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Abstract—Inneuroscienceatopicofinterestpertainsto
understandingtheneuralcircuitandnetwork mechanisms
thatenablearangeofmotorfunctions,includingmotionand
navigation. Whileengineershavestrongmathematicalconcep-
tualizationsregardinghowthesefunctionscanbeachieved
usingcontrol-theoreticframeworks,itisfarfromclearwhether
similarstrategiesareembodied withinneuralcircuits.In
thiswork,weadopta‘top-down’strategytopostulatehow
certainnonlinearcontrolstrategiesmightbeachievedthrough
theactionsofanetworkofbiophysicalneuronsactingon
multipletime-scales.Specifically,westudyhowneuralcircuits
mightinteracttolearnandexecuteanoptimalstrategyfor
spatialcontrol. Ourapproachiscomprisedofanoptimal
nonlinearcontrolproblemwhereahigh-levelobjectivefunction
encapsulatesthefundamentalrequirementsofthetaskathand.
Wesolvethisoptimizationusinganiterativemethodbasedon
Pontryagin’sMaximumPrinciple.Itturnsoutthattheproposed
solutionmethodologycanbetranslatedintothedynamicsof
neuralpopulationsthatacttoproducetheoptimalsolutions
inadistributedfashion.Importantly,weareabletoprovide
conditionsunderwhichthesenetworksareguaranteedtoarrive
atanoptimalsolution.Intotal,thisworkprovidesaniterative
optimizationframeworkthatconfersanovelinterpretation
regardinghownonlinearcontrolcanbeachievedinneural
circuits.

I.INTRODUCTION

Optimalcontroltheoryhasoftenbeenappliedtounder-
standandemulatebiologicalmotion[1]–[3].Inneuroscience,
therehasbeenconsiderableinterestinmodelinghowour
brainscontrolacomplexrangeofmotionstonavigatein
aphysicalenvironment(i.e.,motorcontrol,e.g.,[4],[5]).
Severalinsightfulquestionscanbeposedinthiscontext.
Forinstance,howdocircuitsinthebraindeterminethebest
strategyforagiventask?Howdoesthebrainimproveits
performanceoverrepeatedtrialsorexperiences?Howdodif-
ferentsub-circuitsco-ordinateinperfectingandperforming
thesetasks?Itturnsoutthatmathematicalmodelsdeveloped
usingcontroltheoreticframeworkscanhelpusunderstand
theseunderlyingmechanisticquestions.
Recently,weproposedatop-down,or‘normative’model

ofsensorydetectionbyformulatingthequestionasan
optimalcontrolproblem[6].Infact, wederivedneural
circuitarchitectureanddynamicsdirectlyfromtheoptimal
solutionthatturnedouttoberemarkablybiologicalinnature.
Expandingonthisidea,hereweexploremechanismsby
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whichneuronsgeneratingmotorcommandscouldlearnand
implementstrategiesforspatialcontrol.Thebasicsetupof
theproblemis:ifadynamicaldecodertranslatesneural
activitytoforcesactingalongorthogonalaxes,thenhow
shouldneuronsinapopulationactivateanddeactivate,to
induceatargetlocation.
Numerical methodsthatgeneratefunctional modelsof

neuralnetworkshavebeenstudiedinliterature.Ofparticular
relevancetothecurrentworkareeffortstoconstructthe
dynamicsofneuronsandsynapsestomeetspecific,high-
levelcontrol-theoreticobjectives[7]–[9].Morespecifically,
thecontributionsofthispaperareasfollows:

• Weposethequestionofmotorcontrolasacontinuous
timenonlinearoptimizationproblem,andweanalyze
howthesynthesisofasolutioncanbeimplemented
throughsynapticinteractionsofneuronsovermultiple
timescales.

• Wecharacterizetheconditionsunderwhichthemath-
ematicalframeworkconvergesanddescribewhatthis
signifiesforthederivednetwork.

Thecontentsofthispaperareorganizedasfollows.In
Section2,weintroducetheproposedoptimizationframe-
workanditssolution.InSection3,wediscusshownetwork
dynamicsrealizethealgorithmforsolutionaswellasthe
solutionitselfandcharacterizeitsconvergence.Finally,in
Section4,wedemonstrateourframeworkthroughanumer-
icalexample.

II.OPTIMIZATIONFRAMEWORK

A.ProblemFormulation

Webeginbyformallyintroducingthevariablesinour
problemsetup.Thevariablesp(t)∈Rm andv(t)∈Rm

correspondtopositionandvelocity,respectively,ofaplanar
point-massattimet.Withoutlossofgeneralityandprimarily
foreaseofdescription,herewerestrictourselvestom=2.
Theactivityofneuralunitsattimetingivenbyx(t)∈Rn.
Themotionoftheunitpointmassisgovernedby

ṗ=Cv (1)

and,
v̇=−λfv+bf(x) (2)

Here,Ccapturesthedynamicalcoupling,ifany,existing
betweenmotionalongthetwoaxes.λf>0capturespossible
dissipation(e.g.,duetofriction)andthematrixb∈Rm×n

linearlymixesthecontributionofneuralunitsalongeach
dimensionoftheplane.f(x)isanon-lineartransformation
ontheactivityofneuralunits.Specifically,f:Rn→Rnis
consideredtobeoftheform:f(x)=[f1(x1),...,fn(xn)]

T.



Fig.1: Neuralactivityfromthebrainisdecodedinto
forceactingalongdifferentaxesviaanonlineardynamical
decoder.

Through(2),wepositthatthehigh-dimensionalactivityof
theneuralunitsisdecodedintoforcesactingalongaxes
ofmotioninalow-dimensionalplane(seeFigure1).Neural
activitydecodedvia(2)mustenablethesystemtoreach
afixedtargetpositionintheplane,i.e.,pT. Withthis,we
specifyafixed-timeendpointobjective:

J(x)=
T

0

1

2
[(p−pT)

TQ(p−pT)+x
TSx+

ẋ(t)TRẋ(t)]dt+Jf(T,p(T),x(T))

(3)

Here,x(t)=x(t)−xb,wherexbisthebaselineactivityof
theneuralunits.
Thetermsintheintegrandcanbeinterpretedasfollows:

thefirsttermquantifieshowfarthepoint massisfrom
thetargetlocation.Thesecondtermquantifiesthedeviation
ofneuralactivityfrombaselineactivity,henceproviding
a measureforenergyexpenditure.Thefinaltermin(3)
regularizesrapidfluctuationsinneuralactivity.Inaddition,
thereisapenaltyforfailingtoreachthedesiredlocation
withinthegiventimeframeT.Here,Jf(T,p(T),x(T))=
0.5[(p(T)−pT)

TQf(p(T)−pT)+x
TSfx].Tosummarize,

thecostfunctionin(3)enforcesthatthetargetlocationbe
reachedwithinTdrivenbyenergyefficientneuralactivity.
Combining(2)and(3)leadstotheproblem:

min
x

J(x)

subjectto,ṗ=Cvandv̇=−λfv+bf(x)

and,p(0)=0,v(0)=0,x(0)=xb

(4)

B.SolvingtheOptimalControlProblem

Inordersolve(4),wereformulatetheproblembyapplying
severalalgebraictransformationstothevariablesclosely
followingfrom[6].Let,e(t) =p(t)−pT andω =
[eT,vT,xT]T.Notethatxbisaconstantvalue,therefore
ẋ≡ẋ=y.Theoptimizationproblemcannowbewritten
as:

min
y

1

2

T

0

[ωTQω+yTRy]dτ+Jf(ω(T))

subjectto,ω̇=g(ω,y)

and,ω(0)=[0Tm,0
T
m,0

T
n]
T

(5)

Here, Jf(T,ω(T)) =
1

2
[ω(T)TQfω(T)], with

Q = diag(Q,0m×m,S),R = R and Qf =

diag(Qf,0m×m,Sf).

Withthesetransformations,(5)becomesfinitehorizon
nonlinearoptimizationproblem.Whentheconstrainingsys-
temdynamicsislinear,thisoptimizationcanbeeasilysolved
viasolutionoftheRiccatiequation[10].However,inthis
caseduetothenonlinearityf(x),weneedtomodifyour
solutionmethod.Inthecaseofourproblem,therearetwo
morepointsofnote.First,theneuralstatespaceisnotlow-
dimensional(e.g.,n≤2)assuchconstraintsdonotoccurin
natureandsecondly,evenifwedidimposesuchaconstraint,
theresultingaugmentedstatevectorwouldstillbehigher
dimensional(asω∈R2m+n).Therefore,insteadofusing
BellmanOptimalityPrinciplestofindaglobalsolution[11],
weoptforlocaltrajectorybasedmethodsmotivatedfrom
Pontryagin’sMaximumPrinciple[12].Particularly,wesolve
(5)throughaniterativeapproachadaptingfrom[3].

C.IterativeAlgorithm

Webeginbypositinganinitialguessfortheoptimalneural
dynamics,i.e.,y0=ŷ(t).Startingfromtheinitialcondition
givenin(5),thenonlinearsystemω̇=g(ω,y)isforward
simulatedtoyieldatrajectoryω0=ω̂(t).Wethenconsider
perturbationsωandytotheinitialguess[13],suchthat:

ω(t)=̂ω(t)+δω(t)

y(t)=̂y(t)+δy(t)
(6)

Byapplyinglinearization,wededuce:

δ̇ω(t)=A(t)δω(t)+B(t)δy(t) (7)

where,A(t)=∂g∂ω|∧ andB(t)=
∂g
∂y|∧ aretheJacobian

matricesofgwithrespecttoωandyrespectivelyevaluated
at[̂ω(t),̂y(t),t].Basedon(6)and(7),wecannowsetupand
solveanauxiliaryoptimizationproblemintheperturbation
variables(seeAppendixfordetails)asfollows:

min
δy

T

0

Laux(δω(τ),δy(τ))dτ+Jf(δω(T))

subjectto,δ̇ω(t)=A(t)δω(t)+B(t)δy(t)

and,δω(0)=0n

(8)

Sinceboththeinitiallyguessedtrajectoryω̂(t)andthe
perturbedtrajectoryω(t)beginatthesameinitialcondition,
δω(0)=0n withn=2m+n.TheHamiltonianforthis
auxiliaryproblemin(8)isgivenby:

H(t)=Laux+λ(t)
T(A(t)δω(t)+B(t)δy(t)) (9)

Here,λ(t)∈Rn isthecostatevariable.Now,fromthe
necessaryconditionsofoptimality,λ(t)mustsatisfythe
followingdifferentialequation:

λ̇(t)=−
∂H

∂δω
with λ(T)=

∂Jf
∂δω(T)

(10)

Astationaryconditioncanbeobtainedbysettingthederiva-
tiveoftheHamiltonianwithrespecttoδy(t)tozero,such
that:

δy(t)=−R
−1
B(t)λ(t)−ŷ(t) (11)



Combining(7),(10)and(11),weobtainaHamiltonian
systemasfollows:

δ̇ω(t)

λ̇(t)
=

A(t) −B(t)R
−1
B(t)

−Q −A(t)

δω(t)
λ(t)

+

−B(t)̂y(t)
−Qω̂(t)

(12)

withboundaryconditions δω(0) =0n andλ(T) =
Q(̂ω(T)+δω(T)).Since(12)isanon-homogeneoussystem,
theoptimalsolutionisnotalinearstatefeedback[3],[10].
Weassumethatthecostatevariablehasthefollowingform:

λ(t)≡Θ(t)δω(t)+θ(t) (13)

Using(12),(13)andtheboundaryconditions,wecanwrite
thefollowingcoupleddifferentialequationsforcomputing
Θ(t)andθ(t)backwardintimestartingfromΘ(T)=Qf
andθ(T)=Qfω̂(T)

Θ̇(t)=−Θ(t)A(t)−A(t)Θ(t)+

Θ(t)B(t)R
−1
B(t)Θ(t)−Q

(14)

θ̇(t)=−[A(t)−Θ(t)B(t)R
−1
B(t)]θ(t)+

Θ(t)B(t)̂y(t)−Qω̂(t)
(15)

Therefore,thesolutionoftheoptimizationproblemin(5)can
befoundbysolvingequations(14),(15),backwardsintime
iterativelyandusingthesolutionsin(13)and(11)toupdate
theinitialguessasproposedin(6).Theiterativeprocessis
summarizedinAlgorithm1.Astheaimofourproblemis
toreachthetargetlocationpT,wesaythattheobjective
isaccomplishedifp(t)reacheswithinBδ(pT)with0<
δ<<1.Thisassumptionallowsustointroduceacriteria
forterminationoftheiterativeprocedure.

III.NETWORKDYNAMICS

Solvingtheoptimizationproblemthroughtheiterative
approachyieldsinterestingobservationsregardingneural
dynamicsduringlearningandexecutingoptimalstrategies.

A.Dynamicsoflearninginthenetwork

Theiterativeprocedurebeginsfromaninitialguessof
controlinputandcorrespondingstatetrajectory,andover
successiveiterationsevolvetowardsanoptimalsolution(see
Algorithm1).Inneuroscience,thisisequivalenttoanetwork
attemptingtoimproveitsperformanceoverrepeatedattempts
(i.e.,aformofiterativelearning).
Weknowthatẋ(t)=y(t).Combiningthiswiththeupdate

equationinStep6ofAlgorithm1wehave:

ẋk(t)←(1−ηk)̇xk−1(t)+ηkẋc(t) (16)

Ineveryiteration,thedynamicsofthenetworkẋk(t)is
thereforea weightedcombinationoftheactivityinthe
previoustrialandthecorrectivedynamicsi.e.,ẋc(t)learned
duringpresenttrial.Inoursimulations,wehavechosen
{ηk}k≥0tobeamonotonicallydecreasingsequence. With
thischoice,thenetworkincreasinglybiasesitselftowards
previousexperienceasthetrialsprogress.

Algorithm1:IterativeapproachforsolvingFinite
HorizonQuadraticRegulatorproblemconstrainedby
nonlineardynamics.

Initializationk=0,ω0(0),y0(t)=̂y(t);
SetTol;
while||ωk(t)−ωk−1(t)||>Toldo
Step1:k←k+1;
Step2:(Forwardpass)Evolvethesystem
followingω̇k(t)=g(ωk−1,yk−1);
Step3:ComputeAk(t),Bk(t)fortheauxiliary
problem;
Step4:(Backwardpass)ComputeΘk(t),θk(t)
using(14)and(15)backwardintimestarting
fromT;
Step5:Findtheoptimalsolutionoftheauxiliary
problem:=δyk(t)=

−R
−1
B(t)(Θk(t)δωk(t)+θk(t))−yk−1(t)

Step6:Updateyk(t)←yk−1(t)+ηkδyk(t);
Step7:Updatestepsizeηk,andcheckcriteria
||pk(t)−pT||<δ.
Step8:Compute||ωk(t)−ωk−1(t)||

end

B.Auxiliaryneuralpopulationsupervisesthenetwork

Intheiterativemethod,wederivetheoptimalperturbation
ateachiterationthatpropelstheinitialguesstowardsan
optimalsolution.Now,theauxiliaryproblemfordetermining
optimalperturbationvariablesδωkandδykisalinearopti-
mizationproblemwithaquadraticcost,.Thisismuchmore
tractablethantheoriginalnonlinearoptimizationproblem.
Wecansystematically manipulatethesolutiontoextract
thedynamicsofanauxiliarypopulationofneurons(see
Appendixfordetails).Thepurposeofthisauxiliaryneural
populationemergingdirectlyfromthesolutionalgorithm
istoprovidefeedbacktotheneuronsdirectlycontrolling
motion(i.e.,xk(t))basedonanevaluationofpreviousper-
formance.Inasense,xaux∈Rnaux actsasa‘critic’ofthe
networkgeneratingmotorcommand.Thedynamicsofthe
auxiliarypopulationcanbewrittenas:

ẋauxk (t)=W
δe
k(t)δek(t)+W

f
k(t)x

aux
k (t)+

Wsk(t)
t

0

e−λf(t−τ)F(xk−1)x
aux
k (τ)dτ+

h(t,xk−1,ek−1)

(17)

Thefirsttermin(17)canbewrittenasδek(t)=pk(t)−
pk−1(t).Thisquantifiestheanticipatedchangeinposition
ofthesystembyexecutingthecurrentstrategy.Thesecond
termandthethirdtermrepresentsthecontributionoffastand
slowprocessingrespectivelyoftheactivityoftheseauxiliary
neurons.Notethatduringslowprocessing,theactivityof
auxiliarypopulationisgainmodulatedbyF(x)(i.e.,rate
ofchangeofinputtothedynamicaldecoderwithrespectto
activityofneuronsgeneratingmotorcommand).Thefinal
termrepresentstheimpactofthenavigationperformancein



Fig.2:Improvementinperformanceoccursthroughinter-
actionwithanauxiliarypopulation.Thehyphenatedline
indicatessignalsgeneratedatperiphery.Theverticalredline
demarcatesthebrainregionsandtheperiphery.

theprevioustrialonthedynamicsoftheauxiliarypopulation.
Ateachiteration,theauxiliarypopulationreceivesinput
fromtheneuronsgeneratingmotorcommandandcomputes
thenecessaryimprovementswhichiseventuallyfedbackto
thecommandnetwork(seeFigure2).Inbiologicalsystems,
performanceinagiventaskissimilarlyimprovedviarele-
vantcomputationsinhighercognitivecentersandthereafter
feedbacktoperipheralnetworks.

C.ConvergenceoftheIterativeAlgorithmanditsInterpre-
tation

InSectionsIII.AandIII.B, wehaveshownhowthe
solutionofthenonlinearoptimizationproblem(4),canbe
implementedthroughdistributedneuralcomputationsalong
multipletimescales.Inthissection,weanalyzetheconver-
genceoftheiterativeschemetowardsalocalminimaand
interpretitfromtheperspectiveofaneuraldynamics.In
particular,welookatthesequenceofstateperturbations
{δωk}k≥0generated.

Proposition1:Ifthenonlinearityf(x)isdoublydiffer-
entiablewithrespecttox,thenthesequenceofstatepertur-
bation{δωk}k≥0convergestoalocalminimumgiventhat
M andNsatisfieslog10

N
M ≈0and0< M<<1,where

M andN areupper-boundsdependentonspecificationof
systemparameters.Undertheseconditionsforallk≥K,
theperturbationδωkdiffersfromthelocalminimumδω

∗

bynomorethan0< <<1,where= N
M[e

MT −1].

Proof:Wecanwrite,

||δωk+1−δωk||≤
t

0

[β1||Ak−Ak−1||+β2||Θk−Θk−1||

+β3||θk−θk−1||+β4||yk−yk−1||]dτ
(18)

NotethatEk(t) =Bk(t)R
−1Bk(t).Inourformulation,

Bk(t)=




0m×n
0m×n
In



forallk,therefore,Ek(t)=E.Let,

ξk(t)=||δωk+1−δωk||.Ifthenonlinearityf(x)isdoubly

differentiable,thenitturnsoutthat:

ξk(t)≤
t

0

(Mξk−1(τ)+N)dτ

=Mk
t

0

τ1

0

...
τk−1

0

ξ0(τk)dτk...dτ1+

Mk−1N
t

0

τ1

0

...
τk−1

0

dτk...dτ1+...+N
t

0

dτ1

(19)

where,M =(β1α1+β2α3+β3α5+β4α7)andN =
(β1α2+β2α4+β3α6+β4α8)(seeAppendixfordetails
ofthederivation).Ifξ0(t)hasanupperboundΓ,thenthe
expressionin(19)isboundedby:

ξk(t)≤
(MT)k

k!
Γ+
NMk−1Tk

k!
+...+NT

=
(MT)k

k!
Γ+

N

M
[

k

l=0

(MT)l

l!
−1]

(20)

Ask→ ∞,thefirsttermin(20)goestozero,while
thesecondtermconvergestoNM[e

MT −1].Additionally,
if0< M << 1,thenthesecondtermapproaches0.
Therefore,underthissituation,theactivityauxiliaryneurons
haveconverged.Intuitively,whentheneuralnetworkhas
convergedontoanoptimalstrategy,itshouldrequirevery
littletonocorrectiveinputfromtheauxiliarypopulation.
Thatistosay,when||ωk||reachesanoptimalvalue,||δωk||
shouldtendtowardszero(seeFig.3c).

IV.EXAMPLES

Example1a(Navigatingtoatargetlocation):Weconsider
ascenario,wherethepointmassmustreachapointpT

Fig.3:(a)Optimaltrajectoryfordifferentiterations.(b)
Optimalneuralactivityuponconvergence,thecolorsarise
duetothechoiceofb.(c)Convergencebehaviorofthe
nonlinearproblem(inblue)andlinearauxiliaryproblem(in
red)(d)TrajectoriesforrandominitializationofAlgorithm
(1)1:(inblue)trajectoryafterfirstiteration,(inblack)
trajectoryafterconvergence.



withinatimeframeofTseconds.Inthiscase,weselected
C=[0.9,0.1;0.1,0.9],λf=0.25andthematrixbsuch
thatweightsineachrowformaGaussiankernel(seeFigure
3a).Thenon-linearityfin(2)ischosentobeasigmoidal
andoftheform:

fi(xi)=l+
u−l

1+e−α(xi−β)
fori=1,...,n (21)

where,uistheupperasymptoteandlisthelowerasymptote,
andα,βareconstantsthatshapethesigmoidalcurve.
Finally,wesetQ,S,R,Qf,Sf aspositivelyscaled
identitymatrices,suchthattheresultingQ,Qfarepositive

semidefiniteandRispositivedefiniteand(14)and(15)can
besolved[14].
Weobservethatthealgorithmquicklyconvergestoa

goodcandidatesolution(seeFigure3a-c).Furthermore,the
optimalstateperturbationconvergesoveriterationsto0.
Aspointedoutin[3],itisimportanttoassessthequality
oflocal minimaobtained.Fornonlinearoptimalcontrol
problems(asinExample1)itisdifficulttoobtainaglobal
solution.Instead,weinvestigatethequalityofthesolution
generatedbytheiterativealgorithmusing50randomchoices
forinitializationofy(t)(seeFigure3d).Itturnsoutthat
foreachoftheseinitializations(inblue)thefinaltrajectory
convergestoahighfidelitytrackingstrategy(inblack).

Fig.4:Optimaltrajectoryafterconvergencefor8target
locations(redstar)inthetwodimensionalplane(inblack).
Foreachtargetlocationneuralactivitypatternisshownas
polarhistograms.

Example1b(Center-outproblem): Weextendthesimu-
lationin1afurtherforastandardcenter-outtask[15]and
reporttheresultingneuralactivity(seeFigure4).Weobserve
thatoursynthesizednetworkproducesuniqueneuralactivity
patternsforeachlocation,presentedhereaspolarhistograms.

V.DISCUSSIONANDCONCLUSION

Inthiswork,wepresentatheory-forwardstudyofhow
neuralnetworksinthebraincouldcomputeefficientstrate-
giesformotioncontrol. Wespecificallyderivedneuraldy-
namicsalongmultipletimescalesthatcumulativelyresult
inanoptimalsolutiongeneratedbyaniterativealgorithm.

Essentially,thesestrategiesareembeddedwithinnetwork
connectivity.Ourresultsprovidehypotheseshowneuralcir-
cuitsmightcoordinatetheiractivitytoimproveperformance
overrepeatedattemptsatagiventask. Moreover,froman
engineeringperspectivethisworkcanbegeneralizedfor
implementationofdistributedcontrol.Futureworkwould
examinethenetworkdynamicsobtainedfordifferentcontrol
tasksandfordifferentformulationsofdynamicaldecoders.

APPENDIX

I.Derivingthecostfunctionfortheauxiliaryoptimization
problem

Attimet,thecostincurredbytheoriginaloptimization
problemisgivenas:

L(t,ω,y)=[ω(t)TQω(t)+y(t)TRy(t)] (22)

ByTaylorseriesexpansionof(22)aroundω̂,̂y,andby
ignoringthehigherordertermsontherighthandside,we
get:

Laux=s(t)+δω(t)
Tq(t)+δy(t)

T
r(t)+

1

2
ω(t)TQω(t)+

1

2
y(t)TRy(t)

(23)

where,s(t)=L(t,̂ω,̂y),q(t)=∂L∂ω|∧ andr(t)=
∂L
∂y|∧.

AsLauxisdirectlyderivedfromL,itisstraightforwardto
establishthattheoriginalnonlinearproblemandtheauxiliary
linearproblemareequivalent.

II.Derivingthedynamicsoftheauxiliarynetwork

Theauxiliaryoptimizationproblemissolvedbycomput-
ingΘk(t)andθk(t)intheBackwardpassoftheAlgorithm
using(14)and(15).Fromstep6ofAlgorithm1,wecan
write:

δyk(t)≡δ̇xk(t)=W
Θ
k(t)δωk(t)+W

θ
k(t)θk(t) (24)

where, WΘk(t) = −R
−1
B(t)Θk(t)andW

θ
k(t) =

−R
−1
B(t).Theperturbationintheaugmentedstatevector

canbeexpandedas:δωk(t)=[δek(t)
T,vk(t)

T,δxTk]
T.We

canfurtherwriteWΘk(t)=[W
δe
k(t):W

δv
k (t):W

δx
k (t)].

Now,usingthelinearizationsfrom(7),wecanwrite

δ̇xk(t)=W
δe
k(t)δek(t)+W

f
k(t)δxk(t)+

Wsk(t)
t

0

e−λf(t−τ)fx(xk−1)δxk(τ)dτ+

Wθk(t)θk(t)−yk−1(t)

(25)

Here,Wsk(t)=W
δv
k (t)b,W

f
k(t)=W

δx
k (t)andfxisthe

Jacobianofthenonlinearitywithrespecttoxevaluated
atxk−1(t).Itisstraightforwardtoestablishthatthelast
twotermsof(25)dependuponactivityofthecommand
network(i.e.,xk−1(t)),theerrorgeneratedbyexecutionof
thepreviousstrategy(i.e.,ek−1(t))andtheparametersthat
weselectforthemodel.So,wecansimplify(25)bywriting:

δ̇xk(t)=W
δe
k(t)δek(t)+W

f
k(t)δxk(t)+

Wsk(t)
t

0

e−λf(t−τ)fx(xk−1)δxk(τ)dτ+

h(t,xk−1(t),ek−1(t))

(26)



Finally,bysettingδxk(t)≡x
aux
k (t)andF(xk)=fxweget

(17).Notethat,inoursetupnaux=n.Analysisofnetwork
architecturesresultingfromnaux=nremainsascopefor
futureresearch.

III.Convergenceoftheiterativealgorithm

Welookatthesequenceofperturbationvariable {δωk}
generatedbytheiterativealgorithm[14].

A.βcoefficients

d

dt
[δωk+1−δωk]=[Ak−EΘk]δωk+1−[Ak−1−EΘk−1]

δωk−EΘk−Byk+EΘk−1+Byk−1
(27)

Usingthevariationofconstantsformulaandbyexten-
sionoftriangleinequalityon(27), weget(18). Here,
β1=||Φk(t,τ)||||δωk||,β2=||Φk(t,τ)||||E||||δωk||,β3=
||Φk(t,τ)||||E||,β4=||Φk(t,τ)||||B||andΦk(t,τ)isthe
transitionmatrixofthehomogeneoussystemddt(δωk+1−
δωk)=[Ak−EΘk](δωk+1−δωk).

B.αcoefficients

To analyzethe upper bound of ||Ak − Ak−1||,

we look at ||∂f(x)∂x |xk −
∂f(x)
∂x |xk−1|| as Ak =


0 C 0

0 −λfIm b∂f(x)∂x |xk
0 0 0



. As f(x) is doubly

differentiable,wecanwrite,||∂f(x)∂x |xk −
∂f(x)
∂x |xk−1||=

||F(xk)−F(xk−1)||≤L||xk−xk−1||forsomeL>0.Now,
||xk−xk−1||=||Γ||||ωk−ωk−1||whereΓ=[0,0,In].
Combiningthe aforementioned expressions and using
triangleinequality,wecanwrite:

||Ak−Ak−1||≤α1ξk−1(t)+α2 (28)

where,α1=L||Γ||andα2=L||Γ||||δωk−1||.
Toobtaintheboundon||Θk−Θk−1||,letuswrite:

d

dt
(Θk−Θk−1)=−(Θk−Θk−1)(Ak−EΘk)−

(Ak−1−EΘk−1)
T(Θk−Θk−1)−

(Ak−Ak−1)Θk−Θk−1(Ak−Ak−1)

Byintegratingbackwardsintime,takingthenormandusing
triangleinequality:

||Θk−Θk−1||≤
T

t

||Φk(t,τ)||(||Ak−Ak−1||||Θk||+

||Θk−1||||Ak−Ak−1||)||Φk−1(t,τ)||dτ

=
T

t

γ1||Ak−Ak−1||dτ

(29)

where,γ1 = ||Φk(t,τ)||(||Θk||+||Θk−1||)||Φk−1(t,τ)||.
Nowpluggingin(28)in(29),weget:

||Θk−Θk−1||≤α3ξk−1(t)+α4 (30)

where,α3=
T

t
γ1α1dτandα4=

T

t
γ1α2dτ.

Similarly,wecanwrite:

||θk−θk−1||≤
T

t

[(γ2α1+γ3α3)ξk−1(t)+

(γ2α2+γ3α4+γ4)]dτ

=α5ξk−1(t)+α6

(31)

where γ2 = ||Φk(t,τ)||||θk−1||, γ3 =
||Φk(t,τ)||(||θk−1||||E|| + ||B||||yk−1||), γ4 =
||Φk(t,τ)||(||Q||||δωk|| + ||ΘkB||||ηk||||δyk||),

α5=
T

t
[γ2α1+γ3α3]dτandα6=

T

t
[γ2α2+γ3α4+γ4]dτ.

Finally,

||yk−yk−1||≤α7ξk−1(t)+α8 (32)

where, α7 = ||ηk||||R
−1
BTkΘk|| and α8 =

||ηk||[||R
−1
BTk||(||Θkδωk−1||+||θk||)+||yk||].Combining

(28),(30),(31)and(32),weget(19).
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