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The Lieb-Robinson (LR) bound rigorously shows that in quantum systems with short-range interactions,
the maximum amount of information that travels beyond an effective “light cone” decays exponentially
with distance from the light-cone front, which expands at finite velocity. Despite being a fundamental
result, existing bounds are often extremely loose, limiting their applications. We introduce a method that
dramatically and qualitatively improves LR bounds in models with finite-range interactions. Most promi-
nently, in systems with a large local Hilbert space dimension D, our method gives a LR velocity that
grows much slower than previous bounds with D as D → ∞. For example, in the Heisenberg model with
spin S, we find v ≤ const. compared to the previous v ∝ S, which diverges at large S, and in multiorbital
Hubbard models with N orbitals, we find v ∝ √

N instead of previous v ∝ N , and similarly in the N -
state truncated Bose-Hubbard model and Wen’s quantum rotor model. Our bounds also scale qualitatively
better in some systems when the spatial dimension or certain model parameters become large, for exam-
ple in the d-dimensional quantum Ising model and perturbed toric code models. Even in spin-1/2 Ising
and Fermi-Hubbard models, our method improves the LR velocity by an order of magnitude with typical
model parameters, and significantly improves the LR bound at large distance and early time.
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I. INTRODUCTION

The Lieb-Robinson (LR) bound [1,2] has revealed how
locality shapes and constrains quantum matter. It says
that in short-range (exponentially decaying) interacting
quantum systems on a lattice, the influence of any local
perturbation is restricted to an effective light cone expand-
ing at a finite speed, apart from an exponentially decaying
tail outside the light cone. It has direct implications for
many-body quantum dynamics, as it has been used to
understand the timescales necessary to generate correlation
and entanglement [3–6], to transfer information in a quan-
tum channel [7,8], and to prethermalize a system [9–12].
It has also found applications to equilibrium properties,
for example in proving that correlations decay exponen-
tially in a gapped ground state (the exponential clustering
theorem [13–19]), that systems with half integer spin per
unit cell are necessarily gapless (the Lieb-Schultz-Mattis-
Hastings theorem [20–22]), the area law for entangle-
ment entropy in ground states of gapped systems [23–25],
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the stability of topological order [26–29], and the for-
mal proof for the quantization of the Hall conductance
as integer multiples of e2/h [30]. It is also the theoret-
ical basis for analyzing the accuracy of some numerical
algorithms [31–36]. It has been generalized to systems
with long-range power-law decaying interaction [14,36–
46], to n-partite connected correlation functions [47], and
to dynamics with Markovian dissipation [48–50] as well.
Furthermore, recent developments in experimental tech-
nology of atomic, molecular, and optical physics have
enabled experimentalists to observe the effective light cone
and measure the LR speed [38,51,52].

Despite the LR bounds’ fundamental consequences and
efforts to tighten them [14,15,49,53–55], the bounds are
often extremely loose [except some special bounds on free-
particle systems [56–60] ], severely limiting their applica-
bility. To see this, note that in locally interacting systems,
previous LR bounds are typically of the form

‖[ÂX (t), B̂Y(0)]‖ ≤ Ce−sXY/ξ (ev|t|/ξ − 1), (1)

where ÂX , B̂Y are local operators supported on regions
X , Y, respectively, ÂX (t) = eiĤ tÂX e−iĤ t, sXY is the mini-
mal graph-theoretical distance between points in X and
Y, and v and ξ are constants that only depend on the
Hamiltonian Ĥ (and the lattice structure). There are two
qualitative ways in which these bounds are loose. First,

2691-3399/20/1(1)/010303(24) 010303-1 Published by the American Physical Society



ZHIYUAN WANG and KADEN R. A. HAZZARD PRX QUANTUM 1, 010303 (2020)

and arguably most importantly, the LR speeds v appearing
in existing bounds are typically much larger than the actual
speed of information propagation. For example, in the one-
dimensional (1D) transverse-field Ising model (TFIM) at
critical point, the previous best LR speed is 8eJ ≈ 21.7J
while the actual speed determined from exact solution is
2J . Previous bounds on v can even become infinitely loose
in certain limits: for example in the TFIM at large J , pre-
vious bounds grow ∝ J ; in the spin-S Heisenberg model,
previous bounds grow ∝ S; in the classical limit of the
SU(N ) Fermi-Hubbard (FH) model, previous bounds grow
∝ N , while in all these cases the true LR speed remains
finite. Previous bounds are also qualitatively loose at short
time and large distance: as t → 0, perturbative arguments
show that the lhs of Eq. (1) grows like O(tcsXY), where
c is a constant, much slower than the O(t) in the rhs of
Eq. (1); similarly, as sXY → ∞, the lhs actually decays
faster than exponential. A simple example is noninteract-
ing systems, where the lhs decays at large distance like
O(e−sXY ln sXY).

In this paper, we focus on locally interacting sys-
tems (i.e. systems with finite-range interactions), and intro-
duce a method that qualitatively tightens the LR bounds
in all the aforementioned aspects. The key new ingredi-
ent in our method is the commutativity graph, which is a
graphical tool that helps us taking advantage of the com-
mutativity structure of the Hamiltonian terms, a feature
that has been ignored by previous methods (except in a
special model in Ref. [53]). By applying the Heisenberg
equation and triangle inequality, we obtain a system of lin-
ear integral inequalities, which only involve the unequal
time commutator of the Hamiltonian terms. We then find a
system of linear differential equations whose solution gives
an upper bound for any solution to the integral inequalities.
These differential equations can be naturally understood
as the information flow equation on the commutativity
graph.

If the quantitative tightness is the sole criterion for
applying the LR bound, one should solve these equa-
tions either analytically, or numerically if necessary, which
can be done quickly and straightforwardly for systems
with many thousands of sites [since the number of
variables is proportional to the size of the system, see
Eq. (10)]. In translationally invariant systems, the solu-
tion to the system of linear differential equations can
be reduced to an integral by Fourier transformation. For
example, in the d-dimensional TFIM, our LR bound for
[σ̂ x

	r (t), σ̂ z
	0 (0)] is

‖[σ̂ x
	r (t), σ̂ z

	0 (0)]‖ ≤
∫ π

−π

cosh[ω(	k)t]ei	k·	r ddk
(2π)d , (2)

where ω(k) corresponds to eigenvalue of the linear opera-
tor encoding the differential equations, which can be found
by diagonalizing a (d + 1) × (d + 1) matrix for each k.

The bound for other operators takes a similar form. Based
on the Fourier integral representation, we provide a gen-
eral method to analyze the asymptotic behaviors of the
solutions—which shows that the small t and large r behav-
ior is qualitatively tighter than prior bounds, and are often
the tightest possible—and derive an explicit formula to
extract the LR speed. The LR speed obtained by this
method vastly improves previous ones, as summarized in
Tables I and II.

As we see, there are three broad scenarios where the
LR velocity appearing in our bounds is qualitatively
tighter: (1) when the number of local degrees of freedom
becomes large, e.g., the large-S limit in TFIM, Heisenberg
XYZ models, and Wen’s quantum rotor model; the Bose-
Hubbard (BH) model truncated to allow at most N particles
per site, and the large-N limit in the SU(N ) FH model,
(2) when the parameters of a set of commuting opera-
tors becomes large (e.g., large-J limit in TFIM, perturbed
toric code model), and (3) TFIM and Wen’s quantum rotor
model in large spatial dimension. The bounds we present
shed light onto these important limits, which have previ-
ously resisted bounds with the qualitatively correct scaling.
They also have important physical implications, for exam-
ple in exactly solvable models with topological order [e.g.,
toric code [61] and string net models [62] ], perturbed by
an arbitrary bounded, local perturbation. Our results show
that their LR velocity vanishes as the strength of the pertur-
bation approaches zero, in contrast to prior bounds, which
retained a finite LR velocity in this limit. Even in situa-
tions with low spatial dimension and small local degrees of
freedom, e.g., at J = h in two-dimensional (2D) TFIM or

TABLE I. Comparison between previous LR speeds and those
introduced in this paper, in the case of 2D spin-1/2 TFIM, 1D
SU(2) FH model, and perturbed toric code (PTC) model [61]
with onsite h

∑
j σ̂ x

j perturbation. The LR speed vLR of this paper
is upper bounded by the minimum of all the expressions in the
different rows of each model. For each column divided into two
subcolumns, the first subcolumn shows analytic expressions, and
the second subcolumn shows their approximate numerical val-
ues. (For those bounds of the FH model depending on U/J we
have chosen a representative point). The constant Xy is defined
as the solution to the equation xarcsinh(x) = √

x2 + 1 + y. ZU/J
is defined in Eq. (81) and plotted in Fig. 5.

Model vLR (this paper) vLR (Ref. [2])

2D TFIM 2X0
√

2Jh 4.27
√

Jh 16eJ 43.5J
8X1/2J 15.1J
8X0h 12.1h

1D FH 2X3U/4J J 4.14J(U=J ) 16eJ 43.5J
8X0J 12.1J
ZU/J J 7.05J(U=5J )

PTC 8X1/2h 15.1h 32e 87.0
2X0

√
2h 4.27

√
h

8X0 12.1
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TABLE II. Summary of qualitative improvements of vLR in this
paper for models with large onsite Hilbert spaces or large spatial
dimensions: S indicates the size of spins in spin models, N the
maximal number of particles on a single site in Hubbard mod-
els, and d the spatial dimension. In Wen’s rotor model, we only
list the result in the most interesting limit S → ∞, J 
 g, where
the previous best methods from Refs. [2] and [53] are infinitely
looser than our result.

Model vLR (this paper) vLR (Ref. [2])

Large-d TFIM ∝ √
d ∝ d

Large-S (spin) TFIM ∝ √
S ∝ S2

Large-N SU(N ) FH ∝ √
N ∝ N

Spin-S Heisenberg const. ∝ S
Wen’s rotor model, ∝ √

dgJ ∝ √
JgdS (Ref. [53])

S → ∞ and J 
 g ∝ dg (Ref. [2])
N -state truncated BH ∝ √

N ∝ N

U = J in 1D FH, our bound represents more than a tenfold
improvement.

Although expressions such as Eq. (2) provide the tight-
est bounds in this paper, we can find simple analytic
bounds while compromising the tightness only marginally.
We show that

‖[ÂX (t), B̂Y(0)]‖ ≤ C
(

u|t|
dXY

)dXY

. (3)

We note that this bound applies even to systems lacking
translational invariance (under mild realistic requirements
on the Hamiltonian to be introduced later). Here dXY is the
distance between operators ÂX (t), B̂Y(0) on the commuta-
tivity graph (dXY grows linearly with the distance between
the two operators in real space), C is a constant, and u is
related to the LR speed given in Tables I, II (their precise
relation is given in Secs. IV and V). This bound also tight-
ens previous ones in the two aspects mentioned above, and
its asymptotic behavior at small time and large distance
is often tightest possible. For example, the small-t expo-
nent is the same as the exact one obtained by perturbative
arguments and the large-x exponent is saturated by some
free-particle systems.

The tighter LR bounds also improve several impor-
tant results that rely on it. We mention two here. The
first, which we explicitly derive in this paper, is that our
LR bounds give rise to a tighter bound for the ground-
state correlation length in systems with a spectral gap.
For example, when applied to the 1D TFIM, our bound
gives ξ ∝ [ln(J/h)]−1 in the limit J/h → ∞, in agree-
ment with the exact solution, while the previous best bound
approaches a constant; in the spin-S Heisenberg model,
when S → ∞, our bound gives ξ ≤ c1 (a constant), while
the previous bound ξ ≤ c2(S + 1) diverges linearly in S.
As a second example, the improvement of the bound also

enables further applications where quantitative accuracy
is the key to obtaining helpful results, for example in
upper bounding the error of several numerical algorithms
[31–33,35,36]. Previous LR bounds give extremely loose
numerical error bounds, which renders the error bound
practically useless in typical situations where only modest
system sizes can be simulated with current computational
capabilities. We expect the tighter LR bounds to give prac-
tically useful numerical error bounds for reasonably small
system sizes.

Our paper is organized as follows. In Sec. II we outline
the general method to upper bound the unequal time com-
mutator by the solution of a set of first-order linear differen-
tial equations. In Sec. III we focus on translation invariant
systems, where one can obtain Fourier integral solutions
to the differential equations and obtain the bound in Eq.
(2). We also derive an explicit formula for the LR speed
by studying the analytic properties of the Fourier integrals.
In Sec. IV we derive a power series solution to the afore-
mentioned differential equations in an arbitrary graph, from
which we prove the LR bound in Eq. (3). In Sec. V we give
examples of our LR bounds in some paradigmatic models
(TFIM, spin-S Heisenberg, N -state truncated BH, SU(N )
FH, and Wen’s quantum rotor model). In Sec. VI we intro-
duce a special treatment that can be used to obtain a tighter
bound when some of the parameters in the Hamiltonian
become large. In Sec. VII we show how our LR bounds
give a better bound on the ground-state correlation length
in systems with a spectral gap. In Sec. VIII we summarize
our methods and results, and discuss their potential appli-
cations along with some future directions. In Appendix A
we briefly introduce a more general method that unifies
some of the seemingly different approaches in the main
text.

II. GENERAL METHOD: INFORMATION
PROPAGATION ON COMMUTATIVITY GRAPHS

There are two major reasons why previous LR bounds
are loose. First, the previous methods do not make use of
the details of the Hamiltonian. For example, the deriva-
tions in Ref. [14] only makes use of how the operator
norms of the interaction terms decay with interaction
range, completely ignoring all other properties such as
commutativity. Therefore, the previous results actually
bound the “worst case” Hamiltonian that satisfies the
finite-range condition. Second, previous derivations use
the integral inequalities iteratively, leading to a sum of
products of terms along different paths. Since this sum
over paths is difficult to calculate analytically, one has
to use the triangle inequality many times to get a sim-
ple analytic expression, which makes the resulting bound
looser.

In the following, we derive our LR bounds using a
method that avoids these two difficulties. Motivated by the
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LR bound of a special model studied in Ref. [53] in the
context of topological matter, we make use of the details
of the Hamiltonian by carefully exploiting the commuta-
tion relations of the terms in the Hamiltonian. To facilitate
this procedure, we introduce a graphical tool, which we
call the commutativity graph, that helps visualize the com-
mutation relations of Hamiltonian terms, and is introduced
in Sec. II A. In Sec. II B we use the Heisenberg equation
and triangle inequality to upper bound the unequal time
commutator and arrive at a similar integral inequality as
previous LR bounds. However, instead of using it itera-
tively, we find a set of differential equations whose solution
naturally provides an upper bound for any quantities satis-
fying the integral inequalities. A simple analytic bound for
solutions to these differential equations is discussed in the
next section, using a simpler method than the typical sum
over paths in the previous approaches, and which produces
much tighter bounds.

A. Commutativity graph

We begin by introducing a useful graphical tool, namely
the commutativity graph, to represent the Hamiltonian of
locally interacting systems. Consider a locally interacting
quantum system in arbitrary dimension with an arbitrary
lattice structure, or on an arbitrary graph. The Hamiltonian
Ĥ can in general be written as

Ĥ =
∑

j

hj γ̂j , (4)

where γ̂j are local Hermitian operators with unit norm
‖γ̂j ‖ = 1, and hj are constant parameters.

The commutativity graph G of the Hamiltonian Ĥ is
constructed as follows. Each local operator γ̂i is repre-
sented by a vertex i, the parameter hi is attached to vertex
i, and we link two vertices i, j by an edge 〈i, j 〉 if and only
if the corresponding terms do not commute [γ̂i, γ̂j ] 
= 0.
The resulting graph necessarily reflects the locality, since
local operators acting on nonoverlapping spatial regions
must commute, so there is no edge between their represen-
tative vertices. Some simple examples of commutativity
graphs are shown in Fig. 1. Notice that the same Hamilto-
nian may have different decompositions in the form of Eq.
(4) and, therefore, different commutativity graphs, due to
the freedom in how to partition terms of Ĥ . Nevertheless,
for convenience we simply speak of “the commutativity
graph of Ĥ” when a certain decomposition is implicitly
assumed. We discuss how to choose the decomposition at
the end of Sec. II B. In the following we derive a LR bound
based on a differential equation on the commutativity
graph of Ĥ .

FIG. 1. Examples of commutativity graphs. (a) Commutativity
graph of Ĥ1 = J σ̂ z

1 σ̂ z
2 + h(σ̂ x

1 + σ̂ x
2 ). (b) Commutativity graph

of Ĥ2 = J (σ̂−
1 σ̂+

2 + σ̂+
1 σ̂−

2 ) + h(σ̂ z
1 + σ̂ z

2 ). (c) Commutativity
graph of Ĥ2 = J/2(σ̂ x

1 σ̂ x
2 + σ̂

y
1 σ̂

y
2 ) + h(σ̂ z

1 + σ̂ z
2 ).

B. Upper bound for ‖[γ̂i(t), B̂(0)]‖
The Heisenberg equation for the operator γ̂i(t) =

eiĤ tγ̂ie−iĤ t is

i ˙̂γi(t) = [γ̂i(t), Ĥ ] =
∑

j :〈ij 〉∈G

hj [γ̂i(t), γ̂j (t)], (5)

where the dot on γ̂i(t) means time derivative, and the graph
geometry provides a natural way to label the summation.

The general task of this paper is to find an upper bound
for unequal time commutators [Â(t), B̂(0)] of local oper-
ators Â, B̂, i.e., operators with finite support. Let us first
consider the special case when Â = γ̂i is a term of the
Hamiltonian. In this case, we are interested in the unequal
time commutator γ̂ B

i (t) = [γ̂i(t), B̂(0)], for an arbitrary
local operator B̂. Using Eq. (5) and the Jacobi identity, we
have the evolution equation for γ̂ B

i (t)

i ˙̂γ B
i (t) =

∑
j :〈ij 〉∈G

hj ([γ̂ B
i (t), γ̂j (t)] + [γ̂i(t), γ̂ B

j (t)]). (6)

Substituting γ̂ B
i (t) = Û(t)τ̂B

i (t)Û†(t) where Û(t) is the uni-

tary operator satisfying Û(0) = 1 and i ˙̂U(t) = −∑j :〈ij 〉∈G

hj γ̂j (t)Û(t) into Eq. (6), we have

i ˙̂τB
i (t) = Û†(t)

∑
j :〈ij 〉∈G

hj [γ̂i(t), γ̂ B
j (t)]Û(t). (7)

Now we bound the time dependence of the operator
norm of γ̂ B

i (t), the fundamental object controlled by LR
bounds. Since γ̂ B

i and τ̂B
i are related by unitary transforms,

‖γ̂ B
i (t)‖ = ‖τ̂B

i (t)‖ (recall that ‖ÛÂV̂†‖ = ‖Â‖ for unitary
operators Û, V̂). Using this and applying the basic inequal-
ities ‖Â + B̂‖ ≤ ‖Â‖ + ‖B̂‖ and ‖Â · B̂‖ ≤ ‖Â‖ · ‖B̂‖, we

010303-4



TIGHTENING THE LIEB-ROBINSON BOUND... PRX QUANTUM 1, 010303 (2020)

obtain

‖γ̂ B
i (t)‖ − ‖γ̂ B

i (0)‖ = ‖τ̂B
i (t)‖ − ‖τ̂B

i (0)‖

≤
∫ t

0
‖ ˙̂τB

i (t′)‖dt′

≤
∑

j :〈ij 〉∈G

|hj |
∫ t

0
‖[γ̂ B

j (t′), γ̂i(t′)]‖dt′

≤ 2
∑

j :〈ij 〉∈G

|hj |
∫ t

0
‖γ̂ B

j (t′)‖dt′, (8)

where in the last line we use ‖γ̂i(t′)‖ = ‖γ̂i‖ = 1.
Although Eq. (8) bounds the operator norm that is

of interest, the rhs depends on this unknown operator
norm. Nevertheless, one can use the generalized Grön-
wall’s inequality [63] to show that ‖γ̂ B

i (t)‖ ≤ γ̄ B
i (t), where

γ̄ B
i (t) is the solution to Eq. (8) with the inequality replaced

by equality:

γ̄ B
i (t) = γ̄ B

i (0) + 2
∑

j :〈ij 〉∈G

|hj |
∫ t

0
γ̄ B

j (t′)dt′, (9)

where γ̄ B
i (0) = ‖γ̂ B

i (0)‖. Differentiating Eq. (9), one
obtains the first-order linear differential equation

˙̄γ B
i (t) = 2

∑
j :〈ij 〉∈G

|hj |γ̄ B
j (t) (10)

with initial condition

γ̄ B
i (0) = ‖[γ̂i, B̂]‖. (11)

We define the support of operator B̂ on the commutativity
graph as S(B̂) = {i | [γ̂i, B̂] 
= 0}. Then the initial condition
can be simplified as γ̄ B

i (0) = 2‖B̂‖(i ∈ S(B)), where the
notation (P) is defined as (P) = 1 if P is true and (P) = 0
if P is false, for an arbitrary statement P.

The differential equation Eq. (10) gives an upper bound
for the unequal time commutator of a Hamiltonian term
with an arbitrary local operator. To obtain the upper bound
of ÂB(t) = [Â(t), B̂(0)], where Â is an operator not in the
Hamiltonian, we can perform similar calculations in Eqs.
(5)–(8) to get

‖ÂB(t)‖ − ‖ÂB(0)‖ ≤
∫ t

0

∑
i∈S(Â)

2‖Â‖|hi|γ̄ B
i (t′)dt′. (12)

For later convenience, we introduce Green’s function as
a useful tool to discuss solutions to Eq. (10). First notice

that Eq. (10) can be rewritten in a symmetric form

˙̄�B
i (t) = 2

∑
j :〈ij 〉∈G

√|hi||hj |�̄B
j (t), (13)

where �̄B
i (t) = √

hiγ̄
B
i (t). We denote the real symmetric

coefficient matrix as Hij = 2
√|hi||hj |(〈ij 〉 ∈ G). Green’s

function Gij (t) is defined as the solution to the differential
equation

Ġij (t) =
∑

k:〈ik〉∈G

HikGkj (t), (14)

with initial condition Gij (0) = δij , so any initial value
problem can be obtained by linear combinations of Green’s
functions:

�̄B
i (t) =

∑
j

Gij (t)�̄B
j (0), (15)

and, therefore, the LR bound of ‖[γ̂i(t), B̂Y(0)]‖ can be
expressed as

‖[γ̂i(t), B̂Y(0)]‖ ≤
∑
j ∈Y

Gij (t)

√
hj

hi
2‖B̂‖, (16)

where Y = S(B̂) is the support of operator B̂ on the com-
mutativity graph (from now on we use ÂX to mean that
operator Â has support X on the commutativity graph). The
LR bound for the unequal time commutator between arbi-
trary local operators ‖[ÂX (t), B̂Y(0)]‖ can be obtained by
inserting Eq. (16) into Eq. (12):

‖[ÂX (t), B̂Y(0)]‖ − ‖[ÂX (0), B̂Y(0)]‖

≤ 4‖Â‖‖B̂‖
∫ t

0

∑
i∈X ,j ∈Y

√|hihj |Gij (t′)dt′. (17)

Equations (14) and (17) [or Eqs. (10) and (12)] are the
main results of this section, which upper bound the unequal
time commutators by the solution to a set of linear dif-
ferential equations. Note that the bound Eq. (17) can in
general be efficiently computed. One can obtain Gij (t) by
solving Eq. (14), a set of NH linear coupled ordinary dif-
ferential equations, where NH is the number of terms in
the Hamiltonian, which grows linearly with system size
in locally interacting systems. This is a substantial reduc-
tion from solving the original many-body problem, whose
cost in general grows exponentially with the system size.
Furthermore, in translation invariant systems, we can solve
these equations by a Fourier transform, which allows us to
derive further simplified analytic upper bounds, as shown
in the next section.
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We end this section by commenting on the issue noted at
the end of Sec. II A. As we mention there, we can write the
same Hamiltonian in the form of Eq. (4) in different ways,
leading to different commutativity graphs. The differential
equations and the resulting LR bound are different as well.
One may ask how to choose a decomposition of the Hamil-
tonian Ĥ so that the resulting LR bound is tightest. While
there is not a general statement about which decomposition
is best, for spin-1/2 and fermionic systems we know a par-
ticularly good choice of decomposition that in many cases
give us the tightest bound. For such systems, it is always
possible to write the Hamiltonian in the form of Eq. (4)
[64,65] if we require that γ̂ 2

i = 1 and γ̂i, γ̂j for i 
= j either
commute or anticommute. More precisely, the algebraic
relations of {γ̂i} are related to their commutativity graph
G as follows:

γ̂ 2
i = 1, for ∀i ∈ G,

{γ̂i, γ̂j } = 0, for 〈ij 〉 ∈ G,[
γ̂i, γ̂j

] = 0, for 〈ij 〉 /∈ G.

(18)

For example, in spin-1/2 systems γ̂i can be chosen as prod-
ucts of Pauli matrices, while in fermionic systems they
are products of Majorana fermion operators. More specific
examples are given in Sec. V. If the additional constraints
Eq. (18) still fail to specify the decomposition uniquely, we
choose [among those satisfying Eq. (18)] a decomposition
such that the total number of γ̂i terms is minimal. We call it
a minimal Clifford decomposition. The LR bound derived
from this decomposition is typically tightest since the tri-
angle inequality ‖[A, B]‖ ≤ 2‖A‖‖B‖ (which is used many
times in our derivation) is saturated when {A, B} = 0. One
can also show that the resulting LR bound has the tightest
small-t exponent in typical models, as discussed in Sec. IV.

C. Alternative treatment for interacting fermions

Our previous analysis applies to the fermionic case as
well, since our derivations did not rely on any special prop-
erty of the Hamiltonians beyond being locally interacting.
However, for the case of interacting fermions in an arbi-
trary d-dimensional lattice, we can use a slightly different
method, which sometimes gives us a tighter LR bound.

In the following we consider an arbitrary locally inter-
acting fermionic system with up to quartic terms, but
the method generalizes straightforwardly to systems with
higher-order interacting terms. We use the Majorana rep-
resentation for convenience, where the Hamiltonian can in
general be written as

Ĥ =
∑
i<j

tij iĉiĉj +
∑

i<j <k<l

Uijklĉiĉj ĉkĉl. (19)

where tij and Uijkl are totally antisymmetric, and the
Majorana operators satisfy

ĉ†
i = ĉi,

{ĉi, ĉj } = 2δij .
(20)

We first upper bound the norm of the unequal
time anticommutator ĉij (t) = {ĉi(t), ĉj (0)}. The Heisen-
berg equation for the operator ĉi(t) = eiĤ tĉie−iĤ t is

i ˙̂ci(t) = 2
∑

j

tij iĉj (t) + 2
∑

j <k<l

Uijklĉj (t)ĉk(t)ĉl(t). (21)

Using Eq. (21), we have the evolution equation for ĉim(t)

i ˙̂cim(t) = 2
∑

j <k<l

Uijkl{ĉj (t)ĉk(t)ĉl(t), ĉm(0)}

+ 2
∑

j

tij iĉjm(t). (22)

The first term of Eq. (22) can be expanded into the
sum of three terms using {abc, d} = ab{c, d} + a{b, d}c +
{a, d}bc. Therefore,

‖ĉim(t)‖ − ‖ĉim(0)‖ ≤
∫ t

0
‖˙̂cim(t′)‖dt′

≤ 2
∫ t

0
dt′
∑

j <k<l

|Uijkl|

× ‖ĉjm(t′) + ĉkm(t′) + ĉlm(t′)‖

+ 2
∫ t

0

∑
j

|tij |‖ĉjm(t′)‖dt′. (23)

Equation (23) is the analog of Eq. (8). Therefore, using
the same argument as we use in Sec. II B, we can con-
clude that ‖ĉim(t)‖ ≤ cim(t) where cim(t) is the solution to
the differential equation

ċim(t) = 2
∑

j <k<l

|Uijkl|[cjm(t) + ckm(t) + clm(t)]

+ 2
∑

j

|tij |cjm(t), (24)

with initial condition cim(0) = ‖ĉim(0)‖ = 2δim. Once we
know the LR bound for {ĉi(t), ĉj (0)}, we can calculate LR
bounds for arbitrary local operators using identities like
[ab, cd] = a{b, c}d − ac{b, d} + {a, c}db − c{a, d}b, since
an arbitrary local operator can be expressed as products
of basic Majorana operators cj .

Equation (24) takes a similar form as Eq. (10) and can
be treated similarly. For example, Green’s function method
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in Sec. II B can also be applied, and the analyses in the fol-
lowing two sections apply to both equations equally well.
We currently do not have a general criteria to determine
which equation leads to a tighter LR bound for a specific
fermionic system, and the results have to be compared case
by case. But compared to LR bounds obtained prior to the
current paper, both methods give improved LR speeds, cor-
rect power-law growth of correlations at short time, and the
superexponentially decaying tail. See the application to the
FH model in Sec. V D for a detailed comparison.

III. ANALYTIC BOUNDS IN TRANSLATION
INVARIANT SYSTEMS

In the last section we upper bound the unequal time
commutator by the solution to an integral inequality [Eq.
(17)] with the integrand given by the solution to a set of lin-
ear differential equations [Eq. (14)]. In translation invariant
systems, we can obtain the solution to these equations in
the form of a Fourier integral, and derive a simpler, fully
analytic upper bound by methods of complex analysis.

We start our discussion by considering Eq. (14) in a
general periodic lattice structure and obtain a formal solu-
tion in terms of a Fourier integral. Suppose there are l
vertices in a primitive unit cell, labeled by index α =
1, . . . , l. We use capital I to label unit cells with coordi-
nate labeled by 	rI [for example, if {α1, . . . , αd} is a set of
primitive lattice translation vectors, then coordinate 	rI =
(n1, n2, . . . , nd), na ∈ Z, a = 1, . . . , d labels the primitive
cell at physical position RI =∑d

a=1 naαa], so that every
vertex i can be labeled by a pair (I , α). Taking advantage
of translation invariance, we can use the Fourier integral
representation of Green’s function Gij (t) ≡ GIα;Jβ(t),

Gij (t) ≡
∫ π

−π

ddk
(2π)d G(	k)

αβ (t)ei	k·(	rI −	rJ ). (25)

[Notice that other discrete symmetries of the lattice (such
as inversion, reflection, discrete rotation, etc.) do not play
a significant role in this context, so we are using inte-
ger coordinates of unit cells and consequently the Fourier
momentum simply lies in (−π , π ]d rather than the first
Brillouin zone in typical solid-state contexts.] Inserting Eq.
(25) into Eq. (14) we get

Ġ(	k)
αβ (t) =

l∑
γ=1

H (	k)
αγ G(	k)

γβ(t), (26)

where the l × l coefficient matrix H (	k)
αβ is the Fourier trans-

form of HIα;Jβ (notice that due to translation invariance
HIα;Jβ only depends on 	rI − 	rJ ):

H (	k)
αβ =

∑
J

HIα;Jβe−i	k·(	rI −	rJ ). (27)

The formal solution to Eq. (26) is G(	k)
αβ (t) = [eH (	k)t]αβ ,

where H (	k) is considered as an l × l matrix.
We now derive a simple analytic upper bound for the

Fourier integral of Eq. (25) using methods of complex
analysis. Since the integrand of Eq. (25) is a complex ana-
lytic function of 	k except at infinity, and since the integrand
is periodic in shifts of the real axis by 2π , we can send
	k → 	k + i	κ without changing the result of the integral, as
illustrated in Fig. 2. Therefore, we have

|Gij (t)| =
∣∣∣∣
∫ π

−π

ddk
(2π)d [eH (	k+i	κ)t]αβei	k·	r−	κ·	r

∣∣∣∣
≤
∫ π

−π

ddk
(2π)d |[eH (	k+i	κ)t]αβ |e−	κ·	r

≤ |[eH (i	κ)t]αβ |e−	κ·	r

≤ c	κeωm(i	κ)t−	κ·	r, (28)

where 	r = 	rI − 	rJ , in the second line we use the trian-
gle inequality for the integral, and in the third line we
use the inequality |[eH (	k+i	κ)t]αβ | ≤ |[eH (i	κ)t]αβ | [which fol-
lows from the triangle inequality since the coefficients
HIα;Jβ in Eq. (27) are nonnegative]. In the last line we use
the inequality |[eH (i	κ)t]αβ | ≤ ‖eH (i	κ)t‖ ≤ c	κeωm(i	κ)t, where
ωm(i	κ) is the eigenvalue of H (i	κ) with largest magnitude
[ωm(i	κ) must be real positive according to the Perron-
Frobenius theorem], c	κ is a function of 	κ independent of
t, and the last inequality can be proved by diagonalizing
H (i	κ) into Jordan canonical form. Therefore, we arrive at
the following important result:

|Gij (t)| ≤ c	κeωm(i	κ)t−	κ·	r, ∀	κ ∈ R
d. (29)

While this expression looks quite similar to previous LR
bounds with exponential decaying tail, described by Eq.
(1), the point here is that we can choose 	κ = 	κ(	r, t) to
depend on 	r, t to minimize the rhs at each point in space
time. This makes the bound decaying faster than exponen-
tial at large distance, as we prove in Sec. IV, and see in
examples in Sec. V.

We end this subsection by giving an explicit formula
for the LR speed that emerges from this bound. The LR
speed of Green’s function Gij (t) (considered as a function
of 	r, t) in Eq. (25) is, by definition, the speed at which
r must change as a function of t in order for Gij (t)’s
magnitude to stay constant. While Eq. (25) is not sim-
ple enough to exactly extract the LR speed, we can get
an upper bound for the LR speed from the upper bound
of Gij (t) in Eq. (29). If we choose 	κ = 	κ0 ≡ sgn(	r)κ0,
where sgn(	r) ≡ (sgn(r1), sgn(r2), . . . , sgn(rd)), we get the
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FIG. 2. Since the integrand of Eq. (25) is a complex analytic
function of 	k except at infinity, the integration along the above
contour is zero. Since the integrand is a periodic function of 	k
with period 2π , the integral on two vertical arrows (colored red)
cancel. The net result is that in Eq. (25) we can send 	k → 	k + i	κ
without changing the result of the integral.

old form of LR bound with exponential decaying tail

|G(	r, t)| ≤ c	κ0eωm(i	κ0)t−κ0|	r|, (30)

where |	r| =∑d
j =1 rj is the Manhattan distance between

the corresponding unit cells. Therefore, the LR speed of
|G(	r, t)| must be upper bounded by an optimal choice of
κ0:

vLR ≤ min
κ0>0

ωm(i	κ0)

κ0
. (31)

Notice that while 	κ0 depends on sgn(	r), in typical models
ωm(i	κ0) does not depend on sgn(	r) [see Sec. V]. In the case
that ωm(i	κ0) does depend on sgn(	r), Eq. (31) represents a
directional LR speed, and to get the overall LR speed we
should take the maximum over all possible 2d values of
sgn(	r).

It is immediately clear from Eq. (17) that the LR speed
of Green’s function gives an upper bound for the LR speed
of the unequal time commutator between any local opera-
tors ‖[ÂX (t), B̂Y(0)]‖, since, by inserting Eq. (30) into Eq.
(17), we get

‖[ÂX (t), B̂Y(0)]‖ ≤ Ceωm(i	κ0)t−κ0rXY , (32)

where C = 4c	κ0‖Â‖‖B̂‖√hX hY/ωm(i	κ0), hX ≡ maxi∈X hi,
rXY = mini∈X ,j ∈Y rij and we assume X ∩ Y = ∅. This
proves that ‖[ÂX (t), B̂Y(0)]‖ has the same LR speed vLR.

Equation (31) is one of the main results of our paper,
for upper bounding the LR speed of a locally interacting
many-body Hamiltonian. Compared to previous methods
for upper bounding vLR, for example the methods given
in Ref. [2] or Ref. [3], our formula Eq. (31) is not only
simpler but also gives much tighter bounds, as shown in
specific examples in Sec. V.

IV. SIMPLE LR BOUND FOR AN ARBITRARY
GRAPH

In this section we prove the simple LR bound in Eq.
(3) for an arbitrary locally interacting system. The only
assumption we make about the system is that the com-
mutativity graph G has an upper bound on the degree of
vertices and the weight Hij of the edges. We first express
Green’s function in an arbitrary graph as a Taylor series of
t, illustrate the graph-theoretical meaning of the expansion
coefficients, and then use this expansion to prove the LR
bound.

The formal solution to Eq. (14) is

Gij (t) = [eHt]ij =
∑
n≥0

G(n)
ij

tn

n!
, (33)

where G(n)
ij = [H n]ij . Notice that Hij can be considered as

the adjacency matrix of the weighted commutativity graph
G with the weight of the edge (i, j ) being Hij . In this way,
the meaning of G(n)

ij is the sum of the weights of all possible
paths in G connecting vertices i and j , where the weight of
a path is the product of the weights of all its edges. (Note:
there can be duplicate edges in a path, and the weight of
path p is wp =∏e∈p wde

e where de is the multiplicity of
edge e.) Therefore, we have G(n)

ij = 0 for n < dij where
dij is the graph theoretical distance (length of the shortest
path) between i and j . In summary we have

Gij (t) =
∑
n≥dij

G(n)
ij

tn

n!
. (34)

We now prove the LR bound in Eq. (3). First let us
prove that there exists a velocity u such that for all pairs
of vertices i, j we have

Gij (t) ≤ c(ut/dij )
dij , for t ≤ dij /u, (35)

for some positive constant c. Inserting Eq. (34), the above
inequality is equivalent to

∑
n≥dij

G(n)
ij

tn−dij

n!
≤ c(u/dij )

dij , for t ≤ dij /u. (36)

Since the Hij are nonnegative, the coefficients G(n)
ij are non-

negative, so the lhs of Eq. (36) is a nondecreasing function
of t while the rhs is independent of t. Therefore, we only
need to prove that the inequality holds for t = dij /u:

∑
n≥dij

G(n)
ij

(dij /u)n−dij

n!
≤ c(u/dij )

dij , (37)
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which can be simplified to

Gij (dij /u) ≤ c. (38)

This is exactly the statement that Green’s function has a
finite LR velocity u.

One can show that Eq. (38) holds extremely generally,
requiring only locality and bounded magnitude of the Hij .
For translation invariant systems, we already prove this in
the last section [see Eq. (30)], except that distance is mea-
sured differently in Eqs. (30) and (38): in the former case
we use the Manhattan distance between unit cells while
in the latter case we use graph-theoretical distance in the
commutativity graph, so u is in general different from vLR.
But since c1 ≤ dij /rij ≤ c2 for some constants c1, c2 (this
follows straightforwardly from the fact that each real-space
unit cell is associated with a finite number of terms in Ĥ ),
existence of a finite vLR guarantees existence of u. In the
next section we show in some specific models how to find a
tight u. For the general case without translation invariance,
existence of a finite u can be proved under the assump-
tion that the weighted graph G has an upper bound on
the degree of vertices and the weights of the edges, that
is, every vertex has at most λ edges and the weights sat-
isfy Hij ≤ h for all pairs of neighboring vertices i, j . With
these assumptions we have G(n)

ij ≤ hnλn, ∀i, j ∈ G, n ≥ 0.
Inserting into Eq. (34), we have

Gij (t) ≤
∑
n≥dij

(λht)n

n!

≤
∑
n≥dij

(λht)n

e(n/e)n

≤
∑
n≥dij

(λhte/dij )
n/e

= (λhte/dij )
dij

1/e
1 − λhte/dij

, (39)

for t < dij /λhe. This proves Eq. (38) if we choose, for
example, u = 2λhe.

Now we use the bound Eq. (35) on Gij (t) to bound a gen-
eral unequal-time commutator ‖[ÂX (t), B̂Y(0)]‖. Inserting
Eq. (35) into Eq. (17), we have

‖[ÂX (t), B̂Y(0)]‖ − ‖[ÂX (0), B̂Y(0)]‖

≤ 4c	κ0‖Â‖‖B̂‖
∫ t

0

∑
i∈X ,j ∈Y

√
hihj

(
ut′

dij

)dij

dt′

≤ 4c	κ0‖Â‖‖B̂‖ e
u

∑
i∈X ,j ∈Y

√
hihj

(
ut

dij + 1

)dij +1

≤ 4c	κ0‖Â‖‖B̂‖ e
u

hXY

(
ut

dXY + 1

)dXY+1

(40)

for t ≤ dXY/u, where hXY is a geometric factor defined as

hXY =
∑

i∈X ,j ∈Y

√
hihj edXY−dij . (41)

In the third line of Eq. (40) we use the inequality(1 +
1/dij )

dij ≤ e, and in the last line we use (ut/x)x ≤
(ut/y)yey−x for t ≤ y/u ≤ x/u [this inequality holds since
the function (ut/x)xex is decreasing in x for x ≥ ut]. For
t > dXY/u we have the trivial bound ‖[ÂX (t), B̂Y(0)]‖ ≤
2‖Â‖‖B̂‖ ≤ 2e‖Â‖‖B̂‖ [ut/(dXY + 1)]dXY+1. In summary
we have

‖[ÂX (t), B̂Y(0)]‖ ≤ C
(

ut
dXY + 1

)dXY+1

, (42)

where C = 2e max{1, 2c	κ0(hXY/u)}‖A‖‖B‖ for X ∩ Y = ∅
and ∀t ≥ 0. This completes the proof of the LR bound in
Eq. (3). [Eq. (42) is actually a slightly tighter version].

The LR bound in Eq. (42) substantially and qualitatively
improves previous LR bounds, not only because it has the
superexponential decaying tail e−r ln r, but also because it
has much tighter small-t exponent, and a much tighter LR
speed, as seen in examples in the next section. The small-t
exponent η(	r) of a bound f (	r, t) is defined by its limit-
ing behavior f (	r, t) ∝ tη(	r) as t → 0. We now argue that
if a minimal Clifford decomposition [as defined below Eq.
(18)] of the Hamiltonian is used in Eq. (4), then the bound
in Eq. (42) has a small-t exponent that generically agree
with the exact result, and thus are the tightest possible. For
simplicity, consider the LR bound for [γ̂i(t), γ̂j (0)]. The
Baker-Campbell-Hausdorff formula gives

[γ̂i(t), γ̂j ] =
[∑

n≥0

(it)n

n!
adn

Ĥ
(γ̂i), γ̂j

]

= (2it)dij −1

(dij − 1)!

∑
p∈Pij

γ̂iŜp γ̂j + O(tdij ), (43)

where adĤ is the adjoint map of Ĥ acting on the space
of operators defined as adĤ (B̂) ≡ [Ĥ , B̂], Pij is the set of
shortest paths connecting i and j (note: by our convention
a path p ∈ Pij does not contain i and j ), the string oper-
ator Ŝp along a path p ∈ Pij is defined as Ŝp =∏k∈p hkγ̂k
(with a suitable ordering). Therefore, the small-t exponent
is ηij = dij − 1 provided that the sum on the second line
of Eq. (43) is nonzero. A sufficient condition for this to be
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true is if no two string operators Ŝp and Ŝp ′ along differ-
ent paths p 
= p ′ are proportional to each other [notice that
each individual term γ̂iŜp γ̂j is a product of invertible oper-
ators (due to the relation γ̂ 2

j = 1) and is, therefore, always
nonzero]. This condition is satisfied by typical models such
as the TFIM, FH model, the Heisenberg XYZ model, and
we believe that it is automatically satisfied by the minimal
Clifford decomposition of the Hamiltonian. Therefore, the
small-t exponent dXY + 1 of the bound in Eq. (42) is sat-
urated by exact results, since when X = S(γ̂i), Y = S(γ̂j ),
we have dij − 1 = dXY + 1. This has never been achieved
in previous LR bounds, where the small-t exponent is
typically just η(	r) = 1, as in Eq. (1) for example [66].

V. EXAMPLES

In this section, we apply the techniques developed above
to calculate the LR velocity for the bound of Eq. (3) explic-
itly for five models as examples: the d-dimensional TFIM
(Sec. V A), the spin-S Heisenberg model (Sec. V B), the
N -state truncated BH model (Sec. V C), the SU(N ) FH
model (Sec. V D), and Wen’s quantum rotor model (Sec.
V E). The techniques are general and can be straightfor-
wardly applied to arbitrary models. All these examples
demonstrate significant quantitative improvements over
the previous LR speeds, and in a number of limits (e.g.,
large-d, large-S, or large-N ) our bounds are qualitatively
tighter for having better scalings. We introduce techniques
to further tighten the LR velocity in Sec. VI.

A. The d-dimensional TFIM

In the following we first derive a bound in the familiar
spin-1/2 case, and then extend this result to arbitrary spin
in Sec. V A 2.

1. Spin-1/2 case

The Hamiltonian for the d-dimensional hypercubic lat-
tice Ising model with a transverse field is

Ĥ = −J
∑

	r,1≤j ≤d

γ̂	r,j − h
∑

	r
γ̂	r,0, (44)

with γ̂	r,j = σ̂ z
	r σ̂ z

	r+êj
where êj is the unit vector in the j th

direction, and γ̂	r,0 = σ̂ x
	r . We assume J ≥ 0, h ≥ 0 (the

resulting LR bound only depends on |J | and |h|). We write
the Hamiltonian in this form so that Eq. (18) is satis-
fied. It is easily verified that the square of each term is
equal to unity γ̂ 2

	r,α = 1, α = 0, 1, 2, . . . , d, and any two
terms either commute or anticommute. Figure 3 shows the
commutativity graph of this model for the d = 2 case.

FIG. 3. Commutativity graph G of the 2D TFIM. Each term (a
local product of Pauli matrices) of the Hamiltonian is represented
by a vertex. Any pair of terms either commutes or anticommutes.
We link two vertices by an edge if the corresponding operators
anticommute. The coefficient of each term is drawn adjacent to
the corresponding vertices. The arrow points to the region S(σ̂ z

	r ),
the support of operator σ̂ z

	r , which consists of only one point in
this case.

We can use the general Fourier integral representation
of Green’s function in Eq. (25)

Gαβ(	r, t) ≡
∫ π

−π

ddk
(2π)d {exp[H (	k)t]}αβei	k·(	rI −	rJ ), (45)

where H (	k), defined in Eq. (27), is in this case a (d + 1) ×
(d + 1) matrix

H (	k) = 2
√

Jh

⎡
⎢⎢⎢⎣

0 1 + e−ik1 · · · 1 + e−ikd

1 + eik1 0 0 0
... 0 0 0

1 + eikd 0 0 0

⎤
⎥⎥⎥⎦ ,

(46)

so that

exp[H (	k)t] = sinh[ω(	k)t]
ω(	k) H (	k) + cosh[ω(	k)t]1

+ P0{1 − cosh[ω(	k)t]}, (47)

where 1 is the identity matrix and

P0 =
[

0 0
0 1 − �	k · �

†
	k

]
,

�	k = 1√
2d + 2 cos 	k

⎡
⎢⎣

1 + eik1

...
1 + eikd

⎤
⎥⎦ ,

(48)
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with cos 	k ≡∑d
j =1 cos kj . The eigenvalues of H (	k) are

0 and ω±(	k) = ±ω(	k) = ±
√

8Jh(d + cos 	k), from which
we can compute the upper bound for the LR speed given
by Eq. (31):

vIsing ≤ 2X0
√

dJh, (49)

where the constant Xy is defined as the solution to the
equation xarcsinh(x) = √

x2 + 1 + y, and X0 ≈ 1.50888.
The previous best bound for vIsing is 8edJ ≈ 21.7dJ
obtained from the method in Ref. [2], so our bound in Eq.
(49) is a major, parametric improvement when J or d is
large. Here we emphasize that this is the first LR bound
whose speed scales sublinearly with spatial dimension v ∝√

d—all previously known LR bounds have velocities that
scale linearly with d [67]. Even for J = h, d = 2, Eq. (49)
represents a tenfold improvement over the previous bound.
See Table I for a summary of the comparison. For the case
when h is large, an extension of our method is used to
derive a bound that also improves the previous results there
as well, as shown in Sec. VI B.

The LR bound for arbitrary local operators can be
obtained from Eqs. (16) and (12). For example, for
‖[σ̂ x

	r (t), σ̂ z
	0 (0)]‖ we have

‖[σ̂ x
	r (t), σ̂ z

	0 (0)]‖ ≤ G0,0(	r, t) =
∫ π

−π

cosh[ω(	k)t]ei	k·	r ddk
(2π)d .

(50)

Finally, ‖[σ̂ x
	r (t), σ̂ z

	0 (0)]‖ also has a simple LR bound in
the form of Eq. (42). Notice that in this case dXY is the
distance between points X = 	r and Y = 	0 on the commuta-
tivity graph, which is exactly 2|	r|. Therefore, the parameter
u needed to satisfy Eq. (38) can be chosen as u = 2vIsing.
Inserting Eq. (35) into Eq. (50) we get the simple LR bound

‖[σ̂ x
	r (t), σ̂ z

	0 (0)]‖ ≤ C
( |	r|

vIsingt

)−2|	r|
, (51)

where C is a constant.

2. Extending to arbitrary spin

The d-dimensional spin-S TFIM is defined by the
Hamiltonian

Ĥ = −4J
∑
〈ij 〉

Ŝz
i Ŝz

j − 2h
∑

j

Ŝx
j , (52)

where Ŝα is the spin-S operator satisfying [Ŝα , Ŝβ] =
i
∑

γ εαβγ Ŝγ , α, β, γ ∈ {x, y, z}. Equation (52) is a direct
generalization of the spin-1/2 case Eq. (44), so in this case
we can simply set γ̂	r,j = Ŝz

	r Ŝz
	r+êj

/S2 and γ̂	r,0 = Ŝx
	r /S, so

that the commutativity graph for γ̂	r,j , γ̂	r,0 is the same as
in Fig. 3, with J , h rescaled to 4JS2, 2hS, respectively. In
this way we can borrow the result from the spin-1/2 case,
Eq. (49), to get vLR ≤ 2X0

√
dJh(2S)3/2. This is already

qualitatively tighter than the previous best bound vLR ≤
8edJ (2S)2.

But we can even do much better than this. Recall from
the discussion at the end of Sec. II B that the resulting
LR bound is typically tightest if we decompose Ĥ into
a form where any two terms either commute or anticom-
mute. Now the difficulty is that in the spin-S case the
spin operators Ŝx, Ŝz neither commute nor anticommute. To
overcome this, we can decompose each spin-S operator as
a sum of spin-1/2 Pauli operators:

Ŝα = 1
2

2S∑
a=1

σ̂ α
a , α = x, y, z, (53)

by standard addition of angular momentum. The physical
Hilbert space on each site is spanned by all the eigen-
states of the operator (Ŝx)2 + (Ŝy)2 + (Ŝz)2 with eigen-
value S(S + 1), which are simply the states that are fully
symmetric under permutation of indices a. In the follow-
ing we derive a LR bound for operators in the enlarged
Hilbert space, which automatically gives a bound on opera-
tors acting on the physical Hilbert space, since the physical
operators (e.g., Ĥ , Ŝα

j ) do not couple physical states to
unphysical states.

Inserting Eq. (53) into Eq. (52), the Hamiltonian in the
enlarged space reads

Ĥ = −J
∑

〈ij 〉,1≤a,b≤2S

Ẑab
ij − h

∑
j ,1≤a≤2S

X̂ a
j , (54)

where Ẑab
ij ≡ σ̂ z

i,aσ̂
z
j ,b, X̂ a

j ≡ σ̂ x
j ,a. The commutativity graph

of the enlarged Hamiltonian in Eq. (54) can be regarded as
a decorated version of the spin-1/2 case shown in Fig. 3,
where each triangle is replaced by a set of 2S triangles and
each circle is replaced by a set of

(2S
2

)
circles, each of them

linked to a distinct pair of two neighboring triangles, as
shown in Fig. 4. In this case Eq. (10) becomes

˙̄Zab
ij = 2h(X̄ a

i + X̄ b
j ),

˙̄X a
i = 2J

∑
j :〈ij 〉,1≤b≤2S

Z̄ab
ij . (55)

Let Xi ≡∑1≤a≤2S X̄ a
i and Zij ≡∑1≤a,b≤2S Z̄ab

ij , we then
have

˙̄Zij = 4Sh(X̄i + X̄j ),

˙̄Xi = 2J
∑
j :〈ij 〉

Z̄ij . (56)
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FIG. 4. Commutativity graph G of the spin-S TFIM for the
S = 3/2 case. Only two neighboring lattice sites are drawn here.

This is exactly the same as the spin-1/2 case with substitu-
tion h → 2hS. Therefore, borrowing the result in Eq. (49),
we have

vS
Ising ≤ 2X0

√
2dJhS, (57)

growing as
√

S at large S, a remarkable improvement over
the previous bound, which grows quadratically in S. Notice
also that if we take the limit S → ∞ at which JS stays
constant (the classical limit), then our LR speed stays finite
while the previous bound diverges linearly in S.

B. The spin-S Heisenberg XYZ model

The Hamiltonian for the spin-S Heisenberg XYZ model
is

Ĥ = 2
S

∑
〈ij 〉,

α=x,y,z

Jα Ŝα
i Ŝα

j , (58)

where the coefficient is normalized so that the excitation
spectrum has a well-defined large-S limit [68]. To get the
tightest possible LR bound, we use the same trick as in
Sec. V A 2, decomposing each spin-S operator as a sum of
spin-1/2 Pauli operators as done in Eq. (53). The enlarged
Hamiltonian reads

Ĥ = 1
2S

∑
〈ij 〉,

1≤a<b≤2S

(JxX̂ ab
ij + Jy Ŷab

ij + JzẐab
ij ), (59)

where X̂ ab
ij ≡ σ̂ x

iaσ̂
x
jb, and similarly for Ŷab

ij , Ẑab
ij . The LR

bounds for the norm of the commutators [X̂ ab
ij (t), B̂],

[Ŷab
ij (t), B̂], and [Ẑab

ij (t), B̂] for an arbitrary local operator B̂
are obtained from the solution to the differential Eq. (10),
which in the current case becomes (we omit the superscript

B for notational simplicity)

SẊ ab
ij =

∑
c
=b

(JyYac
ij + JzZac

ij ) +
∑
c
=a

(JyYcb
ij + JzZcb

ij )

+
∑
c,l
=j :
〈il〉

(JyYac
il + JzZac

il ) +
∑
c,l
=i:
〈lj 〉

(JyYcb
lj + JzZcb

lj ),

(60)

where it is assumed that i, j are neighboring sites, and there
are two other equations obtained by permuting X , Y, Z.
The initial condition is similar to Eq. (11). Summing over
indices a, b, we get

Ẋij = 2(2 − 1/S)J · Xij + 2
∑
l
=j :
〈il〉

J · Xil + 2
∑
l
=i:
〈lj 〉

J · Xlj ,

(61)

where we use the notation

J =
⎛
⎝ 0 Jy Jz

Jx 0 Jz
Jx Jy 0

⎞
⎠ , Xij =

∑
a,b

⎛
⎝X ab

ij
Yab

ij
Zab

ij

⎞
⎠ . (62)

The largest eigenfrequency in a d-dimensional hyper-
cubic lattice is ωm(	k) = 4Jm[cos 	k + d − 1/(2S)], where
Jm = ‖J‖, so

vS
XYZ ≤ 4dJmX1−1/(2Sd). (63)

We now make a comparison with previous best bound
and the exact solution in the S → ∞ limit. For simplic-
ity we focus on the isotropic case Jx = Jy = Jz = J . We
have Jm = 2J , so our LR speed remains finite vLR ≤ 8dJX1
in the limit S → ∞, while the previous bound vLR ≤
8de‖ĥij ‖ = 16deJ (S + 1) diverges linearly. Our bound is
qualitatively tight in the sense that in the large-S limit, it
is only a finite factor of 2X1 ≈ 4.47 bigger than the exact
speed 4dJ (the spin-wave group velocity), as calculated
from the mean-field dispersion relation in Ref. [68]. We
emphasize that this is one of the few known examples of a
finite LR bound for a system with an infinite local Hilbert
space [54,57,69].

C. Truncated BH model

We now consider a spin-S XY model with an additional
(S + Sz

j )
2 interaction at each site:

Ĥ = − J
2S

∑
〈ij 〉

(Ŝ+
i Ŝ−

j + H.c.) + U
∑

j

(S + Ŝz
j )

2, (64)
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where Ŝ± = Ŝx ± iŜy . At each site j there are 2S + 1 states
{|m − S〉}2S

m=0, and the action of operators Ŝ± is given by

Ŝ±|m − S〉 =
{√

(m + 1)(2S − m)|m + 1 − S〉√
m(2S − m + 1)|m − 1 − S〉 , (65)

therefore, in the limit S → ∞ the Hamiltonian in Eq. (65)
reproduces the BH Hamiltonian

Ĥ = −J
∑
〈ij 〉

(b̂†
i b̂j + H.c.) + U

∑
j

n̂2
j , (66)

if we identify the mapping

Ŝ+ →
√

2Sb̂†, S + Ŝz → n̂, |m − S〉 → |m〉. (67)

In the following we derive a LR bound for the truncated
system in Eq. (65). Using the same trick as in Sec. V B,
the analog of Eq. (61) is (notice that the term linear in Ŝz

commutes with Ĥ and can, therefore, be dropped)

Ẋ ab
ij =

∑
c
=b

(
J
2S

Yac
ij + UZbc

j

)
+
∑
c
=a

(
J
2S

Ycb
ij + UZac

i

)

+
∑
c,l
=j :
〈il〉

J
2S

Yac
il +

∑
c,l
=i:
〈lj 〉

J
2S

Ycb
lj ,

Żab
i = J

2S

∑
c,j :〈ji〉

(X ac
ij + Yac

ij + X bc
ij + Ybc

ij ), (68)

and another equation similar to the first one with X and
Y exchanged. Summing over a, b and doing a Fourier
transform, we get

d
dt

[
X	k
Z	k

]
=

⎡
⎢⎢⎣

2J
(

d + cos 	k − 1
2S

)
2SU

8J
(

1 − 1
2S

)
(d + cos 	k) 0

⎤
⎥⎥⎦
[

X	k
Z	k

]
,

(69)

where X	k is the Fourier transform of Xi ≡∑j :〈ji〉,a,b X ab
ij ,

and Z	k is the Fourier transform of Zi ≡∑a
=b Zab
i . At large

S, we have ωm(i	κ) ≈ 4
√

2SUJd cosh(κ/2), so

vLR ≈ 2X0
√

2SUJd ∝
√

S, (70)

qualitatively tighter than the bound from previous meth-
ods, which diverges linearly in S. It is known that the actual
speed of information propagation in the S → ∞ limit also
diverges [70], and mean-field approximation predicts that
the BH model has v ∝ √

N for an initial coherent state with
average occupation number N [71], which suggests that the
asymptotic behavior of our bound v ∝ √

S is tight.

D. SU(N ) FH model

We next take the SU(N ) FH model as an example of
interacting fermions, using the method in Sec. II C. The
Hamiltonian in a general lattice is

Ĥ = J
∑

〈jl〉,1≤σ≤N

(â†
j σ âlσ + H.c.)

+ U
4

∑
j ,1≤σ<σ ′≤N

(2n̂j σ − 1)(2n̂j σ ′ − 1). (71)

For N = 2, this is the usual FH model. In the following, we
limit our discussion to a bipartite lattice. We first split the
fermion creation and annihilation operators to Majorana
operators

â†
j σ = i(j ∈E) ĉj σ − iĉj σ̄

2
, (72)

where E is the set of even sites, σ̄ = −σ , and the Majo-
rana operators satisfy Eq. (20). The Hamiltonian in the
Majorana representation is

Ĥ = J
2

∑
〈jl〉,j ∈E,
1≤σ≤N

(iĉj σ ĉlσ + iĉj σ̄ ĉlσ̄ )

− U
4

∑
j ,1≤σ<σ ′≤N

ĉj σ ĉj σ̄ ĉj σ ′ ĉj σ̄ ′ . (73)

The norm of the operator ĉj σ ;lσ ′(t) ≡ {ĉj σ (t), ĉlσ ′(0)} is
upper bounded by the solution to Eq. (24), which in the
current case becomes (for notational simplicity we omit
the labels l, σ ′)

ċj σ = J
∑
l:〈jl〉

clσ + U
2

[cj σ̄ +
∑
σ ′ 
=σ

(cj σ ′ + cj σ̄ ′)], (74)

with initial condition cj σ (0) = 2δjlδσσ ′ . Equation (74) can
be easily solved by a Fourier transform. In a d-dimensional
hypercubic lattice, we obtain the LR bound∑

1≤|σ |≤N

‖{ĉj σ (t), ĉlσ ′(0)}‖ ≤ 2e[(2N−1)/2]UtI	xj −	xl(2Jt),

(75)

where Iα(t) is the modified Bessel function of the first kind,
and I	α(t) ≡∏d

m=1 Iαm(t). The LR speed vFH can be calcu-
lated from Eq. (31) with ωm(	k) = 2J cos 	k + (N − 1/2)U,
which gives

vFH ≤ 2X(2N−1)U/4dJ dJ . (76)

At small U/J , this is 3.02dJ , significantly improving the
previous best bound 8edJN ≈ 21.7dJN [2].
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At large N , the above LR speed scales like N/ ln N ,
which is already qualitatively tighter than the previous
bound. But we can do even better than this, to prove a
LR speed that grows like

√
N . This can either be achieved

by using the commutativity graph method, or by using the
fermion method with a slightly different treatment. In the
following we take the latter approach for simplicity.

We go back to Eq. (73) and write down the Heisenberg
equation for the operators ĉj σ and ûj σσ ′ ≡ ĉj σ ĉj σ̄ ĉj σ ′ ĉj σ̄ ′

d
dt

ĉj σ = J
∑
l:〈jl〉

pj ĉlσ + U
4

∑
σ ′ 
=σ

[ĉj σ , ûj σσ ′],

d
dt

ûj σσ ′ = J
2

∑
l:〈jl〉

pj

× [ûj σσ ′ , ĉj σ ĉlσ + ĉj σ ′ ĉlσ ′ + ĉj σ̄ ĉlσ̄ + ĉj σ̄ ′ ĉlσ̄ ′],
(77)

where pj = (−1)(j ∈E). Following the derivations in Eqs.
(6)–(11), one can show that the norm of the operators
{ĉj σ (t), ĉlτ (0)}, [ûj σσ ′ , ĉlτ (0)] are upper bounded by the
solution to the differential equations

d
dt

cj σ = J
∑
l:〈jl〉

clσ + U
2

∑
σ ′ 
=σ

uj σσ ′ ,

d
dt

uj σσ ′ = J
∑
l:〈jl〉

[cj σ + clσ + cj σ ′ + clσ ′

+ (σ , σ ′ → σ̄ , σ̄ ′)],

(78)

with initial condition cj σ (0) = 2δjlδστ , uj σσ ′(0) = 2δjl(τ ∈
{σ , σ̄ , σ ′, σ̄ ′}). The largest eigenfrequency is

ω±(	k) = J cos 	k ±
√

J 2 cos2 	k + 4UJ (N − 1)(d + cos 	k),
(79)

and the LR speed is again computed from Eq. (31). The
result is vFH ≤ Z(N−1)dU/J J , where

Zy ≡ min
κ>0

cosh κ +
√

cosh2 κ + 4y(1 + cosh κ)

κ
. (80)

At large y, Zy ≈ X0
√

2y, so

vFH ≈ X0
√

2NdUJ , for large N , (81)

a significant qualitative improvement over the previous lin-
ear growth. In the classical limit N → ∞ where 〈n̂j 〉/N
and UN stays constant, our LR speed remains finite while
the previous bound diverges linearly in N .

For the 1D SU(2) case, the comparison between the
LR speeds calculated from different methods is shown in

FIG. 5. Comparison between different upper bounds for the
LR speed of the 1D FH model, using the fermion method, the
commutativity graph, and the large-U method, Eqs. (24), (10),
and (95), respectively. The previous best bound is 16eJ [2].

Fig. 5. Both methods introduced so far in this section
substantially improve the previous bound for U/J ≤ 80.
Results that also improve the previous bound at large U
are derived in Sec. VI C.

In the derivations above we did not use the commuta-
tivity graph method, but the method in Sec. IV can still be
applied to derive the simple LR bound, with djl = |	xj − 	xl|,
and u = min{2X(2N−1)U/4dJ dJ , Z(N−1)dU/J J }, and we have

‖{ĉj σ (t), ĉlσ ′(0)}‖ ≤ C
(

ut
djl

)djl

, (82)

for ∀j , l, σ , σ ′, where C is a constant.
We now compare the above bounds with the exact

unequal time anticommutator at the noninteracting point
U = 0 in a d-dimensional square lattice, to investigate how
tight these bounds are. The Hamiltonian is diagonalized as

Ĥ =
∫

BZ
ω(	k)

∑
1≤σ≤N

â†
	kσ â	kσ ddk, (83)

where ω(	k) = 2J cos 	k. Therefore,

âiσ (t) = 1
(2π)d/2

∫ π

−π

â	kσ e−iω(	k)tei	k·	xddk

=
∑

j

J	xi−	xj (2Jt)âj σ (0), (84)

where Jn(t) is the Bessel function, and we define J	n(t) ≡∏d
m=1 Jnm(t). Inserting Eq. (84) into the lhs of Eq. (75), we

get ∑
1≤σ≤N

‖{ĉj σ (t), ĉlσ ′(0)}‖ = 2|J	xj −	xl(2Jt)|. (85)

Comparing this with our bound in Eq. (75) [notice that
the modified fermion method Eq. (78) also leads to the
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same result when U = 0], we see that at the noninteract-
ing point U = 0, our LR bound just replaces the Bessel
function J	xj −	xl(2Jt) of the exact solution by the modi-
fied Bessel function I	xj −	xl(2Jt). Since both Jx(t) and Ix(t)
have the same asymptotic form 1/x!(t/2)x when x/t is
large, we conclude that our LR bound Eq. (75) has the
tightest large-x and small-t exponent at the noninteract-
ing point, where the large-x exponent ζ of a bound f (x, t)
is defined as sup{ζ | limx→∞ eζx ln xf (x, t) exists, ∀t > 0}.
[Our bounds Eqs. (75) and (82) and the exact solution Eq.
(85ss) all have ζ = 1.]

E. Wen’s quantum rotor model

In this section we consider Wen’s quantum rotor model
[72–74]. The model is defined on a d ≥ 2 dimensional
hypercubic lattice whose sites are labeled by 	r and edges
are labeled by (	rα) ≡ 〈	r, 	r + 	eα〉, 1 ≤ α ≤ d. On each edge
(	rα) there is a 2D quantum rotor, with angle variable
θ̂	rα and the dual angular momentum Ŝ	rα , satisfying the
canonical quantization condition [θ̂	rα , Ŝ	r′β] = iδ	r,	r′δαβ . The
Hamiltonian is

Ĥ = J
∑

	r,1≤α≤d

Ŝ2
	rα − g

2

∑
	r,α 
=β

Ŵ	rαβ , (86)

where Ŵ	rαβ = exp(iθ̂	rα + iθ̂	r+	eβ ,α − iθ̂	rβ − iθ̂	r+	eα ,β). Not-
ice that Ŵ	rαβ = Ŵ†

	rβα
.

Based on some semiclassical treatments, Refs. [72–74]
have shown that in the topologically ordered phase J 

g, this system hosts bosonic excitations propagating at
speed

√
2gJ , behaving like artificial light waves. Ref. [53]

studied a three-state truncated version of this model, and
proved a LR bound with velocity e

√
2gJ . However, their

method would fail in the untruncated version Eq. (86),
since the term (Ŝ	rα)2 has infinite operator norm ‖Ŝ2

	rα‖ = S2

(the number of states on a single site is 2S + 1), leading to
a LR speed that diverges linear in S. Understanding what
happens as S → ∞ is important, since the argument that
light emerges is valid only in this limit. In the following we
use a slightly modified version of our method to overcome
this difficulty, and prove that vLR ≤ 2X0

√
(d − 1)gJ .

We begin by writing down the Heisenberg equations for
Ŝ	rα , Ŵ	rαβ

i∂tŜ	rα = −g
2

∑
β

[Ŵ	rαβ + Ŵ	r−êβ ,αβ − (α ↔ β)],

i∂tŴ	rαβ = J {Ŵ	rαβ , Ŝ	rβ + Ŝ	r+	eα ,β − (α ↔ β)},
(87)

where we use [Ŝ	rα, e±iθ̂	r′β ] = ±e±iθ̂	r′β δ	r,	r′δαβ . Taking the
commutator with an arbitrary local operator B̂, we have

i∂tŜB
	rα = −g

2

∑
β

[ŴB
	rαβ + ŴB

	r−êβ ,αβ − (α ↔ β)],

i∂tŴB
	rαβ = J {ŴB

	rαβ , Ŝ	rβ + Ŝ	r+	eα ,β − (α ↔ β)}
+ J {Ŵ	rαβ , ŜB

	rβ + ŜB
	r+	eα ,β − (α ↔ β)}.

(88)

Now we get rid of the first term in the second equation by
doing a change of variable ŴB

	rαβ
(t) = Û	rαβ(t)W̃B

	rαβ
V̂	rαβ(t),

where Û	rαβ(0) = V̂	rαβ(0) = Î , i∂tÛ	rαβ(t) = J [Ŝ	rβ(t) +
Ŝ	r+	eα ,β(t) − (α ↔ β)]Û	rαβ(t), and i∂tV̂	rαβ(t) = V̂	rαβ(t)
J [Ŝ	rβ(t) + Ŝ	r+	eα ,β(t) − (α ↔ β)]. Then using the same
derivations in Eqs. (7)–(10), we can prove that ‖ŜB

	rα‖
and ‖ŴB

	rαβ
‖ are upper bounded by the solution to the

differential equation:

Ṡ	rα = g
∑
β 
=α

(W	rαβ + W	r−	eβ ,αβ)

Ẇ	rαβ = 2J (S	rα + S	rβ + S	r+	eα ,β + S	r+	eβ ,α),
(89)

with initial condition S	rα(0) = ‖ŜB
	rα(0)‖, W	rαβ(0) =

‖ŴB
	rαβ

(0)‖. The maximal eigenfrequency at 	k = i	κ is
ωm(i	κ) = 4

√
(d − 1)gJ cosh(κ/2), therefore, using Eq.

(31) we get

vLR ≤ 2X0
√

(d − 1)gJ . (90)

This is our second example (after the large-S Heisenberg
XYZ model) of a finite LR speed in a system with an
infinite local Hilbert space, and a second example (after
TFIM) of a LR speed that grows sublinearly with spatial
dimension v ∝ √

d. It is also a good bound quantita-
tively—in 2D, it is only larger than the semiclassical result
v = √

2gJ by a factor of
√

2X0 ≈ 2.1 [75].

VI. IMPROVING THE LIEB-ROBINSON
VELOCITY BY ELIMINATING LARGE

COUPLING CONSTANTS

In several examples discussed in the previous section,
our commutativity graph method dramatically improves
the LR velocities when the local Hilbert space dimension
or spatial dimension becomes large. Most prominently, in
the large spin S → ∞ limit of Heisenberg XYZ model and
Wen’s quantum rotor model, our method gives finite LR
velocities, which removes the unphysical divergence in
previous bounds. Nevertheless, there is still another type
of unphysical divergence present in these bounds. This
happens when a Hamiltonian is a sum of terms, and one
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set of mutually commuting terms is multiplied by coeffi-
cients that become very large. For example, in the large-J
or large-h limits of TFIM in Eq. (49), the large-U limit
of the SU(N ) FH model in Eqs. (76) and (81), and in the
large-J or large-g limit of Wen’s quantum rotor model for
any finite spin S, the bounds for the LR velocity diverge,
while in reality, the actual velocities of information propa-
gation in these limits are expected to be finite. This kind of
divergence renders the LR bound infinitely weak in these
limits, a limitation that has plagued prior LR bounds.

We introduce a method, extending the results above, that
removes this second type of unphysical divergence and
gives a finite LR velocity in these limits. The basic idea
is to derive LR bounds from coupled differential equa-
tions on a subset of the commutativity graph that has
removed the operators associated with large coefficients.
This is accomplished by an appropriate unitary transform
of the remaining operators. Although similar methods were
employed in previous works [14,40,43], they were only
used to remove single-site terms, while our method can be
used to remove arbitrary mutually commuting terms in the
Hamiltonian. In the following we first present the general
technique in Sec. VI A, then in Secs. VI B to VI D we apply
this technique to the specific examples mentioned above,
and finally present a general result in Sec. VI E.

A. Eliminating large coupling constants on the
commutativity graph

Consider the commutativity graph G = (VG, EG) of a
locally interacting spin Hamiltonian defined in Eq. (4),
where VG is the set of vertices and EG is the set of edges.
Let F ⊂ VG denote a subset of disjoint vertices of G, such
that {hj |j ∈ F} is the set of large parameters we want to get
rid of. The fact that elements of F are disjoint vertices in G
means that the corresponding operators {γ̂j |j ∈ F} mutu-
ally commute. We now construct a graph G′

F = (V′, E′)
from G in the following way: (1) the vertices V′ = VG\F
of G′

F are obtained from VG by removing elements of
F; (2) E′ is defined such that for ∀i, j ∈ V′, 〈ij 〉 ∈ E′ if
and only if either 〈ij 〉 ∈ EG or there exists an l ∈ F such
that 〈il〉 ∈ EG, 〈lj 〉 ∈ EG. In the left (right) panel of Fig. 6
we show the graph G′

F after removing parameter J (h),
respectively.

Let us denote by Î the sum of all Hamiltonian terms
corresponding to vertices in F (i.e., the unwanted terms):

Î =
∑
j ∈F

hj γ̂j . (91)

The important step here is to consider the evolution of the
operator γ̂i (for i ∈ G′

F ) in a way that the unwanted term Î
is “rotated away” by a unitary transformation:

γ̂i(s, t) = eisĤ ei(t−s)Î γ̂ie−i(t−s)Î e−isĤ . (92)

FIG. 6. Graph G′
F is constructed from the commutativity graph

G of the 2D TFIM in Fig. 3 by removing large parameters, by the
construction in Sec. VI A. Left: G′

F for F being the set of ver-
tices representing σ̂ z

i σ̂ z
j terms, i.e., removing parameter J . Right:

G′
F for F being the set of vertices representing σ̂ x

i terms, i.e.,
removing parameter h.

Notice that γ̂i(t, t) = γ̂i(t), the operator in Heisenberg pic-
ture. Taking derivative with respect to s, we have

∂sγ̂i(s, t) = eisĤ i[Ĥ − Î , γ̂i(0, t − s)]e−isĤ

= i
∑

j ∈G′
F ,〈ij 〉∈G′

F

hj [γ̂j (s), γ̂i(s, t)], (93)

where the sum is over all terms in Ĥ − Î that do not com-
mute with γ̂i(0, t − s). Equation (93) should be considered
as the analog of Eq. (5). Now the same derivations as in
Eqs. (6)–(8) for the commutator γ̂ B

i (s, t) = [γ̂i(s, t), B̂(0)]
result in

‖γ̂ B
i (t)‖ ≤ ‖γ̂ B

i (0, t)‖ + 2
∑

j ∈G′
F :

〈ij 〉∈G′
F

|hj |
∫ t

0
‖γ̂ B

j (s)‖ds

≤ 2‖B̂‖ + 2
∑

j ∈G′
F :

〈ij 〉∈G′
F

|hj |
∫ t

0
‖γ̂ B

j (s)‖ds. (94)

In this case the generalized Grönwall’s inequality [63]
indicates that ‖γ̂ B

i (t)‖ is upper bounded by the solution
γ B

i (t) to the differential equation

γ̇ B
i (t) = 2

∑
j ∈G′

F :〈ij 〉∈G′
F

|hj |γ B
j (t). (95)

with initial value γ B
i (0) = 2‖B̂‖. Equation (95) is the same

as Eq. (10) with G replaced by G′
F .

In summary, when the parameters of a set of disjoint
vertices of G become very large, we can get a better bound
for the speed of information propagation by solving the
differential Eq. (95) on the graph G′

F , which has the large
parameters removed, and links added when two vertices of
G′

F are both connected to a (removed) vertex in the original
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graph. Then all the methods we introduce in Secs. III and
IV apply equally well. The simple form of the bound in
Eq. (3) is still true provided that dXY and u are understood
as the distance and LR speed on the graph G′

F , respectively
[76].

B. Example: TFIM at large J or large h

As a first example, in the case of the TFIM, the left
(right) panel of Fig. 6 shows the graph G′

F constructed
from G after eliminating the parameter J (the parameter
h) for the d = 2 case, and the resulting upper bound for
the LR speed is 4X0dh [4X(d−1)/ddJ ]. Therefore, combined
with Eq. (49), we have the upper bound for the LR speed

vIsing ≤ min{2X0
√

dJh, 4X(d−1)/ddJ , 4X0dh} (96)

for the d-dimensional TFIM. This is a major improvement
compared to the previous best bound vIsing ≤ 8edJ (calcu-
lated from the method in Ref. [2]), as we not only removed
unphysical divergence of vIsing in the large-J limit, but also
tightened it by a factor of at least 2.4 for all values of d,
J , and h. [Notice, however, that in 1D, a special method
is available in a recent paper Ref. [77], which gives a
bound for LR speed 2eJ ≈ 5.44J for the 1D TFIM, which
is about 10% tighter than our bound 4X0J ≈ 6.04J in the
large-h limit. Away from the large-h limit, when h/J <

3.24, our bound min{2X0
√

Jh, 4X0h} remains the tightest.
Furthermore, it is possible to combine their methods and
our method of commutativity graph, which will tighten
all the three velocity bounds for 1D TFIM in Eq. (96)
by roughly 10%. The result is vLR ≤ min{e√Jh, 2eJ , 2eh}.
Notice also that if we use Theorem 4 of Ref. [77] in
our commutativity graph, we may be able to tighten our
velocity bounds in higher dimensions as well. However, in
d > 1 it may be a hard combinatorial problem to compute
the sum over all irreducible paths in Theorem 4 of Ref.
[77], so we leave this as a future direction.]

C. Example: SU(N ) FH model at large U

As a second example, we consider the SU(N ) FH model.
Here, the tightest large-U bound is calculated from the
commutativity graph G′

F , which is constructed from G in
Fig. 7 by eliminating the interaction term (which is ∝ U)
according to the prescription of this section. The result for
the LR speed is vFH ≤ 4X0NJ . Combined with the results
of Sec. V D, we have the upper bound

vFH ≤ min{2X(2N−1)U/4J J , Z(N−1)U/J J , 4X0NJ } (97)

for the 1D SU(N ) FH model, which is also a significant
improvement of the previous best bound vFH ≤ 8eNJ , see
Fig. 5 for the comparison.

FIG. 7. Commutativity graph G and the reduced graph G′
F

of the 1D SU(N ) FH model. Here the blue circles repre-
sent the term

∑
σ iĉj σ ĉj +1,σ while the red triangles represent∑

1≤σ<σ ′≤N ĉj σ ĉj σ̄ ĉj σ ′ ĉj σ̄ ′ . G′
F is obtained from G by removing

the red triangles.

D. Example: Wen’s quantum rotor model at large J or
large g

As a third example of eliminating large parameters, we
consider the spin-S truncated version of Wen’s quantum
rotor model, whose Hamiltonian has the same form as Eq.
(86), with Ŝ, eiθ̂ (on each site) replaced by the following
(2S + 1) × (2S + 1) matrices:

Ŝ = diag{S, S − 1, . . . , −S}, eiθ̂ =
(

0 I2S
1 0

)
, (98)

where I2S is the 2S × 2S identity matrix. Ref. [53] studied
the 2D S = 1 case, and proved a LR bound with velocity
e
√

2gJ , in the topologically ordered phase J 
 g. Here
we prove that in this limit J 
 g the LR speed actu-
ally has a much tighter upper bound v ≤ const. × JS2. For
illustrative purpose, we focus on the 2D case for simplic-
ity, but the generalization to arbitrary spatial dimension
is straightforward. To prove this, we first notice that the
commutativity graph of the Hamiltonian terms Ŝ2

	rα − S2/2
and Ŵ	rαβ + H.c. is exactly the same with that of 2D TFIM
shown in Fig. 3, where the blue circles represent the S
terms, with parameter JS2/2, and the red triangles repre-
sent the W terms, with parameter g. Therefore, we can
borrow the result from the TFIM with substitutions J →
JS2/2, h → g, and we get vLR ≤ min{4X1/2JS2, 8X0g},
which is much tighter than the result of Ref. [53] e

√
2gJ S

in the small J limit for any finite S. Combined with the
result of Sec. V E, we obtain

vrotor ≤ min{4X1/2JS2, 2X0
√

(d − 1)gJ , 8X0g}. (99)

Our bound indicates that the semiclassical treatment of
the rotor model would fail for any finite S for sufficiently
small J (with fixed g), since the semiclassical approxi-
mation predicts emergent light traveling at speed

√
2gJ ,

which violates our bound for sufficiently small J . In the
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S → ∞ limit, however, our large-J bound diverges, and
the method in Sec. V E has to be used, which gives v ≤
const.

√
gJ , agreeing with the semiclassical result.

E. A general result on perturbed solvable models with
mutually commuting terms

We end this section by making a general statement about
a family of perturbed exactly solvable models, whose
Hamiltonian has the form

Ĥ = Ĥ0 + J
∑

j

V̂j , (100)

where Ĥ0 is the solvable part and J
∑

j V̂j is a sum of local
perturbations. Here j is a label for terms in the Hamilto-
nian (it does not necessarily mean a single site: V̂j can
include multibody interactions). We make the following
assumptions:

(1) Ĥ0 =∑i ĥi is the sum of mutually commuting,
locally interacting terms, i.e., [hi, hj ] = 0, ∀i, j . Pri-
mary examples include the J term or the h term of
TFIM, the interaction term of BH model or SU(N )
FH model, the J term or the g term of the spin-S
truncated Wen’s quantum rotor model, the string-
net models [62] with Kitaev’s toric code model
[61] being a prominent special case, and the exactly
solvable fracton models [78–80].

(2) There is a uniform upper bound for the norm of
local perturbations ‖V̂j ‖ ≤ c, ∀j . This is true for
any translation invariant system with a finite local
Hilbert space.

Then we have the following.

Theorem 1. There exists constant c′ > 0 such that vLR ≤
c′|J |, i.e., the LR speed of the model Eq. (100) grows at
most linearly in the strength of the perturbation.

Notice that the second condition is necessary, since in
Wen’s quantum rotor model with infinite S, in the limit
J 
 g, the semiclassical treatment gives artificial light
propagating at speed v ∝ √

Jg, which does not satisfy
v ≤ c′|J | for sufficiently small J . Theorem 1 can be proved
by using the prescription of this section to eliminate all the
terms in Ĥ0, the reduced graph G′

F only involves vertices
representing local perturbations V̂i. Locality of the origi-
nal Hamiltonian Ĥ implies a uniform upper bound on the
degree of every vertex in G′

F , which, combined with con-
dition (2), yields a LR bound with vLR ≤ c′|J |, based on
similar treatment as in Eq. (39). The previous bounds for
the Hamiltonian Eq. (100) give an LR speed that stays
finite in the limit J → 0 unless Ĥ0 only contains onsite
terms (which is not the case for models with topological

order), since the previous vLR is proportional to the oper-
ator norm of local Hamiltonians ĥa in the solvable part
Ĥ0. Our bound, which vanishes linearly in perturbation
strength J , is a qualitative improvement.

VII. CONSEQUENCES OF OUR LR BOUNDS ON
GROUND-STATE CORRELATION DECAY

Our tighter LR bounds can immediately translate into
improved bounds in all areas that LR bounds are used, such
as bounding the timescale for dynamical processes [3,6,
12], studying equilibrium properties like exponential decay
of connected correlation functions [13–16,19], quantify-
ing the entanglement area law [24], and providing error
bounds on numerical algorithms [31–33,35,36]. In this
section we demonstrate this with one of the most impor-
tant consequences of LR bounds, establishing the decay
of ground-state correlations in gapped, locally interacting
systems [13–16].

We achieve this goal by directly replacing the previous
LR bound by our bound Eq. (3) in the proof of Ref. [14],
and obtain an upper bound on the correlation length ξ . The
bound is not only a quantitative improvement, but are qual-
itatively tighter in several limits, e.g., in the J/h → ∞
limit of TFIM and the S → ∞ limit of Heisenberg XXZ,
where our bounds have the same asymptotic scaling as the
known exact solutions.

Let us start with the following well-established inequal-
ity, which relates the ground-state correlation to the
unequal time commutator [2,14]

|〈G|ÂX B̂Y|G〉| ≤ 1
π

∫ ∞

0

e−αt2

|t| ‖[ÂX (t), B̂Y]‖dt

+ c0e−�2/4α , ∀α > 0, (101)

where c0 is a constant independent of α and t, and we
assume 〈G|ÂX |G〉 = 〈G|B̂Y|G〉 = 0 for simplicity. We split
the integral over t into two regions, which we treat dif-
ferently: for t < r/u we apply our LR bound in Eq. (3),
while for t ≥ r/u we use the trivial bound ‖[ÂX (t), B̂Y]‖ ≤
2‖Â‖‖B̂‖ ≡ c1. We get

|〈G|ÂX B̂Y|G〉| ≤ C
π

∫ r/u

0

e−αt2

t

(
ut
r

)r

dt

+ c1

π

∫ ∞

r/u

e−αt2

t
dt + c0e−�2/4α

≤ C
π

∫ 1/u

0

e−αr2τ2

τ
(uτ)r dτ

+ c1

π

e−αr2/u2

2αr2/u2 + c0e−�2/4α . (102)
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FIG. 8. Comparison of the lower bounds for ξ−1 in the 1D
TFIM, between the result of Ref. [14] and the current paper,
and the exact solution given in Ref. [81]. In the limit h � J ,
all three curves scale as ln(h/J ), while in the limit h 
 J , our
bound and the exact solution scale as ln(J/h), while the previous
bound approaches a constant 0.065.

where r = dXY, C is a constant defined in Eq. (42),
and in the second step we apply the inequality e−αt2 ≤
e−α(r/u)2+2α(r/u)t for t ≥ r/u. If we choose α−1 = λr,
then all three terms above decay exponentially with
distance r, and the first term is upper bounded by
c/(πu) max0≤τ≤1/u e−rτ2/λurτ r−1. Choosing λ to maximize
the smallest decay coefficient of the three terms, the lower
bound for ξ−1 is

ξ−1 ≥

⎧⎪⎨
⎪⎩

�

2u
if � ≤ u

1
2

W
(

�2e
u2

)
if � > u,

(103)

where W(x) is the Lambert W function (the product
logarithm) defined as the solution to the equation
WeW = x.

As a first specific example, we apply this bound to
the 1D TFIM, and in Fig. 8 we give a comparison
between our bound with the previous best bound ξ−1 ≥
maxμ>0 μ(1 + 16Jeμ/�) given in Ref. [14], and also with
the exact solution ξ−1 ≥ | ln(J/h)| given in Refs. [81]
and [82]. As we see, in this case our bound is always
tighter than the previous bound. This is an especially strong
improvement in the limit J � h where the previous bound
gives a constant, while the bound in Eq. (103) gives ξ ∝
log(J/h), in agreement with the exact solution.

As a second example, we apply the bound Eq. (103)
to the large-S Heisenberg XXZ model in 1D. Our bound
for the LR speed in Eq. (63) gives u = v ≤ 2X1(J +√

J 2 + 8JzJ ), where Jx = Jy = J . Therefore, our bound
for ξ remains finite in the limit S → ∞ provided that the
spectral gap � is finite, while the bound given by the pre-
vious method [14] ξ ≤ (const.) × S/� diverges linearly
in S.

Finally, let us discuss the implication of Theorem 1 from
Sec. VI E together with the bound in Eq. (103), in the case
of perturbed exactly solvable topologically ordered mod-
els with a finite local Hilbert space dimension, such as
Kitaev’s toric code model [61], string-net models [62], the
X-cube model [79], and Haah’s cubic code model [78].
When these exactly solvable commuting Hamiltonians are
perturbed with J

∑
i V̂i, in the limit J → 0, the spectral

gap � stays finite, while Theorem 1 implies that the LR
velocity on the commutativity graph has an upper bound
u ≤ c′J 
 �. Therefore, Eq. (103) gives the bound

ξ ≤
[

1
2

W
(

�2e
u2

)]−1

∝
[

ln
�

J

]−1

, (104)

i.e., when the perturbation is turned off J → 0, the cor-
relation length ξ vanishes at least as fast as | ln J |−1. The
previous LR bounds for this family of perturbed exactly
solvable models always give a finite LR velocity when
J → 0, so the previous upper bounds on ξ are also finite
when J → 0, qualitatively looser than our bound.

VIII. CONCLUSIONS

We introduce a method to obtain tighter LR bounds by
taking into account the details of the Hamiltonian, and
show that this method improves LR bounds both qualita-
tively and quantitatively. The bounds established in this
paper have much tighter LR speeds, especially in three
broad scenarios: (1) When the number of local degrees
of freedom becomes large, for example in the large-spin
TFIM and Heisenberg XYZ model, the N -state truncated
BH model, the large-N SU(N ) FH model, and Wen’s quan-
tum rotor model. (2) When a set of commuting parameters
becomes large, for example in the TFIM at large J and
the perturbed toric code model. (3) In large spatial dimen-
sion, for example in the TFIM and Wen’s quantum rotor
model. In these limits our LR speeds have qualitatively
better asymptotic scaling than the previous best bounds,
and in some cases [e.g., Wen’s quantum rotor model and
the classical limit of spin-S Ising, Heisenberg and SU(N )
FH] our bounds are qualitatively tight in the sense that
they scale in the same way as the known semiclassical
solution. Our bounds also have superexponential decay-
ing tails e−dXY ln dXY as well as a much tighter short time
scaling O(tdXY), instead of previous bounds’ exponential
decay e−μdXY and O(t) scaling. As demonstrated in sev-
eral examples, the large distance and small time asymptotic
behaviors of our bounds are often tightest possible.

The method introduced in this paper follows a simple
prescription. To apply this method, one has to (1) write the
Hamiltonian in a suitable decomposition, ideally in a form
where any two terms either commute or anticommute; (2)
draw the commutativity graph introduced in Sec. II A and
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write down the differential equation Eq. (10) whose solu-
tion gives LR bounds for the corresponding unequal time
commutators; (3) solve the differential equation. Depend-
ing on one’s specific needs, we discuss different methods
to do the last step. For applications of the LR bounds in
quantitative estimates, one can solve the linear differential
equations numerically. In an infinite system with transla-
tion invariance, one can write the solution in a Fourier
integral form, which can also be computed efficiently,
and in this case we derive a simple formula that upper
bounds the LR speed. For general systems lacking trans-
lation invariance, we derive a bound of the general form
c (u|t|/dXY)

dXY , which is slightly looser than direct numer-
ical solution to the differential equations, but is simple,
much tighter than previous bounds, and retains all of the
qualitative improvements offered here, namely the small-t
behavior, the superexponential decaying tail, and tighter
LR speeds. We illustrate our methods in a wide range
of examples in Sec. V, where the resulting LR bounds
demonstrate significant improvements over the previous
best bounds.

Our tightening of the LR bounds may have profound
consequences in the study of both equilibrium and dynam-
ical properties of quantum many-body systems where the
LR bounds are applied. As a first demonstration, we show
how our bound leads to a tighter bound on the ground-state
correlation length in gapped systems, which qualitatively
improves previous best bounds in the large-J limit of the
1D TFIM and large-S limit of 1D spin-S Heisenberg XXZ
model, and the asymptotic behavior of our bound agrees
with the exact solution. Our method to obtain much tighter
LR speeds will also be useful in the quantum-information
context, where efforts have been made to design protocols
for faster quantum-state transfer [7,8], or schemes that cre-
ate certain entangled states [83–85]. Since the LR bounds
can be used to bound the time needed for these dynami-
cal processes [3], a sufficiently tight bound not only serves
as a criterion to evaluate the performance of a protocol,
but also sets a theoretical upper limit on any protocols
based on a given physical platform. While previous appli-
cations of the LR bounds are mostly limited to analytic
proofs, the significant quantitative tightening of the bounds
shown in this paper enable numerical applications as well.
One such case is to use the LR bound to upper bound the
error of a local observable simulated with a finite system.
Finally, as we demonstrate at the end of Sec. VI D, our
bounds are tight enough that they may be used as a rigorous
validity check for the various approximation methods used
in quantum many-body physics, such as the semiclassi-
cal (truncated Wigner) approximation [86–88], mean-field
approximations [89,90], and random-phase approximation
[91]. An approximation is immediately proved invalid if
it predicts a propagation speed v that exceeds our bound,
or if it gives ground-state correlation length ξ and spectral
gap � that does not satisfy the inequality in Eq. (103).

The methods introduced in this paper may also shed
light on some of the important unsolved problems in the
area of LR bounds. We mention two of them below.

One important open problem is how to extend LR
bounds to systems with an infinite local Hilbert space
dimension, such as in systems with interacting bosons.
Despite extensive effort, to date there is only some prelim-
inary success in obtaining a finite LR bound in harmonic
systems [57,69], or bounds for a restricted set of oper-
ators and special initial states [54] in BH-type models.
Our method is very promising in this direction, as already
demonstrated in this paper, it leads to a finite LR bound
for large-S Heisenberg XYZ model and Wen’s quantum
rotor model, and shows qualitatively better scaling laws
of vLR with the number of local states in the truncated
BH model and the SU(N ) FH model, all of which have
not been achieved before. In the future, we hope that by
extending the methods of this paper, one can find a big-
ger class of nontrivial interacting models with infinite local
Hilbert space whose LR speeds remain finite.

Another open problem is to tighten the LR bounds in
systems with power-law decaying interactions [40]. The
generalization of our method to this case is straightfor-
ward. It may not lead to a qualitative improvement in the
most generic case, but when applied to specific models,
our method can take advantage of the specific properties
of the Hamiltonian to give improved bounds. A promising
case is when the long-range interactions are mutually com-
muting. This includes Coulomb interactions, van der Waals
interactions between Rydberg atoms, the σ z

i σ z
j interaction

in power-law TFIM, all of which are of great theoretical
and experimental interests. In Sec. V we see in many exam-
ples that our commutativity graph method has a qualitative
advantage over previous methods especially when there
are lots of commuting terms that have a spatial overlap.
It is, therefore, natural to expect that if one combines our
commutativity graph method with the current best meth-
ods [36,45,46] in treating the long-range part, one can get
qualitatively better, model-specific LR bounds in a family
of models that are of great physical significance.
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APPENDIX A: A MORE GENERAL METHOD

In the examples of Sec. V, there are two places where
our method slightly deviates from the general methods
introduced in Sec. II: in the SU(N ) FH model Eqs. (77)
and (78) we use a method that is essentially a mixture of
the commutativity graph method and the fermion method,
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and in Wen’s quantum rotor model Eq. (87) we start with
the Heisenberg equation for Ŝz

ij and Ŵi rather than the
Hamiltonian terms (Ŝz

ij )
2 and Ŵi as we do in Sec. II A. One

may, therefore, be curious whether there is a more general
prescription behind these seemingly different approaches.
Indeed, as we see in this section, the commutativity graph
method, the fermion method, the modified fermion method
in the SU(N ) FH model, and the method for Wen’s quan-
tum rotor model, are just special cases of a more general
method to be introduced below. This general method starts
with the Heisenberg equation for an arbitrary set of local
operators, thereby allowing a high level of flexibility. The
downside of this flexibility is that in some cases one
may need considerable physical and mathematical intu-
ition to make the best choice. The general prescription is
as follows:

Step 1. Choose a local operator basis {�̂i}i∈M for the
Hamiltonian Ĥ , here M is a collection of indices. By basis,
we mean that the Hamiltonian can be written as a sum of
products of elements of this basis in at least one way (there
can be more than one way, in this case we call the basis
overcomplete)

Ĥ = Ĥ [{�̂i}] =
∑

I

hI

∏
i∈I

�̂i, (A1)

where I denotes an ordered subset of M . For example,
in the commutativity graph method, the basis is simply
the collection of all individual terms in the Hamiltonian
Eq. (4); in the fermion method, the basis is the set of all
Majorana operators; in the modified fermion method of FH
model, the basis is the set of all Majorana operators and all
the ûj σσ ′ terms in Eq. (76), however, since ûj σσ ′ is a quartic
product of Majorana operators, this basis is overcomplete;
in Wen’s quantum rotor model, the basis is the collection
of all Ŝz

ij and Ŵi. One can easily verify that in all these
cases, the Hamiltonian can be written as a polynomial of
the basis elements.

Step 2. Write down the Heisenberg equation of motion
for the basis operators, as is done in Eqs. (5), (21), (77),
(87). For the generic Hamiltonian in Eq. (A1), we have

i∂t�̂i =
∑

I

hI

⎡
⎣�̂i,

∏
j ∈I

�̂j

⎤
⎦ ,

=
∑

J

h′
J

∏
l∈J

�̂l,

= Pi[{�̂j }]�̂i + �̂iQi[{�̂j }] + Ri[{�̂j }], (A2)

where in the second line we apply the basic commutation
relations of the basis operators to simplify the equation,
and in the third line we isolate all the terms that are left
proportional or right proportional to �̂i, here Pi, Qi, Ri

are some polynomial functions of the basis operators, and
Pi[{�̂j }], Qi[{�̂j }] are assumed to be Hermitian [we can
always absorb the non-Hermitian part into Ri[{�̂j }] ].

Step 3. On both sides of the Heisenberg equation, take
the commutator with another local operator B̂ (note: if
both the lhs and B̂ are fermionic operators, anticommutator
should be taken). Use Leibniz’s rule to expand the prod-
uct terms, e.g., [âb̂ĉ, B̂] = [â, B̂]b̂ĉ + â[b̂, B̂]ĉ + âb̂[ĉ, B̂].
This is done in Eqs. (6), (22), (88) [and below Eq. (77),
implicitly] of the main text. We write the equation in the
form

i∂t�̂
B
i = Pi[{�̂j }]�̂B

i + �̂B
i Qi[{�̂j }] + Si[{�̂j }, {�̂B

j }],
(A3)

where Si[{�̂j }, {�̂B
j }] is some polynomial function that is

linear in �̂B
j .

Step 4. Use a change of variable �̂B
i (t) → Ûi(t)X̂ B

i (t)
V̂i(t) to cancel the first two terms on the rhs of Eq. (A3),
where i∂tÛi(t) = Pi[{�̂j }]Ûi(t), i∂tV̂i(t) = V̂i(t)Qi[{�̂j }]
[92]. Equation (A3) becomes

i∂tX̂ B
i = Û†

i Si[{�̂j }, {�̂B
j }]V̂†

i . (A4)

Notice also ‖�̂B
i (t)‖ = ‖X̂ B

i (t)‖ due to Ûi, V̂i being unitary.
This is done in Eq. (7) [and below Eq. (77), implicitly] and
between Eqs. (88) and (89).

Step 5. Take operator norm on both sides of the
resulting operator evolution Eq. (A4), and apply the tri-
angle inequalities on the rhs to get ‖Si[{�̂j }, {�̂B

j }]‖ ≤∑
j Sij ‖�̂B

j ‖ for suitable nonnegative coefficients Sij . Then
using the fundamental theorem of calculus and Grönwall’s
inequality, one can prove that ‖�̂B

i (t)‖ is upper bounded by
the solution to the system of linear differential equations

∂t�̄
B
i =

∑
j

Sij �̄
B
j (A5)

with initial condition �̄B
i (0) = ‖�̂B

i (0)‖. This is done in
Eqs. (8)–(10), (23)–(24), (78), (89).

Step 6. Solve the resulting linear differential Eqs. (A5),
and calculate vLR from its maximal eigenfrequency using
Eq. (31).

The main flexibility allowed by this general method is
the choice of basis operators {�̂i}i∈M . A different choice of
basis typically leads to a different LR speed. We hope to
find a basis that makes the resulting LR speed as small as
possible to make the LR bound tighter. We already demon-
strate in the main text that the basis {γ̂i} used in the minimal
Clifford decomposition Eq. (4) satisfying Eq. (18) is a good
choice of basis for a large class of spin and interacting
fermion models, and the Majorana operator basis {ĉi} sat-
isfying Eq. (20) is good for weakly interacting fermions, in
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the sense that the resulting LR speeds vastly improves the
previous results, and the LR bounds typically have tight
large distance and small time exponents. We did encounter
a few exceptions where other choices are favorable. For
example in Wen’s quantum rotor model we use the basis
{Ŝz

ij , Ŵi, Ŵ†
i }, and in the large-N SU(N ) FH model we use

{ĉiσ , ûj σσ ′ }. In addition, in the spin-S Heisenberg model,
an alternative, simpler choice of basis {Ŝx

i , Ŝy
i , Ŝz

i } leads to
v ≤ 4dJmX1, which is the same as Eq. (63) in the S → ∞
limit. It may be a good future direction to further explore
the role of basis operators and hopefully obtain a general
prescription on how to find the best choice of basis in a
specific model.
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