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Energy-Efficient Computation Offloading in
Delay-Constrained Massive MIMO Enabled
Edge Network Using Data Partitioning

Rafia Malik and Mai Vu, Senior Member, IEEE

Abstract— We study a wireless edge-computing system which
allows multiple users to simultaneously offload computation-
intensive tasks to multiple massive-MIMO access points,
each with a collocated multi-access edge computing (MEC)
server. Massive-MIMO enables simultaneous uplink transmis-
sions from all users, significantly shortening the data offloading
time compared to sequential protocols, and makes the three
phases of data offloading, computing, and downloading have
comparable durations. Based on this three-phase structure,
we formulate a novel problem to minimize a weighted sum of
the energy consumption at both the users and the MEC server
under a round-trip latency constraint, using a combination of
data partitioning, transmit power control and CPU frequency
scaling at both the user and server ends. We design a novel nested
algorithm consisting of an inner primal-dual algorithm and an
outer latency-aware descent algorithm to solve this problem
efficiently. Optimized solutions show that for larger requests,
more data is offloaded to the MECs to reduce local computation
time in order to meet the latency constraint, despite higher
energy cost of wireless transmissions. Massive-MIMO channel
estimation errors under pilot contamination also causes more
data to be offloaded to the MECs. Compared to binary offloading,
partial offloading with data partitioning is superior and leads to
significant reduction in the overall energy consumption.

Index Terms— Multi-access edge computing, massive MIMO,
computation offloading, energy efficiency.

I. INTRODUCTION

EVOLUTION of wireless communication networks
towards denser deployments with large number of

connected devices has led to an exponential growth in
wireless traffic. Global mobile data traffic is expected to
increase seven-fold from 2016 to 2021, of which, mobile
video data by smartphones is the fastest-growing segment with
a projected increase of 870% [1]. The trend towards smarter
smartphones has enabled new services such as Augmented
Reality (AR), Virtual Reality (VR) and multi-user interaction,
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which further cause traffic surges particularly in localized
live broadcast events such as a concert or a sports event.
To cope with these demands, future generation networks
including 5G and beyond are expected to handle multiple
folds increase of data traffic at stringent latency requirements.
One solution to this spike in latency-sensitive data demand
is to bring data computation power closer to the devices at
the multi-access edge computing (MEC) networks. MEC is a
promising technology to provide cloud-computing capabilities
within the Radio Access Network (RAN) in close proximity
to mobile subscribers and eliminate the need to route traffic
through the core network [2]. By moving the computing and
storage features to the edge, MEC can offer a distributed and
decentralized service environment characterized by proximity,
low latency, and high rate access [3].
Power hungry devices and computation intensive

applications naturally lead to an escalated energy demand and
therefore make energy efficiency a key parameter in the design
of next generation networks. To this end, power management
techniques in hardware are becoming popular. Dynamic
Voltage and Frequency Scaling (DVFS) is a common power
saving technique which uses frequency scaling to reduce
power consumption in a CMOS integrated circuit (e.g. the
CPU [5]). A linear growth in the CPU frequency f causes
the dynamic power dissipation to increase cubically, leading
to an energy consumption as Edyn ∝ f2 [6]. Therefore
reducing the frequency leads to a dramatic reduction in
energy consumption, which also holds true for modern
processors with nanoscale features with non-negligible static
power consumption [6]. DVFS has been traditionally used
for personal computers and is now making its way to MEC
servers and smart consumer devices including smartphones
and tablets to conserve energy [7].
To handle the vast amount of services and computation

requirements, MEC servers with high computation capacities
also employ parallel computing via virtualization techniques
to enable independent computation for each assigned user
or task [8]. Network virtualization is a catalyst in support-
ing multi-tenancy and multiple services for edge computing
architectures enabling efficient network operations and service
provisioning. Virtualization technologies including network
slicing, software defined networking (SDN), network function
virtualization (NFV), virtual machines (VM), and containers
are some of the key enablers of MEC networks [9]. Using vir-
tualization, the MEC server can optimally allocate processing
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frequency, or clock speed, per task or user such that each
user can experience an independently orchestrated QoS, hence
allowing the MEC to efficiently compute all users’ tasks in
parallel within the latency constraint.
To efficiently transfer data between user devices and MEC

servers for computation, wireless base-stations/access-points
(BS/AP - AP used in this paper interchangeably for both
base station and access point) equipped with massive MIMO
technology can dramatically increase spectral efficiency by
allowing the AP to simultaneously accommodate multiple
co-channel users. The massive number of antennas at an
AP can be used to create asymptotically orthogonal channels
and deliver near interference-free signals for each user termi-
nal [10]. For MEC architectures with co-located MEC server
and AP [2], the use of massive MIMO significantly reduces the
wireless data transmission time especially in the uplink (data
offloading) and hence has a drastic impact on the round-trip
edge computation latency.
It is a realistic vision for future wireless networks to employ

all aforementioned technologies: edge computing, massive
MIMO transmission, network virtualization, and frequency
scaling for power management. Such a network can be energy
efficient in terms of both computation and communication
while providing low-latency communication, and supporting
highly-intensive computation tasks for their connected users.
To achieve this vision, we will need to solve the intricate prob-
lem of optimal resource allocation, particularly in balancing
local and MEC-offloaded computation, frequency allocation,
energy consumption and time utilization.

A. Related Works

Resource allocation in MEC networks has been an active
area of research recently. Most existing works have considered
energy minimization at only one side of the network, either
the users [11]–[13], or the MEC-server when it is energy
constrained, such as a UAV-MEC [14], [15]. Common among
prior works is the assumption of binary offloading, that is,
each computation task is atomic and cannot be partitioned;
hence these works examine a system-level problem with the
perspective of choosing whether to offload a task to the MEC
or to perform the computation locally. For example, several
works minimize the system’s computation overhead (energy
and processing time) [16] and system-wide energy consump-
tion [17], while others consider a system utility function such
as a weighted sum of the energy consumption and time delay
in the entire system, considering users as mobile [18] or
generic connected devices [19]. These works also assume that
the user’s clock frequency or computing capability is fixed, and
therefore is not an optimizing variable. Only recently, partial
offloading, where user tasks can partly be computed locally
and partly offloaded to the MEC, has been considered for the
problem of AP’s energy minimization subject to users’ latency
requirement [14].
For multiuser MEC systems, the multiple access scheme

affects edge computing latency significantly. Existing works
typically employ Time Division Multiple Access (TDMA) for
different users to sequentially offload information to the MEC

in their designated time slots [12]–[14], [20]. Under TDMA,
the time spent for offloading computation tasks for all users
in the uplink far exceeds the time for delivering results in
the downlink, therefore, the latter is usually assumed to be
negligible and is not factored into the round-trip latency. Such
a latency constraint is important and has been considered in
energy efficient computation for the users [12], [19], [20]
and for the MEC access points [14]. Several works try to
reduce the latency by assuming numerous channels available
for offloading from users to the MECs, however, at the expense
of consuming significantly more bandwidth [21], [22].
To solve for the different variations of resource allocation

problems in MEC networks, algorithms with varying levels
of complexity have been proposed. For example, centralized
and distributed successive convex approximation (SCA) based
algorithms are used in a static framework to reach local
optimal solutions in a finite number of iterations [11]. A mixed
integer non-linear problem is solved using bisection search and
difference of convex optimization methods by decomposing
the energy minimization problem into independent subprob-
lems for individual users [23]. A game-theoretic approach is
used to find a near-optimal solution to the computational over-
head (time and energy) minimization problem where conver-
gence to the Nash equilibrium scales linearly with the number
of computation tasks [16]. A distributed implementation of
the offloading game achieves faster convergence compared
to the centralized method at a small performance loss, with
convergence speed scaling almost linearly with the number of
users [21].

B. Major Contributions

In this work, we consider a multi-cell multi-user network
scenario where access points equipped with massive MIMO
antenna arrays and co-located MEC servers offer computa-
tion offloading. The novel feature of massive MIMO allows
the users to offload their data to the MECs simultaneously,
instead of using the sequential TDMA protocol, and hence
significantly reduces the round-trip latency. We formulate a
novel optimization problem to minimize the system’s energy
consumption, including both the users and the MEC, subject
to a latency requirement. Our aim is to explore the benefit
of computation offloading to meet a hard latency constraint
while minimizing the energy consumption at both the user
terminals and the MEC servers. The formulated problem befits
edge network problems where computation offloading proves
useful; for instance in AR/VR applications, a video surveil-
lance system collecting data from multiple recording cameras,
offloading data in real-time to the edge server for facial or
object detection, or in real-time map rendering for autonomous
vehicular applications, where computation offloading to the
edge can be critical for real-time updates [24]. The main
contributions of this work can be summarized as follows.
1) We show the immense benefits of massive MIMO in
edge computing systems, which have not been explored
earlier. Not only does the use of massive MIMO enable
simultaneous (instead of sequential TDMA [12]–[14],
[20]) transmissions among multiple users, dramatically
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Fig. 1. Beamforming using massive MIMO antenna array at AP/BS.

reducing offloading time and overall latency, it also
reduces the transmit power at the AP for a given data
rate and has a positive impact on the system energy
consumption. Thus employing massive MIMO in an
MEC system is beneficial for improving both latency
and power consumption.

2) We propose a new formulation for MEC system-level
energy minimization under massive MIMO employment.
The formulation accounts for energy consumption at
both the users and MEC ends, compared to current liter-
ature considering only one side [11]–[15]. Minimizing
system level energy with delay and power constraints
makes the problem not only richer but also more applica-
ble in practice.

3) We design efficient, customized nested algorithms
exploiting problem structure to solve for optimal
resource allocation with potential for real-time imple-
mentation. The resource allocation is inclusive of
data partitioning (partial offloading instead of binary
offloading), time, power and computing frequency allo-
cation, compared to the majority of current MEC
literature which just optimizes for a part of these
variables [12]–[14], [16]–[21]. The algorithm with a
nested structure, consisting of an outer latency-aware
descent algorithm for data partitioning and an inner
primal-dual algorithm for time, frequency and power
allocation, is novel, efficient and guarantees solution
optimality.

Notation: X and x denote a matrix and vector respectively,
∇2 f(x) denotes the Hessian matrix, and ∇2 f(x)−1 denotes
its inverse. For an arbitrary size matrix, Y , Y ∗ denotes the
Hermitian transpose, and diag(y1, . . . , yN ) denotes an N ×N
diagonal matrix with diagonal elements y1, . . . , yN . I denotes
an identity matrix, and 0, 1 denote an all zeros and all
ones vector respectively. The standard circularly symmetric
complex Gaussian distribution is denoted by CN (0, I), with
mean 0 and covariance matrix I . C

k×l and Rk×l denote
the space of k × l matrices with complex and real entries,
respectively.

II. SYSTEM MODEL

We consider a system with L ≥ 1 Access Points (APs), each
equipped with a massive-MIMO array ofN antennas deployed
over a target area, for instance in a sports stadium, a town
fair or a crowded exhibit or mall. We consider a deployment

Fig. 2. Operation phases at each MEC server.

scenario where a Multi-access Edge Computing (MEC) server
is collocated with each AP [2]. Single-antenna users offload
data in the uplink to the MEC-APs and receive computed
results in the downlink as shown in Figure 1. Each AP serves
an area denoted as a cell, which contains K users, making the
system a multi-cell network.
Each MEC server schedules data offloading for the users

that it serves. We consider the type of applications typically
composed of multiple procedures, for example computation
components in an AR application, and hence can support
partial offloading or program partitioning [8]. For such appli-
cations allowing partial offloading, for the ith user, the ui

computation bits can be partitioned into qi bits to be computed
locally and si bits to be offloaded to the MEC server. We con-
sider the data-partition model where the computation task is
bit-wise independent, and also assume that such partition does
not incur additional computation bits, that is, ui = qi+si [14].
The data-partition task model is applicable for semantic image
segmentation in map-rendering applications [25], or in mod-
ern technologies employed in AR/VR applications, such as
multi-user encoding [26], multicasting and tiling [27], [28],
among others, in which edge computing servers can transcode
and stitch the data into a seamless real-time stream [29]. For
a given number of computation requests, we examine the
problem of resource allocation for completing the targeted
tasks within the latency constraint in the most energy efficient
manner.
Given a total latency constraint denoted as Td, the time

for data offloading, computation (at both users and MEC),
and the delivery of computed results to the users should not
exceed Td. The system’s operation can hence be divided into
three phases as shown in Figure 2; (i) computation offloading
from users to the MEC in the uplink, (ii) computation at
the MEC server and locally at the user, and (iii) transmis-
sion of computed results from the MEC to users in the
downlink. Note that local computation at the user can span
both phases two and three. Simultaneous transmission from
multiple users in the uplink through the use of massive MIMO
significantly shortens the offloading time (Phase I), making
downloading time (Phase III) no longer negligible as was
with TDMA offloading [12]–[14], [20]. A subsequent benefit
of this non-negligible downloading time is that users can
now perform local computation through the time in both
phases II and III.
Energy at both the MEC and the user terminal is consumed

for two tasks; 1) for data computation which depends on
the CPU frequency, and 2) for transmitting the data for
computation offloading or delivering results over the uplink or
downlink channel respectively. CPU frequency is an important
parameter which affects both time and energy consumptions.
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While a higher CPU frequency implies lesser computation
time, it also increases energy consumption [12]. Therefore
optimizing CPU frequency using DVFS can achieve energy
efficient computation [5]. For MEC servers with high computa-
tion capabilities, we assume virtualization in our system model
such that the MEC can optimally allocate processing frequency
per user. In this way, the MEC can efficiently compute all
users’ tasks in parallel within the constrained latency.
In the considered multi-cell environment, we discuss and

set up the problem for a typical cell denoted as the home
cell. Assuming a frequency reuse factor of 1 (as typical in
LTE networks [30]), other cells which use the same pilots as
the home cell are called contaminating cells. The effect of
the multi-cell environment is taken into account implicitly via
inter-cell interference and massive MIMO pilot contamination.
Each user has a computing requirement for a certain amount
of data, which can be divided into a part for local computation
and a part for offloading to the MEC. The partitioned amount
of data s to be offloaded to the MEC is a key design variable
which spans all the phases of the system’s operation. Next we
discuss the time and energy consumption while highlighting
the design variables for resource allocation specific to each
phase of operation, in addition to s which is a design variable
across all three phases.

A. Phase I: Computation Offloading in Uplink

1) Data Transmission: In a given time slot, K user termi-
nals concurrently offload data to the N -antenna AP over the
uplink channel in the same time-frequency resource. We define
βi � Sσd−γ

i as the large scale fading between the ith user
and the AP, assuming it to be the same for all AP antennas
(independent of N ), where Sσ denotes log-normal shadowing
with standard deviation σ dB, di is the distance from the ith

user to the AP, and γ is the path loss exponent.
With a sufficient number of antennas, the channel hardens

such that the effective channel gains become nearly determin-
istic [31]. This channel hardening effect has been observed
experimentally for a massive MIMO system built specifically
for MEC application with 128 antennas [32]. We consider the
operating regime with N � K typical for a TDD massive
MIMO system, in which the throughput becomes independent
of the small-scale fading with channel hardening [33]. This
throughput depends on the type of detector employed at
the massive MIMO terminal. We consider maximum ratio
combining, for which the uplink achievable transmission rate
for the ith user in the lth cell, ru,i, is given as [33]

ru,i = ν log2

(
1 +

SINRul
li

Γ1

)
, SINRul

li =
Nγl

lipli

σ2
1,li

(1)

where Γ1 ≥ 1 is a constant accounting for the capacity gap
due to practical coding and modulation schemes, pli is the
transmit power of the ith user in the lth cell. Here the constant
ν = τc−τu

τc
accounts for the effective loss of samples due to

the transmission of pilot symbols in each coherence interval
for channel estimation at the AP, where τc is the length of the
coherence interval and τu is the duration of pilot transmission.
We follow standard practice of using the critical number of

pilot symbols equaling the number of users: τu = K [34].
The term σ2

1,li is the interference and noise power including
the effect of pilot contamination and intercell interference as

σ2
1,li =σ2

r +
∑
q∈Pl

K∑
i=1

βl
qipqi+

∑
q/∈Pl

K∑
i=1

βl
qipqi+N

∑
q∈Pl\l

γl
qipqi

(2)

where σ2
r is the receiver noise variance, the second term

represents interference from contaminating cells, the third term
is inter-cell interference, and the last term is interference
due to the mean-square channel estimates from contaminating
cells excluding the home cell and is also called the coherent
interference [33].

2) Energy and Time Consumption: An offloading over-
head is incurred for transmitting the offloaded bits over the
uplink channel to the MEC server. The energy consumed for
offloading the ith user’s data is given by EOFF,i = plitu,i,
where pli is the transmit power and tu,i is the transmission
time for the ith user. Let B denote the channel bandwidth,
then tu,i = si

Bru,i
. All users offload their computation bits

simultaneously, and the total energy and time consumptions
for Phase I can then be written as

EOFF =
K∑

i=1

plisi

Bru,i
, T1 = max

i∈[1,K]
tu,i. (3)

In this phase, the offloading time tu = [tu,1 . . . tu,K ] ∈ RK×1

is a design variable to be optimized which also implicitly
affects the transmit power p = [pl1 . . . plK ] ∈ RK×1 as will
be shown later.

B. Phase II: Computation at MEC Server and User
Terminals

1) Local Computation at User Terminal: Using DVFS
architecture, the energy consumption and the processing time
for local computation at the ith user is given as [8]

ELC =
K∑

i=1

κici(ui − si)f2
u,i, tL,i =

ci(ui − si)
fu,i

(4)

where κi is the effective switched capacitance, fu,i denotes the
average CPU frequency, ci denotes the CPU cycle information,
that is, the number of CPU cycles required for computing one
input bit, and qi = ui − si is the total number of bits required
to be locally computed at ith user respectively. Frequency
scaling can be performed per CPU cycle, however, this causes
large optimization overhead. We therefore consider average
CPU frequency optimization. The users’ local computation
time can also extend to Phase III while the MEC is sending
computed results back to users. This fact is considered later
in the problem formulation (constraint d).

2) Computation at the MEC Server: Assuming that the
MEC servers have high computation capacities and utilize par-
allel computing via virtualization for independent computation
per user, the energy consumed for computing offloaded bits of
all users is given as

EOC =
K∑

i=1

κmf2
midmsi (5)
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where si is the number of bits offloaded by the ith user
to the MEC, dm is the number of CPU cycles required to
compute one bit at the MEC, the CPU frequency fmi is
the computational rate assigned to the ith user’s task by the
MEC, and κm is a hardware dependent constant of the MEC
server. The computation time for processing the offloaded bits
of K users via parallel processing is given as T2 below where
tM,i is the time for computing ith user’s offloaded task

T2 = max{tM,i}, tM,i =
dmsi

fmi
∀i ∈ [1, K]. (6)

In this phase, the allocated CPU frequencies at the users,
fu = [fu1 . . . fuK ] ∈ R

K×1, and at the MEC, fm =
[fm1 . . . fmK ] ∈ RK×1, are design variables. Note that the
time for local computation tL = [tL1 . . . tLK ] ∈ RK×1 and
offloaded computation tM = [tM1 . . . tMK ] ∈ RK×1 are
directly affected by f and fm as given in (4) and (6).

C. Phase III: Delivering Computed Results in Downlink

For downlink transmission we consider Time Division
Duplex (TDD) operation such that the channel estimates in the
uplink can be used for the downlink via reciprocity. With a
sufficient number of antennas at the AP, not only do the effects
of small scale fading and frequency dependence disappear
due to channel hardening, but also channel estimation at the
terminals, and the associated transmission of downlink pilots
becomes unnecessary [31], [33].
For the ith user in the lth cell (home cell), the downlink

transmission rate with maximum ratio linear precoding at the
MEC-AP is given as [33]

rd,i = log2

(
1 +

SINRdl
li

Γ2

)
, SINRdl

li =
NPγl

liηli

σ2
2,li

(7)

where Γ2 ≥ 1 is the capacity gap similar to (1), interference
and noise power term is

σ2
2,li = σ2

i + P
∑
q∈Pl

K∑
i=1

βl
qiηqi + P

∑
q/∈Pl

K∑
i=1

βl
qiηqi

+ NP
∑

q∈P\l

γq
qiηqi (8)

where σ2
i is the noise at the ith user terminal in the lth cell,

{ηli} ∈ [0, 1] are the power coefficients satisfying
∑K

i=1 ηli ≤
1 for all l, and P is the AP’s average transmit power. Similar
to the uplink transmission, the second term in (8) is pilot
contamination, the third term is inter-cell interference which
manifests as uncorrelated noise in the home cell, and the
last term is coherent interference resulting from mean-square
channel estimation errors. Since there is no pilot transmission
in this phase, the effective downlink transmission rate is equal
to the data rate.

1) Energy and Time Consumption: The transmission time
for delivering the ith user’s computation results can be written
in terms of the downlink rate in (7) as td,i = s̃i

Brd,i
. Here

s̃i denotes the number of information bits generated after
processing si offloaded bits of the ith user, and is assumed to
be proportional to si, that is s̃i = μsi. The proportionality ratio

μ between the offloaded data and the computed results adds an
application-centric flexibility to our system model in terms of
the data size in downlink. For instance, for applications such
as face recognition in a scenario where data from multiple
video recording cameras is offloaded to the edge server for
analysis, the computed results would be smaller in size than
the offloaded data, in which case μ < 1 can be chosen [21].
On the other hand, for video-rendering applications such as
those delivering 360◦ videos in mobile networks, the ratio
between the Field Of View (FOV) and the source video can
be such that in order to provide a 4K video at the user device,
the source video must be delivered over the network at a 16K
resolution, which leads to μ � 1 [35]. The AP simultaneously
transmits computed results for all users, and the total energy
and time overhead for Phase III are then given as

EDL =
K∑

i=1

Pηliμsi

Brd,i
, T3 = max

i∈[1,K]
td,i. (9)

where the total energy consumption is the sum of energy
for data transmissions to all users, and the time consumption
is the maximum among all users because of simultaneous
transmissions in the downlink. In this phase, the downloading
time td = [td,1 . . . td,K ] ∈ R

K×1 is a design variable for
optimal resource allocation and also implicitly affects the
power allocation η = [ηl1 . . . ηlK ] ∈ RK×1 in the downlink at
the AP.

III. ENERGY OPTIMIZATION FORMULATION

Considering a multi-cell multi-MEC network, we formulate
a novel optimization problem to minimize the weighted energy
at both the MEC and users in the home cell, taking into
account the effect from other cells via intercell interference.
We then analyze the problem formulation to prepare for
algorithm design in the next section.

A. Weighted Energy Minimization Problem Formulation

We formulate an edge computing problem which explicitly
accounts for physical layer parameters including available
transmit powers from each user and the MEC, associated
massive MIMO data rates with realistic pilot contamination
and interference. The problem jointly optimizes for the amount
of partial data offloaded from each user s, the CPU frequency
for local computation at each user fu, the CPU frequency at
the MEC allocated to each user’s data computation fm, time
allocation for uplink and downlink transmission tu, td, and
the time duration for each phase, T1, T2 and T3, within a total
latency requirement.
The total energy consumption by all users, based on equa-

tions (4) and (3), can be written as

Eu =
K∑

i=1

⎡
⎣ tu,i(2

si
νtu,iB − 1)Γ1σ

2
1,i

Nγi
+ κici(ui − si)f2

u,i

⎤
⎦
(10)

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 11,2021 at 19:45:48 UTC from IEEE Xplore.  Restrictions apply. 



6982 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

Similarly, the total energy consumption at the MEC server,
based on equations (5) and (9), is

Em =
K∑

i=1

⎡
⎣ td,i(2

μsi
td,iB − 1)Γ2σ

2
2,i

Nγi
+ κmdmf2

misi

⎤
⎦ (11)

In these expressions, using (1) and (7), and by definition of
the uplink and downlink transmission rates as ru,i = si

νtu,iB

and rd,i = μsi

td,iB
respectively, we have implicitly replaced

the power allocation variables for per-user uplink transmission
power (pli) and per-user downlink power (ηli) as functions of
the time allocation and data partitioning as follows

pli =
(2

si
νtu,iB − 1)Γ1σ

2
1,i

Nγi
, ηli =

(2
μsi

td,iB − 1)Γ2σ
2
2,i

PNγi

(12)

Based on these expressions, a weighted system energy mini-
mization can be formulated as

(P) min
t,f,s

Etotal = (1 − w)Eu + wEm (13)

s.t. Eqs. (10) − (11) (a-b)
3∑

j=1

(Tj) = Td,
ci(ui − si)

fu,i
+ tu,i − Td ≤ 0,

∀i ∈ [1, K] (c-d)

tu,i − T1 ≤ 0,
dmsi

fmi
− T2 ≤ 0, td,i − T3 ≤ 0,

∀i ∈ [1, K] (e-g)
Ku∑
i=1

fmi − fm,max ≤ 0 (h)

Here Etotal is weighted sum of energy consumption at all
users (Eu) and the MEC (Em), with 1 − w and w as the
respective weights. The optimizing variables of this prob-
lems are t = [tu,1 . . . tu,K , td,1 . . . td,K , T1, T2, T3], f =
[fu1 . . . fuK , fm1 . . . fmK ] and s = [s1 . . . sK ]. Implicit con-
straints not mentioned are fi,min ≤ fu,i ≤ fi,max and
fm,min ≤ fmi ≤ fm,max ∀i ∈ [1, K]. Given parameters of
the problems are Td as the total latency constraint, P as the
AP’s transmit power, B as the channel bandwidth, Γ1, Γ2 as
the uplink and downlink capacity gaps, (κi, ci) and (κm, dm)
as the switched capacitance and CPU cycle information at the
users and the MEC respectively.
Constraint (c) shows that both the time consumed for all

three phases at the MEC, and the time consumed for offloading
and local computation at each user should not exceed Td.
Constraints (e-g) show that the time consumed separately
for offloading, computation of users’ tasks at the MEC, and
downloading time for each user’s results must be less than
the maximum allowable time, {T1, T2, T3}, for that phase as
given in {(3),(6), (9)} respectively. Constraint (h) denotes the
maximum CPU frequency at the MEC, which implies that with
virtualization, the sum of frequencies allocated to all users’
tasks should not exceed the MEC processor’s capability.

B. Problem Analysis and Decomposition

Problem (P) is a complicated multi-variable non-linear
optimization which is also non-convex. This is due to con-
straint (13b) in which the term sif

2
mi is neither convex nor

concave since its Hessian is indefinite with one positive and
one negative eigenvalue, making this constraint and conse-
quently problem (P) non-convex. Next, we present analysis
results which can be used to decompose this problem into
two simpler convex sub-problems.

Lemma 1: The objective function f0 of the problem (P) is
convex as a function of si. Furthermore, if the system para-
meters satisfy the following condition which signifies a typ-
ical network setting where wireless transmission energy is
non-negligible compared to computation energy:{

(1 − w)2
si

νtu,iB ln 2Γ1σ
2
1,i

νBNγi
+

wμ2
μsi

td,iB ln 2Γ2σ
2
2,i

BNγi

+ wκmdmf2
m,i − (1 − w)κicif

2
u,i

}∣∣∣∣∣
si→0

≥ 0 (14)

then the total energy in problem (P) is an increasing function
of each si. If condition (14) does not hold, then there exists
a unique value of si that minimizes the objective function f0

obtained by solving ∇f0(si) = 0.
Proof: Let f0(.) be the objective function in (13). The

second-order derivative for the objective function with respect
to si is

∇2
si

f0(si) =
(1 − w)2

si
νtu,iB (ln 2)2Γ1σ

2
1,i

ν2 B2 Nγitu,i

+
wμ22

μsi
td,iB (ln 2)2Γ2σ

2
2,i

B2 Nγitd,i

which is positive for all considered ranges of problem para-
meters. Thus, f0 is a convex function of si. The expression in
Lemma 1 is the gradient of f0(·) with respect to si evaluated at
si = 0, Since the gradient expression is an increasing function
of si, if the gradient at si approaching 0 is non-negative
(∇sif0(si)|si→0 ≥ 0) then the gradient is non-negative for
all si ≥ 0 and the Lemma follows directly. �

Discussion: Since the objective function is convex in si,
there exists an optimal point, s�

i ∀i ∈ [1, K], which minimizes
Etotal. We write the gradient expression in (14) as

∇sif0(si)=∇siEOFF,i+∇siEDL,i+∇siEOC,i+∇siELC,i

(15)

and define two cases for finding the optimal s�
i as follows.

1) Case I: Condition in (14) Holds: Here the total energy
consumption is an increasing function of si, thus the optimal
s�

i is as small as possible subject to the constraints of the
problem (P). The first two terms in (15) denote the rate of
change, with respect to si, of energy consumption in wireless
transmission in uplink and downlink, respectively. The last two
terms represent the rate of change, with respect to si, of energy
consumption in computation at the MEC and locally at the
user respectively. Note that EOFF,i, EDL,i and EOC,i are all
increasing functions of the offloaded bits si and positive, while
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ELC,i is negative. A positive overall gradient therefore implies
that ∇siEOFF,i +∇siEDL,i +∇siEOC,i > ∇siELC,i, which
typically holds true for practical scenarios of typical network
settings, with multiple APs and users located in a reasonable
size target area, due to the dominant energy consumptions
for wireless transmissions and MEC computation over that of
local computation.

2) Case II: Condition in (14) Does not Hold: This case
implies there exists s�

i > 0 which minimizes the objective
function for the weighted sum energy. This case only holds if
w → 0, such that the problem is reduced to that of user energy
minimization, since if w 
= 0, the gradient would be positive
even for negligible transmission loss, because fm,i > fu,i

making ∇EOC,i > ∇ELC,i. This scenario only arises in
non-typical settings, for example a single AP serving a single
user at the close distance of 3m, the minimum required sepa-
ration between a Femtocell-AP and a user terminal (UT) [36].
For this case, condition (14) is reversed under w = 0,
as the two middle terms in (15) vanish, and the negligible
transmission loss makes ∇siELC,i > ∇siEOFF,i. Thus to
conserve the user’s energy, the optimal solution here is to
offload all its data to the MEC thanks to the proximity to the
MEC-AP. For most networks, however, if the MEC energy is
also taken into account (w > 0) or at a larger UT-AP distance
then it may never be energy-optimal to offload all data to the
MEC.
For the rest of the paper, we assume a typical network

setting where Lemma 1 always holds true. Since the system
energy is then increasing with the amount of offloaded data,
it is of interest for the system to keep the offloaded data to
minimum, only offloading when local computation violates
power or latency constraints. Note that for non-typical net-
works, the solution approach presented in the next section
would still hold except that we need to slightly modify the
outer algorithm in Section IV-A to take into account the
solutions of ∇f0(si) = 0 while keeping the latency constraint
in check. Because of space constraint, we will focus on the
typical network case only.
If the amount of offloaded data is given, then all we need

to do is solve problem (P) for the remaining variables. The
following lemma provides a theoretical basis for doing that.

Lemma 2: For a given set of offloaded data si, the problem
(P) is convex in the remaining optimizing variables t, f .

Proof: Proof follows by examining each constraint and
showing that with fixed si, it is a convex function. Details in
Appendix A. �

IV. OPTIMAL SOLUTION AND ALGORITHMS

While problem (P) is not convex in all the optimizing
variables, Lemma 2 shows that by fixing the offloaded bits s,
the problem is convex in all the remaining optimizing variables
with a convex objective function and a convex feasible set.
We can therefore divide problem (P) into two sub-problems:
problem (P1) solves for the optimal balance between offloaded
bits and those retained at the users, while (P2) solves for
the remaining optimizing variables for a fixed number of
offloaded bits s. Since (P2) is convex, any algorithm which

Fig. 3. Nested algorithm architecture for the solution of (P).

solves a convex problem can be applied, however, standard
convex-solvers are often inefficient due to their inability to
exploit the specific problem structure. We therefore analyze the
problem in detail in both the primal and dual spaces to provide
insight into the problem structure and propose a customized
nested algorithm to solve problem (P) efficiently.
The nested algorithm structure for solving (P) is shown

in Figure 3 and the proposed algorithm works as follows.
We first initialize the offloaded bits s and also initialize the
dual variables. At the current value of s, the inner algorithm is
executed, for which we use a primal-dual approach employing
a subgradient method to solve sub-problem (P2). At each
iteration of the inner algorithm, the current values of the dual
variables are used to calculate the primal variables as stated in
Theorems 1 and 2 below and also to determine the value of the
dual function, then the dual variables are updated according to
their respective subgradients. This process is repeated until the
stopping criterion for the dual problem is satisfied, at which
point the inner algorithm returns the control to the outer
algorithm. Based on the newly updated primal solution for (P2)
from the inner algorithm, we proceed to updating s for the
next iteration of the outer algorithm, using a descent method
while keeping in check the latency constraint. These steps for
outer-inner optimization are repeated until a minimum point
for the weighted total energy consumption is reached where
all the constraints in the original problem (P) are satisfied.
The proposed nested algorithm is designed in a way to

support its possible implementation in a real-time network
scenario. This would imply that the algorithm is adaptable
to changes in the network. For example, if a new user joins
the network, or a current user leaves the network, the input
to the outer optimization algorithm changes, and it forwards
the updated network parameters to the inner optimization
algorithm when making the function call. Therefore, a change
in the network directly warrants an updated optimal solution,
with no need for any change in the underlying two algorithms
for solving (P1) and (P2). We now proceed to deriving the
optimal solution for these two sub-problems, or equivalently
for the problem (P).

A. Latency-Aware Descent Algorithm for Outer Optimization

Based on Lemma (1), and the associated discussion,
we know that for a typical network setting, the objective
function f0 in problem (P) is monotonically increasing in si.
In this case, we can therefore set up an iterative algorithm for
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Algorithm 1 Solution for Energy Minimization Problem (P)

Given: Distances di∀i. Channel H = GT . Precision, ε1, ε2,
Data amount ui, Latency Td

Initialize: Primal variable si.
Begin Latency-Aware Descent Algorithm for (P1)
Given a starting point s
Repeat
1) Compute Δs
2) Call the inner optimization algorithm, Algorithm 2
3) Line search. Choose step size ti for each user via
backtracking line search.

4) Update. si := si + tiΔsi.

Until stopping criterion is satisfied with ε1 or latency con-
straint Td is met.
End Latency-Aware Descent Algorithm

solving subproblem (P1) to find the optimal s, by sequentially
changing si by some Δsi for each user until a minimum
objective is reached where all constraints of the original
problem (P) are satisfied. The main constraint that is affected
by decreasing s is the total latency, which is increasing with
smaller s. Thus we propose a latency-aware descent algorithm,
based on the standard descent-method but with modified
stopping criteria. We compare two descent methods to find
the optimal s: the gradient-descent method and the Newton
method. For both descent methods applied, we implement the
structure for the outer optimization algorithm as described in
Algorithm 1, in which the modified stopping criterion with
latency awareness is unique to this algorithm design and is
crucial in making sure the optimized solutions meet the latency
constraint.
The outer algorithm works as follows. We initialize

0 < si,0 < ui, input the simulation parameters, and
update the step or search direction Δs as in standard
gradient-descent (Δsi = −∇sif0(si)) or Newton method
(Δsi = −∇2

si
f0(si)−1∇sif0(si)) [37]. We then execute the

inner algorithm for finding the optimal time and frequency
allocation for the given value of s. Next we proceed to the
sequential update of si. For both descent methods, we use
backtracking line search to find the step-length at the kth

iteration as the vector t(k), with t
(k)
i as the step-length for the

ith user, and update the offloaded bits for the next iteration as
s
(k+1)
i = s

(k)
i + tiΔsi. We then check the stopping criteria for

convergence of the outer algorithm. In this step, we introduce
a novel modification to the classical stopping criterion for
descent methods, which is necessary to arrive at the optimal
solution for the original problem (P) as shown in the next
proposition.

Proposition 1: Given that condition (14) in Lemma 1 holds,
a latency-aware termination of the descent algorithm is neces-
sary to reach an optimal solution satisfying all constraints of
the original problem (P). The latency based stopping criterion
is given as

Ttotal = max (tu,i + tL,i,

3∑
j=1

Tj) ≤ Td (16)

Fig. 4. Primal objective function monotonically increases w.r.t si.

Proof: We have two stopping criteria for the algorithm
termination; the first is specific to the descent method applied
and is defined by the suboptimality condition, f0(x)−p� ≤ ε1,
where p� is the optimal solution [37], while the second is as
given in (16) derived from the delay constraints (c-d) in (13).
For the considered system-level energy minimization prob-

lem, where w 
= 0, Lemma 1 always holds and the primal
objective function f0(si) is a monotonically increasing func-
tion in si as shown on the left y-axis in Figure 4 for the ith

user. The energy is hence minimized as si approaches zero.
While this may be optimal for smaller data requests ui such
that all data is computed locally, for larger data requests, how-
ever, computing all data locally can be time-inefficient. This is
because the time for local computation which is proportional to
qi = ui−si as in (4) increases linearly with qi (or equivalently,
it increases linearly as si decreases) and may exceed the
delay constraint, that is max(tu,i + tL,i) > Td as shown
in Figure 4 on the right y-axis. Here for small si, the total
time Ttotal exceeds the latency constraint, due to large qi. For
such scenarios, the optimal si is then found as the point where
the time constraint is met with equality, that is, Ttotal = Td

as shown, where s�
i becomes the amount of data that can

be offloaded such that the system’s energy consumption is
minimized within the delay constraint. Hence latency-aware
termination of the descent algorithm in the outer optimization
problem becomes necessary for large data requests, such
that the delay constraints for the original problem (P) are
satisfied. �

B. A Primal-Dual Algorithm for Inner Optimization

Based on Lemma (2), problem (P) is convex for a fixed
s. Consider the subproblem (P2) to solve for t, f ; this
problem is convex and we can show that strong duality holds
since Slater’s condition is satisfied, that is, we can find a
strictly feasible point in the relative interior of the domain
of the problem where the inequality constraints hold with
strict inequalities. Therefore, to solve for (P2), we formulate
a primal-dual problem using the Lagrangian dual method.
At each iteration of the outer algorithm discussed above, that
is for a fixed si, we solve a primal-dual problem for the
remaining variables in (P2) using Lagrangian duality analysis.
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Theorem 1 below provides the optimal time allocation
for uplink and downlink transmissions in terms of the dual
variables. It provides a solution for the time required per user
to offload data to the MEC and the time consumed by the
MEC to compute each user’s tasks.

Theorem 1: The offloading and downloading time, tu,i and
td,i respectively, can be obtained as

tu,i =

(
νB

si ln 2

(
W0

(
βi + ξi

(1 − w)

(
Nγi

σ2
1,iΓ1e

)
− 1

e

)
+ 1

))−1

(17a)

td,i =

(
B

μsi ln 2

(
W0

(
φi

w

(
Nγi

σ2
2,iΓ2e

)
− 1

e

)
+ 1

))−1

(17b)

Here ξi, βi and φi are the dual variables associated with
the constraints (d), (e) and (g) for problem (P) in (13)
respectively.

Proof: Applying Karush-Kuhn-Tucker (KKT) conditions
with respect to offloading time tu,i and downloading time td,i,
respectively, we obtain equations of the form

(1 − w) (f(x1,i) − x1,if
′(x1,i)) + βi + ξi = 0

w(f(x2,i) − x2,if
′(x2,i)) + φi = 0

where x1,i = 1
tu,i
, f(x1,i) =

(
2

si
νtu,iB −1

)
Γ1σ2

1,i

Nγi
, x2,i = 1

td,i

and f(x2,i) =
(
2

μsi
td,iB −1

)
Γ2σ2

2,i

Nγi
. For the function of the form

f(x) = σ2(2
x
B −1) and y = f(x)−xf ′(x) of x > 0, its inverse

can be shown to be obtained from the principal branch of the
Lambert W function, W0 as [38]

x =
cB

ln 2

(
W0

( −y

σ2e
− 1

e

)
+ 1

)
(18)

Details of the proof provided in Appendix B. �
We now proceed to deriving the optimum frequency allo-

cation. Theorem 2 below provides a solution for the each
user’s CPU frequency for local data computation, and the
frequency allocated at the MEC for coomputing each user’s
offloaded tasks. It is worth mentioning that the optimal primal
solution derived in Theorems 1 and 2 is specific for the
considered system. Thus the proposed primal-dual approach
for solving (P2) reveals the optimal solution structure which
would otherwise be obscured by plugging into a standard
convex solver.

Theorem 2: The optimal CPU frequency at the user (fu,i)
and at the MEC (fm,i) can be obtained in closed form from
the cubic equations below

f�
u,i =

(
ξi

2(1 − w)κi

) 1
3

(19a)

2wκmdmsif
3
m,i + λ5f

2
m,i − θidmsi = 0 (19b)

where θi and λ5 are the dual variables for constraints (f) and
(h) respectively.

Proof: Obtained directly by applying KKT conditions
with respect to fu,i and fm,i. The chosen root for the cubic

equation is that which satisfies the boundary conditions. See
Appendix C. �
Theorems 1 and 2 provide the optimal solution of the primal

variables in terms of the dual variables. We can use them to
design a primal-dual algorithm to solve the convex optimiza-
tion problem (P2) in (13) for a fixed s. The dual-function for
this problem can be defined as

g(λ1, λ5, β, φ, ξ, θ) = inf
t,f

L(t, f , λ1, λ5, β, φ, ξ, θ) (20)

where L is the Lagrangian for problem (P2) defined in (23)
and the dual-problem is given as

P-dual: max g(λ1, λ5, β, ξ, θ, φ)
s.t. λ1, λ5, βi, φi, ξi, θi ≥ 0 ∀i = 1 . . .K (21)

The Lagrangian dual L has no closed-form, so we use a sub-
gradient approach to solve the dual minimzation problem [39].
We design a primal-dual algorithm which iteratively updates
the primal and dual variables until reaching a target accuracy.
We use the optimal primal solutions in Theorems 1 and 2 to
obtain the dual function, g(x), as given in (20). The problem
then becomes maximizing this dual function in terms of the
dual variables. The subgradient terms with respect to all dual
variables are as follows.

∇λ1L =
3∑

j=1

Tj − Tdelay, ∇βiL = tu,i − T1 (22a-b)

∇ξiL =
ciqi

fu,i
+ tu,i − Tdelay (22c)

∇θiL =
dmsi

fm,i
− T2, ∇φiL = td,i − T3 (22d-3)

∇λ5L =
K∑

i=1

fm,i − fm,max (22f)

For our implementation, we update the dual variables
based on the shallow-cut ellipsoid method using the
sub-gradient expressions in (22a-b-f). The sub-gradient in
the ellipsoid algorithm is calculated at the ellipsoid center,
x = (λ1, λ5, β, ξ, θ, φ), to reach the minimum volume
ellipsoid containing the minimizing point for the dual-function
g(λ1, λ5, β, φ, ξ, θ). For each iteration, the primal variables
updates are based on Theorems 1 and 2, and a new value
for g(λ1, λ5, β, φ, ξ, θ) is calculated. Since the ellipsoid
algorithm is not a descent method, we keep track of the best
point for the dual function g(λ1, λ5, β, φ, ξ, θ) in (20) at each
iteration of the inner algorithm. These primal-dual update steps
are repeated until the desired level of precision, ε2, is reached
for the stopping criterion, which is the minimum volume of
the ellipsoid in our algorithm. The steps for the primal-dual
algorithm are shown in Algorithm 2.

C. Algorithm Implementation and Convergence

The nested algorithm for optimally solving (P) is comprised
of the outer latency-aware descent algorithm, and the inner
subgradient based primal-dual algorithm. These algorithms are
executed at the MEC server which then distributes results to
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Algorithm 2 Solution for Inner Optimization Problem (P2)
Given a starting point s
Initialize: Dual variables, λ1, λ5, βi, ξi, θi, φi∀i.
Begin Primal-Dual Algorithm for (P2)

• Calculate f�
u,i and f�

mi ∀i = 1 . . .K from (19a) and (19b)
respectively. For any ith user,
◦ If f�

mi < fm,min, apply boundary condition, then
f�

mi = fm,min

◦ If f�
u,i < fmin, OR f�

u,i > fmax, then apply boundary
conditions, f�

u,i = fmin OR f�
u,i = fmax.

• Calculate tu,i and td,i, using (17a-b). Then T �
1 =

max t�u,i and T �
3 = max t�d,i.

• Update pi and ηi using (12).
• Using updated power values to calculate σ2

1,i and σ2
2,i.

• Calculate t�MEC from (6). Then T �
2 = max t�MEC

• Find dual function value, g(λ1, λ5, ξ, θ, β, φ), in (20)
◦ If dual variables converge with ε2, stop
◦ Else, find subgradients in (22a-b-f), update
dual-variables using ellipsoid method, continue

End Primal-Dual Algorithm for (P2)

the users. Initializing the nested-algorithm only requires the
user locations and the amounts of data requested, which can
be shared over a control channel before the actual data com-
munication over data traffic channels in uplink and downlink
takes place. For simulations in this paper, we implemented
the algorithm on a personal computer, but implementation
on MEC servers with high computational capabilities can be
expected to run seamlessly in a wireless fading environment.
For the inner algorithm, we use the shallow-cut ellipsoid

method to update the dual variables, where convergence is
guaranteed due to the convexity of problem (P2) as shown
in Lemma 2. As the optimal values for the dual variables
are reached in the inner algorithm, the values for the primal
variables also converge to their respective optimal values
by strong duality. For the ellipsoid method, the number of
iterations is proportional to the number of constraints n [40]
since the ellipsoid volume decreases as a geometric series
whose ratio depends on the dimension of the space [41]. The
convergence speed for the ellipsoid algorithm is proportional
to R exp(− Kin

2n2 ), where Kin is the number of iterations to
reach ε2-optimal solution for (P2) [42], which requires modest
computation per step of O(n2) [43].
The convergence of the outer algorithm depends on the

descent method chosen, i.e. the gradient descent or Newton
method, and the line-search method. We use the inexact
backtracking line-search in our latency-aware descent algo-
rithm due to its simplicity and effectiveness which is known
to always terminate [37]. For the standard gradient-descent
method, f0(si(k)) converges to the optimal point p� linearly,
while the Newton method has a linear start and then hits the
quadratic convergence after a small number of iterations [37].
While the Newton method can warrant faster convergence with
a significantly lower number of iterations, it has higher compu-
tation cost with each Newton iteration requiring O(n3) flops
compared to O(n) flops required for gradient descent [44].

Fig. 5. Simulated Network layout.

In our latency-aware descent outer algorithm, since we add an
additional stopping criterion based on the latency, the algo-
rithm may stop earlier than the standard implementation.
Therefore, we expect to see the latency-aware gradient descent
to have the same linear convergence, but the latency-aware
Newton method may not hit the quadratic convergence if the
latency constraint is met before that.
Among all the methods employed, the convergence speed of

the ellipsoid algorithm is the slowest component of the nested
algorithm. The convergence speed varies with the number of
constraints n, which is especially relevant for systems with
large number of users since constraints (d)-(g) for problem (P)
in (13) are per-user constraints. For a fixed number of users
and consequently for a fixed number of dual-variables the rate
of convergence for the ellipsoid algorithm is linear (similar
to the center-of-gravity method [42] upon which the ellipsoid
algorithm is based [40]) albeit typically at a much slower rate
than gradient descent.
At each iteration of the descent algorithm, a call is made

to the ellipsoid algorithm (see Algorithm 1), and the outer
algorithm moves on to the next iteration after convergence
of the inner algorithm is reached for a given s. Therefore,
the overall number of iterationsKtot is a product of the number
of iterations Kout and Kin of the outer and inner algorithms
respectively. For the nested algorithm with gradient descent,
the convergence speed is linear, where the convergence time
is dominated by the inner ellipsoid algorithm. For the nested
algorithm with Newton descent method, the convergence is
super-linear and sub-quadratic, with the convergence speed
being closer to linear than quadratic due to the slow speed
of the ellipsoid algorithm compared to the Newton method.
The convergence of the nested algorithm would therefore
be significantly faster when using the latency-aware Newton
method compared to gradient-descent.

V. NUMERICAL RESULTS

In this section, we evaluate the solution of energy min-
imization problem (P) with respect to energy consumption,
time required, and the partition of bits offloaded to the MEC
for computation. We consider a 20m× 20m area with 4 APs
and 16 users randomly located with K = 4 users per AP’s
coverage area and N = 100 as shown in Figure 5. For
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Fig. 6. Total time consumption and percentage of time spent in each phase.

simulations, w = 10−3, Td = 20ms (in accordance with
the AR/VR applications requirement for motion-to-photon
latency [29]), B = 5MHz, τc = BTd, Γ1 = Γ2 = 1.25,
μ = 2, κi = 0.5pF, κm = 5pF, ci = 1000, dm = 500,
γ = 2.2, σ = 2.7dB, σ2

r = −127dBm, σ2
k = −122dBm,

(fmin, fmax, fm,min) = (60, 1800, 2200) MHz. Each MEC
processor has 24 cores with maximum frequency of 3.4GHz.
For initialization of Algorithm 1, any feasible value 0 ≤
si ≤ ui can be chosen which satisfies the constraints for
power and latency. For our numerical simulations we start
with si = 0.6 ui ∀i. Transmit power available at user and
AP is 23 dBm and 46 dBm respectively. To calculate the
interference and noise power in (2) and (8) which include
massive MIMO pilot contamination and intercell interference,
we assume that user terminals transmit at their maximum
power, that is pqi = 23dBm, and the interfering APs use
equal power allocation in the downlink, that is ηqi = 1

K ∀i.
Numerical results are averaged over 1000 independent channel
realizations of H and G.

A. Effect of the Amount of Data for Computation

Figure 6 shows the total time consumption and time con-
sumed per phase as the amount of requested data increases.
We use ui = u ∀i ∈ [1, K]. For low data requests, u <
40kbits, the total time consumption is always less than Td.
For u > 40kbits, however, the consumed time becomes a
limiting factor and the energy is minimized such that the
latency constraint is met with equality. Here Ttotal is as given
in (16). We also show the breakdown for time consumed in
each phase, where Phase II consumes the minimum time due
to the MEC’s high CPU frequency. The offloading time T1

is more than the downloading time T3 due to the difference
in user and AP transmit powers even though we assume that
the computed results s̃i =2 si. The average time for local
computation at users is much higher than T2 because of lower
processing speed at the users. For larger data requests, the time
max(tu,i + tL,i) in (16) becomes equal to Td and leads to the
termination of the latency-aware descent algorithm.
Figure 7 shows the percentage of offloaded bits (for two

representative users), the percentage energy consumption at
the users and at the MEC, the breakdown for the percentage of
energy consumed at the users, and the actual energy consumed

Fig. 7. Percentage of data offloaded (a), total energy consumption (b),
transmission/computation energy consumption at users (c) and MEC (d) versus
total data size for computation.

Fig. 8. Time consumption in total and per phase (top), and percentage of
data offloaded (bottom) under imperfect CSI.

at the MEC for computation and transmission. When u <
30kbits, no data is offloaded, hence the system’s energy
consumption is solely due to the user computation. As data
requests increase, some data is offloaded to the MEC reaching
around 60% at ui = 70kbits. Correlating with Figure 6,
the data partition for local and offloaded bits is optimized such
that the total time remains within the latency constraint. For
u > 40kbits, the MEC’s energy consumption becomes domi-
nant since more than half the data is offloaded. Note that the
actual energy consumption at both users and the MEC would
increase as more data is requested since Eu and Em are both
proportional to ui. Computation energy at user is proportional
to ui−si and hence decreases with increasing si. For the MEC,
since both computation and transmission energy in (5) and (9)
respectively, increase proportionally to si, their percentage
energy consumption remains constant. We therefore show the
breakdown of the actual energy consumption at the MEC. For
both the users and the MEC, wireless transmission consumes
significant energy. For the MEC, since downloading energy
(left yaxis) is significantly larger than the computation energy
(right yaxis), they are therefore shown on separate axes.

B. Effect of Massive-MIMO Channel Estimation Error

Figure 8 shows the percentage energy consumption at the
users and MEC, and the time consumption in total and per
phase for the case where the effect of pilot contamination
in channel estimation is included. We see a similar trend as

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 11,2021 at 19:45:48 UTC from IEEE Xplore.  Restrictions apply. 



6988 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

Fig. 9. Percentage of data computed locally (top) and energy consumption
at users and MEC (bottom) versus round-trip delay constraint.

the case of perfect channel estimation in Figure 6, however,
more data is offloaded to the MEC. This would imply that
wireless transmission with the meager transmit power at the
users consumes more time and energy. We therefore see
that for ui ≥ 30 kbits almost half the total time is spent
in the Phase I. Similarly, the time consumed for Phase III
is approximately twice that for the case of perfect channel
estimation. The time for MEC computation, T2 is comparable
for both cases since more offloaded data does not significantly
increase the processing time at the MEC due to its powerful
CPUs. A key difference to note under imperfect CSI is that
for ui > 40 kbits, the latency constraint is violated, since the
sum time for offloading and local computation becomes larger
than the delay constraint, Td ≤ 20ms.

C. Effect of Latency Requirement

Figure 9 shows the percentage of locally computed data (for
two users), and the breakdown for the total energy consumed
at the users and MEC as Td is increased for ui = u =
20kbits ∀i. For strict latency constraint, we see that less than
half the data is computed locally. This implies that energy
is consumed for wireless transmission (offload/download) as
well as computation (at both users and MEC). However, as the
delay requirement is relaxed, for Td > 12ms, all data is
computed locally, and the weighted energy consumption in
this regime can be approximated as Etotal ≈ (1−w)Eu. With
the relaxed constraint, users can afford to spend more time for
computation as tL,i using their low CPU frequencies, which
leads to lower energy consumption. We therefore see that both
Eu and Em settle to a constant level. Em becomes negligible
since all data is computed locally for larger values of Td.

D. Effect of Data Partition

In this section we analyze the effect of data partitioning
on the energy consumption under a given latency constraint.
Specifically we compare the proposed partial offloading
scheme with binary offloading where each user’s task cannot
be partitioned and is either computed entirely at the local
user or at the MEC. The binary offloading solution presented
is the best one with the lowest overall energy consumption
chosen from all possible binary offloading combinations.

Fig. 10. Energy and time consumption for three different schemes with
increasing amount of requested data.

Fig. 11. Energy and time consumption for three different schemes with
relaxation in latency constraint.

Figure 10 shows the time and energy consumption for the
case when the requested computation data is increased with
a fixed latency constraint of Td = 20ms. We see significant
disparity between the binary and partial offloading schemes.
For low data requests, local processing at users is optimal so
both schemes consume the same time and energy, however
for larger data requests, the binary scheme offloads all the
data to the MEC, leading to faster time performance but
at the expense of multiple times larger energy consumption,
attributed mainly to the energy consumed for wireless trans-
mission in phases I and III. Note that the partial offloading
solutions always meet the latency constraint so there is no
benefit in faster time performance for the binary scheme,
whereas the energy saving for partial offloading is significant.
Figure 11 shows the energy and time consumption of the

two schemes as the delay constraint is relaxed, that is, Td is
increased at a fixed amount of requested data, ui = 40 kbits.
For this amount of data, both the energy and time consumed
for the two schemes converge for Td ≥ 22ms, when the latency
constraint is lax enough to allow all data to be computed
locally for both schemes. For tighter latency constraints,
however, binary offloading consumes much higher energy for
tight latency since all data is offloaded to the MEC to meet the
latency requirement. Partial offloading with data partitioning
therefore appears as a potent design variable for the resource
allocation problem, with significant impact on the system’s
energy consumption.
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Fig. 12. Algorithms convergence.

E. Effect of Frequency Scaling

In addition, we analyze the effect of CPU frequency scaling
on energy consumption and latency. Figures 10 and 11 show
the results for partial offloading with and without frequency
scaling against the amount of requested data ui and the latency
requirement Td. The scheme without frequency scaling simply
allocates the CPU frequencies of all users at the maximum as
fu,i = fmax and the MEC frequency equally among all users’
tasks as fm,i = fm,max

K .
The results in Figure 10 show that frequency scaling

has negligible effects on the energy and time consumption.
Figure 11 also shows comparable results of partial offloading
with and without frequency scaling as the latency require-
ment is relaxed. These results suggest that the overhead of
optimizing CPU frequency can be avoided, as long as the data
partition and time allocation per phase is optimized.

F. Algorithm Convergence

Figure 12 shows the convergence for our proposed opti-
mization algorithm with two descent methods for the outer
optimization for ui = u = 20kbits ∀i. We compare between
the latency-aware Newton method and latency-aware Gra-
dient Descent (GD). For both methods, a call is made at
each iteration to the ellipsoid algorithm which has slow
convergence and hence dictates the nested algorithm’s speed.
Using latency-aware Newton method, we observe superlinear
convergence which agrees with our analysis in Section IV-C.
For the GD method, overall linear convergence is observed.
While an outer tolerance level of ε1 = 10−5 is used for both
methods, the GD method is preemptively stopped in Figure 12
because the boundary condition for s is met, that is s = 0.
Therefore using the latency-aware Newton method, our algo-
rithm approaches a lower tolerance at convergence than GD.
Figure 13 shows the convergence time for the nested algo-

rithm, and that consumed separately by the inner and outer
algorithms. The overall convergence time increases almost
linearly with the number of users. A significant disparity
in the convergence speed when using latency-aware Newton
method or GD is seen, since the Newton method converges in
considerably fewer iterations compared to GD, hence making
fewer function calls to the inner ellipsoid algorithm with
slow convergence. Looking at the time breakdown for the
outer and inner algorithms, the inner ellipsoid algorithm con-
sumes almost all the time of the nested algorithm. Comparing

Fig. 13. Convergence speed using the Newton method (top) or GD (bottom).

between the outer algorithms, latency-aware Newton method
converges more than ten times faster than GD and has an
almost constant convergence speed with respect to the number
of users. For latency-aware GD, however, the convergence time
increases with the number of users. For our implementation on
a personal computer, the time step unit is a second, however
for faster machines running this algorithm, for instance MEC
servers with the high-performance CPUs, this time-step could
be significantly smaller and can potentially allow real time
implementation.

VI. CONCLUSION

We formulated a novel system-level energy optimization
problem for a delay constrained, massive MIMO enabled
multi-access edge network. We designed efficient nested algo-
rithms to minimize the total weighted energy consumption at
both the user(s) and the MEC, with more weight on the users’
energy consumption to commensurate the different magnitudes
of available power at a user and an MEC. Comparing between
two different approaches for the outer algorithm showed that
the latency-aware Newton method is fast and scalable with
the number of users. These algorithms demonstrate that it is
optimal to compute data locally for a low amount of data
requests or relaxed latency constraint. For larger data requests,
however, it is necessary to partially offload data to the MEC
for computation in order to meet the latency constraint since
the local computation time at users is a limiting factor due to
meager processing resources. Furthermore, channel estimation
error on massive MIMO links due to pilot contamination
causes the transmission time and energy to increase owing to
larger amounts of data offloaded to the MEC. Comparison to
the binary offloading scheme also reveals significant gains in
energy efficiency for the proposed partial offloading scheme.
Our algorithms offer practical means to achieving the mini-
mum network energy consumption while meeting the required
latency.

APPENDIX

A. Appendix A - Proof for Lemma 2

The objective function is affine and convex.
• Constraints (c), (e), (g), (h) for (P) in (13) are linear.
• For constraints (a) and (b), the second term is quadratic
and convex in fu,i and fm,i respectively. The first terms
are of the form f(x) = x2

1
x in tu,i and td,i respectively,
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with ∇2
xf(x) = 2

1
x

x3 > 0 for x > 0, and hence f(x) is
convex in x.

• For constraints (d) and (f), the function is of the form
f(x) = 1

x in fu,i and fm,i respectively with ∇2
xf(x) =

2
x3 > 0 and hence convex.

• Relevant constraints are also linear and convex in Eu,
Em and Tj ∀j.

B. Appendix B - Proof for Theorem 1

The Lagrangian dual of the problem (P) is given as

L = Etotal + λ0(Etotal − (1 − w)Eu − wEm)

+ λ1(
3∑

j=1

Tj − Td) + λ2

( Ku∑
i=1

tu,i(2
si

νtu,iB − 1)Γ1σ
2
1,i

Nγi

+
Ku∑
i=1

κici(ui − si)f2
u,i

)
+

K∑
i=1

ξi

(ciqi

fu,i
+ tu,i − Td

)

+ λ3

⎛
⎝ Ku∑

i=1

td,i(2
μsi

td,iB − 1)Γ2σ
2
2,i

Nγi
+

Ku∑
i=1

κmdmf2
misi

⎞
⎠

+
K∑

i=1

βi(tu,i − T1) +
K∑

i=1

θi

(dmsi

fm,i
− T2

)

+
K∑

i=1

φi(td,i − T3) + λ5

( K∑
i=1

fm,i − fm,max

)
(23)

Taking the derivative of the Lagrangian in (23) with respect
to Etotal, Eu and Em and setting it equal to zero results in
λ0 = −1, λ2 = 1 − w and λ3 = w respectively.
Applying Karush-Kuhn-Tucker (KKT) conditions
1) With Respect to Offloading Time tu,i in Phase I:

∇tu,iL = (1 − w)

((
2

si
νtu,iB − 1

)
Γ1σ

2
1,i

Nγi

−
si ln 2

(
2

si
νtu,iB

)
Γ1σ

2
1,i

νBtu,iNγi

)
+ βi + ξi = 0

⇐⇒ (1 − w) (f(x1,i) − x1,if
′(x1,i)) + βi + ξi = 0

(24)

where x1,i = 1
tu,i

and f(x1,i) =

�
2

si
νtu,iB −1

�
Γ1σ2

1,i

Nγi
.

2) With Respect to Downloading Time td,i in Phase III:

∇td,i
L = w

((
2

μsi
td,iB − 1

)
Γ2σ

2
2,i

Nγi

−
μsi ln 2

(
2

μsi
td,iB

)
Γ2σ

2
2,i

Btd,iNγi

)
+ φi = 0

⇐⇒ w(f(x2,i) − x2,if
′(x2,i)) + φi = 0 (25)

where x2,i = 1
td,i

and f(x2,i) =

�
2

μsi
td,iB −1

�
Γ2σ2

2,i

Nγi
.

Substituting y = − βi+ξi

(1−w) , x = x1,i = 1
tu,i
, c = ν

si
,

σ2 =
Γ1σ2

1,i

Nγi
in (18) for tu,i, and y = −φi

w , x = x2,i = 1
td,i
,

c = 1
μsi
, σ2 =

Γ2σ2
2,i

Nγi
in (18) for td,i, we get the upload-

ing (downloading) times, tu,i(td,i) in (17a-b), respectively.

C. Appendix C - Proof for Theorem 2

Applying KKT conditions
1) With Respect to the Local CPU Frequency at the ith User

fu,i:

∇fu,iL = 2(1 − w)κici(ui − si)fu,i − ξi
ciqi

f2
u,i

= 0

⇐⇒ 2(1 − w)κici(ui − si)f3
u,i − ξici(ui − si) = 0

(26)

2) With Respect to the MEC CPU Frequency for Computa-
tion of the ith User’s Task fm,i:

∇fm,iL = 2wκmdmsifm,i − θidmsi

f2
m,i

+ λ5 = 0 (27)

Simplifying (26) and (27) leads to (19a) and (19b) respectively.
The equation for fmi is in terms of the variable si but can be
solved in closed form as a root for the cubic equation of the
form af3

mi+bf2
mi+cfmi+d, where a = 2Wκmdmsi, b = λ5,

c = 0 and d = −θidmsi.
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