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Enhanced Radio-Frequency Sensors Based on a Self-Dual Emitter-Absorber Q2
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We propose and experimentally demonstrate a parity-time-symmetric electronic system exhibiting the
self-dual emitter-absorber property with a remarkable modulation depth in the radio-frequency (rf) region.
The dramatically different rf responses between the emitter and absorber modes may allow detection of
ultrasmall conductive or reactive perturbations. Our measurement results show that even a perturbation on
the order of 10−2 can greatly change the system’s output intensity by more than 30 dB, consistent with the
theoretical prediction. The measured sensitivity is far beyond the sensitivity of traditional sensors based
on a Fabry-Perot resonator, and may lead to monotonic rf sensors with high sensitivity and resolvability.

DOI: 10.1103/PhysRevApplied.0.XXXXXX

I. INTRODUCTION

In the past decade, non-Hermitian physics, exempli-
fied by parity-time (PT) symmetry, has gained tremen-
dous attention in the fields of quantum mechanics [1],
optics, photonics [2–9], acoustics [10,11], and electronics
[12–17]. These physical systems share a common feature:
that is, non-Hermitian degeneracy and exceptional points
(EPs) where the Taylor-series expansion fails to converge
in the multivalued complex eigenspectrum. The appear-
ance of branching singularities at EPs [7–9,18] has led to a
variety of sensing [17–25], imaging [26,27], information-
processing [28–34], and wireless-power-transfer [35,36]
applications. Besides, another unusual kind of singular-
ity, a coherent-perfect-absorber–laser (CPAL) point, can
be observed in PT-symmetric systems [6,37–42] consti-
tuted by coupled gain and loss oscillators. Traditionally,
a laser oscillator emits coherent outgoing radiation, while
a CPA is a dark medium absorbing all incoming radiation
(i.e., the time-reversed counterpart of a laser). However, at
the CPAL point of PT-symmetric systems, the laser and
CPA modes, which exhibit completely different scatter-
ing properties, can be switched at will through adjustment
of the initial phase difference of two counterpropagating
monotonic input waves. Experimental observations of such
a self-dual singularity have been reported in optics and
photonics [6,38], which show great promise for build-
ing next-generation optical switches and interferometers
[6,37–42].

Sensing may be one of the most-interesting applications
of non-Hermitian devices with exotic spectral singularities.

*pychen@uic.edu

Several groups have demonstrated that singular points
in PT-symmetric systems, such as EPs that cause the
eigenvalue-bifurcation effect, can be exploited to boost the
resonance frequency shift and thus sensitivity of rf or opti-
cal sensors [17–24]. However, it has been reported that EP-
based sensors could be rather vulnerable to phase noise and
flicker noise, as well as modal interference occurring near
a higher-order EP [43–45], and could result in low spec-
trum or bandwidth efficiency, especially in the radio-wave
region. Very recently, we theoretically proposed a mono-
tonic (or monochromatic) optical sensor operating at the
CPAL point for mitigating the noise and spectral efficiency
issues observed in EP-based sensors [43–46]. Differently
from EP-based sensors, which monitor the shift of resonant
peaks due to the eigenvalue bifurcation, the CPAL-based
sensor adopts a monotonic sensing scheme and detects
the output intensity as a function of the impedance per-
turbation at a given frequency [46]. In this Letter, we
further provide an experimental demonstration of CPAL-
based PT-symmetric sensors with enhanced sensitivity in
the radio-frequency (rf) range.

Figures 1(a) and 1(b) present the schematics and a cir-
cuit diagram of the proposed PT-symmetric rf sensor,
which consists of a lossy component with conductance G Q3
and an amplifying component with an effective negative
conductance −G [e.g., a negative-impedance converter
(NIC)]. These gain and loss elements are separated by an
electrical length x = π/2 + δx, which can be realized with
a transmission-line segment or a compact T/� equivalent Q4
circuit [Fig. 1(b)]. To achieve the CPAL effect, the con-

Q5ductances must be tuned to G = | − G| = √
2Y0, where

Y0 is the characteristic admittance of the transmission-
line segment [46]. The scattering matrix S can be used
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(a)

(b)

FIG. 1. (a) Equivalent-transmission-line model for the generalized PT-symmetric system and (b) its practical realization in the rf
range; here a shunt resistor or capacitor of different values (i.e., pseudosensor) is used to mimic the impedance variations in a sensing
or actuation element. (c) Photograph of the CPAL-locked PT-symmetric rf circuit in (b), realized with the PCB technique.Q10

to connect the input and output voltage signals in the left
(−) and right (+) ports: |ψout〉 = S|ψin〉, where |ψin〉 =
(ψ−

f , ψ+
b )

T and |ψout〉 = (ψ−
b , ψ+

f )
T [Fig. 1(a)]. At the

CPAL frequency (ω0), the two eigenvalues of S (λ±) will
diverge into zero (i.e., CPA mode) and infinity (i.e., laser
mode); see Appendix A. Such a self-dual spectral singu-
larity can be seen in Fig. 2(a), where δx = 10−2π /2. When
a small impedance perturbation δY is introduced, this elec-
tronic PT system can be switched from CPA mode to laser
mode and vice versa, resulting in a dramatic change in the
output intensity. This property can be exploited to build
types of rf and microwave sensors with ultrahigh sensitiv-
ity. The laser and CPA modes can be characterized by the
output coefficient�, defined as the ratio of the total output
power to the total input power:

� =
|ψ−

b |2 + |ψ+
f |2

|ψ−
f |2 + |ψ+

b |2 . (1)

When the voltage ratio of two input waves ψ+
b /ψ

−
f =

i(
√

2 − 1), the CPA mode (� ≈ 0) can be achieved, while
the emitter mode is obtained at any other ψ+

b /ψ
−
f value.

Let us first consider the conductive (resistive) sensing sce-
nario, where the electronic circuit in Fig. 1(b) initially
works in the CPA mode and a small conductive per-
turbation δG is introduced to the loss side. The output

coefficient as a function of the conductive perturbation and
the intentional phase offset δx can be expressed as

�PT ≈ 1
4

(
(δx)2 + ν2

(δx)2

)
+ O(ν3), (2)

where ν = δG/Y0 � 1 (see Appendix B for detailed
derivations of the output coefficients). From Eq. (2), it is
clear that in the small-perturbation regime, the sensitiv-
ity may be boosted by an augmentation factor, 1/(δx)2.
As ν increases, the output coefficient will rapidly con-
verge to max�PT = 3 + 2

√
2. Here we also examine the

sensor based on a Fabry-Perot (FP) resonator formed by
a pair of lumped elements with conductances G =

√
2Y0

separated from each other by electrical length x = π+ δx.
When ψ+

b /ψ
−
f =−1, the FP resonator behaves like a CPA.

Under small conductive perturbation, the output coefficient
of the FP-type sensor is given by

�Fabry - Perot ≈
(

3 − 2
√

2
)2
(1 + 2ν2)+ O(ν3). (3)

Comparing Eqs. (2) and (3), we find that sensors based
on the CPAL-locked electronic PT dimer can outper-
form the sensor based on the conventional FP resonator
in terms of sensitivity and modulation depth because
of the augmentation factor 1/(δx)2, which sharpens the
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(a)

(b)

(c)

FIG. 2. (a) Evolution of the eigenvalues as a function of the
normalized frequency for the PT-symmetric electronic circuit in
Fig. 1; here G = |−G| = √

2Y0 and x(ω0) = 0.99π /2. The mea-
surement (red lines) and simulation (blue lines) results are in
a good agreement at the CPAL point. Contours of the output
coefficient as a function of conductive perturbation ν for the
CPAL-locked PT-symmetric system in Fig. 1(a) and a passive
Fabry-Perot resonator, with (b) positive phase offset δx and (c)
negative phase offset−δx.

derivative of �PT(ν). Such an effect can be clearly
observed in Figs. 2(b) and 2(c), which present contours of
� as a function of ν and δx for the CPAL-locked sensor
and the FP-type sensor.

In the same vein, under small reactive perturbation
(iδB), the output coefficient of the CPAL-locked sensor and

the FP-type sensor can be expressed as

�PT ≈ 1
4

(
(δx)2 + μ2

(δx)2

)
+ O(μ3), (4)

�Fabry - Perot ≈
(

3 − 2
√

2
)2

+ (17
√

2 − 24)μ2 + O(μ3),

(5)

where μ = δB/Y0 � 1. Again, it is evident from Eq. 4(a)
that the sensitivity related to the first derivative of �PT(μ)

can be enhanced by a factor of 1/(δx)2. Such an enhance-
ment of sensitivity is, however, not obtained in FP-type
sensors.

In this work, we build a laboratory prototype of the
CPAL-locked electronic circuit on a printed circuit board
(PCB). The schematics and a photograph of the PCB are
shown in Figs. 1(b) and 1(c). In our design, positive and
negative shunt conductances are realized with a resistor
and a NIC based on the feedback structure and a high-
speed operational amplifier (OPA355). At 13.48 MHz, the Q6
effective impedances of the NIC and the resistor are mea-
sured to be −35.56 − 0.18i 
 and 35.4 
, respectively;
here we use the eiωt notation. The equivalent impedance
and electrical length of the T-equivalent network are Y0
and x = π/2 + δx, where δx ∼ 3π/40. The PCB is con-
nected to a two-port vector network analyzer with input
conductance Y0 = 1/50 S. This setup allows the system to
operate near the CPAL point obtained when G = |−G| =√

2Y0 and x = π/2. To generate the conductive (reactive)
perturbation to mimic a sensor or actuator with variable
effective resistance (capacitance) [13,17–20], a shunt resis-
tor (capacitor) of admittance δG (iδB) is added to the
onboard PT-symmetric circuit; see Appendix C for the
detailed implementation and measurement. Figure 2(a)
compares the measured and simulated eigenvalues of the
CPAL-locked circuit, showing good agreement between
both results near the CPAL point. In our simulation, the
circuit simulation is performed with ADVANCED DESIGN
SYSTEM, with a realistic operational-amplifier mode [47,
48]. In addition, the parasitic capacitance Cp and the para-
sitic resistance Rp existing in inductors L1 and L2 and the
NIC are added in the PT circuit, as can be seen in Fig. 1(b).

Figures 3(a) and 3(b) present the measured S parame-
ters for the PT circuit in Fig. 1(c) under conductive and
reactive perturbation, respectively; here the effect of Cp
and Rp is already taken into consideration. It can be seen
from Fig. 3 that the measurement (points) and simula-
tion results (dashed lines) are in good agreement. Without
loss of generality, the output coefficients can be obtained
from the measured S parameters (see Appendix C for
details). For comparison, the rf FP resonator sketched
in the inset in Fig. 4 is fabricated and measured. The
electronic FP resonator is formed by a pair of resistors
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(a)

(b)

FIG. 3. Measured (points) and simulated (dashed lines) real (red) and imaginary (blue) parts of the S parameters under (a) conductive
and (b) reactive perturbation. For both cases, the simulation results agree well with the measured ones in the working range. The
simulation is based on the equivalent-circuit model in Fig. 1(b), with the effective parasitic capacitance and a realistic SPICE model for
the operational amplifier.

with R = 35.4 
 and a T-equivalent network with x ≈
π. Figures 4(a) and 4(b), respectively, depict the out-
put coefficients �PT and �Fabry - Perot under conductive
and reactive perturbations (i.e., by our loading the circuit

with different shunt resistors and capacitors); for each
data point, the measurement is repeated by eight times
to plot the root-mean-square error. The measurement and Q7
simulation results are in good agreement, showing that

(a) (b)

FIG. 4. (a) Output coefficient versus conductive perturbation ν = δG/Y0 for the CPAL-locked (red lines) and FP (blue lines) rf
sensors sketched in the inset; here the points, solid lines, and dashed lines represent the measurement, simulation, and theoretical
results [according to Eqs. (2) and (3)], respectively. When plotting the theoretical predictions, we used the phase offset δx = 3π/40 to
fit the measurement results. The maximal error bar of the CPAL sensor is below 2.4 dB. (c) Similar to (b) but for reactive perturbation
μ = i(δB)/Y0; here the theoretical prediction is based on Eq. (4).

XXXXXX-4



441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

Q1ENHANCED RADIO-FREQUENCY . . . PHYS. REV. APPLIED 0, XXXXXX (2021)

the slope of the output-coefficient curve of the CPAL-
locked circuit is remarkably larger than that of the FP-type
circuit. As a result, the CPAL-locked rf sensor may be
capable of detecting small conductive and reactive per-
turbations, well beyond the limitation of current passive
rf sensors. We note that there are slight discrepancies
between the measured and simulated output coefficients,
which could be attributed to fabrication errors and the par-
asitics of lumped elements mounted on the PCB, such as
Cp , Rp , board defects, and SMA-connector flaws. In prac-
tice, the above-mentioned issues can be mitigated by use of
complementary-metal-oxide-semiconductor (CMOS) and
integrated-circuit technologies. For on-chip NIC modules
(e.g., a cross-coupled pair, which is commonly used in
analog and rf integrated-circuits) and sensors, parasitic
elements could be partially or fully removed, and there-
fore the root-mean-square error can be further minimized.
Besides, through the on-chip techniques, the intentional
phase offset (δx) of an equivalent network can be precisely
controlled. As a result, on-chip techniques may allow one
to push the sensitivity and detection limits of the CPAL-
locked PT-symmetric sensor. To practically implement the
proposed sensor initially locked in the CPA state, a high-
resolution tunable phase shifter, such as those made of
CMOS or microelectromechanical-system (MEMS) tech-
nologies, and an attenuator are required at a terminal of this
rf circuit. The proposed CPAL sensor may be beneficial for
various sensing scenarios. For example, in rf biosensing
applications [49], a trapped living cell generally changes
the reflection or transmission coefficient of a transmission-
line segment by less than 0.5 dB. However, the same cell, if
regarded as a chemiresistance perturbation, could lead to aQ8
change in the output coefficient of the CPAL sensor on the
order of tens of decibels, which implies much-increased
sensitivity, detectability, and noise immunity.

Finally, we note that the proposed CPAL-locked PT-
symmetric sensor with the equivalent-transmission-line
model sketched in Fig. 1(a) can also be implemented in
the optical domain, where the gain and loss elements could
be realized with active and passive metasurfaces [24,38]
and the phase offset is determined by the thickness of the
dielectric spacer or air gap.

To sum up, we experimentally demonstrate a CPAL-
locked PT-symmetric electronic circuitry that can be used
to build monotonic rf sensors capable of detecting sub-
tle impedance changes with high sensitivity. At the CPAL
point, a small conductive or reactive disturbance in the
sensing or actuation element can result in substantial
changes in the output intensity. Our measurement results
show that the proposed sensor can detect conductive and
capacitive perturbations on the order of 10−2, which is
not possible with a passive rf sensor based on a classical
Fabry-Perot resonator. With further development and opti-
mization of the electronic PT system using CMOS and/or
on-chip MEMS technologies, the CPAL-based sensing

mechanism could be used to build next-generation ultra-
sensitive rf and microwave sensors and could be read-
ily extended to interferometric optical sensors based on
monotonic lights.
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APPENDIX A: SCATTERING PROPERTIES AND
THE CPAL CONDITION OF THE PT CIRCUIT

The scattering matrix S of the PT-symmetric two-port
transmission-line network in Fig. 1(a), with G = √

2Y0 and
−G = −√

2Y0, can be derived as

S =
⎛
⎝ sec x i

(
1 + √

2
)

tan x

i
(

1 − √
2
)

tan x sec x

⎞
⎠ . (A1)

The CPAL point occurs when x = π/2. Throughout this
study, we use the eiωt notation. The eigenvalues of S can
be written as

λ± = sec
(
πω

2ω0

)
± tan

(
πω

2ω0

)
, (A2)

where ω is the angular frequency and ω0 is the angular
design frequency (frequency at CPAL point).

APPENDIX B: RESPONSE OF THE OUTPUT
COEFFICIENT TO IMPEDANCE

PERTURBATIONS

When a conductive perturbation ν = δG/Y0 is applied
to the PT circuit in Fig. 1(b) initially operating in CPA
mode [i.e., ψ+

b /ψ
−
f =i(

√
2 − 1)], the output coefficient in

response to ν can be derived as

�PT = 2
√

2ν(sec δx − 1)− 4(sec δx − 1)2 − ν2sec2δx

(2
√

2 − 3)ν2 − (ν + 2)2tan2δx

≈ 1
4

(
(δx)2 + ν2

(δx)2
− (8 − 3

√
2)

4
ν3

(δx)2
+ O(ν4)

)

if ν � 1

≈ 1
4

(
(δx)2 + ν2

(δx)2

)
+ O(ν3). (B1)

Similarly, the output coefficient as a function of ν for a
Fabry-Perot CPA with ψ+

b /ψ
−
f =−1 can be derived as
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�Fabry - Perot =

csc δx

⎛
⎜⎜⎜⎝

4i
(

2 + √
2ν
)

− 2i[4
√

2 + ν(6 + √
2ν)] cos δx

+4
(

2
√

2 + ν
)

cot δx

+
[
−6 + ν2 − 2

(
3 + 2

√
2ν + ν2

)
cos δx

]
csc δx

⎞
⎟⎟⎟⎠

[
4 + 2

√
2 + ν + √

2ν − i
(

2 + 2
√

2 + ν
)

cot δx
]2

≈
(

2(
√

2 − 1)+ ν

2(
√

2 + 1)+ ν

)2

if ν � 1

≈
(

3 − 2
√

2
)2
(1 + 2ν2)+ O(ν3). (B2)

When the reactive perturbation (μ = δB/Y0) is considered, the output coefficients of the CPAL-locked PT circuit (initially
set to the CPA mode) and the Fabry-Perot CPA are given by

�PT = 4 − sec δx[8 − (μ2 + 4) sec δx]

(2
√

2 − 3)μ2 − 4(
√

2 − 1)μ tan δx + (μ2 + 4)tan2δx

≈ 1
4

(
(δx)2 + μ2

(δx)2

)
+ O(μ3) if μ � 1 (B3)

and

�Fabry - Perot =

[(
2
(

5 + 2
√

2μ+ μ2
)

− 4
(

2
√

2 + μ
)

cos δx
−(−2 + μ2) cos 2δx

)
csc (δx)2

]

⎛
⎝ 4

(
3 + 2

√
2
)

[2 + cot (δx)2] + μ2
[
3 + 2

√
2 + cot (δx)2

]
+4μ

[
4 + 3

√
2 +

(
1 + √

2
)

cot2(δx)
]

⎞
⎠

≈
(√

2 − 1√
2 + 1

)2

+
√

2μ2

(
√

2 + 1)
4 + 2

√
2μ

(
√

2 + 1)
4 δx + O(μ3) if μ � 1

≈
(

3 − 2
√

2
)2

+ (17
√

2 − 24)μ2 + O(μ3). (B4)

The CPA-like phenomena can be observed in a pas-
sive FP resonator when ψ+

b /ψ
−
f = −1, for which the

eigenvalues are zero and unitary at the CPA point.

APPENDIX C: IMPLEMENTATION AND
MEASUREMENT OF THE ONBOARD

CPAL-LOCKED RF SENSOR

In electronics, negative resistance can be obtained from
the active NIC sketched schematically in Fig. 1(b), whose
effective negative resistance is given by

−R = −R3
R1

R2
, (C1)

where R1, R2, and R3 are labeled in Fig. 1(b) and an
ideal operational amplifier with infinite open-loop gain is
assumed. In our design, R1 and R2 are chosen to be 500 
,

R3 is given by an adjustable trimmer potentiometer with
maximum resistance of 100 
, and a commercial oper-
ational amplifier (OPA355) is used to form a feedback
loop, as shown in Fig. 1(b). Figure 5(a) plots the measured
effective (shunt) impedance of this NIC. At the operating
frequency (ω0 = 13.48 MHz), the effective impedance is
−35.56 − 0.18i 
, which is quite close to the target value
of −25

√
2
. For minimize the device area, a transmission-

line segment with characteristic impedance of 50 
 and
electrical length of x at the design frequency ω0 can be
replaced by the T-equivalent network formed by two series
inductors and a shunt capacitor [see Fig. 1(b)], which are

C1 = Y0

ω0 sin x
and L1 = L2 = sin x

Y0ω0(1 − cos x)
. (C2)
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(a) (b)

FIG. 5. (a) Real (red line) and imaginary (blue line) parts of
the measured impedance of the NIC. At 13.48 MHz, the input
impedance is −35.56 − 0.18i 
, which is close to the value
required for the CPAL condition (−25

√
2 
.). (b) Measured

(red line) and simulated (blue line) electrical length of the T-
equivalent network. At the design frequency of 13.48 MHz, the
measured electrical length is −88°.

To observe the CPAL effect at 13.48 MHz, C1 =
236.1 pF ≈ 236 pF and L1 = L2 = 590.3 nH ≈ 590 nH are
chosen; here 220- and 16-pF capacitors are connected in
parallel to achieve the desired capacitance, while 470-
and 120-nH inductors are connected in series to achieve
the required inductance. Besides, the inductors have a
total intrinsic resistance of 5 
 (Rp ). Figure 5(b) presents
the measured and simulated electrical length of this T-
equivalent network, showing an electrical length x = −
88o at the operating frequency and a phase offset δx =
−2o or −π /90. Fabrication tolerance of lumped elements
and interconnection lines as well as parasitics in the NIC
and SMA connectors contributed partially to the phase off-
set. Thus, when the equivalent network is integrated with
the gain and loss elements, the phase offset is extracted to
be δx ∼ 3π/40. To mimic the resistive perturbation in a
sensing or actuation element, a shunt resistor (R = 1/δG)
or a shunt capacitor (C = δG/ω0) is added to the PT-
symmetric pseudosensing circuit. The output coefficient of
the two-port PT-symmetric circuit can be expressed as

� = |ψ−
b |2 + |ψ+

f |2
|ψ−

f |2 + |ψ+
b |2

= |1 + α(S12/S11)|2 + |α + S21/S11|2
(1 + |α|2) |1/S11|2

, (C3)

where α = ψ+
b /ψ

−
f and S parameters can be found in

Appendix A. Without loss of generality, the output coef-
ficients reported in Figs. 4(a) and 4(b) are obtained by
our substituting the measured S parameters (Fig. 3) into
Eq. (C3) and assuming α = i(

√
2 − 1). The S matrix is

characterized by our using a two-port vector network
analyzer.
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