take K, = G(O,).

6.2. Intersection multiplicities

With the notation introduced above, let D =} _ , D,, where D,, denotes the closure of D,
in X for all a. Moreover, let € = (€4)aca be a weight vector as in §3.1. Our object of study is

G(F)e = G(F) N (X7D6)(OF,S)7

the set of F-rational points in G which extend to Campana Op g-points on (X, D.). For any
v ¢ S, the functions n,(D,, ) defined in § 3.2 extend naturally from G(F) to G(F,). Hence we
may define the analogous sets

G(F,). = G(F,) N (X,D)(O,).

For v ¢ S, we denote by d., the indicator function detecting whether or not a given point in
G(F,) belongs to the subset G(F),).. For v € S, we simply set 0., = 1. Let 6. = H'UGQF Oc -
For v ¢ S, we have the reduction map

ny: G(Fy) C X(0y) = X(ky).
Given x € G(F,) and a € A, we have n,(D,,x) > 0 if and only if ,(x) € D, (k,). Let

D, ®Fr F, = U Dv.ﬂ
BeA, ()

be the decomposition of D, ®r F), into irreducible components, and let D, s be the Zariski
closure of D, g in X.

Suppose that our integral model has good reduction at v in the sense of Lemma 6.1, conditions
(ii) and (iii). Since D, g is smooth, if y € D, g(k,), then Hensel’s lemma implies that D, g has
an F,-point, and therefore, it is geometrically irreducible over F,. Using a standard argument
in Arakelov geometry (see, for example, [58, Theorem 2.13] and its proof), we see that there
exist analytic local coordinates (z1,...,2,) on 7, ' (y) mapping to A} such that the following
conditions are satisfied:

n.
v

e these local coordinates induce an analytic isomorphism 7, !(y) = m
o 07 (y) N D, 4(F,) is defined by 2z = 0.

With this notation, we see that for any x € n, ' (y), we have n,(D, s,%x) = v(z1(x)). Hence,
the function n,(De,-): G(F,) — Z>o is locally constant for every v ¢ S. Moreover, since
condition (ii) in Lemma 6.1 is satisfied, the group action of G(O,) preserves v(z1(x)) so that
ny(Dy g, x) is invariant under the action of G(O,).

Even if our integral model has bad reduction at v, then one can define
Ny (Dy,5,%)
v

)

HDu,g (X) =q

and one may interpret this as a local height function of D,, g associated to this particular model
X, = Spec O,. Thus from Lemma 6.1 we deduce the following result.

LEMMA 6.2. For each non-archimedean place v € Qp, there exists a compact open subgroup
K, C G(O,) such that the indicator function é., is K,-invariant. If we moreover assume that
v satisfies conditions (ii) and (iii) in Lemma 6.1, then we can take K, = G(O,).
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For each non-archimedean place v, we denote by K, a maximal compact open subgroup of
G(0,) satisfying the conclusions of Lemma 6.1 and Lemma 6.2, and we denote

K= H K,.

’UGQ;DO

Our discussion shows that both H(-,s) and J. are K-invariant.

6.3. Height zeta functions

To understand the asymptotic formula for the counting function of Campana points of bounded
height, we introduce the height zeta function:

Z(s)= Y Hxs)'= > Hxs) 'd(x).

x€G(F). x€G(F)

The proof of [23, Proposition 4.5] shows that Z.(s) is holomorphic when R(s) > 0. The
existence of a meromorphic continuation of this zeta function, together with a standard
Tauberian theorem, yields a proof of the desired asymptotic formula. We therefore consider
the Fourier transform

~

H.(a,s) = / H(x,s) ! 6.(x) 1ba(x) dx,
G(hr)
in hopes of using the Poisson summation formula (Theorem 5.5)
Y Hxs)'a(x)= > Heas)
xEG(F) acG(F)

to obtain the desired meromorphic continuation of Z.(s). The first two of the three conditions
in Theorem 5.5 follow from the proof of [23, Lemma 5.2], assuming that f(s) is sufficiently
large. To verify the third condition, we recall the following result.

PROPOSITION 6.3 [23, Proposition 5.3]. With the notation introduced above, for all
characters 1, that are non-trivial on K and for all s such that H(-,s)~! is integrable, we
have H.(a,s) = 0.

Let Ax C G(F) be the set of a such that ¢, is trivial on K. Then Ax is a sub-Op-module
of G(F) of full rank n. Indeed, Ax is a sub-Op-module commensurable with G(Or). To verify
the third condition in Theorem 5.5, we will prove in §9 that the sum

> He(as)
acelAx
is absolutely convergent whenever R(s) > 0. Once this is established, we obtain
Z(s)= > H.(as), (6.1)
aclAx
for R(s) > 0.

Interlude I: dimension 1

Let us first make our analysis explicit for P! over Q, considered as the natural equivariant
compactification of G = G, = A', with boundary D = (1:0). We fix the standard integral
models for P! as well as D. Given € € 20, we consider the problem of counting Campana
Z-points on (PL, D,). Note that if € < 1, then z € G(Q) = Q is a Campana Z-point if and only
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if the denominator of = is m-full, where m = 1/(1 — ¢€); this means that any prime dividing the
denominator of x occurs with exponent at least m in the prime factorization. If, on the other
hand, e = 1, then x is a Campana Z-point if and only if z € Z. Since the latter case is trivial,
we will assume from now on that € < 1.

We fix a finite set of places S. Going back to the notation introduced in § 6, we see that we
can take K =[] G(Z,) in this case, so that Ax = Z. This yields

Z(s)=> He(n,s).

nez

p prime

~

We would like to compute Hc(n, s) explicitly. Using Fubini’s theorem, we have

ﬁc(n7 s) = /A H(z) ™% 0 (x) Y(nx)de = H / Hy (0) ™% e 0 (0) o (nxy) da,,.

vEQQ

Note that the inner function of each Euler factor is trivial on Z, for almost all places p.
We fix metrizations as follows:

H,(x,) = max{1,|z,|,} if v is non-archimedean,

Hoo(zy) = /1 4+ |02 if v is archimedean.

The trivial character. Here we compute ﬁe(O, s). For any prime p ¢ S, we have

=~ ; 1

He,(0,5) = max {1, x|y} " bcp(xp) duy =1+ (1 - P)
Qp

where m = 1/(1 — €). On the other hand, if p € S then

—~ 1 1
Hep(0,8) =1+ (1 — >

p )T

pf(sfl)m
1— pf(sfl) ’

Furthermore, we have
o _D((s—1)/2)
He oo (0,8) = T2

It follows that the rightmost pole of I/-L(O, s)isat s =1+ 1/m = 2 — ¢, and that it has order 1.

Non-trivial characters. Let n be a non-zero integer. Our aim is to understand

~

ﬁe(n,s) = H Heo(n, 5),

vEQQ
where the local factors are given by

/ Ho(20) " 6o () by (niy) da.

v

Suppose first that p ¢ S and p { n. The local factor then reduces to

/ Hp(2p) " 0e p(xp) p(xp) Ay,

D

which equals

o0 N , 1 if € £0,
1 1— = —z(s—l)/ —1i d —
t2 ( p)p et day =g (1 - %)p*s if e = 0.

i=m P
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Let us now assume that p ¢ S and p | n, and let us denote the p-adic valuation of n by k. In
this case, the local factor becomes

—~ o 1
He,p(nv 5) =1+ Z <1 - ) —i(s=1) / 7/) ﬂcp) dz,

1 ifm>k+2,
= 1_2:1<.|.1 (1_7) —i(s— szxwl’ xl))dxl) iftm<k+1.

When p € S, we recover the formula above for € = 0.
Using these explicit formulae, we obtain the following lemma.

LEMMA. Let p be prime. The function s — ﬁs,p(n, s) is holomorphic everywhere. Moreover,
the product [[, .. Hep(n,s) is holomorphic for R(s) > 1 —¢, and there exists positive
constants ¢ and C' such that

[T Hen(ns)] <@ +Is|+n)
p prime

for any s such that R(s) > 1 —e.
Finally, we analyze the archimedean place.

LEMMA. The function s — ﬁew(n, s) is holomorphic everywhere. Moreover, for any integer
N, there exists positive constants { and C' such that

1+ s/
1+ )"

~

He oo (m, S)‘ <C

for all s.

Conclusion. Putting all the information together, we obtain that Z.(s) has a unique pole
located at s =1+ 1/m = 2 — ¢, contributed by the trivial character. Applying a Tauberian
theorem (see, for example, [68, I1.7, Theorem 15]), for the line bundle L = O(1) metrized as
above, we obtain

N(G(Q)e; £, T) ~ CT1+1/’m,

for some ¢ > 0.

7. Height integrals I: the trivial character
In this section, we resume our general analysis and study the height integral
ﬁe(O,s) = H / H, (x0,8) " 0c.0(x,) dx, = H Hev (0,s)
veQp JGUI) Ve

Note that the inner function of each Euler factor is trivial on G(0O,) for almost all places v.
We begin by setting up some necessary notation. Each ¢ € R gives rise to a tube domain

Toe={s €Pic(X)c : R(sa) > pa — €a + ¢ for all a« € A},
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where (pao)ac.a is the integer vector given by
—Kx ~ Z pPaDas;
acA

recall that p, > 2 for all a € A.
We write

DepF,= | Dus,
BEA,

where the D, g are irreducible components, and we write
D(x RF FU = U Dv,B
BEAL ()

for an analogous decomposition of D, ®p F, into irreducible components.

Given 8 € A,, let us denote by F), g the field of definition for one of the geometric irreducible
components of D, g, that is, the algebraic closure of F, inside the function field of D, g, and
by fu,5 the extension degree [F, g : F,].

Finally, for any subset B C A,,, we define

Dyp:=()Duvs Dpp=D,s\ |J () Dus |
BEB BCB/CA, \BEB’

with the convention that D,y = Xp, and D; ; = GF,. The collection (D] 5)pca, yields a
stratification of the F,-variety X ®p F), into finitely many locally closed subsets. If v & S,
then we denote by D, p the Zariski closure of D, p in X ®¢p,. ; O,. We define D; p as above.

7.1. Places away from S

We will now study the basic properties of

~

H:.(0,s) = / H, (%0,8) " 0c.0(x,) dx,
' G(Fy)

in the case that v ¢ S.
7.1.1. Places of good reduction. Here we assume that our model

(‘X?) == X ®OF,S 01)7D®0F75 Ov)

has good reduction over O, in the sense of Lemma 6.1, conditions (i) and (ii). In this setting,
we have the following formula which resembles Denef’s formula in [24, Proposition 4.5].

THEOREM 7.1. We have

1 - #D° 5 (k,) 1 gy e Fa@ =Pt
0.9 = 3 P T (1) i

—(8a(8)—Pa(p)t+1) *
,LLU(OU)” Bca, BeR qv/) 1 — 0o (5a(p)—Pa(s)+1)

Proof. To avoid clutter, we first assume that u,(0,) =1. Set p = (pa)aca. Let w be a
gauge form on G, that is, a nowhere vanishing differential form of top degree. Considering w as
a rational section of O(K x) equipped with the adelic metrization fixed in the previous section,
we have the equality

[wllo = Hy (%0, p).
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Writing

dx,

dr =

[l
for the corresponding Tamagawa measure, we see that

dx,

]l

~

Ao o (0,8) = / Hy (x0,8) ™" Ho (%0, p) B ()
G(FU)

B / H,(xy,8 — p)il 6‘7’” (xy) dr.
#(F)

Breaking up this integral over the fibres of the reduction map 7,: G(F,) — X(k,), we obtain

He»(0,s) Z Z / o(Xp,8 —p) ! Oe.v(xy) dT.

—1
BCA, yeD3 T (y)

We now compute the inner integral

/ Hv (Xva S — P)il 55,1; (Xv) dT~ (72)
v ()

If B =), then there is a measure-preserving analytic isomorphism 7, 1(y) = m). Since any
x, € 1, Y(y) is integral with respect to D, we have

HU(XU,S - P) = 5e,v(xv) =1

for all such x,, so that (7.2) simply evaluates to 1/q".

If B # {), then every 8 € B lies above a unique a(3) € A. If D} p(k,) # 0, then D, 5(k,) # 0
for all B € B. Using Hensel’s lemma, we deduce that D, g has an F,-rational point, and hence
is geometrically irreducible; in particular, F, g = F, for all § € B. Writing B = {f1,..., 8¢}
and «; = a(f;) for simplicity, we see as in §6.2 that there exist analytic local coordinates

(21,---,2,) on 0, ' (y) inducing a measure-preserving analytic isomorphism 7, !(y) = m”, such
that DU@( F,)Nn, ' (y) is given by 2; =0, fori = 1,..., 7.
The integral (7.2) can now be rewritten as
‘
/ H’z)(xm S — p)71 56,’1)(X’U) dr = / H (‘Z@L, TPe 5( 1)(21 dZ?) Hdzn
v () my =1 i>0
where
1
Oev(2i) =1 <= €4, #1 and val,(z;) =2 m; := .
, Py
by definition of d. , (see §6.2).
Therefore, if R(sq,) — pa, +1 >0 for all i € {1,...,£}, we obtain
¢
/71 H,(x,,8 — p)*l Oc v (%xy)dT = — H Z qﬂ a; —Pay) .Vol(ﬂ'fj'of)
o) @ =1 j=m
—; 1
- LY e a1
Qv 1=1j5=m; Iv
—mi(sa; —Pa;+1)
Qv
S T P
@ 1_[1( 1— g, (ot

where 7, denotes a choice of generator for m,,.
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Summing the contributions coming from different subsets of A,, we obtain the equality

_ #D5 (ko) 1) g, " e ety
0.9 = 3 P T (1) | i

—(sa(g)—Pa(p) 1
BcA, 3B W) 1—q, (sa(8)=Pa(p)+1)
Here we interpret the term QU_MQ(S)<s“<‘6>_p“(5)+1) to be zero whenever €,(g) = 1.
When p,(0,) # 1, the same arguments show our statement. 0

7.1.2. Places of bad reduction. Here we still assume that v ¢ .S, but now our model has
bad reduction at v, that is, at least one of the assumptions (i) and (ii) of Lemma 6.1 is not
satisfied. We have the following proposition.

PROPOSITION 7.2. The function

o~

He,’z)(oa S) = / H?) (X1;7 S)71 65.1) (X'U) dxv
G(Fy)
is holomorphic in s whenever R(s,) > po — 1 for all & € A such that ¢, < 1.

Proof. We observe that an application of [24, Lemma 4.1] with & = J. , gives holomorphy

of I/-i\e,U(O, s) whenever R(s,) > po — 1 for all a € A. Indeed, let w be a G-invariant top form
on GG. Then we have

~

Hs,1}(0; S) = / H’z)(x’z)a S)il 55,1) (Xv) dxv
G(F.)

dx,
[wl[o

_ / Ho(x0,8) ™" 6.0 (0) |l
G(Fy)

- / H’U (X177 s — 9)71 66,17 (XU) dTa
X(Fv>
where p = (pa)aca and 7 is the local Tamagawa measure. Next, recall that
Ho (0,8 = p) 7! = T IfaGeo)ll3 ",

acA

so in the notation of [24, Lemma 4.1], we have

Heo(0,8) = 7 (0c.0; (S0 — po + Daca),

which is holomophic whenever R(sq, — po +1) =R(sa) —pa+1>0 for a € A Finally,
observe that for all & € A such that €, =1, the set D, (F,) is disjoint from the support of
de.v; hence, ||f,]|, is a nowhere vanishing bounded function on X (F,).. Thus the integral that
defines /H\W(O,s) is absolutely convergent also for all s that satisfy $(s,) > po — 1 only for
a € A such that €, < 1. O

7.2. Places contained in S

Assume now that v € S. In this case, d. , = 1 by definition. Therefore the local height integral
for Campana points coincides with the usual local height integral, so that we do not need to
do anything new.

PROPOSITION 7.3. The height integral ﬁv(O, s) is holomorphic when R(s,) > po — 1 for all
ac A IfL=73 ., D, is a big divisor on X, and if

a:=a((X,Drea), L) and b:=b(Fy,(X,Dyea), L)
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(as in §4), then the function
s (CFU (S - a))_b : /H\v(07 SL)

admits a holomorphic continuation to the domain R(s) > @ — ¢ for some § > 0. Moreover, the
function s — H,(0,sL) has a pole at s = a of order b.

Proof. One may apply [24, Lemma 4.1, Proposition 4.3], taking ® = 1 on X (F,). Note that
in [24, Proposition 4.3], the main term of the local height integral is formed by the contributions
of faces of maximal dimension in the analytic Clemens complex; however, these contribute to
the pole at @ all with the same order b. Also note that there is a typo in [24, Proposition 4.3]:
each product of local zeta functions should be taken over o € A, not « € A. This means that
D, contains an F,-point, so one has F,, = F, for all a € A. O

7.3. Euler products
Given a € A, we denote by F, the field of definition for one of the geometric irreducible

components of D,; in other words, F, is the algebraic closure of F' in the function field of D,,.

PROPOSITION 7.4. Let v be a place of F' not contained in S and of good reduction for
(X,D.). Let o € A. Write

Da QF Fv = U Dv,[)’
BEA, ()

for the decomposition of D, ®p F, into irreducible components.

(1) For ¢ > 0 sufficiently small, the function

S — H H CFq,_ﬂg (ma(sa — Pa + 1))_1 H\e,v(oa S)

acABeA,(a)

is holomorphic on T~ _;. (If €, = 1, we interpret (p, ,(Ma(sa — pa + 1))~ " to be 1.)
(2) For § > 0 sufficiently small, there exists §' > 0 such that

I II ¢ (malsa—pa+1) " Ae(0,s) = 14 O(q, ),
acABeA,(a)

for any s € T~ _;.

Proof. We may safely assume that p,(O,) = 1. We analyze the right-hand side of (7.3),
separating the analysis into three cases.

o If B =0, then #D; 5(k,) = #G(k,) = q;. Therefore the term corresponding to B in the

right-hand side of expression (7.3) for ﬁw(O, s) is simply equal to 1.

o If B={B}, define a(B) € A as in §7.1. If D} z(k,) =0 or ey 5 =1, then B does not
contribute to the right-hand side of (7.3). If, on the other hand, D&B(kv) # 0, then D, p R0, ks
is a geometrically irreducible k,-variety of dimension n — 1, so that

#D; p(k,) = ¢, +0(gy ™"

for some §; > 0, which may be chosen independently of [. Therefore by choosing § >0
sufficiently small and s € T~ _s, the term corresponding to B = {§} contributes to the sum in
the right-hand side of (7.3) by

q;maw)(er(ﬁrﬂa(m“)(1 + O(qv—éz»7
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for some 05 > 0. Since § > 0, we have

M) (Sa(8) —Pa(s)+1) —(1=mq(p)9)
qu < Qw

whenever s € T~ _;. It follows that if we choose § sufficiently small and s € T~ _4, then the
contribution of the term corresponding to B = {8} can be rewritten as

q;maw)(Sawfﬂa(m“) + O(q;(“‘;/))

for some 6" > 0.
e Finally, if #B > 2, then #D; p(k,) = O(q"~ 7). Moreover, the product in the term in

the right-hand side of (7.3) corresponding to B is O(qv_(Hé/)), with ¢’ as above, assuming that

we have chosen s € T~ _s for § > 0 sufficiently small. Indeed, each of the factors in the product

is bounded from above by g, " ™™ for some m > 0, as s € T~_s. There are at least two such

(

factors, so the result is bounded from above by g, 2(0=m9) for some m > 0, and hence certainly

by qv (143") i § is chosen small enough.

We conclude that for § > 0 small enough and s € T~ _;, we have

B0 =1+ T Y g 4 o)
acABeA,(a)
fo,p=1

where f, 3 = [F, g : F,], and therefore,

HooOs) TT TT (1—a™omeComt) =14 0(g;0+).
a€ABeA,(a)

This implies the proposition. U

COROLLARY 7.5. The function
s — (H ¢, (Ma(Sa — pa + 1>>—1> 1 He..(0,8)
acA vgS

is holomorphic on T~ _g for sufficiently small §' > 0.

Proof. This follows immediately from Proposition 7.4 and Proposition 7.2, taking into
account the fact that

Fo®pF,~ [ Fup
BeA,(a)

for all o € A. O

8. Height integrals II: nontrivial characters

In this section, we study the height integral

He(a,s) = [] /G(F.)Hv(xv,s)156’v(xv)¢a7v(xv)dxv =[] Heol(as).

vEQR vEQ R
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Note that the inner function of each Euler factor is trivial on G(O,) for almost all places v.
We introduce some notation. For each a € G(F') with a # 0, we denote the linear functional
X — a-x by fa, where a - x is the standard inner product. Recall from §5 that

div(fa) = — > do(fa)D

acA
with dy(fa) = 0. We define

A’(a) = {a € Al da(fa) = 0},
A7 (a) = {a € A da(fa) = 1}.

For any place v € Qp, we define

H,(a) = max{|ai|y,- -, |an|o}
and for any non-archimedean place v, we take

Ju(a) = min{v(ay),...,v(a,)}
so that H,(a) = g5 We also define

Hiin(a H H,( He(a) = H H,(a).
vEQE® veEQE

Note that we have
H.(a) > Hg,(a) . (8.1)

8.1. Places away from S

In this section, we assume that v ¢ S and we analyze

He(as) = ] /p (F)Hv(xms)*l66,1,(x1,>wa,v<xv>dxv =[] Heu(a,s).

vEQR vEQR

Since ﬁc(a, s) = 0 whenever a ¢ Ax by Proposition 6.3, we may safely assume that a € Ax.
We separate the analysis into the cases of good reduction and bad reduction.

8.1.1. Places of good reduction. We further assume that our model (X,D) has good
reduction at v in the sense of Lemma 6.1, conditions (i) and (ii). We will distinguish two
cases, depending on whether j,(a) = 0 or j,(a) # 0; we start with the former case.

To analyze the integral

o~

Heo(a,s) = / H, (x4, s)*1 Oc v (X)) Yaw(xy) dx,
G(Fy)

in the domain T~ _s, we begin by stratifying G(F,) by the fibers of the reduction map:

1 -1
(O v Xy, S — 661} Xov a,v (X .
AT VI D [7 L Pl =) 8ca) v () 7

BCA, yeDy 5

e If B =), then the inner sum is 1, since n;l(Dgyw(/ﬂy)) =G(0,) and a € Ax.

o If B ={f}, we define a(f) as in § 7.1. Without loss of generality, we may assume that D, g
is geometrically irreducible and that €, 5 # 1. We distinguish two cases: either a(8) € A%(a),
or a(B) € A%l(a).
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If a(B) € A°(a), then the character v, , becomes trivial on 7, ' (D 5(k,)). Arguing as in the
proof of Proposition 7.4, the inner summation contributes

qv—ma(s)(Sa(m —Pas)t1) (1 + O(q—él )),

v

for some d; > 0, assuming that 6 > 0 is sufficiently small.
If, on the other hand, «(8) € AZ'(a), we set d:=d,s)(fa). If y ¢ E(fa)(ky), we can use
Lemma 5.4 to compute

/ Hv (Xva S — P)_l 66,1) (Xv) wa,v (Xv) dT
no ' (y)
_ 1 Sa(B) ~Pa(B) 1
= qffl/m |2 1 e (2) P e dz
—id
Ty
( por )dac

(ﬂ'v_idl‘d) dz

1 +oo )
o —i(Sa(p) —Pa(p)T1)
- n—1 z : qv

1=Mq(g)

_ —i(sa(p) —Pa(s)+1)
= 1 Qv

i:TrLQ(g)

/ ¥,
or
+oo
1
/ o
or

_ﬁqv—(sa(ﬁ)ﬂoa(ﬂ)-‘rl) if d = Ma(g) = 1
0 otherwise
= Olag; ")

for some 9o > 0, for sufficiently small § > 0.
If y € E(fa)(ky) and 6 > 0 is sufficiently small, then we have

/ HU(XU,Sf p)il 6e,v(xv) wa,v(xv)d'r
no t (y)

< / Hv(xva%(s) _p)_l 56-,1)(X’U)d7-
ns ()

_ O(q/;(n71+63))

for some 03 > 0.
Thus, using the Lang—Weil estimates

#(D5 5 \ E(f)) (k) = O(ai ™), #E(fa)() = O(a72),
we obtain
/ Ho(Xy,8 — p) 1 0c.o (%) a0 (x,) dT = O(q, 1+%)
yeEDS 5 (k) ns ' (v)

for some d4 > 0.
o If #B > 2, then arguing as in the proof of Proposition 7.4, one can show that

/ H, (x0,8 — p)_l Oe.v(Xp) Yaw(x,)dr = O(q;(1+65))
yeD? , (ky) no ' (y)
for some J5 > 0 assuming that § > 0 is sufficiently small.

Combining the estimates above, we obtain the following analogue of Proposition 7.4.
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PROPOSITION 8.1. There exist real numbers §,8' > 0, independent of a, such that the
function

s [ T T ¢esma(sa—pa+1)7" |Heulas)

a€A0(a) BEA, (a)

is holomorphic on T~ _s, and such that

[T Il ¢nstmalsa—pa+1)7" |Heulas) =1+0(q )

acA%(a) BeA,(a)

for all s € T~_s. Here we interpret Cp, ,(ma(Sa — pa + 1))~ " to be 1 whenever e, = 1.
This finishes the analysis in the case j,(a) = 0. From now on, we assume that j,(a) # 0.

PROPOSITION 8.2. There exists a real number 0 > 0, independent of a, such that the
function

S — H H CFU,;s (Mma (80 = po + 1))71 ﬁe,z)(a> s),

acAl(a) BeEA, (o)

is holomorphic on the domain T~ ;.
Moreover, there exists a real number k > 0, independent of a, such that

IT I ¢nsOma(se—pa+1)7" |Heula,s)| < (14 Hy(a)™h)".

acA%(a) BeA,(a)

Here we interpret (p, ,(ma(Sa — pa +1))7! to be 1 whenever €, = 1.

Proof. As before we use the stratification of G(F,) by the fibers of the reduction map:

m €, 1) Z Z /7 H, (X7,7 S — p)*l 55_’1) (Xq,) 1/}3_’1) (X7;) dr.

')
BCA, yeD 5(ky) "M W

e If B = (), the inner summation is holomorphic everywhere and equal to some constant as
in §8.1.

e If B ={p}, we define a(B) as in §7.1. Without loss of generality, we may assume that
D, s is geometrically irreducible and that €,(s) # 1. We again distinguish two cases: either
a(B) € A%(a) or a(B) € A% (a).

If a(f) € A°(a), the character ¢, , becomes trivial on 7, ' (Dj 5(k,)). Hence, arguing as in the
proof of Proposition 7.4, for a sufficiently small § > 0, the inner summation is holomorphic and
bounded by

q;ma(/@)(&y(a)*m(/sﬂrl)(C + O(q;él)),

for some constant ¢ and §; > 0.
If, on the other hand, () € A%!(a), we denote d := dy(p)(fa). If y & E(fa)(ky), then we use
Lemma 5.4 to compute

/ HU(X’UaS - P)_l 5€,U(X’u) '(/)a,'u(x’u) dT
no ' (y)

! / |zl
= —F Han
n—1
Qv m,

Ju(a)

Ut « 7T
wpwlwm>%<v>®
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400 —id+j,(a)
1 —i(s — gy +1 T
_ § : a(B) ~Pa(p)t1) v
- n—1 Qv 1/% d da
o; z

i:'rn“ (B)

+o0o )
- 1 —i(5a(8) —Pa(s)+1)
- n—1 z : qv

X
1=Mq () (@F

B O(Z?}(al)')'

¥y (ﬂ;id+jv (a)xd) dx

We note that the implied constant can be taken independent of a; indeed, there are only
finitely many possibilities for d,(fa) by Proposition 5.2. Finally, if y € E(fa)(k,), then for
6 > 0 sufficiently small we have

/ HU(vas 7p)715c,v(xv)wa,v(xv)d7—
ns ' (y)

< / H, (x,, R(s) — p)_1 Je.v(%y)dT
no " (y)

= 0(g; ")

for some 0’ > 0. Thus, using the Lang—Weil estimates as in §8.1, we obtain

> /l( : Hy (0,8 = p) " 6c.0(X0) Yann(x0) d7 = O(Js (a)]).

yeD? , (ky)

o If #B > 2, then as in the proof of Proposition 7.4, we have

/ H”(X“’ 58— p)il 5671)(){1)) wa,v(xv) dr = O(q;<1+6/)).
o ()

yeD] 5(ky)

We conclude as in the proof of Proposition 7.4. O

8.1.2. Places of bad reduction. We still assume that v & S but our model has bad reduction
at v, that is, at least one of the assumptions (i) and (ii) of Lemma 6.1 is not satisfied.

PROPOSITION 8.3. The function

~

He,v(aa S) = / Hv (Xm 5)71 66,17 (Xv)wa,v (Xv) dxv
G(Fy)

is holomorphic in s whenever R(s,) > p, — 1 for all « € A°(a) such that ¢, < 1. Moreover, for
any 0 > 0 there exists constants k,d > 0 and C(8) > 0 such that

[Heo(a,s)] < CO)(1+ )" (1 + Ha(a))”
whenever R(s,) > pa — 1+ 8 for all o € A%(a) such that €, < 1.

Proof. One may argue as in [26, Corollary 3.4.4 and Lemma 3.5.2]. O

8.2. Places contained in S

We now treat the remaining places.
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ProprosITION 8.4. The following hold whenever v € S.
(i) Let 6 > 0 be any positive real number. Then the function
S ﬁeyv(a, S),

is holomorphic in the domain given by R(sy) > po — 1+ d for each o € A. Moreover, there
exists a real number My > 0, which does not depend on a, such that

® (1+ Isp™~
O N T

in the above domain.
(ii) Let L =) .4 AaDq be a big divisor, and let

a = Zl((X, Dred); L) and b:= b(Fua (Xa Dred)a Lv fa)

be the respective a- and b-invariants of X defined in §4. Then the function

~

s (Cr, (s —a)) " "H,(a, sL)
admits a holomorphic continuation to (s) > a — § for some ¢ > 0. Furthermore,

(L +[s)™

[1Cr. (s =) He(as)| < G- ayw

veS

in the above domain.

Proof. The first statement is simply [23, Proposition 8.1]. The second one follows from
[26, Proposition 3.4.4 and Lemma 3.5.2] as well as the discussion in [26, §3.3.3]. Note that
[26, Proposition 3.4.4] is stated for a birational modification Y, of X, but this does not matter
because of Lemma 4.2. O

8.3. Euler products

Finally we analyze the product

H.(a,s) = H ﬁw(a,s).
eQp

We introduce some notation. For every a € A we set

Crose(8)=T] T ¢rs(s)-

v S BEA, ()

PROPOSITION 8.5. Assume that |D.| = 0. There is a real number 6 > 0, independent of a,
such that the function
-1

S H Cr,.sc(Ma(Sa — po +1)) Hc(a,s)
acA%(a)
is holomorphic on T~ _s.
Moreover, for any integer N > 0, there exists a real number My > 0 such that
—1

I ¢roscmalsa —pa+1)| Helas)| <
acA%(a)

(1 + [Is[D™~
(14 Hoo ()N
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Proof. This follows from Propositions 8.1, 8.2, 8.3, and 8.4, together with the estimate (8.1).
The implied constant can be chosen independently of a, since a belongs to the Op-module
Ax. O

9. Proof of the main result for klt Campana points

In this section we prove our main result, Theorem 1.2. We work in the setting introduced in
§ 1.3, recalled here for the reader’s convenience.

By X we mean a smooth, projective and equivariant compactification of G = G}, defined
over a number field F'. We assume that the boundary divisor D = X \ G is a strict normal
crossings divisor on X, with irreducible components (Dy)aca, so that D =37 _, D,. We
denote by F,, the field of definition for one of the geometric irreducible components of D, ; in
other words, F,, is the algebraic closure of F' in the function field of D,,.

Let S C Qp be a finite set containing Q%°, such that there exists a good integral model
(X, D) of (X, D) over Spec Ops as in §3.2, and let D =} _ , D,. Having fixed ¢, € 20 for
each a € A, welet D, =3 €Dy and D, =3 . 4 €2 Dy. In this section, we assume that
the pair (X, D.) is Kawamata log terminal (klt for short), that is, ¢, < 1 for all a € A.

Let £ denote a big line bundle L on X, equipped with a smooth adelic metrization. Our goal
is to understand the asymptotic behavior of the counting function

N(G(F)., L,T),
which records the number of points of £-height at most T in G(F). = G(F) N (X, D) (OF.s).
To do this, we apply a Tauberian theorem to the height zeta function
Z(s)= Y H(x,;s)'6c(x)
xeG(F)

introduced in §6.3. This function is a holomorphic function when f(s) > 0; our first goal is to
establish a meromorphic continuation of this function. Subsequently, knowledge of the location
of the rightmost pole of Z.(sL) along R(s), its order, and its residue will serve as inputs to the
Tauberian theorem that establishes the asymptotic formula we seek.

Recall that for any real number ¢, we defined

Toe={s € Pic(X)c : R(sa) > pa — €a + ¢, for all a € A},

where the p, are integers satisfying —K x ~ Zae A PaDa-

PROPOSITION 9.1. The function

S — <H Cr, (Ma(sa = po + 1))1> Z.(s)

acA

is holomorphic in the region Txg.

Proof. We begin by verifying that the Poisson summation formula
Z(s)= Y Hc(as) (9.1)
acAx

holds for f(s) > 0. The discussion in § 6.3 shows that all that remains to be done is checking
that the right-hand side converges absolutely. This follows from Proposition 8.5, as

1
2 (14 Heo(a))™

aclAx
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converges for sufficiently large N. The result now follows from an application of Propositions 7.3
and 8.5 and Corollary 7.5 to the summands of the right-hand side of (9.1). O

REMARK 9.2. It is important to note that the local height integrals studied in §§ 7-8 have
poles along s, = p, — 1; however, it follows from Proposition 9.1 that the rightmost pole of
Z.(s) occurs along some s, = po, — €4 > po — 1, because of the klt condition.

With a meromorphic continuation of Z.(s) in hand, we turn to the case where s = sL. We
may write L =3 4+ AaDa, where A, >0 for all o € A, because L is big. Then s, = s)A,.
Proposition 9.1 suggests that the rightmost pole along R(s) of the zeta function Z.(sL) is

a=a((X,D.),L) = Inax{pa)\ Ca }

(o3

Setting

(63

A(L) = {a cA: ”C*A;ea = a((X, DE),L)},

the order of this pole should be
b="b(F,(X,D,.),L):=#A(L);

see Remark 9.2. We shall establish these statements, separating our analysis into two cases,
according to the litaka dimension of the adjoint divisor

alL+ Kx + D..

9.1. Rigid case

In this subsection we assume that the adjoint divisor aL + Kx + D, has Iitaka dimension (see
[50, §2.1] for the definition) equal to zero; we say that aL + Kx + D, is rigid. Recall that
Ax C G(F) is the set of a such that the character ¥, is trivial on the compact open K defined
in §6.2.

By the Poisson summation formula, we have

Z.(sL)= Y H.(a,sL).
acAx
We study the poles of Z.(sL) by looking at the individual terms of the right-hand side. When

a =0, it follows from Corollary 7.5 that H.(0, sL) has a pole at s = a of order b, provided that
we show that the corresponding residue is not zero (we verify this last claim presently). On the

other hand, Proposition 8.5 shows that if a # 0, the term /I:Ie(a, sL) has a pole of the highest
order equal to that of H.(0, sL) if and only if

A%®a) > A(L).

This condition means that whenever (po, — €4)/Aa = a, we must have d,(fa) = 0. Since

E(fa) ~ Z d(x(fa)D(x and al + KX + Ds = Z(UIA(} — Pa + Eu)Dav
acA acA

it follows that E(fa) is equivalent to a boundary divisor whose support is contained in that
of the adjoint divisor aL + Kx + D.. This is not possible. Indeed, aL + Kx + D, is rigid, and
any positive linear combination of components of a rigid effective divisor has a unique effective
divisor in its Q-linear equivalence class. However, we showed that the effective divisor E(fa),
which is not a boundary divisor, is linearly equivalent to an effective boundary divisor with
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support contained in the support of aL + Kx + D. This is a contradiction. Hence, if a # 0,
the summand H (a, sL) does not contribute to the residue of the pole of Z, (sL) at s = a.
Our analysis shows that the main term of Z.(sL) is furnished by H.(0, sL), provided

¢:=lim(s —a)’ ﬁE(O, sL)

s—a

is non-zero, that is, only the trivial character can contribute to the leading pole of Z.(sL).
Recall that

H.(0, sL) :/ H(x,sL) ' d.(x)dx = / H(x,sL+ Kx) 'dr,
G(Ar) G(Ar)

where 7 =[], 7, is the Tamagawa measure on G. Let X° = X\ (U,g (1) Da)- Setting I' =
Gal(F/F) and T'p, = Gal(F/F,), we construct the virtual Artin representation

P(X°) =Pic(X)c— Y Indp, C
ag A.(L)

We denote the corresponding virtual Artin L-function by

L3 (P(X°).s) = [] Lo(P(X°),5)

vgS

This function has a pole of order #.4.(L) at s = 1 by [46, Corollary 5.47]. For v € S we define
L,(P(X°),s) = 1. Using this we define the Tamagawa measure

Txo = H L,( )t TXO v, (92)

vEQR
where L?(P(X°),1) is the leading constant of L°(P(X°),s). We also define
Txo.p.v = Hy(X,D)Txo,, and 7xo p, = H(x, De)Txo.

LEmMA 9.3. With notation as above, we have

1
c= [[ H(x,aL + Kx + D.) "t drxe.p. > 0,
acAL(L) m(x)\(x XO(Ap)e

where X°(Ar). is defined in §3.3.
Proof. First, we note that

¢ = lim (s — a)” H.(0,sL)

sS—a
= }1_)11{11(5—a H Cr, 5e(Ma(Aas — pa +1))
acA(L)
-1

X / H CF(”S" m(x as _p(1+1)) H(X’SL+KX)71dT'
(AF)e acAc(
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For each a € A(L), we have a = (po — €4)/Aa, Where €, =1 —1/m,. Each of the b-many
Dedekind zeta factors (r, sc(ma(Aas — po + 1)) has a simple pole at s = a, so that the limit

Shg(ll (s —a) Cr,.sc(ma(Xas — pa +1))

is equal to the residue at s = a for the Dedekind zeta factor corresponding to «, which we denote
by Cr. sc(1)/maAa, where (f. (1) is the residue of (r, s<(s) at s =1, the normalization
1/ma A, being a consequence of the chain rule. With the notation

. (s) ifvéls,
Cr. se0(s) = {Pﬁem(a) CF,.5(5) ¢

otherwise,

we rewrite the integral
-1
/ H CFa,Sc(m(Y(A(YS_pw +1)) H(X75L+KX)71dT
G(AF) QEAE([J)
as a product of local integrals
—1
H / H CF(! Se, v(ma()\a S — Pa + 1) Hv(xaaL+KX)71dTXO,1)
vEQR (Fo) acAc(L)
each of which is regular at s = a (note that 7, and 7xo , coincide on G). We obtain
-1
c= H - (P se H / H Cr,.500(1) H,(x,aL + Kx) ' drye .
a€A(L) ata veQr TG \ qea, (L)
Using the equality
-1 -1

[IreE).n| [ s =5e@).n| [ ¢ .

vEQR acA (L) acA (L)

we may simplify the above expression for ¢ to

1 , _
11 ) LY (P(X°),1) / Hy(x,aL 4+ Kx + D)~ L,(P(X°),1) " drxe.p, o
acAc(L) Mala veQp Y G(Fu)e

(9.3)
Finally, (9.2) allows us to conclude that
1
c= ][ H(x,aL + Kx + D) " drxe.p. > 0.
acA. (L) m(x>\oz X°(Ap)e

Let us discuss the positivity of this constant. Recall that this integration is expressed as the
Euler product (9.3). The integral at each place is positive as the inner function is positive over
some open subset. Then a partial Euler product is also positive because of Proposition 7.4 (2).
Thus our assertion follows. O

Applying a Tauberian theorem (see, for example, [68, I1.7, Theorem 15]), we obtain the
following theorem.
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THEOREM 9.4. Let X, L, D and € be as above. Assume that (X, D,) is kIt and set
= a((X, De), L),
b="0b(F,(X,D.),L),
c=c(F,S,(X,D.), L)

1
= H / H(X’ aL—i—Kx +D6)_1 dTXO,Dg
acA. (L) ma)\ XO(Ap)e

If aL + Kx + D. is rigid, then

N(G(F)e, L, T) ~ T (log T)*~" as T — oo.

(bfl)

9.2. Non-rigid case

The analysis in this subsection is modeled on [70]. With notation as above, we now assume that
the divisor F := aL + Kx + D, is not rigid, that is, that its litaka dimension is positive. Then
some multiple mE defines the Iitaka fibration ¢,,: X --» Y},. (See [50, §2.2] for its definition.)
Since mFE admits a G-linearization, Y,, admits a natural G-action, and ¢,, is G-equivariant.
For the sake of simplicity, we assume that ¢,, is a morphism. The variety Y, contains an open
orbit of the G-action, so it has the structure of an equivariant compactification of the quotient
vector space G/Gr, where G, C G is a linear subspace of G.

As in §9.1, the term H «(a,sL) has a pole of the highest order equal to that of H (0,sL) if
and only if AO( ) D A.(L). This condition is equivalent to having fa =0 on Gy,. Therefore,
the rightmost pole of Z.(sL) is furnished by the sum

S Asn= Y /(MH (x, 5L) 6. (x) a () dx

{fa=0}DGL {fa=0}DG,

/ x4y, sL) Se(x +y) dx,
ye<G/GL> Gr( A”

where the last equality follows from the Poisson summation formula. Note that the equality
holds for any s with R(s) > a by the monotone and dominated convergence theorems.

Let Xy be the fiber of ¢, above y. It is a smooth equivariant compactification of G, with
boundary divisor D|x,. Let &y be the closure of Xy inside X'. The restriction (aL + Kx +
D.)|x, is rigid, since ¢,, is an litaka fibration. Applying the analysis of §9.1, we conclude that
the inner integral has a pole at s = a((Xy, D¢|x, ), L) of order b(F,(Xy, Dc|x, ), L). Now [42,
Lemma 5.2] yields

a((X,D.),L) = a((Xy,D5|Xy),L)7 and b(F,(X,D.),L) = b(F, (Xy7D5|Xy),L).
We claim that

. b .
lim(s —a)’ Z(sL)= ) o(F.S,(Xy,Delw,), Llx,)-
YE(G/GL)(F)

All we need to do is justify the interchange of limits: the right-hand side converges by Fatou’s
lemma, and the claim then follows from the Poisson summation formula (Theorem 5.5).

As before, applying a Tauberian theorem ([68, I1.7, Theorem 15]), we obtain the following
theorem.
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THEOREM 9.5. Let X, L, D and € be as above. Assume that (X, D,) is klt, and that m is
an integer such that the litaka fibration ¢,,: X --» Y}, defined by mFE is a morphism. Set

a = CL((X, De)aL)a
b=0b(F,(X,D,),L),

c= Y oFS.(X,De|x,). Llx,)-
ye(G/GL)(F)

Then

N(G(F)e, £,T) ~ T (log T)" " as T — oo.

a(b—1)

Interlude II: examples

As mentioned in the introduction, Theorem 9.4 for klt Campana points of bounded log-
anticanonical height (that is, L = —(Kx + D,)) applies to all smooth compactifications of
vector groups with strict normal crossings boundary, as al + Kx + D, is always rigid in
that case. We recall that there are numerous such compactifications, as blowing up points
that are invariant for the action of the vector group on a compactification always produces
new examples.

For the convenience of the reader, we describe two explicit examples to which Theorem 9.4
applies with L # —(Kx + D.). Both can be described as blow-ups of a projective space. We
describe the set of Campana points in terms of the projective coordinates to show what type
of explicit counting problems can be solved using Theorem 9.4.

Blow-ups of P

Let f € Z[xo, ..., x,] be a homogeneous polynomial of degree d such that the subscheme {z¢ =
f =0} of P} is regular over Z. Let ¢: X — P7 be the blow-up with center {z¢ = f = 0}. Let Dy
be the exceptional divisor and Dy the strict transform of {xy = 0}. We set X° = X'\ (D1 U D3).

Fix positive integers m and me, and let ¢, =1 —1/m; for ¢ € {1,2}. Then (X,D,) is a
good integral model of a klt Campana orbifold in the sense of §3.2. By definition of blow-
up, the restriction of the morphism ¢ to X° is injective. Thus, ¢ induces a bijection between
(X, DH(Z) N Xx°(Q) and the set A of (n + 1)-tuples (Zo,...,T,) € Z™ such that

ged(Zo, ..., 2n) =1, &g >0, ged(Zo, f(Zo,...,Tn)) is my-full,
{f?()/ ng(.’Eo, f(.i'(), ey (fn)) iS m2—full.

Indeed, given a point & € P"(Q) \ {xo = 0}, the first two conditions fix a representative for the
projective coordinates of &, and given a linear form ¢ € Z[xo, . .., x,] such that £(Z) = 1, we can
describe explicitly the morphism ¢ over the neighborhood Uy := P \ {¢ = 0} of Z. In particular,
o YU = {yoft~% = y1wol~'} C U, x PL, with coordinates (yo : y1) on P}, and the preimage
of Z is the point (7, (Zo/ ged(Zo, f()) : f(Z)/ ged(Zo, f(2)))) € Ur x PL. In a neighborhood of
¢~ (%), the equations defining D; as a subscheme of U, x P}, are zo = f = 0, the equations
defining D are o = yo = 0. So ¢~ (%) € (X,D.)(Z) if and only if ged(Zo, f(Z)) is my-full and
ged(Zo, Zo/ ged(Zo, f(Z))) is mo-full.
An application of Theorem 9.4 with L = 7*Opn (1) shows that

#{(z0,..., 1) € A:max{|zol,..., x|} ST} ~ T2 a5 T — o0,

for some ¢ > 0.
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A singular del Pezzo surface

Let X be the minimal desingularization of a split quartic del Pezzo surface of type D5 over
Q. Then X is an equivariant compactification of G2 by [31, Lemmas 4 and 6]. The irreducible
components of the boundary on X are the divisors E1,..., Eg from [30, §3.4 Type D5]. We
fix coordinates (o : 1 : 22) on P3 and we denote by ¢ : X — P* the morphism from [30, §3.4
Type Ds] that contracts Eq, Es, Ey, Es5, Eg to the point (0: 0 : 1) and maps Fs5 onto {z¢ = 0}.
The morphism ¢ is a sequence of five successive blow-ups at Q-points. Performing the same
sequence of blow-ups over Z as in [37, Proposition 3.9] yields a smooth projective Z-model
X for X. For every i € {1,...,6}, we fix a positive integer m;, we define ¢; = 1 — - and we

my ?

denote by &; the closure of E; in X'. Then (X, Z?:l €;£;) is a good integral model for the klt
Campana orbifold (X,Y°_ ¢ E;). Let X° = X \ JS_, E:.

We use the notation f(-):=-/ged(-,x;) and g(-) := x1/ged(-,z1), and we denote by f()
the nth composition of f with itself. We write h:= f©)(z0)z? + g(f (z0))g(f(x0))g(z0).
Reasoning as in the previous example for each of the five successive blow ups, we see that
the set of Z-Campana points (X, Z?Zl €&)(Z) N X°(Q) is in bijection, via ¢, with the set A
of triples (x¢, 1, 22) € Z? such that ged(zg, 1, 72) = 1, 29 > 0,27 # 0 and

ged(f? (o), g(h)) is my-full,
x5'? ged(h, g(f(R))) is ma-full,

FO (o) is ms-full,  ged(f(zo), g(f? (20))) is my-full,
ged(zo, g(f(x0))) is ms-full, 25 ged(ay, f(R)) is me-full.
Then an application of Theorem 9.4 with L = ¢*Op2(1) shows that
#{(x0, 21, 22) € A: max{|xo|, |z1], |za|} < T} ~ T?H/™ as T — oo,

for some ¢ > 0.

10.  Proof of the main result for dlt Campana points

In this section, we sketch the proof of Theorem 1.4. We use the notation of §9, but this time
we assume that | D.] # 0, so that (X, D.) is not a klt pair. We set

A = fa e Al e, #1},
A = Lo e Al e, =1}
Let L = —(Kx + D.). Arguing as in the proof of Proposition 9.1, we obtain the following

proposition.

ProprosITION 10.1. The function
-1

s H Cr, (1 +ma(pa — €a)(s — 1)) (H Cr, (s — 1)b<F’”(X"D”’d>’L)> Z.(sL)

ac AKXt veS
is holomorphic in the region R(s) > 1.
This implies that the zeta function Z.(sL) possibly has a pole at s = 1.
We define

b(Fa Sa (Xa De)aL) = #Aklt + Zb(Fv7 (X7 Dred)aL)v
veS
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where the summands on the right are the b-invariants defined in §4. Proposition 7.3 and

o~

Corollary 7.5 together imply that H.(0, sL) has a pole at s = 1 of order b(F, S, (X, D.), L).

A~

Arguing as in [26, Lemma 3.5.4], we see that the order of the pole of the function H.(a, sL)
at s = 1 is strictly less than b(F, S, (X, D), L) when a # 0. A final application of the Tauberian
theorem [68, I1.7, Theorem 15| then gives the following asymptotic formula for the counting
function N(G(F)., L, T) in the dlt case when L = —(Kx + D,).

THEOREM 10.2. Let X, D and e be as above. Set
L=-(Kx+D.,), a=1, and b=b(F,S,(X,D.),L).
Then there exists a constant ¢ > 0 that depends on F, S, (X, D,.), and L, such that

N(G(F).,L,T) ~ 'Ta(logT)b*1 as T — oo.

a(b—1)
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