Top-down modeling of distributed neural dynamics for motion control

Sruti Mallik! and ShiNung Ching!+2

Abstract— In neuroscience a topic of interest pertains to
understanding the neural circuit and network mechanisms
that enable a range of motor functions, including motion and
navigation. While engineers have strong mathematical concep-
tualizations regarding how these functions can be achieved
using control-theoretic frameworks, it is far from clear whether
similar strategies are embodied within neural circuits. In
this work, we adopt a ‘top-down’ strategy to postulate how
certain nonlinear control strategies might be achieved through
the actions of a network of biophysical neurons acting on
multiple time-scales. Specifically, we study how neural circuits
might interact to learn and execute an optimal strategy for
spatial control. Our approach is comprised of an optimal
nonlinear control problem where a high-level objective function
encapsulates the fundamental requirements of the task at hand.
We solve this optimization using an iterative method based on
Pontryagin’s Maximum Principle. It turns out that the proposed
solution methodology can be translated into the dynamics of
neural populations that act to produce the optimal solutions
in a distributed fashion. Importantly, we are able to provide
conditions under which these networks are guaranteed to arrive
at an optimal solution. In total, this work provides an iterative
optimization framework that confers a novel interpretation
regarding how nonlinear control can be achieved in neural
circuits.

I. INTRODUCTION

Optimal control theory has often been applied to under-
stand and emulate biological motion [1]-[3]. In neuroscience,
there has been considerable interest in modeling how our
brains control a complex range of motions to navigate in
a physical environment (i.e., motor control, e.g., [4], [5]).
Several insightful questions can be posed in this context.
For instance, how do circuits in the brain determine the best
strategy for a given task? How does the brain improve its
performance over repeated trials or experiences? How do dif-
ferent sub-circuits co-ordinate in perfecting and performing
these tasks? It turns out that mathematical models developed
using control theoretic frameworks can help us understand
these underlying mechanistic questions.

Recently, we proposed a top-down, or ‘normative’ model
of sensory detection by formulating the question as an
optimal control problem [6]. In fact, we derived neural
circuit architecture and dynamics directly from the optimal
solution that turned out to be remarkably biological in nature.
Expanding on this idea, here we explore mechanisms by

S. Ching holds a Career Award at the Scientific Interface from the
Burroughs-Wellcome Fund. This work was partially supported by grants
1653589 and 1724218 from the US National Science Foundation.

LAl authors are with the Department of Electrical and Systems Engineer-
ing, Washington University, St. Louis, MO 63130, USA sruti.mallik
@ wustl.edu

28. Ching is with the Department of Biomedical Engineering, Washington
University, St. Louis, MO 63130, USA shinung @ wustl.edu

which neurons generating motor commands could learn and
implement strategies for spatial control. The basic setup of
the problem is: if a dynamical decoder translates neural
activity to forces acting along orthogonal axes, then how
should neurons in a population activate and deactivate, to
induce a target location.

Numerical methods that generate functional models of
neural networks have been studied in literature. Of particular
relevance to the current work are efforts to construct the
dynamics of neurons and synapses to meet specific, high-
level control-theoretic objectives [7]-[9]. More specifically,
the contributions of this paper are as follows:

« We pose the question of motor control as a continuous
time nonlinear optimization problem, and we analyze
how the synthesis of a solution can be implemented
through synaptic interactions of neurons over multiple
timescales.

« We characterize the conditions under which the math-
ematical framework converges and describe what this
signifies for the derived network.

The contents of this paper are organized as follows. In
Section 2, we introduce the proposed optimization frame-
work and its solution. In Section 3, we discuss how network
dynamics realize the algorithm for solution as well as the
solution itself and characterize its convergence. Finally, in
Section 4, we demonstrate our framework through a numer-
ical example.

II. OPTIMIZATION FRAMEWORK
A. Problem Formulation

We begin by formally introducing the variables in our
problem setup. The variables p(¢f) € R™ and v(¢) € R™
correspond to position and velocity, respectively, of a planar
point-mass at time ¢. Without loss of generality and primarily
for ease of description, here we restrict ourselves to m = 2.
The activity of neural units at time ¢ in given by x(¢) € R™.

The motion of the unit point mass is governed by

p=Cv (1

and,
v =—Asv + bf(x) (2)

Here, C captures the dynamical coupling, if any, existing
between motion along the two axes. A > 0 captures possible
dissipation (e.g., due to friction) and the matrix b € R™*"
linearly mixes the contribution of neural units along each
dimension of the plane. f(x) is a non-linear transformation
on the activity of neural units. Specifically, f : R™ — R" is
considered to be of the form: f(x) = [fi(x1), ..., fa(zn)]T.

Neurons éenerating
motor command
Fig. 1: Neural activity from the brain is decoded into
force acting along different axes via a nonlinear dynamical

decoder.

Through (2), we posit that the high-dimensional activity of
the neural units is decoded into forces acting along axes
of motion in a low-dimensional plane(see Figure 1). Neural
activity decoded via (2) must enable the system to reach
a fixed target position in the plane, i.e., ppr. With this, we
specify a fixed-time endpoint objective:

1
309 = [5l - pr)Qp -~ pr) + X7Sx+
() RX()dé + (T, p(T),X(T)

3)

Here, X(t) = x(t) — xp, where x; is the baseline activity of
the neural units.

The terms in the integrand can be interpreted as follows:
the first term quantifies how far the point mass is from
the target location. The second term quantifies the deviation
of neural activity from baseline activity, hence providing
a measure for energy expenditure. The final term in (3)
regularizes rapid fluctuations in neural activity. In addition,
there is a penalty for failing to reach the desired location
within the given timeframe T". Here, J¢(T, p(T),x(T)) =
0.5[(p(T)—p1)TQ4(p(T)—pr)+X''SsX]. To summarize,
the cost function in (3) enforces that the target location be
reached within T" driven by energy efficient neural activity.

Combining (2) and (3) leads to the problem:

J(x)
subject to, p = Cv and v = —A\;v + bf(x) ()
and, p(0) = 0,v(0) = 0,x(0) =x3

min
xX

B. Solving the Optimal Control Problem

In order solve (4), we reformulate the problem by applying
several algebraic transformations to the variables closely
following from [6]. Let, e(f) = p(t) — pr and w =
[eT,vT ,xT]T. Note that x; is a constant value, therefore
%X = X = y. The optimization problem can now be written
as:

| -
myin 5/0 wT Qw + yTRyldr + J¢(w(T))

subject to, w = g(w,y)

and, w(0) = [07,, 07, 07]"

(3)

Here, Ji(T,w(T)) = %[w(T)Tﬁfw(T)], with

Q = diag(Q,0mm,S), R = R and Q; =
diag(quﬂmxm;Sf)'

With these transformations, (5) becomes finite horizon
nonlinear optimization problem. When the constraining sys-
tem dynamics is linear, this optimization can be easily solved
via solution of the Riccati equation [10]. However, in this
case due to the nonlinearity f(x), we need to modify our
solution method. In the case of our problem, there are two
more points of note. First, the neural state space is not low-
dimensional (e.g., n < 2) as such constraints do not occur in
nature and secondly, even if we did impose such a constraint,
the resulting augmented state vector would still be higher
dimensional (as w € R2?m+n). Therefore, instead of using
Bellman Optimality Principles to find a global solution [11],
we opt for local trajectory based methods motivated from
Pontryagin’s Maximum Principle [12]. Particularly, we solve
(5) through an iterative approach adapting from [3].

C. Iterative Algorithm

We begin by positing an initial guess for the optimal neural
dynamics, i.e., yo = ¥(¢). Starting from the initial condition
given in (5), the nonlinear system w = g(w,y) is forward
simulated to yield a trajectory wp = w(t). We then consider
perturbations w and y to the initial guess [13], such that:

w(t) = &(t) + dw(t)

. (6)
y(t) = ¥(t) +dy(?)
By applying linearization, we deduce:
bw(t) = A(t)dw(t) + B(t)dy(t) (7

where, A(t) = g‘%h and B(t) = g;ﬂ;\ are the Jacobian
matrices of g with respect to w and y respectively evaluated
at [w(t),¥(t), t]. Based on (6) and (7), we can now set up and
solve an auxiliary optimization problem in the perturbation
variables (see Appendix for details) as follows:

T
ng;n /0 Loue(dw(7),dy(7))dr + J;(6w(T))

subject to, dw(t) = A(t)dw(t) + B(t)dy(t)
and, 6w(0) = 0y

8

Since both the initially guessed trajectory w(¢) and the
perturbed trajectory w(t) begin at the same initial condition,
6w(0) = 0, with ' = 2m + n. The Hamiltonian for this
auxiliary problem in (8) is given by:

H(t) = Lauz + A1) (A(t)ow(t) + B(t)dy(t)) (9

Here, A(f) € R™ is the costate variable. Now, from the
necessary conditions of optimality, A(f) must satisfy the
following differential equation:

AT = 21

- oH
A = 550 B500(T)

0w with

(10)

A stationary condition can be obtained by setting the deriva-
tive of the Hamiltonian with respect to dy(¢) to zero, such
that:

sy(t) = —R"B(t)A(t) - §(t) (1n

Combining (7), (10) and (11), we obtain a Hamiltonian
system as follows:

[&_.a(t)] _ | A® -BeR "By [Jw(t)] N
A(t) -Q —A'(t) A(t)
{ —B(®)y(t)]
—Qu(t) 1)

with boundary conditions dw(0) = 0, and A(T) =
Q(&(T)+6w(T)). Since (12) is a non-homogeneous system,
the optimal solution is not a linear state feedback [3], [10].
We assume that the costate variable has the following form:

A(t) = O(t)dw(t) + 6(t) (13)

Using (12), (13) and the boundary conditions, we can write
the following coupled differential equations for computing
©(t) and (t) backward in time starting from ©(T') = Q;
and 6(T) = ﬁf&(T)

O(t) = —O(t)A(t) — A(t)O(t)+
e(t)B(tR 'B(t)O(t) - Q
0(t) = —[A(t) — ©(t) BOR ' B(t))0(t)+

O(t)B(1)y(t) — Qw(t)

Therefore, the solution of the optimization problem in (5) can
be found by solving equations (14), (15), backwards in time
iteratively and using the solutions in (13) and (11) to update
the initial guess as proposed in (6). The iterative process is
summarized in Algorithm 1. As the aim of our problem is
to reach the target location pr, we say that the objective
is accomplished if p(¢) reaches within Bs(pr) with 0 <
6 << 1. This assumption allows us to introduce a criteria
for termination of the iterative procedure.

III. NETWORK DYNAMICS

Solving the optimization problem through the iterative
approach yields interesting observations regarding neural
dynamics during learning and executing optimal strategies.

(14)

15)

A. Dynamics of learning in the network

The iterative procedure begins from an initial guess of
control input and corresponding state trajectory, and over
successive iterations evolve towards an optimal solution (see
Algorithm 1). In neuroscience, this is equivalent to a network
attempting to improve its performance over repeated attempts
(i.e., a form of iterative learning).

We know that X(¢) = y(¢). Combining this with the update
equation in Step 6 of Algorithm 1 we have:

Xg(t) < (1 —) Xp—1(F) + maXe(?) (16)
In every iteration, the dynamics of the network Xi(t) is
therefore a weighted combination of the activity in the
previous trial and the corrective dynamics i.e., X.(¢) learned
during present trial. In our simulations, we have chosen
{nk}r>0 to be a monotonically decreasing sequence. With

this choice, the network increasingly biases itself towards
previous experience as the trials progress.

Algorithm 1: Iterative approach for solving Finite
Horizon Quadratic Regulator problem constrained by
nonlinear dynamics.

Initialization k& = 0, wg(0), yo(t) = ¥(t);

Set Tol;

while ||wk(t) — wi—1(¢)|| > Tol do

Step . k+ k+1;

Step 2: (Forward pass) Evolve the system
following w () = g(wk—1,¥k-1) :

Step 3: Compute Ag(t), Bi(t) for the auxiliary
problem ;

Step 4: (Backward pass) Compute O (¢), 0x(t)
using (14) and (15) backward in time starting
from T

Step 5: Find the optimal solution of the auxiliary
problem:= dy(t) =
—R ' B(t) (Ok(t)0wr () + 0(t) — yr-1(t)

Step 6: Update yi(t) + yr—1(t) + medyr(t):

Step 7: Update step size ng, and check criteria

P (t) — prll < 4.
Step 8: Compute ||wg(t) — wr—1(t)]]

end

B. Auxiliary neural population supervises the network

In the iterative method, we derive the optimal perturbation
at each iteration that propels the initial guess towards an
optimal solution. Now, the auxiliary problem for determining
optimal perturbation variables dwy, and dy,, is a linear opti-
mization problem with a quadratic cost,. This is much more
tractable than the original nonlinear optimization problem.
We can systematically manipulate the solution to extract
the dynamics of an auxiliary population of neurons (see
Appendix for details). The purpose of this auxiliary neural
population emerging directly from the solution algorithm
is to provide feedback to the neurons directly controlling
motion(i.e., Xx(¢)) based on an evaluation of previous per-
formance. In a sense, X" € R™eu= acts as a ‘critic’ of the
network generating motor command. The dynamics of the
auxiliary population can be written as:

XU (t) = W (t)dex(t) + W (8)x¢™* (t)+
t
WE(t) / e MO P(xp_1) X8 (r)dr+ (17)
0
h(t,xx_1,ex_1)

The first term in (17) can be written as deg(t) = pr(f) —
Pr—1(%). This quantifies the anticipated change in position
of the system by executing the current strategy. The second
term and the third term represents the contribution of fast and
slow processing respectively of the activity of these auxiliary
neurons. Note that during slow processing, the activity of
auxiliary population is gain modulated by F(x) (i.e., rate
of change of input to the dynamical decoder with respect to
activity of neurons generating motor command). The final
term represents the impact of the navigation performance in

Auxiliary x®™*(t) Neurons generating

neurons /\mo:r command
@ —— 3 Motor action

PP L —eft)

Fig. 2: Improvement in performance occurs through inter-
action with an auxiliary population. The hyphenated line
indicates signals generated at periphery. The vertical red line
demarcates the brain regions and the periphery.

the previous trial on the dynamics of the auxiliary population.
At each iteration, the auxiliary population receives input
from the neurons generating motor command and computes
the necessary improvements which is eventually fed back to
the command network (see Figure 2). In biological systems,
performance in a given task is similarly improved via rele-
vant computations in higher cognitive centers and thereafter
feedback to peripheral networks.

C. Convergence of the Iterative Algorithm and its Interpre-
tation

In Sections IILA and IIL.B, we have shown how the
solution of the nonlinear optimization problem (4), can be
implemented through distributed neural computations along
multiple timescales. In this section, we analyze the conver-
gence of the iterative scheme towards a local minima and
interpret it from the perspective of a neural dynamics. In
particular, we look at the sequence of state perturbations
{0wk } k>0 generated.

Proposition 1: 1If the nonlinearity f(x) is doubly differ-
entiable with respect to x, then the sequence of state pertur-
bation {§wk}k20 converges to a local minimum given that
M and N satisfies logy, % ~0and 0 < M << 1, where
M and N are upper-bounds dependent on specification of
system parameters. Under these conditions for all £k > K,
the perturbation dw;. differs from the local minimum dw*
by no more than 0 < € << 1, where e = 2 [eMT —1].

Proof: We can write,

T
ek — b < / BallAk — Ag1| + Bel|Ok — O]
0

+53]|0k — Ok—1]| + Bal|¥E — Yr—1][JdT
(18)

Note that Ex(t) = By(t)R™1Bg(t)". In our formulation,
mxn

Bi(t) = for all k, therefore, Ey(t) = E. Let,

Omxn
In
&k(t) = ||0wr+1 — dwk||. If the nonlinearity f(x) is doubly

differentiable, then it turns out that:

€x(t) < /0 (Méx_1(r) + N)dr

i T1 Th—_1
:M’“// / €o(x)drg...dr +
0 to T1 0 Thk—1 t
M"‘IN/ / / di...dT1+...+N/ dry
0 0 0 0
(19)

where, M = (,810’1 + ,820’3 + ,830:5 + ,84&7) and N =
(Braz + Baag + Bsag + Paas) (see Appendix for details
of the derivation). If £y(¢) has an upper bound T, then the
expression in (19) is bounded by:

MT)¥ NMk-1T*
gy < M p o ML

k
T N
Bl V1 D o

As kK — oo, the first term in (20) goes to zero, while
the second term converges to &-[eMT — 1]. Additionally,
if 0 < M << 1, then the second term approaches 0.
Therefore, under this situation, the activity auxiliary neurons
have converged. Intuitively, when the neural network has
converged onto an optimal strategy, it should require very
little to no corrective input from the auxiliary population.
That is to say, when ||wyg]|| reaches an optimal value, ||dwg]|
should tend towards zero (see Fig. 3c).

(20)

IV. EXAMPLES

Example 1a (Navigating to a target location). We consider
a scenario, where the point mass must reach a point pr

(a) o be R (b) &
! s
025 s
0
[F] - ,‘g”
> A
015 s
o
p2 0. E
Iteration 23 S 8
0. teration 0 g
L - -
o 0oz 04 08 08 1 75
P [1 2 3 4 5
Time in sec
(€ 4 (d)
-l =yl
25 el - e
(=
200l
|l
I
Bl
11
wfyl
18
st
o kf;‘_“ ") 005
E o ¥ £y o 02 o4 08 08 1
lteration # "

Fig. 3: (a) Optimal trajectory for different iterations. (b)
Optimal neural activity upon convergence, the colors arise
due to the choice of b. (c) Convergence behavior of the
nonlinear problem (in blue) and linear auxiliary problem (in
red) (d) Trajectories for random initialization of Algorithm
(1) 1: (in blue) trajectory after first iteration, (in black)
trajectory after convergence.

within a timeframe of T seconds. In this case, we selected
C =[0.9,0.1;0.1,0.9], Ay = 0.25 and the matrix b such
that weights in each row form a Gaussian kernel (see Figure
3a). The non-linearity f in (2) is chosen to be a sigmoidal
and of the form:

filzs) =1+

where, u is the upper asymptote and [is the lower asymptote,
and «, 3 are constants that shape the sigmoidal curve.

Finally, we set Q, S, R, Qy, Sy as positively scaled
identity matrices, such that the resulting Q. 6}- are positive
semidefinite and R is positive definite and (14) and (15) can
be solved [14].

We observe that the algorithm quickly converges to a
good candidate solution (see Figure 3a-c). Furthermore, the
optimal state perturbation converges over iterations to 0.
As pointed out in [3], it is important to assess the quality
of local minima obtained. For nonlinear optimal control
problems (as in Example 1) it is difficult to obtain a global
solution. Instead, we investigate the quality of the solution
generated by the iterative algorithm using 50 random choices
for initialization of y(¢) (see Figure 3d). It turns out that
for each of these initializations(in blue) the final trajectory
converges to a high fidelity tracking strategy (in black).

u—1

m for 7 = 1,...,[1

(21

e ® @
Py ®
19 5 @

0
D1
Fig. 4: Optimal trajectory after convergence for 8 target
locations (red star) in the two dimensional plane (in black).
For each target location neural activity pattern is shown as
polar histograms.

Example 1b (Center-out problem). We extend the simu-
lation in la further for a standard center-out task [15] and
report the resulting neural activity (see Figure 4). We observe
that our synthesized network produces unique neural activity
patterns for each location, presented here as polar histograms.

V. DISCUSSION AND CONCLUSION

In this work, we present a theory-forward study of how
neural networks in the brain could compute efficient strate-
gies for motion control. We specifically derived neural dy-
namics along multiple timescales that cumulatively result
in an optimal solution generated by an iterative algorithm.

Essentially, these strategies are embedded within network
connectivity. Our results provide hypotheses how neural cir-
cuits might coordinate their activity to improve performance
over repeated attempts at a given task. Moreover, from an
engineering perspective this work can be generalized for
implementation of distributed control. Future work would
examine the network dynamics obtained for different control
tasks and for different formulations of dynamical decoders.

APPENDIX

L. Deriving the cost function for the auxiliary optimization
problem

At time ¢, the cost incurred by the original optimization
problem is given as:

L(t,w,y) = [w(t)"Qu(t) +y(t) Ry (t)]

By Taylor series expansion of (22) around @,y, and by
ignoring the higher order terms on the right hand side, we
get:

(22)

Laue = 5(8) +5w(t)"a(®) + by (6 x(t)+
SO + 5y (O Ry(2)

where, s(t) = L(£,@,), a(t) = §=|x and r(t) = F=|.
As L, is directly derived from L, it is straightforward to
establish that the original nonlinear problem and the auxiliary
linear problem are equivalent.

(23)

II. Deriving the dynamics of the auxiliary network

The auxiliary optimization problem is solved by comput-
ing O(t) and O(t) in the Backward pass of the Algorithm
using (14) and (15). From step 6 of Algorithm 1, we can
write:

Syk(t) = 0%k (t) = Wi (£)wi () + W (£)0x (t)

where, W2(t) = —E_lB(t)’ek(t) and Wi(t) =
—E_IB(t)’. The perturbation in the augmented state vector
can be expanded as: dwi(t) = [dex(t)T, vi(t)T,ox1]7. We
can further write W2 (t) = [W2e(t) : WV(t) : W2(¢)].
Now, using the linearizations from (7), we can write

Oxx(t) = WPe(t)dex(t) + W] (£)oxx (t)+

(24)

t
WE(t) / e MO (xp_1)0%k(T)dT+ (25)
0

W ()65(t) — yi—1(t)

Here, W (t) = W2V (t)b, W (t) = W(t) and fx is the
Jacobian of the nonlinearity with respect to X evaluated
at xx_1(t). It is straightforward to establish that the last
two terms of (25) depend upon activity of the command
network (i.e., Xx—1(t)), the error generated by execution of
the previous strategy (i.e., ex—1(t)) and the parameters that
we select for the model. So, we can simplify (25) by writing:

Oxx(t) = WPe(t)dex(t) + W] (£)oxx (t)+
WE(t) / e MO (xp_1)0xp(T)dr+ (26)
0
h(t, Xk_l(t), ek_l(t))

Finally, by setting 0x(t) = x{"*(t) and F'(xx) = fr we get
(17). Note that, in our setup ngyz = n. Analysis of network
architectures resulting from ngyu, # n remains a scope for
future research.
III. Convergence of the iterative algorithm

We look at the sequence of perturbation variable {dwg}
generated by the iterative algorithm [14].

A. f3 coefficients

[6&);;4_1 - §wk] = [Ak - Eek]l§wk+1 - [Ak—l - Eek_l]

dwp — EOp — By + EOp_1 + Byi_1
(27)
Using the variation of constants formula and by exten-
sion of triangle inequality on (27), we get (18). Here,

dt

@& (&, DI, Ba = ||kt 7)I[||BI| and By (¢,7) is the
transition matrix of the homogeneous system %(&ukﬂ —

Swy) = [Ax — EO](dwpq1 — dwg).
B. a coefficients
To analyze the upper bound of |[|Ax — Ar_1]l,
we look at [|ZEX AN as o4, =
ox Xk Xk—1 k =
0 C 0
0 —A\L, bZX| 1 As f(x) is doubly
0 0 0
differentiable, we can write, ||af(x) . — afa(}_’:) Iz, |l

||F(xk)—F(xk—1)|| < L||Xx—Xk—1]|| for some L > 0. Now,
Xk — Xi—1]| = [|T]||lwk — wi—1]| where I = [0,0,1,].
Combining the aforementioned expressions and using
triangle inequality, we can write:

[|Ar — Ap_1|| € a1€p_1(t) + a2

where, a; = L||['|| and a2 = L||T'||||6wk—1]]-
To obtain the bound on ||©@f — ©_1]|, let us write:

(28)

d
E(ek —O4_1) = —(Or — Op_1)(Ar — EOy)—
(Ag—1 — EO_1)" (O — Op_1)—
(Ak — Ag—1)'Ok — Op_1(Ar — Ax_1)
By integrating backwards in time, taking the norm and using
triangle inequality:
T
[k — Op_1|l < / |1@x(t, T)II([|Ax — Ax_1ll||Ok]|+
t
1Ox—1ll[| Ak — Ak—1|)||®r—1(2,7)||dT

T
— [nllAe — Aualiar
t
(29)

where, v1 = [|®x (¢, 7)[(||Okl] + [Ok—1|))||Pr—1(2, 7)]I-
Now plugging in (28) in (29), we get:
1Ok — Ok—1]| < as€r—1(t) + s (30)

where, ag = LT y1a1dT and ay = LT Y1 apdT.

Similarly, we can write:

T
nm—mqns/uwm+%mmhwn
t

(y202 + Y304 + 4)dT
= as&k_1(t) + s

(3D

where 7, = 1 ®x(t, T)[|0k-1ll, 73 =
2x(E, D)I[(||Ox—1[[I1E]] + [IBllllys—1ll), 7 =
12 (2, DII(QIITowk| + ||©x Bl[|Imi 1| 6yx])

ag = j; [y2a1+73as]dr and ag = J; [y202+7304+74]dr.
Finally,

l¥e — Ye—1l| € on€p—1(t) + as (32)

——1
where, a7y = ||m||||[R BiOk|| and as =

—1 ..
e lllI[R B |1([©x0wi—1 | + 10k[1) + |[y|l]. Combining
(28), (30), (31) and (32), we get (19).

REFERENCES

[1] Y. Uno, M. Kawato, and R. Suzuki, “Formation and control of optimal
trajectory in human multijoint arm movement,” Biological cybernetics,
vol. 61, no. 2, pp. 80-101, 1989.

[2] E. Todorov and M. L Jordan, “Optimal feedback control as a theory
of motor coordination,” Nature neuroscience, vol. 5, no. 11, pp. 1226—
1235, 2002.

[3] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.” in ICINCO (1), 2004, pp.
222-229.

[4] S. Albrecht, P. Basili, S. Glasauer, M. Leibold, and M. Ulbrich,
“Modeling and analysis of human navigation with crossing interferer
using inverse optimal control,” IFAC Proceedings Volumes, vol. 45,
no. 2, pp. 475-480, 2012.

[5] S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin, “Combining
optimal control and learning for visual navigation in novel environ-
ments,” in Conference on Robot Learning. PMLR, 2020, pp. 420-429.

[6] S. Mallik, S. Nizampatnam, A. Nandi, D. Saha, B. Raman, and
S. Ching, “Neural circuit dynamics for sensory detection,” Journal
of Neuroscience, vol. 40, no. 17, pp. 3408-3423, 2020.

[7] M. Boerlin, C. K. Machens, and S. Denéve, “Predictive coding of
dynamical variables in balanced spiking networks,” PLoS Comput Biol,
vol. 9, no. 11, p. e1003258, 2013.

[8] E Huang and S. Ching, “Dynamical spiking networks for distributed
control of nonlinear systems,” in 2018 Annual American Control
Conference (ACC). IEEE, 2018, pp. 1190-1195.

[9] L. E Abbott, B. DePasquale, and R.-M. Memmesheimer, “Building
functional networks of spiking model neurons,” Nature neuroscience,
vol. 19, no. 3, pp. 350-355, 2016.

[10] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Courier Corporation, 2007.

[11] R. Bellman and R. E. Kalaba, Dynamic programming and modern
control theory. Citeseer, 1963, vol. 81.

[12] R. E. Kopp, “Pontryagin maximum principle,” in Mathematics in
Science and Engineering. Elsevier, 1962, vol. 5, pp. 255-279.

[13] M. Athans and P. L. Falb, Optimal control: an introduction to the
theory and its applications. Courier Corporation, 2013.

[14] W. Bomela and J.-S. Li, “An iterative method for computing optimal
controls for bilinear quadratic tracking problems,” in 2016 American
Control Conference (ACC). IEEE, 2016, pp. 2912-2917.

[15] K. So, K. Ganguly, J. Jimenez, M. C. Gastpar, and J. M. Carmena, “Re-
dundant information encoding in primary motor cortex during natural
and prosthetic motor control,” Journal of computational neuroscience,
vol. 32, no. 3, pp. 555-561, 2012.

https://www.researchgate.net/publication/352466410

