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Abstract—Wireless charging coupled with computation offload-
ing in edge networks offers a promising solution for realizing
power-hungry and computation intensive applications on user-
devices. We consider a multi-access edge computing (MEC)
system with collocated MEC server and base-station/access point
(AP), each equipped with a massive MIMO antenna array, sup-
porting multiple users requesting data computation and wireless
charging. The goal is to minimize the energy consumption for
computation offloading and maximize the received energy at the
user from wireless charging. The proposed solution is a novel two-
stage algorithm employing nested descent algorithm, primal-dual
subgradient and linear programming techniques to perform data
partitioning and time allocation for computation offloading and
design the optimal energy beamforming for wireless charging,
all within MEC-AP transmit power and latency constraints.
Algorithm results show that optimal energy beamforming signif-
icantly outperforms other schemes such as isotropic or directed
charging without beam power allocation. Compared to binary
offloading, data partition in partial offloading leads to lower
energy consumption and more charging time, leading to better
wireless charging performance. The charged energy over an
extended period of multiple time-slots both with and without
computation offloading can be substantial. Wireless charging
from MEC-AP thus offers a viable untethered approach for
supplying energy to user-devices.

Index Terms—Edge computing, wireless charging, energy effi-
cient network, partial data offloading, optimization

I. INTRODUCTION

Multi-Access Edge Computing (MEC) networks have re-

cently garnered significant interest thanks to its ability to

provide cloud-computing capabilities within the radio access

network, offering proximity, low latency, and high rate ac-

cess. MEC can bring computing intensive features such as

augmented and virtual reality to a large number of connected

wireless devices with limited processing capability and battery

lifetime by providing services such as computation offloading

and wireless charging. Future generation networks offer native

support for edge computing functionality, such as key enablers

defined by the 3GPP in 5G system architecture to support edge

computing [1]. A typical deployment scenario is where the

MEC server is co-located with the base-station/access-point

(BS/AP) [2]. At the same time, the exponentially growing

number of connected devices leads to network densification

with a large number of deployed APs. With multiple MEC-

APs deployed over a relatively small area in close vicinity to

the connected users, RF wireless power transfer from the APs

to the user devices becomes practical.

A. Background and Related Work

Computation offloading at the edge has versatile applica-

bility to different use-cases. Examples include (i) AR/VR

applications in human-machine interfaces used in smart fac-

tories, where complex processing tasks may be offloaded to

the edge network, which not only enables easy access to

different context information available in the network but also

prevents head-mounted AR/VR gear from becoming too warm

and uncomfortable to wear [3], (ii) gaming or training service

data between two 5G connected devices [4], (iii) real-time

map rendering for autonomous vehicular applications [5], and

(iv) professional low-latency periodic audio transport services

for Audio-Video (AV) production applications, music festivals

etc. [6].

Far-field wireless power transfer using Radio Frequency

(RF) enables energy-constrained devices to replenish their

charge levels without physical connections, offering the in-

herent advantage of untethered mobility and battery sustain-

ability [7]. There has been significant recent progress in

wireless power transfer technology ranging from battery-free

cellphone operating on harvested RF energy [8] to reconfig-

urable RF rectifiers [9]. Commercial products employing RF

power transfer have also appeared on the market, charging

multiple devices up to 15 meters away [10] [11] [12]. Wireless

power transfer in future systems is expected to charge devices

at distances ranging from a few meters (for example smart

phones) to hundreds of meters (for example sensors) [13].

Adding wireless charging to MEC networks as an on-request
feature can further help in achieving the required availability

and reliability of energy supply, which has become crucial for

today’s QoS-sensitive applications [14].

Prior works have considered the symbiotic convergence of

edge computing and wireless power transfer in different de-

ployment scenarios, for example, wireless charging in cooper-

ation assisted edge computing [15], UAV-enabled mobile edge

computing [16] and MEC based heterogeneous networks [17].

Wireless power transfer has been considered in MEC networks

for self-sustained devices, which rely on wireless charging

as their sole power source, in relay-aided edge systems [15],

single user [18] and multiple user systems [19]. Such scenarios

are typical for devices with low power requirements and/or low

receiver sensitivity. Significantly different from this, an on-
request wireless charging model is where each user-terminal

has its own power source and can use wireless charging from

the AP to supplement its power consumption. Such on-request
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charging schemes can minimize the associated energy costs of

power transfer and are likely to become an integral part of the

maturing 5G vision in the near future [14].

For multiuser edge networks, the transmission strategy and

multiple access scheme can significantly impact the overall

latency. In terms of communication and data transfer, existing

works typically employ sequential protocols like Time Divi-

sion Multiple Access (TDMA) [20] [19] [18] [21]. Instead,

massive MIMO enables simultaneous data offloading from

multiple users to the MEC-AP and hence dramatically reduces

the wireless transmission time. Employing massive MIMO at

the MEC-AP also delivers high throughput and energy effi-

ciency with transmit power savings because of beamforming

gains. Massive MIMO can reduce the transmit power at the AP

for a given data rate and therefore also has a positive impact on

the system energy consumption. In terms of wireless charging,

having a large number of antennas at the MEC-AP leads to

increased charging range since a larger amount of energy can

be reliably directed and transferred [22] [23]. Prior works only

consider wireless charging from MEC servers where the AP

is equipped with single antenna [20] [15], or having multiple

antennas but not with massive MIMO capability [21] [19].

Massive MIMO can be deemed an enabling technology for

wireless charging because of its ability to focus energy via

sharp beams and charge multiple users concurrently.

B. This Work and Our Contributions

In this work, we consider a multi-cell multi-user network

scenario where access points equipped with massive MIMO

antenna arrays and with co-located MEC servers offer com-

putation offloading and wireless charging. This model gen-

eralizes several existing problems considered in literature on

edge computing systems by integrating massive MIMO and

power transfer features, which to our knowledge is the first

to do so. The computation offloading service is often time

critical (for example, due to an upper bound on the motion-

to-photon latency for AR/VR applications [2]), and therefore

offloading requests by the users must be met within the current

time block, leading to the latency constraint. On the other

hand, wireless charging is not as time sensitive and a request

for charging can be carried out over multiple computation-

offloading time blocks. Within each time block, however, the

wireless charging occurs at the same time with computation

offloading and thus is subject to the same latency constraint.

In each time block, both computation offloading and wire-

less charging are subjected to the same latency and power con-

straints. The goal for computation offloading is to minimize the

transmitted energy consumption, while the goal for wireless

charging is to maximize the amount of received energy. This

is different from a joint minimization of energy consumption

for both computation offloading and wireless charging, which

while consuming less transmitted energy also resulting in

a reduced overall received energy. In our formulation, the

wireless charging sub-problem is considered secondary and

computation offloading sub-problem primary, both are linked

by the same power and latency constraints. The wireless char-

ing operation occurs during the MEC-computation phase of

the offloading operation. In addition, if computation offloading

finishes before the latency limit, the excess time is used for

further wireless charging.

The two sub-problems in the considered formulation are not

independent but are linked by the same power and latency

constraints. Each considered sub-problem is also different

from those in the literature. For computation offloading, the

energy minimization accounts for energy consumption at both

the users and MEC ends, instead of considering only one side

[16], [18], [19], [21], [24]. For wireless charging, previous

works on active wireless power transfer have no latency

constraint, and therefore have a different system model and

solution, such as using only the single strongest sub-band for

power transfer [25]. The considered wireless charging sub-

problem is also different from a self-sustained model which is

usually restricted to low-power passive sensors and wearable

devices [26]. Here we consider a wireless charging model

applicable to an active-user case, such as inside a sports

stadium, a conference/exhibition hall, where multiple smart

phone users may request wireless charging to replenish battery

instead of self-sustaining operations. Here wireless charging is

a complementary billable service provided to further enhance

the user experience.

Main Contributions

Our main contributions can be summarized as follows.

1) We propose a system model that integrates two MEC

services of computation offloading and wireless charging in

the same system under the same set of constraints on latency

and transmit power. Wireless charging occurs during the MEC-

computation phase, and in computation latency-excess time

if any. The two sub-problems of computation offloading and

wireless charging are treated sequentially, where the objective

of computation offloading is to minimize the transmitted en-

ergy consumption, and of wireless charging is to maximize the

received charged energy. The two sub-problems are coupled

together via system latency constraint in each time block.

2) We design a novel, efficient algorithm consisting of two

sub-algorithms. The first sub-algorithm optimizes the data

partitioning, wireless transmission power and time allocation

through a nested-structure using a latency-aware descent al-

gorithm and a primal-dual subgradient algorithm. The derived

optimal time allocation is then fed to a second sub-algorithm

which finds the optimal energy beamforming matrix (including

beam power allocation and beam directions) through a nested

structure using a primal dual subgradient algorithm and linear

programming.

3) Using our proposed algorithm, we provide detailed quanti-

tative performance analysis and study the impact of different

system parameters and optimizing variables on the energy

consumption and wireless charging performance. Results show

that data partitioning is a key variable affecting system en-

ergy consumption, while latency is paramount for wireless

charging performance. The optimal charging beams can also

use the sidelobes and backscatter as a means of increasing
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Figure 1: Timing diagram and functional model of the system’s operation for both data
computation offloading and wireless charging. Wireless charging is performed during
MEC computation period when latency is tight (a), or both during MEC computation
and after computation offloading finishes when latency is not tight (b).

their harvested energy over the latency constrained charging

time. Successive wireless charging over an extended period

of multiple time blocks, both with and without computation

offloading, can deliver a significant amount of energy to the

users.

Notation: X and x denote a matrix and vector respec-

tively, ∇2f(x) denotes the Hessian, and ∇2f(x)−1 denotes

its inverse. For an arbitrary size matrix, Y , Y ∗ denotes the

Hermitian transpose, and diag(y1, ..., yN ) denotes an N ×N
diagonal matrix. I denotes an identity matrix, and 0, 1 denote

an all zeros and all ones vector respectively. The standard

circularly symmetric complex Gaussian distribution is denoted

by CN (0, I), with mean 0 and covariance matrix I . Ck×l and

R
k×l denote the space of k× l matrices with complex and real

entries, respectively.

II. SYSTEM MODEL

We consider a system where L ≥ 1 Access Points (APs),

each co-located with an MEC Server, are deployed over a

targeted zone/area, for instance in a sports stadium, town

fair or a conference exhibition hall, serving ground users

with computation offloading and power transfer. Each AP is

equipped with a massive antenna array with N antennas while

the user-devices are equipped with single antennas. These APs

wirelessly charge (upon request) ground users in downlink,

collect offloaded data from the users in uplink, and deliver

computed results to users in downlink [27]. We consider K
users requesting wireless charging service and sending data

for computation offloading to each MEC-AP. In the case of

cellular networks, wireless charging can be a billable service

assuming that the ground users have knowledge of their battery

state, and can request the AP for wireless recharging when

their battery is critically low.

Consider the case where wireless charging is requested

jointly with computation offloading, which includes the sce-

nario of charging only or computation only as special cases.

There are three functions contributing to the system’s opera-

tion as shown in Figure 1; (i) wireless charging of the user

terminals by the MEC-AP, (ii) data transmission in the form

of computation offloading from the users to the MEC-AP in

the uplink and results downloading from the MEC-AP to the

users in the downlink, and (iii) data computation at the MEC

server and locally at the users.

Figure 2: Conceptual beamforming structure for maximal information and energy transfer
using a massive MIMO antenna array at the MEC-AP

Given a latency constraint of Td, the time span for data

offloading, computation at both the users and the MEC ends,

wireless charging, and delivery of computed results to the user

must not exceed Td. Considering computation offloading, this

operation is divided into three timing phases: The maximum

time duration for data offloading to the MEC is denoted by

T1, the computation for offloaded data at the MEC spans

duration T2, and the transmission of processed results occupies

time T3. The timing during for wireless charging will be

dependent on these three computation offloading phases and

the total latency. Figure 1 shows two scenarios timing model:

either computation offloading requires the whole duration of

Td, in which case the wireless charging is restricted to the

computation phase, or computation offloading consumes a

time duration less than Td and therefore wireless charging

can continue after computed results have been transmitted in

downlink. Our formulations in the next section account for

both of these scenarios. We discuss the energy and time con-

sumption of each system’s function, namely wireless charging,

data transmission and data computation.

It is worth noting that while it is possible for the user to

offload data and perform local computation at the same time

during Phase I, the user’s power is limited, hence we assume

that the ith user focuses its power for offloading data and

performs no computation during tu,i, the time during which it

is offloading its own data. However, the ith user may perform

local computation during Phase I as soon as the offloading

is done, that is after tu,i for tu,i < T1, and may continue

local computation, if required, during Phase II and Phase III

since the time for offloading tu,i and local computation tL,i

for a user is also bounded by the latency constraint, that

is, tu,i + tL,i <= Td. This condition is specified later in

constraint (13d) in our problem formulation. Other works in

multi-user computation offloading consider local computation

even during the current user’s offloading time, however, such

problems are based on sequential TDMA offloading in which

each user is slotted a separate and sequential time duration for

offloading, without considering the time spent in phases II and

III [19]. Our work, on the other hand, considers simultaneous

offloading from all users and also accounts for the time spent

in phases II and III in the overall optimization. Based on

our previous results which show that the offloading time in

uplink is typically much smaller than the local computation

time for a user [5], we expect changes in total time or

energy consumption to be insignificant even if we allow local

computation during the offloading time.
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A. Wireless Charging

In each cell, we consider K users requesting wireless

charging from the MEC-AP, where the ith user requests ei
mJ of energy. To cater for the energy requests from multiple

users, the massive-MIMO enabled MEC-AP employs transmit

energy beamforming, as shown in Figure 2. Such energy

beamforming requires channel state information (CSI), which

can be obtained at the AP using uplink training, where pilot

symbols are transmitted over some duration of the coherence

interval to estimate the channel matrix from the users to their

serving MEC-AP. For the downlink channel, we assume Time

Division Duplex (TDD) operation such that the channel matrix

from the AP to the users can be obtained by wireless channel

reciprocity of the uplink channel and hence the transmission

of downlink pilots becomes unnecessary [28] [29].

Let xq denote the energy bearing signal from the AP to

the user-terminal (UT), Wq � E

[
‖xq‖2

]
denote the transmit

covariance matrix, and Pc = tr(Wq) be the power transmitted

from the AP for wireless charging, in short, the charging

power. Then the received (charged) power at the ith user is

given as

Ph,i = ξiE
[∣∣h∗

ixq

∣∣2] = ξitr(h
∗
iWqhi) (1)

where 0 ≤ ξi ≤ 1 is the energy conversion efficiency from

Radio Frequency (RF) to Direct Current (DC) for the ith

user and hi ∈ C
N×1 is the channel from the AP to the ith

user. We assume a linear energy harvesting model where the

energy conversion efficiency per user is constant over a single

time block duration, Td. Non-linear wireless charging models,

with a variable energy conversion efficiency over time, are

more applicable to scenarios where there is a variation in the

received power [30] such as at high SNR and also depends

on the rectifier characteristics (diode breakdown region) [31].

For the considered system with strict latency constraint on

each time block for on-request charging, constant user energy

conversion efficiency is more suitable. To account for the

difference in received power at each user location, each ith

user has its own energy conversion efficiency ξi based on the

received power in the current time block.

We define Tc as the time duration for wireless charging,

where Tc = T − (T1 + T3) and includes the time consumed

by the computation phase, over which power is transferred to

the users alongside computation at the users and at the MEC

server. The energy consumed at the MEC server for power

transfer, in short the charging energy, is given by

Ec = Tctr(Wq) (2)

We consider a wireless charging maximization approach

where the received energy at the users is maximized subject to

the latency and MEC-AP’s transmit power constraint. For the

ith user requesting ei amount of energy, the received (charged)

energy, Eh,i, is constrained as below

Eh,i = Ph,iTc = ξiTctr(h
∗
iWqhi) ≤ ei ∀ i ∈ [1,K] (3)

Here the amount of wireless charging is upper-bounded by ei
such that the charged energy is at most equal to the requested

amount so as not to overcharge the users since charging is a

billable service, and also not to burn the user’s battery. Having

this bound ensures feasibility of energy transfer. In this way

no single user gets an unfairly large amount of the charged

energy at the expense of others, and only a portion of the

requested energy may be charged (in the current time block)

if it is unfeasible for the AP to satisfy the user’s energy request

completely due to poor channel conditions or high energy

request(s) by a single or few users.

Note that in cases where the ith user’s energy request is

only partially fulfilled in the current time block, the remaining

amount may be charged in subsequent time blocks. Since, in

our considered system model, the operation of computation

offloading is not dependent on wireless charging for energy,

charging can be deferred to future time blocks if computation

offloading demands more time and energy resources in the

current time block. For the remaining of the paper, to simplify

notation, we assume that for the current time block, no amount

of energy has previously been received by the user, and the

charge requested by the ith user is equal to ei. All subsequent
formulations and algorithms, however, are applicable if this

requested energy is scaled by a factor to reflect a proportion

in each time block.

B. Data Transmissions

For computation offloading at each MEC, we consider the

simple data-partition model, where the task-input bits are bit-

wise independent and can therefore be arbitrarily divided into

different groups to be executed by different entities [32]. We

consider the case of partial offloading, such that for the ith

user, the ui computation bits are partitioned into qi and si bits,
where qi bits are computed locally and si bits are offloaded

to the MEC server. Assuming that such partition at the user-

terminal does not incur additional computation bits, then ui =
qi + si.
1) Offloading Data in Uplink: In a given time slot, K

single-antenna user terminals simultaneously offload to the N
antenna AP. We consider N � K such that the throughput

becomes independent of the small-scale fading with channel

hardening [29]. The very large signal vector dimension at a

massive MIMO AP enables the use of linear detectors such as

maximum ratio combining (MRC), in which case the uplink

net achievable transmission rate for the ith user in the lth cell,

ru,i, is given as [28]

ru,i = ν log2

(
1 +

SINRul
li

Γ1

)
, SINRul

li =
Nγl

lipli
σ2
1,li

(4)

where Γ1 ≥ 1 accounts for the capacity gap due to practical

coding schemes, γli is the mean-square channel estimate,

and pli is the transmit power of the ith user in the lth

cell. The constant ν represents the portion of transmission

symbols spent on data transfer in the coherence interval τc.
The interference and noise power, σ2

1,li, includes the receiver

noise variance, interference due to channel estimation and
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from contaminating cells, and inter-cell interference as defined

in [28, Eq. 4.18], and is dependent on all users’ transmit power

and channel conditions [5].
The energy consumed for offloading the ith user’s data is

given by EOFF,i = pitu,i, where pi is the transmit power and

tu,i is the transmission time for the ith user. Let B denote the

channel bandwidth, then tu,i =
si

Bru,i
. All users offload their

computation bits simultaneously, and the total energy and time

overhead for simultaneous data offloading is given as

EOFF =
K∑
i=1

pisi
Bru,i

, T1 = max
i∈[1,K]

tu,i. (5)

2) Downloading Results in Downlink: For the ith user in

the lth cell, the downlink transmission rate with maximum

ratio linear precoding at the MEC-AP is given as [28]

rd,i = log2

(
1 +

SINRdl
li

Γ2

)
, SINRdl

li =
NPγl

liηlk
σ2
2,li

(6)

where Γ2 ≥ 1 is the capacity gap, and σ2
2,li is the interference

and noise power which also contains pilot contamination and

intercell interference as given in [28, Eq. 4.34], and depends

on the power allocation at the MEC-AP for downlink wireless

transmission and also on the channels between the AP and the

users [5].
The transmission time for delivering the ith user’s compu-

tation results can be written in terms of the downlink rate in

(6) as td,i =
s̃i

Brd,i
. Here s̃i denotes the number of information

bits generated after processing si offloaded bits of the ith

user. The number of information bits generated as a result

of data computation (s̃i) are proportional to the data bits to

be computed (si), that is s̃i ∝ si → s̃i = μsi. μ is the

proportionality parameter between the amounts of requested

and computed data and is not restricted to the range [0,1],

rather it adds an application-centric flexibility to our system

model in terms of the data size in downlink. For instance,

μ < 1 for face recognition applications or μ � 1 for video-

rendering applications [33] [34] [5]. The AP simultaneously

transmits computed results for all users, and the total energy

and time overhead for results downloading are then given as

EDL =
K∑
i=1

Pηiμsi
Brd,i

, T3 = max
i∈[1,K]

td,i. (7)

C. Data Computation
1) Local computation at the users: The time for compu-

tation depends on the amount of data to be computed and

the CPU cycle frequency. The energy consumption and the

processing time for local computation at the ith user is given

as [32]

ELC =
K∑
i=1

κici(ui − si)f
2
u,i, tL,i =

ci(ui − si)

fu,i
(8)

where κi is the effective switched capacitance, fu,i denotes the
average CPU frequency, ci denotes the CPU cycle information,

and qi = ui − si is the total number of bits required to be

locally computed at ith user respectively.

2) Computation of the offloaded data at the MEC server:
MEC servers, with high computation capacities, compute the

tasks of all users in parallel [35] [32]. The energy and time

consumed for computing offloaded bits is given as

EOC =

K∑
i=1

κmf2
midmsi,

tM,i =
dmsi
fmi

∀i ∈ [1,K], T2 = max{tM,i} (9)

where tM,i is the time for computing ith user’s offloaded task,

si is the number of bits offloaded by the ith user to the MEC,

dm is the number of CPU cycles required to compute one bit at

the MEC, fmi is the CPU frequency assigned to the ith user’s

task, and κm is the effective switched capacitance of the MEC

server. The computation at the MEC is synchronous such that

computation only begins after data from all users has been

offloaded. While it is possible to perform fine-scale timing

optimization where the MEC starts computing immediately

after it receives a user’s data, the expected gain from this

would be negligible since the computation time, T2, is short

compared to T1 and T3 [5, Figure 6] and further optimizing

each user’s computation time at the MEC can significantly

increase the formulation and algorithm complexity.

Previous results in [5] show that in a typical network setting,

the wireless transmission energy consumption is significantly

dominant compared to the computation energy consumption.

Only when a user is located within a few meters from an MEC-

AP, the wireless transmission energy may be reduced substan-

tially to be comparable with computation energy. Therefore,

for our formulation to follow in Section III, we consider equal

frequency allocation for users’ tasks, that is fm,i = fm ∀i
since dynamic frequency allocation has little effect on the

overall system’s energy consumption compared to wireless

transmission.

III. OPTIMIZATION PROBLEM FORMULATIONS

Considering a multi-cell multi-MEC network, we formulate

an edge computing problem which explicitly accounts for

physical layer parameters including available transmit powers

from each user and the MEC, associated massive MIMO data

rates with realistic pilot contamination and interference. For

simplicity of notation, we assume that all K users which

are offloading their computation to the MEC server are also

requesting wireless charging.

In this section, we discuss a sequential formulation and

consider the problems of computation offloading (PCO) and

wireless charging (PWC) independently in terms of energy

optimization. The aim of (PCO) is to minimize the energy

consumption for computation offloading, while the goal of

(PWC) is to maximize the energy received at the users through

wireless charging. Wireless charging happens during the time

available after timing has been optimally allocated for com-

putation offloading. This leads to a sequential optimization

process where the optimization for wireless charging will

follow that of computation offloading. It should be emphasized
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that the sequential process is only in terms of optimization,

as once all the variables and parameters are optimized, the

operations of computation offloading and wireless charging

can occur simultaneously as discussed in the system model of

Section II.

A. Minimization Of Energy Consumption For Computation
Offloading

Using the uplink and downlink transmission rates, respec-

tively defined as ru,i = si
νtu,iB

and rd,i = μsi
td,iB

, and based

on (4) and (6), we can express the per-user power allocation

variables for uplink (pli) and downlink (ηli) transmissions

as functions of the time allocation and data partitioning as

follows:

pli =
(2

si
νtu,iB − 1)Γ1σ

2
1,i

Nγi
, ηli =

(2
μsi

td,iB − 1)Γ2σ
2
2,i

PNγi
(10)

Replacing these expressions into (5) and (8), the total energy

consumption by all users can be written as

Eu =
K∑
i=1

⎡
⎣ tu,i(2

si
νtu,iB − 1)Γ1σ

2
1,i

Nγi
+ κici(ui − si)f

2
u,i

⎤
⎦
(11)

Similarly, based on equations (7) and (9), the total energy

consumption at the MEC server for computation offloading is

Em =
K∑
i=1

⎡
⎣ td,i(2

μsi
td,iB − 1)Γ2σ

2
2,i

Nγi
+ κmdmf2

misi

⎤
⎦ (12)

The energy minimization problem for computation offloading

can then be given as

(PCO) : min
s,t

Etotal = (1− w)Eu + wEm (13)

s.t. Eqs. (11)− (12) (a-b)

3∑
j=1

(Tj) ≤ Td, (c)

ci(ui − si)

fu,i
+ tu,i − Td ≤ 0 ∀i ∈ [1,K] (d)

tu,i − T1 ≤ 0, ∀i ∈ [1,K] (e)

td,i − T3 ≤ 0, ∀i ∈ [1,K] (f)

dmsi
fmi

− T2 ≤ 0 ∀i ∈ [1,K] (g)

Here Etotal is weighted sum of energy consumed at all users

(Eu) and the MEC (Em), with 1−w and w as the respective

weights. The optimizing variables of this problems are time

allocation t = [tu,1...tu,K , td,1...td,K , T1, T2, T3, Tc], and of-

floaded data s = [s1...sK ]. Given parameters of the problems

are Td as the total latency constraint, P as the AP’s transmit

power, B as the channel bandwidth, Γ1, Γ2 as the uplink and

downlink capacity gaps, (κi, ci) and (κm, dm) as the switched
capacitance and CPU cycle information at the users and the

MEC respectively.

Constraints (a-b) show the total energy consumption at

the users and the MEC respectively, which includes the en-

ergy consumed for offloading/downloading and computation.

Constraints (c-d) represent the constraint that both the time

consumed for all three phases at the MEC, and the time

consumed for offloading tu and local computation at each

user tL should not exceed Td. Constraints (e-g) show that the

time consumed separately for offloading tu, computation of

users’ tasks at the MEC tM , and downloading time td for

each user’s results must be less than the maximum allowable

time, {T1, T2, T3}, for that phase as given in {(5),(9), (7)}

respectively.

B. Maximization Of Received Energy By Wireless Charging

The above offloading problem is followed by the wireless

charging problem given below

(PWC) : max
Wq

K∑
i=1

ξitr(h
∗
iWqhi)Tc (14)

s.t. tr(Wq) ≤ P (a)

ξitr(h
∗
iWqhi)Tc ≤ ei ∀i = 1...K (b)

Here the charging time is defined as Tc = Td − T �
1 − T �

3 ,

where T �
1 and T �

3 are the optimal time allocation for offloading

and downloading operations obtained by solving (PCO). In
this way, the two problems are formulated in a sequential

manner in compliance with the overall latency constraint. The

charging time Tc denotes that wireless charging occupies all

the time within Td outside the data transmission operations

of offloading and downloading. The optimizing variable is the

beamforming matrix for wireless charging Wq ∈ R
N×N . The

objective function is a sum of the received energy for all users

and the objective is to maximize this overall received energy at

the users. Constraint (a) represents the physical layer constraint

on the maximum transmission power of the AP. Constraint (b)

shows that the amount of received (charged) energy at the ith

user is no more than the energy that it requests.

Problem (PCO) is a semi-definite programming problem

where the objective function and constraints are linear trace

functions of Wq and hence convex. We can show that strong

duality holds since Slater’s condition is satisfied, that is, we

can find a strictly feasible point (Wq = pIN×N , p ≤ P/N )

in the relative interior of the domain of the problem where the

inequality constraints hold with strict inequalities [36].

IV. DATA PARTITIONING AND TIME ALLOCATION FOR

COMPUTATION OFFLOADING

A. Problem Analysis

In this section we analyze the computation offloading prob-

lem (PCO) and show that it can be decomposed into simpler

problems. The multivariable problem in (13) is a non-linear

and non-convex optimization problem. Following a similar

approach as in [5], the objective function f0 for (PCO) is a

convex function of si. Furthermore, provided that the gradient

of f0(·) with respect to si evaluated at si = 0 is positive,

which is often satisfied in typical network settings, then the
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total energy in problem (PCO) is an increasing function of

each si and there exists an optimal point, s�i ∀i ∈ [1,K], which
minimizes Etotal within the latency constraint. If offloaded data

s is fixed, then problem (PCO) turns out to be convex in the

remaining variables as stated in the following lemma. Lemma

1 lets us decompose the original non-convex problem (PCO)
into simpler convex subproblems which will be used in the

subsequent algorithm design.

Lemma 1. For a given set of offloaded data s, the problem
(PCO) is convex in the time allocation variable t.

Proof. Proof follows by examining each constraint and show-

ing that with fixed si, it is a convex function. Details in

Appendix A.

Since CPU frequencies are not optimizing variables, for

given si in (PCO), we can find in closed form the optimum

time consumed by the MEC to compute each user’s tasks, and

the overall time T2 spent for the data computation function at

the MEC as in Lemma 2 next.

Lemma 2. For a given value of the offloaded data si, the
computation time for the offloaded data T2 can be pre-
determined in closed form as follows

T2 = max
i

dmsi
fmi

(15)

and hence constraint (13g) can be excluded from the problem
(PCO).

Proof. Directly from constraint (g) in (13) for a given si.

B. Optimal Primal Solution

Next we present the solution for the optimal time allocation

for the computation offloading problem (PCO). Since the

problem is convex based on Lemma 1, we adopt a primal-

dual solution using the Lagrangian duality analysis similar to

that proposed in [5] and derive the optimal solution as given

in Theorem 1 below.

Theorem 1. The offloading and downloading time, tu,i and
td,i respectively, can be obtained as a solution of the form

x =
cB

ln 2

(
W0

(−y

σ2e
− 1

e

)
+ 1

)
(16)

where y = − βi+θi
(1−w) , x = x1,i = 1

tu,i
, c = ν

si
, σ2 =

Γ1σ
2
1,i

Nγi

to solve for tu,i, and y = −φi

w , x = x2,i =
1

td,i
, c = 1/μsi,

and σ2 =
Γ2σ

2
2,i

Nγi
to solve for td, i. Here θi, βi and φi are the

dual variables associated with the constraints (d), (e) and (g)
of problem (PCO) in (13) respectively.

Proof. The solution in (16) can be obtained directly by apply-

ing KKT conditions on the Lagrangian dual of the problem

PCO with respect to tu,i and td,i. Detailed proof can be

obtained using an approach similar to that in [5, Theorem

1] and is omitted for brevity.

V. ENERGY BEAMFORMING FOR WIRELESS CHARGING

A. Sequential And Nested Algorithm Structures

In this section, we derive the solution for the optimal

transmit covariance matrix, Wq by finding the optimal energy

beam directions and also the optimal beam power allocation.

For the received energy maximization problem (PWC), we

use Lagrangian duality analysis to obtain the optimal beam

directions as described in Theorem 2 below.

Theorem 2. For maximizing the received energy, the optimal
directions for energy beams are U�

q = UC , where UC is ob-
tained from the eigenvalue decomposition of C = UCΛCU∗

C ,
such that λC,1 ≥ λC,2 ≥ . . . ≥ λC,N , where

C = χI + Tc

K∑
i=1

ξi(1 + ρi)hih
∗
i (17)

Here χ and ρi are the dual variables associated with con-
straint (14a) and the ith constraint in (14b) respectively.

Proof. See Appendix B.

Theorem 2 provides the optimal directions of the energy

beams for the beamforming matrix, Wq . What is left now

is to obtain the optimal power allocation across the energy

beams, that is, the eigenvalues of the transmit covariance

matrix for wireless charging. To this end, we substitute the

optimal beam directions from Theorem 2 into (PWC) and re-

write the formulation in terms of the beam power allocation

only as (PBP) below. Beam power allocation, λq , can then be

obtained as a solution to a Linear Programming (LP) problem

given in Theorem 3 below.

Theorem 3. The optimal beam power allocation which maxi-
mizes the received energy through wireless charging is derived
as a solution of the LP problem below

(PBP) : max
λq

K∑
i=1

d∗
iλq (18)

s.t.
K∑
i=1

λq,i ≤ P, λq,1 ≥ ... ≥ λq,K ≥ 0 (a-b)

Dλq ≤ b (c)

where λq = [λq,1, ..., λq,K ]T , D ∈ R
K×K = [d∗

1...d
∗
K ],

di
∗ = diag(rir

∗
i ), r

∗
i = h∗

iUC = h∗
iUq

� and b ∈ R
K×1 =

[π1...πK ], πi =
ei

ξiTc
∀i = 1...K.

Proof. Obtained by substituting optimal beam directions from

Theorem 2 in (PWC). Details in Appendix C.

Note that in the above solutions for (PWC), since the goal

is energy maximization, the eigenvalues of Wq and C are

of the same order. All the eigenvectors of each matrix are

ordered according to their corresponding eigenvalues. The

optimal solutions derived thus far are specific to the respective

problems (PCO) and (PWC), and thus reveal the optimal

solution structure that otherwise would be obscured by using a

generic solver. Next we use these optimal solutions to design

customized algorithms to solve these problems.
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Figure 3: Structure of the main algorithm Alg. 1, consisting of sequential sub-algorithms
for solving PCO and PWC.

VI. ALGORITHM DESIGN

In this section, we discuss the algorithm structure to solve

the two sequentially formulated problems PCO and PWC. Based

on the way these two problems are formulated, PCO will

be solved first to obtain the optimal data partitioning and

time allocation for computation offloading. This optimal time

allocation will then be used in PWC as a given parameter in

order to find the optimal energy beamforming structure.

The algorithm for solving (PCO) is designed based on

Lemma 1 to have a nested architecture with an outer and an

inner loop, in which the outer loop solves for si decrementally

while the inner loop solves for t at a fixed value of si.
Specifically, the nested algorithm works as follows. We first

initialize the offloaded bits s and the dual variables in the outer

algorithm. At the current value of s, the inner algorithm is

executed, for which we use a primal-dual approach employing

a subgradient method. At convergence where the stopping

criterion for the dual problem is satisfied, the inner algorithm

returns the control to the outer algorithm. Based on the

newly updated primal solution from the inner algorithm, we

proceed to updating s by some Δsi for each user for the next

outer-loop iteration, using a latency aware descent algorithm.

Similar to [5], the latency aware descent algorithm is based

on the standard Newton method, with a novel modification

to the classical stopping criterion to account for the latency

constraint.

Problem (PWC) solves for the transmit covariance matrix

Wq as an independent problem after obtaining the optimal

time allocation solution from (PCO) to calculate the charging

time Tc as Tc = Td−T �
1−T �

3 . The algorithm for solving (PWC)
also has a nested structure, with an outer algorithm to establish

the optimal beam directions and an inner algorithm for the

beam power allocation. Specifically, at each iteration of (PWC),
an outer algorithm step finds the optimal dual variables for

the beam direction solutions in Theorem 2 via a subgradient

method, and calls to an inner algorithm which solves the LP

problem (PBP) in Theorem 3 for the optimal beam power

allocation using a standard convex solver. Once the beam

power allocation is found, the inner algorithm returns to the

outer one in order to update the dual variables, and the process

continues until convergence is reached in the outer algorithm.

In the case of (PWC), the outer algorithm is primal-dual, and

the inner algorithm is linear programming. The algorithm flow

is depicted in Figure 3 and steps for solving both problems

(PCO) and (PWC) are given in Algorithm 1.

Algorithm 1 Solution for (PCO) and (PWC)

Given: Distances di ∀i. Channel H = GT . Precision, ε1, ε2,
Data ui, Latency Td. Initialize: si
Begin Sub-algorithm for (PCO)
Outer Loop (Latency-aware Newton Method): Repeat
1) Compute Δs using the Newton method, where

Δs := −∇2f0(s)
−1∇f0(s)

and f0(.) is the objective function in (13)

2) Inner Loop (Subgradient Method)
• Calculate tu,i and td,i, using (16). Then T �

1 = max t�u,i
and T �

3 = max t�d,i.
• Update pi and ηi using (10) and calculate σ2

1,i and σ2
2,i.

• Solve the dual problem in (20):

– Establish the dual function in (19) by using Theo-

rem 1

– Repeat
a) Compute subgradients in (22a-d)

b) Update dual-variables using subgradient method

Until dual subgradients converge with ε2 as in (23)

3) Line search and Update. si := si + tiΔsi.

Until stopping criterion for Newton method is satisfied:

λ2/2 < ε1 or latency constraint Td is met. λ := −∇f0(s)
T
Δs

End Sub-algorithm for (PCO)
—————————————————————————-

Given: Optimal time allocation from (P2) in Step 2 above,

find Tc = Td − T �
1 − T �

3

Begin Sub-algorithm for (PWC)
Outer Loop (Subgradient Method): Repeat
1) Solve for beam directions UC as function of dual vari-

ables as in Theorem 2

2) Inner Loop (Linear Programming):
• Solve for beam power allocation λq

� as an LP (PBP)

in Theorem 3

3) Update primal variable

Wq
� = UCΛ�

qU
∗
C , where Λ�

q = diag(λq
�)

4) Update the dual problem in (21):

• Establish the dual function in (26) by using Theorems

2 and 3

• Compute subgradients in (22e-f)

• Update dual-variables using subgradient method

Until dual subgradients converge with ε2 as in (23)

End Sub-algorithm for (PWC)

A. Primal-Dual Algorithms

For the inner optimization in (PCO) and the outer algorithm

in (PWC), we design primal-dual algorithms where the primal

variable are obtained as closed-form functions of the dual

variables, which are found by solving the dual problem using

a sub-gradient method. The dual-function for the convex

8
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Figure 4: Comparison of the proposed wireless charging scheme with isotropic wireless charging, and directed K-beam charging with equal power allocation (equal K): (left) amount
of total received (charged) energy; (middle) total transmitted energy consumption; (right) the average charging efficiency defined as in (24).

optimization problem (PCO) at a given si can be defined as

gCO(λ1,β, ξi, φ) = inf
t
LCO(t, λ1,β, ξi, φ) (19)

where LCO is the Lagrangian for problem (PCO). The optimal

value of t which minimizes this Lagrangian is given in

Theorem 1, based on which the dual function can be obtained.

Then the dual-problem for (PCO) is defined as

PCO-dual:max gCO(λ1,β, ξi, φ)

s.t. λ1 ≥ 0, βi, θi, φi ≥ 0 ∀i = 1...K (20)

where λ1, β, ξi, and φ are the dual variables associated with

constraints (c-f) in (13), respectively.

Similarly by maximizing the Lagrangian in (25) for problem

(PWC), using the optimalW �
c as derived from Theorems 2 and

3, the dual function gWC(ρ, χ) for (PWC) can be established

as in (26), and its dual problem is given as

PWC-dual: : min gWC(ρ, χ)

s.t. χ ≥ 0, ρi ≥ 0 for i = 1...K (21)

Using the closed form expressions for the optimal primal

variables in terms of the dual-variables in Theorems 1-3, the

dual functions above are functions of only the dual-variables.

The subgradient terms with respect to all dual variables of

original problems (PCO) and (PWC) are as given below

∇λ1
L =

3∑
j=1

Tj − Tdelay (22a)

∇βi
L = tu,i − T1, (22b)

∇φi
L = td,i − T3, (22c)

∇θiL =
ciqi
fu,i

+ tu,i − Td, (22d)

∇ρiL = ξitr
(
h∗
iWqhi

)
Tc − ei, (22e)

∇χL = tr(Wq)− P (22f)

For implementation of the primal-dual algorithms, we use

the subgradient method to solve the constrained convex op-

timization problems (PCO) and (PWC) [37]. The designed

algorithms find the subgradients for the negative dual function

−gCO, since the dual problem in (20) is a maximization

problem for the dual function, and for the positive dual

function gWC, since the dual problem in (21) is a minimization

problem. At each iteration, the primal variables are updated

based on Theorems 1-3. The dual variables vector x is updated

as x(k+1) = x(k) − βkg
(k), where βk is the kth step-size, and

g(k) is the subgradient vector at the kth iteration evaluated

using the sub-gradient expressions in (22a-f). We use the non-

summable diminishing step size, setting βk = 1/
√
k. Since the

subgradient method is not a descent method, the algorithms

keep track of the best point for the dual functions at each

iteration of the inner algorithm. These primal-dual update

steps are repeated until the desired level of precision, ε2, is
reached for the stopping criterion. In the subgradient method,

since the key quantity is not the function value but rather the

Euclidean distance to the optimal set [37], therefore, for our

implementation we define the stopping criterion as

‖g(k+1) − g(k)‖2 ≤ ε2. (23)

B. Algorithm Complexity

For (PCO), the outer algorithm is a latency-aware de-

scent algorithm based on the Newton method and solves

the optimization problem mins f(s), where f = Etotal, and

dom(f) ∈ R
K . For K users and s ∈ R

K×1, the computation

cost for each Newton iteration requires O(K3) flops [38] and
the backtracking line search requires O(K) flops per inner

backtracking step. The novel latency-aware stopping criterion

is a max operation over K users, with complexity O(K) [5].
The inner algorithm is based on the subgradient method where

we use the non-summable diminishing step size for which the

algorithm is guaranteed to converge to the optimal value with

a theoretical iteration complexity of O(1/ε2) [37] [39]. The

chosen stopping criterion of the inner subgradient algorithm

is a norm calculation which requires 2(3K + 1) flops based

on the size of the subgradient vector g(k) for (PCO).

For (PWC), in the outer algorithm, the most computationally

intensive step is finding the optimal beam directions for

an N -antenna massive MIMO array which requires SVD

of C ∈ C
N×N with a computation cost of O(N2). The

inner algorithm is to solve a linear programming problem

(PBP), where an LP has complexity class P. Finally W is

obtained through matrix multiplication in which we take into

account the zero-elements of λq and hence it has complexity

O(N2K2). The chosen stopping criterion for the outer al-

gorithm is again a norm calculation which requires requires

2(K + 1) flops based on the size of the subgradient vector

g(k) for (PWC).
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Figure 5: Simulation network layout of a conference exhibition hall with 4 AP-MEC
serving multiple and randomly located users. The number of active users requesting
computation offloading and wireless charging varies between 16-40.

VII. NUMERICAL RESULTS

In this section, we evaluate the solution of the sequential

problem with respect to energy and time consumption, the

partition of bits offloaded to the MEC for computation and

the received energy via wireless charging. We consider a

20m×20m area (typical service area for AR applications with

bi-directional transmission [3]) with 4 MEC-APs, each with

N = 100 antennas as shown in Figure 5. We start with 16

users randomly located in the network with K = 4 users per

AP’s coverage area, and increase the number of active users

up to 40 users (K = 10 per AP area) in various simulations.

For simulations, w = 10−3, Td = 20ms (for AR/VR appli-

cations [40]), B = 5MHz, τc = BTd, Γ1 = Γ2 = 1.25,
μ = 2, κi = 0.5pF, κm = 5pF, ci = 1000, dm = 500,
γ = 2.2, σ = 2.7dB, σ2

r = −127dBm, σ2
k = −122dBm,

fu,i = fu = 1800 MHz ∀i. Each MEC processor has

24 cores with maximum frequency of 3.4GHz, and we use

fm,i = fm = 24×3400
K MHz ∀i. Transmit power available at

user and AP is 23 dBm and 46 dBm respectively. To calculate

the interference and noise power (σ2
1,i, σ

2
2,i) which include

massive MIMO pilot contamination and intercell interference,

we assume that user terminals transmit at their maximum

power, that is pqi = 23dBm, and the interfering APs use

equal power allocation in the downlink, that is ηqi =
1
K ∀i.

Numerical results are averaged over 100 independent channel

realizations of H and G. The results in Figures 4, 7, 12, 13

and 14 are averaged over 200 spatial realizations (randomly

generated user locations).

A. Comparison of Wireless Charging Schemes

Figure 4 shows a comparison of the proposed maximization

wireless charging scheme with two other schemes: (i) isotropic

scheme where Wq = P
N I and equal charging power P/N is

allocated across all N antennas of the AP, and (ii) equal K

with directional charging using the beamforming directions

proposed in Theorem 2, but with equal power allocation P/K
across K energy beams. For fairness of comparison with the

sequential scheme, we use power scaling for the other two

schemes such that each user only receives an amount of energy

at most equal to requested, similar to the sequential scheme.

Since wireless charging is proposed as a billable service for

Figure 6: A typical wireless charging beam pattern for simultaneously charging multiple
UEs from an MEC-AP, where shown is the strongest beam out of 10 beams for this
channel realization

Figure 7: Distribution of the number of charging beams for K = 10 users per cell (left),
and the average number of charging beams vs the number of users in each cell (right).

future networks, this is also a necessary design consideration

from the service providers’ and consumers’ perspectives.

Figure 4 shows the received energy on the left, the transmit-

ted energy in the middle, and the average charging efficiency

on the right. Average charging efficiency (per time block) is

defined as the average percentage of received energy, in the

qth time block as denoted by (q), at the users end compared

to the requested energy, given as

Avg. Charging Efficiency (%) =

∑K
i=1 ξitr(h

∗
iWqhi)Tc

(q)

∑K
i=1 e

(q)
i

(24)

Note that the requested energy at the qth time block excludes

the amount of energy requests already fulfilled in the previous

time block(s). As illustrated in this figure, the sum received

energy for the energy maximization sequential scheme is

significantly larger than the other two schemes. Beamforming

with equal power allocation scheme performs better than the

isotropic scheme, since it consumes lesser charging energy

and still delivers higher energy to the users. Comparing the

average charging efficiency for all the schemes, however, the

wireless charging maximization scheme enables substantially

higher charging efficiency. The average efficiency is seen to

decrease with an increase in the network size as expected.
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Figure 8: A typical example of system performance for K users over multiple time-
slots under three modes (a) Computation and Charging, (b) Computation only, and (c)
Charging only

B. Charging Beams

Figure 6 shows a typical beam radiation pattern of the

proposed scheme for the simultaneous wireless charging of

all active UEs requesting charging. We see that in addition to

the main lobe, there are a large number of side lobes where

the nulls are not as deep, which allows for increased charging

energy levels to users. This "null-fill" property is a common

design feature to alter the energy distribution for the various

antenna elements in the array [41]. For maximal received

energy, users may receive wireless charging not only from

the main beam but also from the side lobes and backscattering

which can be an important consideration for wireless charging.

Figure 7 shows the distribution of the optimal number

of energy beams for K = 10 users per cell (left) and the

average number of beams for an increasing number of users

in the network (right). In comparison, for the isotropic wireless

charging, there are always N > K energy beams. For the case

of K beams with equal power allocation, the number of beams

is equal to the number of users in the cell. While multiple

energy beams may be necessary for a multi-user system as

also previously discussed in [13], the optimal number of

energy beams for the proposed wireless charging scheme is

usually less than the number of users. Since each energy

beam can charge multiple users simultaneously, the transmit

beamforming can be intelligently designed as proposed to

limit the number of energy beams which can prevent energy

losses caused by transmitting energy in numerous directions.

Therefore, for the proposed received energy maximization, the

optimal number of beams on the average is much lower than

the number of users.

C. Charging Profile

Figure 8 shows a typical example of the system’s charging

performance over time under the three modes of operation,

namely, data and charging, data only, and charging only. The

charging only and data only modes are special cases/subsets

of the data and charging mode. For the joint data and charging

mode, both data and energy requests are non-zero, that is ui >
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Figure 9: Comparison of time and energy consumption between proposed partial and
binary offloading schemes, showing more energy and time efficiency when data can be
split for partial offloading.

0, ei > 0 ∀ i. For the data only mode, ei = 0 and for the

charging only mode, ui = 0. The figure shows the time profile

for the received energy by the users. The time axis is plotted

in terms of the coherence interval τc, to show that the energy

values are calculated for a new channel realization after every

coherence interval which corresponds to the variation in the

received energy value over time in the bottom plot. For the

results shown we assume τc = BTd, with Td = 20ms.

The cumulative energy on the top figure show that during

the data only operation in which no users request wire-

less charging, there is no increase in the charged energy

as expected. Correlating with the bottom plot, we see a

decrease in the mean received energy during the joint phase

of computation and power transfer (data and charging) as

compared to the charging only phase. The results verify that

our algorithm works as expected since with computation, a

portion of time from τc is spent on data computation and

wireless transmission, as compared to the charging only mode

where the entire duration is spent for wireless charging. The

cumulative top plot show that over an extended period of time

over both computation and non-computation intervals, wireless

charging can deliver a significant amount of energy.

D. Effect of the Amount of Data Requested and Partitioning

Figure 9 shows a comparison of the proposed partial of-

floading scheme, where data partitioning is used to divide

the computation between the MEC and each user, with the

binary offloading scheme where the task is atomic and is

either offloaded or computed locally as a whole. We compare

the time and energy consumption for the two schemes as the

amount of data requested is increased under a fixed latency

constraint of Td = 20ms. To evaluate the solution for the

binary offloading scheme, we consider all possible binary

offloading combinations and choose the one with the lowest

overall energy consumption.

We see significant disparity between the binary and partial

offloading schemes when large amounts of data are requested.

For low data requests, local processing at users is optimal so

both schemes consume the same energy and the entire duration

is spent for wireless charging by the MEC concurrently with
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Figure 10: Amount of charged (received) energy comparison between binary offloading
and the proposed partial offloading scheme: (top) for all K=4 users, each requesting
500mJ of energy, (bottom) for an individual user requesting 500mJ

the local computation at the users. For larger data requests,

however, the binary offloading scheme spends far less time for

charging, since the time for wireless transmission to offload all

the data to the MEC is greater. Owing to this increased time

for wireless transmission in the binary scheme, the overall

weighted system energy consumption is much larger than

that of partial offloading. Partial offloading not only results

in a lower overall weighted energy consumption, but also

leads to higher received energy at the users during wireless

charging by the MEC because of the longer charging time.

Partial offloading with data partitioning therefore appears as

a potent design variable for the resource allocation problem,

with significant impact on the wireless charging capability of

the system.

E. Effect of the Latency Constraint and Charging Time

Figure 10 (top) shows the total received or charged at

the users, each requesting 500mJ of energy, as the delay

constraint is relaxed, that is, Td is increased at a fixed amount

of requested data, ui = 50 kbits. For this amount of data,

binary offloading results in lower received energy since all

data is offloaded to the MEC to meet the latency requirement.

This results in larger time consumption for wireless transmis-

sion, consequently reducing the charging time and hence the

charged energy. For relaxed latency, however, both binary and

partial offloading schemes compute data locally, and hence the

plots converge.

Figure 10 (bottom) shows the received energy, that is the

amount of charge the user receives through wireless power

transfer, as the charging time is increased. We show the

requested and received energy for one user in a 16 user

network, where each user requests 500 mJ of energy from

the MEC, and the network is in charging only mode, that is,

the users do not request any data for computation. For longer

charging times, the MEC fulfills the user’s demand for wireless

charging almost completely.

F. Effect of the amount of Energy Requested

Figure 11 shows the amount of energy received by a user

through wireless charging, as the amount of energy requested

by the user is increased in the data and charging mode, that
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Figure 11: Amount of received energy by a user as it requests more energy under different
computation and time requirements

is the users jointly request data computation and wireless

charging. We assume all the users requesting the same amount

of energy, that is ei = e ∀i. For lower amounts of requested

energy, we see that the MEC-AP strives to fulfill the energy

demand to a large extent, however, as the energy demands are

increased by all the users simultaneously, the wireless charging

by the MEC-AP cannot cope with the wireless charging

demand in full.

We compare the amount of energy received through wireless

charging for three scenarios (a) all users request 70 kbits of

data for computation, that is ui = 70 kbits ∀i under a latency

requirement of Td = 20ms, (b) ui = 70 kbits with relaxed

latency Td = 40 ms, and (c) reduced data request ui = 30
kbits at Td = 20 ms. Even with less than half of the amount of

data request, the amount of wireless charged energy increases

only slightly, showing that the amount of data for offloading

(while feasible) has a small impact wireless charging. On the

other hand, a twice-relaxed latency constraint has a significant

impact on wireless charging by increasing the charged energy

substantially.

G. Effect of Network Size

Figure 12 shows the total amount of energy received by all

users during the wireless charging function, as the number of

users in the network is increased, each requesting ei = 500mJ
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Figure 12: Amount of charged energy received at all users, each requesting 500mJ
of energy, with and without data computation as the number of users in the network
increases.
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Figure 13: Effects of MEC transmit power control for computation offloading on (left) the time consumption of computation offloading, showing the scheme without power control
starts violating the latency as the number of users increases; and (right) the amount of energy received via wireless charging.

of energy. We compare the charged energy under different

scenarios, namely (i) Charging Only where each user only

has energy requests and no data to offload, (ii) Charging
w/ relaxed latency with charging-only mode but the latency

constraint is relaxed from 20 ms to Td = 40 ms, and (iii) Joint
Data and Charging where each user request ui = 70 kbits

of data for computation along with its energy request. Either

relaxing the latency constraint or having no data significantly

increases the received energy during the wireless charging

phase. The total received energy increases with the network

size but exhibits a diminishing effect because of the total

transmit power constraint.

H. Effect of MEC Transmission Power Allocation in Compu-
tation Offloading

Figure 13 also shows the effect of transmission power al-

location in data transferring phases of computation offloading

on the received energy as the network is increased, where

each user requests ei = 500mJ of energy and ui = 40 kbits

of data for computation. In our proposed scheme, transmit

power control is implemented indirectly through the time

and data partitioning, given by (10) via the optimized time

allocation variables tu and td. In the scheme without power

allocation, we fix the transmit power such that the MEC-AP

allocates equal power for transmission beamforming to all

users in downlink, and all users use the maximum transmit

power available. Note that this is the power allocation for data

transmission in offloading and not to be mistaken with power

allocation for the energy beamforming discussed in Sec. VI.

An important finding for large network sizes is that without

transmission power allocation, the network cannot cope with

the data and energy requests within the latency constraint, evi-

dent by the percentage time consumption exceeding 100% for

35 or more users in the network. As the network size increases,

transmit power allocation for computation offloading also has a

positive impact on the amount of received energy via wireless

charging. Transmit power control is only consequential for

large network sizes and can be excluded from the optimization

problem to reduce complexity in small networks.

I. Algorithm Convergence

Figure 14 shows, on the left, the convergence of the two

algorithms solving optimization sub-problems PCO and PWC

with ui = u = 10kbits, ei = e = 1J ∀i. The algorithm

for PWC, or PWC sub-algorithm in short, based on nested

subgradient method and linear programming converges in

significantly fewer iterations compared to the algorithm for

PCO, or PCO sub-algorithm, based on nested latency-aware

Newton descent and subgradient methods. Not only does PWC

sub-algorithm converge in fewer iterations compared to the

PCO sub-algorithm, the time taken per iteration is also shorter

for PWC as shown in Figure 14 on the right.

The computation offloading PCO sub-algorithm optimizes

for data partitioning and time allocation for each user, leading

to the number of optimizing variables for K users as 2K.

However, a key contributing factor to the increased number of

iterations for PCO is the size of the subgradient vector, which

in this case is g(k) ∈ R
3K+1 whereas for PWC, g

(k) ∈ R
K+1.

Since the subgradient algorithm is the most time consuming

step in both sub-algorithms, the mean time per iteration for

PCO is larger than that for PWC as seen in Figure 14.

Moreover, the wireless charging PWC sub-algorithm calcu-

lates the beam directions for all K users through a single

matrix factorization per iteration as in Theorem 2. The power

allocation per energy beam is then solved via an efficient inner

linear programming algorithm which scales slowly with the

number of users in the network. For our implementation on a

personal computer, the time step unit in Figure 14 is a second,

however for faster machines, such as MEC servers, with the

high-performance CPUs, this time-step may be significantly

smaller.

VIII. CONCLUSION

We examined a massive MIMO enabled multi-access edge

computing network providing computation offloading and on-

request wireless charging to its connected users under a

round trip latency constraint. We formulated a novel system-

level problem to minimize the energy consumption for data

offloading and to maximize the received energy from wireless

charging, and design efficient algorithms to solve for data
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Figure 14: Convergence of the proposed sub-algorithms for PCO and PWC: (left) optimal objective accuracy vs number of iteration; (right) average execution time per iteration.

LWC = Tc

K∑
i=1

ξitr(h
∗
iWqhi)Tc + χ (tr(Wq)− P ) + Tctr

((
K∑
i=1

ξiρihih
∗
i

)
Wq

)
−

K∑
i=1

ρiei

= Tctr

([
χI + Tc

K∑
i=1

ξi(1 + ρi)hih
∗
i

]
Wq

)
−

K∑
i=1

ρiei − χP

= Tctr (CWq)−
K∑
i=1

ρiei − χP (25)

partitioning, time allocation and transmit energy beamforming

matrices. Our algorithms demonstrated that data partitioning

is a potent optimizing variable, as partial data offloading when

possible leads to significant reduction in system energy con-

sumption, lower transmission times and consequentially higher

amount of received charged energy at users. On the other

hand, MEC-AP transmit power allocation for downlink data

transmission has little effect on the system energy consumption

for small network sizes.
Our algorithm also illustrated that even with significant

amounts of data to be computed, the network can deliver de-

cent amounts of charged energy to the users over an extended

period of multiple computation time-slots, therefore validating

a practical coexistence of computation offloading and wireless

charging. A comparison with isotropic power transfer and

equal power energy beamforming shows that optimal design of

the energy beamforming directions and beam power allocation

in wireless charging is crucial for energy efficiency, and

is necessary for adopting on-request wireless charging as a

billable service for future networks.

IX. APPENDIX

A. Appendix A - Proof for Lemma 1
Consider problem (PCO) in (13) at fixed values of si. The

objective function is affine in Eu and Em and hence convex.To

show that the PCO is convex in t, we need to consider each

constraint as follows.

• Constraints (c), (e), (f), (h) for (P) in (13) are linear in t.
• For constraints (a) and (b), the first terms are of the form

f(x) = x2
1
x in tu,i and td,i respectively, with ∇2

xf(x) =
2

1
x

x3 > 0 for x > 0, and hence f(x) is convex in x.

• Relevant constraints are also linear and convex in Eu,

Em and Tj ∀j.
Based on the above, the objective is convex and all the

constraints are convex in the remaining variables. Thus the

problem is convex at given si.

B. Appendix B - Proof for Theorem 2
To establish the optimal beamforming directions in terms

of the dual variables, we analyze the Lagrangian function

of problem (PWC). Specifically, the Lagrangian for problem

(PWC) can be obtained as in (25), where χ and ρi are the dual
variables associated with constraint (14a) and the ith constraint
in (14b), and the matrix C is defined as in (17). The dual-

function for the problem (PWC) can then be defined as

gWC(ρ, χ) = max
Wq

LWC(Wq, ρ, χ) (26)

We wish to find the beamforming matrix Wq to maximize

the Lagrangian LWC. Applying the inequality relating trace of

matrix product to the sum of eigenvalue products [42, Ch. 9,

H.1.g.], we have

max
Wq

tr(CWq) =
N∑
i=1

λC,i · λq,i (27)

where the eigenvalues of C and Wq are in the same de-

scending order, λC,1 ≥, . . . ,≥ λC,N , and λq,1 ≥, . . . ,≥ λq,N ,

and the sum of their eigenvalue products yields the maximum

value for tr(CWq) in (27). This maximum value is achieved

if and only if the eigenvectors of C and Wq align, that is,

Uq = UC , where the eigenvectors UC are obtained based

on the descending order of the corresponding eigenvalues in

ΛC = diag(λC).
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C. Appendix C - Proof For Theorem 3

In the eigenvalue decomposition of W �
q as Wq =

UqΛqU
∗
q , the diagonal matrix Λq ∈ R

N×N contains the

eigenvalues which signify the beam power allocation. Based

on Theorem (2), constraint (14b) can be rewritten under the

optimal beam solutions as

tr(h∗
iUqΛqU

∗
qhi) ≤ πi (28)

where πi = ei
ξiTc

∀i = 1...K. Define the row vector r∗i =

h∗
iUq = h∗

iUC , then the above equation becomes

tr(r∗i Λqri) ≤ πi (29)

Define row vector di
∗ = diag(rir∗i ) for i = 1...K, matrix

D ∈ R
K×K = [d∗

1...d
∗
K ], and vector b ∈ R

K×1 = [π1...πK ],
then (28) can be re-written as in constraint (18c) in (PBP).

Recall from the proof for Theorem 2, the ordering of elements

in λq needs to be the same as in λC , that is, in descending

order, so as to maximize Lagrangian by (27) which leads to

constraint (18b) in (PBP).
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