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Abstract—Wireless charging coupled with computation offload-
ing in edge networks offers a promising solution for realizing
power-hungry and computation intensive applications on user-
devices. We consider a multi-access edge computing (MEC)
system with collocated MEC server and base-station/access point
(AP), each equipped with a massive MIMO antenna array, sup-
porting multiple users requesting data computation and wireless
charging. The goal is to minimize the energy consumption for
computation offloading and maximize the received energy at the
user from wireless charging. The proposed solution is a novel two-
stage algorithm employing nested descent algorithm, primal-dual
subgradient and linear programming techniques to perform data
partitioning and time allocation for computation offloading and
design the optimal energy beamforming for wireless charging,
all within MEC-AP transmit power and latency constraints.
Algorithm results show that optimal energy beamforming signif-
icantly outperforms other schemes such as isotropic or directed
charging without beam power allocation. Compared to binary
offloading, data partition in partial offloading leads to lower
energy consumption and more charging time, leading to better
wireless charging performance. The charged energy over an
extended period of multiple time-slots both with and without
computation offloading can be substantial. Wireless charging
from MEC-AP thus offers a viable untethered approach for
supplying energy to user-devices.

Index Terms—Edge computing, wireless charging, energy effi-
cient network, partial data offloading, optimization

I. INTRODUCTION

Multi-Access Edge Computing (MEC) networks have re-
cently garnered significant interest thanks to its ability to
provide cloud-computing capabilities within the radio access
network, offering proximity, low latency, and high rate ac-
cess. MEC can bring computing intensive features such as
augmented and virtual reality to a large number of connected
wireless devices with limited processing capability and battery
lifetime by providing services such as computation offloading
and wireless charging. Future generation networks offer native
support for edge computing functionality, such as key enablers
defined by the 3GPP in 5G system architecture to support edge
computing [1]. A typical deployment scenario is where the
MEC server is co-located with the base-station/access-point
(BS/AP) [2]. At the same time, the exponentially growing
number of connected devices leads to network densification
with a large number of deployed APs. With multiple MEC-
APs deployed over a relatively small area in close vicinity to
the connected users, RF wireless power transfer from the APs
to the user devices becomes practical.

A. Background and Related Work

Computation offloading at the edge has versatile applica-
bility to different use-cases. Examples include (i) AR/VR
applications in human-machine interfaces used in smart fac-
tories, where complex processing tasks may be offloaded to
the edge network, which not only enables easy access to
different context information available in the network but also
prevents head-mounted AR/VR gear from becoming too warm
and uncomfortable to wear [3], (ii) gaming or training service
data between two 5G connected devices [4], (iii) real-time
map rendering for autonomous vehicular applications [5], and
(iv) professional low-latency periodic audio transport services
for Audio-Video (AV) production applications, music festivals
etc. [6].

Far-field wireless power transfer using Radio Frequency
(RF) enables energy-constrained devices to replenish their
charge levels without physical connections, offering the in-
herent advantage of untethered mobility and battery sustain-
ability [7]. There has been significant recent progress in
wireless power transfer technology ranging from battery-free
cellphone operating on harvested RF energy [8] to reconfig-
urable RF rectifiers [9]. Commercial products employing RF
power transfer have also appeared on the market, charging
multiple devices up to 15 meters away [10] [11] [12]. Wireless
power transfer in future systems is expected to charge devices
at distances ranging from a few meters (for example smart
phones) to hundreds of meters (for example sensors) [13].
Adding wireless charging to MEC networks as an on-request
feature can further help in achieving the required availability
and reliability of energy supply, which has become crucial for
today’s QoS-sensitive applications [14].

Prior works have considered the symbiotic convergence of
edge computing and wireless power transfer in different de-
ployment scenarios, for example, wireless charging in cooper-
ation assisted edge computing [15], UAV-enabled mobile edge
computing [16] and MEC based heterogeneous networks [17].
Wireless power transfer has been considered in MEC networks
for self-sustained devices, which rely on wireless charging
as their sole power source, in relay-aided edge systems [15],
single user [18] and multiple user systems [19]. Such scenarios
are typical for devices with low power requirements and/or low
receiver sensitivity. Significantly different from this, an on-
request wireless charging model is where each user-terminal
has its own power source and can use wireless charging from
the AP to supplement its power consumption. Such on-request
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charging schemes can minimize the associated energy costs of
power transfer and are likely to become an integral part of the
maturing 5G vision in the near future [14].

For multiuser edge networks, the transmission strategy and
multiple access scheme can significantly impact the overall
latency. In terms of communication and data transfer, existing
works typically employ sequential protocols like Time Divi-
sion Multiple Access (TDMA) [20] [19] [18] [21]. Instead,
massive MIMO enables simultaneous data offloading from
multiple users to the MEC-AP and hence dramatically reduces
the wireless transmission time. Employing massive MIMO at
the MEC-AP also delivers high throughput and energy effi-
ciency with transmit power savings because of beamforming
gains. Massive MIMO can reduce the transmit power at the AP
for a given data rate and therefore also has a positive impact on
the system energy consumption. In terms of wireless charging,
having a large number of antennas at the MEC-AP leads to
increased charging range since a larger amount of energy can
be reliably directed and transferred [22] [23]. Prior works only
consider wireless charging from MEC servers where the AP
is equipped with single antenna [20] [15], or having multiple
antennas but not with massive MIMO capability [21] [19].
Massive MIMO can be deemed an enabling technology for
wireless charging because of its ability to focus energy via
sharp beams and charge multiple users concurrently.

B. This Work and Our Contributions

In this work, we consider a multi-cell multi-user network
scenario where access points equipped with massive MIMO
antenna arrays and with co-located MEC servers offer com-
putation offloading and wireless charging. This model gen-
eralizes several existing problems considered in literature on
edge computing systems by integrating massive MIMO and
power transfer features, which to our knowledge is the first
to do so. The computation offloading service is often time
critical (for example, due to an upper bound on the motion-
to-photon latency for AR/VR applications [2]), and therefore
offloading requests by the users must be met within the current
time block, leading to the latency constraint. On the other
hand, wireless charging is not as time sensitive and a request
for charging can be carried out over multiple computation-
offloading time blocks. Within each time block, however, the
wireless charging occurs at the same time with computation
offloading and thus is subject to the same latency constraint.

In each time block, both computation offloading and wire-
less charging are subjected to the same latency and power con-
straints. The goal for computation offloading is to minimize the
transmitted energy consumption, while the goal for wireless
charging is to maximize the amount of received energy. This
is different from a joint minimization of energy consumption
for both computation offloading and wireless charging, which
while consuming less transmitted energy also resulting in
a reduced overall received energy. In our formulation, the
wireless charging sub-problem is considered secondary and
computation offloading sub-problem primary, both are linked
by the same power and latency constraints. The wireless char-

ing operation occurs during the MEC-computation phase of
the offloading operation. In addition, if computation offloading
finishes before the latency limit, the excess time is used for
further wireless charging.

The two sub-problems in the considered formulation are not
independent but are linked by the same power and latency
constraints. Each considered sub-problem is also different
from those in the literature. For computation offloading, the
energy minimization accounts for energy consumption at both
the users and MEC ends, instead of considering only one side
[16], [18], [19], [21], [24]. For wireless charging, previous
works on active wireless power transfer have no latency
constraint, and therefore have a different system model and
solution, such as using only the single strongest sub-band for
power transfer [25]. The considered wireless charging sub-
problem is also different from a self-sustained model which is
usually restricted to low-power passive sensors and wearable
devices [26]. Here we consider a wireless charging model
applicable to an active-user case, such as inside a sports
stadium, a conference/exhibition hall, where multiple smart
phone users may request wireless charging to replenish battery
instead of self-sustaining operations. Here wireless charging is
a complementary billable service provided to further enhance
the user experience.

Main Contributions
Our main contributions can be summarized as follows.

1) We propose a system model that integrates two MEC
services of computation offloading and wireless charging in
the same system under the same set of constraints on latency
and transmit power. Wireless charging occurs during the MEC-
computation phase, and in computation latency-excess time
if any. The two sub-problems of computation offloading and
wireless charging are treated sequentially, where the objective
of computation offloading is to minimize the transmitted en-
ergy consumption, and of wireless charging is to maximize the
received charged energy. The two sub-problems are coupled
together via system latency constraint in each time block.

2) We design a novel, efficient algorithm consisting of two
sub-algorithms. The first sub-algorithm optimizes the data
partitioning, wireless transmission power and time allocation
through a nested-structure using a latency-aware descent al-
gorithm and a primal-dual subgradient algorithm. The derived
optimal time allocation is then fed to a second sub-algorithm
which finds the optimal energy beamforming matrix (including
beam power allocation and beam directions) through a nested
structure using a primal dual subgradient algorithm and linear
programming.

3) Using our proposed algorithm, we provide detailed quanti-
tative performance analysis and study the impact of different
system parameters and optimizing variables on the energy
consumption and wireless charging performance. Results show
that data partitioning is a key variable affecting system en-
ergy consumption, while latency is paramount for wireless
charging performance. The optimal charging beams can also
use the sidelobes and backscatter as a means of increasing
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Figure 1: Timing diagram and functional model of the system’s operation for both data
computation offloading and wireless charging. Wireless charging is performed during
MEC computation period when latency is tight (a), or both during MEC computation
and after computation offloading finishes when latency is not tight (b).

their harvested energy over the latency constrained charging
time. Successive wireless charging over an extended period
of multiple time blocks, both with and without computation
offloading, can deliver a significant amount of energy to the
users.

Notation: X and x denote a matrix and vector respec-
tively, V2f(z) denotes the Hessian, and V2 f(z)~! denotes
its inverse. For an arbitrary size matrix, Y, Y™ denotes the
Hermitian transpose, and diag(y1, ..., yn) denotes an N x N
diagonal matrix. I denotes an identity matrix, and 0, 1 denote
an all zeros and all ones vector respectively. The standard
circularly symmetric complex Gaussian distribution is denoted
by CN(0, I), with mean 0 and covariance matrix I. C**! and
RE*! denote the space of k x [ matrices with complex and real
entries, respectively.

II. SYSTEM MODEL

We consider a system where L > 1 Access Points (APs),
each co-located with an MEC Server, are deployed over a
targeted zone/area, for instance in a sports stadium, town
fair or a conference exhibition hall, serving ground users
with computation offloading and power transfer. Each AP is
equipped with a massive antenna array with N antennas while
the user-devices are equipped with single antennas. These APs
wirelessly charge (upon request) ground users in downlink,
collect offloaded data from the users in uplink, and deliver
computed results to users in downlink [27]. We consider K
users requesting wireless charging service and sending data
for computation offloading to each MEC-AP. In the case of
cellular networks, wireless charging can be a billable service
assuming that the ground users have knowledge of their battery
state, and can request the AP for wireless recharging when
their battery is critically low.

Consider the case where wireless charging is requested
jointly with computation offloading, which includes the sce-
nario of charging only or computation only as special cases.
There are three functions contributing to the system’s opera-
tion as shown in Figure 1; (i) wireless charging of the user
terminals by the MEC-AP, (ii) data transmission in the form
of computation offloading from the users to the MEC-AP in
the uplink and results downloading from the MEC-AP to the
users in the downlink, and (iii) data computation at the MEC
server and locally at the users.
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Figure 2: Conceptual beamforming structure for maximal information and energy transfer
using a massive MIMO antenna array at the MEC-AP

Given a latency constraint of Ty, the time span for data
offloading, computation at both the users and the MEC ends,
wireless charging, and delivery of computed results to the user
must not exceed Ty. Considering computation offloading, this
operation is divided into three timing phases: The maximum
time duration for data offloading to the MEC is denoted by
Ty, the computation for offloaded data at the MEC spans
duration 7%, and the transmission of processed results occupies
time 73. The timing during for wireless charging will be
dependent on these three computation offloading phases and
the total latency. Figure 1 shows two scenarios timing model:
either computation offloading requires the whole duration of
Ty, in which case the wireless charging is restricted to the
computation phase, or computation offloading consumes a
time duration less than 7, and therefore wireless charging
can continue after computed results have been transmitted in
downlink. Our formulations in the next section account for
both of these scenarios. We discuss the energy and time con-
sumption of each system’s function, namely wireless charging,
data transmission and data computation.

It is worth noting that while it is possible for the user to
offload data and perform local computation at the same time
during Phase I, the user’s power is limited, hence we assume
that the ™ user focuses its power for offloading data and
performs no computation during ¢,, ;, the time during which it
is offloading its own data. However, the i™ user may perform
local computation during Phase I as soon as the offloading
is done, that is after ¢, ; for ¢, ; < T7, and may continue
local computation, if required, during Phase II and Phase III
since the time for offloading ¢, ; and local computation ?r, ;
for a user is also bounded by the latency constraint, that
is, ty, + tr; <= T,. This condition is specified later in
constraint (13d) in our problem formulation. Other works in
multi-user computation offloading consider local computation
even during the current user’s offloading time, however, such
problems are based on sequential TDMA offloading in which
each user is slotted a separate and sequential time duration for
offloading, without considering the time spent in phases II and
IIT [19]. Our work, on the other hand, considers simultaneous
offloading from all users and also accounts for the time spent
in phases II and III in the overall optimization. Based on
our previous results which show that the offloading time in
uplink is typically much smaller than the local computation
time for a user [5], we expect changes in total time or
energy consumption to be insignificant even if we allow local
computation during the offloading time.
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A. Wireless Charging

In each cell, we consider K users requesting wireless
charging from the MEC-AP, where the i user requests ¢;
mJ of energy. To cater for the energy requests from multiple
users, the massive-MIMO enabled MEC-AP employs transmit
energy beamforming, as shown in Figure 2. Such energy
beamforming requires channel state information (CSI), which
can be obtained at the AP using uplink training, where pilot
symbols are transmitted over some duration of the coherence
interval to estimate the channel matrix from the users to their
serving MEC-AP. For the downlink channel, we assume Time
Division Duplex (TDD) operation such that the channel matrix
from the AP to the users can be obtained by wireless channel
reciprocity of the uplink channel and hence the transmission
of downlink pilots becomes unnecessary [28] [29].

Let &, denote the energy bearing signal from the AP to
the user-terminal (UT), W, £ E|||z4||?| denote the transmit
covariance matrix, and P, = tr(Wy) be the power transmitted
from the AP for wireless charging, in short, the charging
power. Then the received (charged) power at the i user is
given as

Pri=6&E [\h;mqﬂ = &tr(hIWhy) (1)

where 0 < & < 1 is the energy conversion efficiency from
Radio Frequency (RF) to Direct Current (DC) for the i
user and h; € CN*1 ig the channel from the AP to the i
user. We assume a linear energy harvesting model where the
energy conversion efficiency per user is constant over a single
time block duration, 7};. Non-linear wireless charging models,
with a variable energy conversion efficiency over time, are
more applicable to scenarios where there is a variation in the
received power [30] such as at high SNR and also depends
on the rectifier characteristics (diode breakdown region) [31].
For the considered system with strict latency constraint on
each time block for on-request charging, constant user energy
conversion efficiency is more suitable. To account for the
difference in received power at each user location, each i
user has its own energy conversion efficiency &; based on the
received power in the current time block.

We define T, as the time duration for wireless charging,
where T, = T — (T1 + T3) and includes the time consumed
by the computation phase, over which power is transferred to
the users alongside computation at the users and at the MEC
server. The energy consumed at the MEC server for power
transfer, in short the charging energy, is given by

E, = T.tr(W,) )

We consider a wireless charging maximization approach
where the received energy at the users is maximized subject to
the latency and MEC-AP’s transmit power constraint. For the
i user requesting e; amount of energy, the received (charged)
energy, E, ;, is constrained as below

Ep; = Py T, = &Tetr(h;Wgh;) <e; Vie [1,K] (3)

Here the amount of wireless charging is upper-bounded by e;
such that the charged energy is at most equal to the requested
amount so as not to overcharge the users since charging is a
billable service, and also not to burn the user’s battery. Having
this bound ensures feasibility of energy transfer. In this way
no single user gets an unfairly large amount of the charged
energy at the expense of others, and only a portion of the
requested energy may be charged (in the current time block)
if it is unfeasible for the AP to satisfy the user’s energy request
completely due to poor channel conditions or high energy
request(s) by a single or few users.

Note that in cases where the i user’s energy request is
only partially fulfilled in the current time block, the remaining
amount may be charged in subsequent time blocks. Since, in
our considered system model, the operation of computation
offloading is not dependent on wireless charging for energy,
charging can be deferred to future time blocks if computation
offloading demands more time and energy resources in the
current time block. For the remaining of the paper, to simplify
notation, we assume that for the current time block, no amount
of energy has previously been received by the user, and the
charge requested by the i™ user is equal to e;. All subsequent
formulations and algorithms, however, are applicable if this
requested energy is scaled by a factor to reflect a proportion
in each time block.

B. Data Transmissions

For computation offloading at each MEC, we consider the
simple data-partition model, where the task-input bits are bit-
wise independent and can therefore be arbitrarily divided into
different groups to be executed by different entities [32]. We
consider the case of partial offloading, such that for the i*"
user, the u; computation bits are partitioned into ¢; and s; bits,
where g; bits are computed locally and s; bits are offloaded
to the MEC server. Assuming that such partition at the user-
terminal does not incur additional computation bits, then u; =
q; + S;-

1) Offloading Data in Uplink: In a given time slot, K
single-antenna user terminals simultaneously offload to the NV
antenna AP. We consider NV > K such that the throughput
becomes independent of the small-scale fading with channel
hardening [29]. The very large signal vector dimension at a
massive MIMO AP enables the use of linear detectors such as
maximum ratio combining (MRC), in which case the uplink
net achievable transmission rate for the i user in the I*" cell,
Ty,i, 1 given as [28]

SINR}/ NAL oy
i , SINR’ZU;I — ,y2l7,pl

1+
Iy 07 15

Ty = V1ogy @)
where I'; > 1 accounts for the capacity gap due to practical
coding schemes, 7;; is the mean-square channel estimate,
and pj; is the transmit power of the i user in the [
cell. The constant v represents the portion of transmission
symbols spent on data transfer in the coherence interval 7.
The interference and noise power, cri”, includes the receiver
noise variance, interference due to channel estimation and
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from contaminating cells, and inter-cell interference as defined
in [28, Eq. 4.18], and is dependent on all users’ transmit power
and channel conditions [5].

The energy consumed for offloading the ‘" user’s data is
given by Eorr, = pity,i» Where p; is the transmit power and
ty,i is the transmission time for the it" user. Let B denote the
channel bandwidth, then ¢, ; = Bii All users offload their
computation bits simultaneously, and the total energy and time
overhead for simultaneous data offloading is given as

K is
191

Eorr = E B
i—1 Tu,i

T1 = max tuﬂ'. (5)
ic[1,K]
2) Downloading Results in Downlink: For the i'" user in
the [t" cell, the downlink transmission rate with maximum
ratio linear precoding at the MEC-AP is given as [28§]

SINR# N PAL
7di = logy (1 + I\2h> , SINRY = % (6)
2,0

where I'y > 1 is the capacity gap, and o3 ;; is the interference
and noise power which also contains pildt contamination and
intercell interference as given in [28, Eq. 4.34], and depends
on the power allocation at the MEC-AP for downlink wireless
transmission and also on the channels between the AP and the
users [5].

The transmission time for delivering the i*" user’s compu-
tation results can be written in terms of the downlink rate in
(6)as ty; = Bij} Here s; denotes the number of information

bits generated after processing s; offloaded bits of the i'"
user. The number of information bits generated as a result
of data computation (s;) are proportional to the data bits to
be computed (s;), that is s; o< s; — §; = ws;. p is the
proportionality parameter between the amounts of requested
and computed data and is not restricted to the range [0,1],
rather it adds an application-centric flexibility to our system
model in terms of the data size in downlink. For instance,
1 < 1 for face recognition applications or p > 1 for video-
rendering applications [33] [34] [5]. The AP simultaneously
transmits computed results for all users, and the total energy
and time overhead for results downloading are then given as

- Pnips;
K3 7
Epp, = Z Tﬁ) T3 =
i=1 ’

C. Data Computation

max 1q;. (7)
1€[1,K]

1) Local computation at the users: The time for compu-
tation depends on the amount of data to be computed and
the CPU cycle frequency. The energy consumption and the

processing time for local computation at the i user is given
as [32]
K (u; — i)
Ere =Y kici(ui — i) fa; tri= Czujiisb ®)
i=1 ut

where £; is the effective switched capacitance, f,, ; denotes the
average CPU frequency, c; denotes the CPU cycle information,
and ¢; = u; — s; is the total number of bits required to be
locally computed at i user respectively.

2) Computation of the offloaded data at the MEC server:
MEC servers, with high computation capacities, compute the
tasks of all users in parallel [35] [32]. The energy and time
consumed for computing offloaded bits is given as

K
Eoc = Z fimfgn‘dmsia
i=1
dmsi .
= Vi € [1,K], T2 = max{tMi} (9)
f mi '
where ¢/ ; is the time for computing ith user’s offloaded task,
s; is the number of bits offloaded by the it" user to the MEC,
d., is the number of CPU cycles required to compute one bit at
the MEC, f,,; is the CPU frequency assigned to the i** user’s
task, and k,, is the effective switched capacitance of the MEC
server. The computation at the MEC is synchronous such that
computation only begins after data from all users has been
offloaded. While it is possible to perform fine-scale timing
optimization where the MEC starts computing immediately
after it receives a user’s data, the expected gain from this
would be negligible since the computation time, 75, is short
compared to 7T and T3 [5, Figure 6] and further optimizing
each user’s computation time at the MEC can significantly
increase the formulation and algorithm complexity.

Previous results in [5] show that in a typical network setting,
the wireless transmission energy consumption is significantly
dominant compared to the computation energy consumption.
Only when a user is located within a few meters from an MEC-
AP, the wireless transmission energy may be reduced substan-
tially to be comparable with computation energy. Therefore,
for our formulation to follow in Section III, we consider equal
frequency allocation for users’ tasks, that is fp,; = fi, Vi
since dynamic frequency allocation has little effect on the
overall system’s energy consumption compared to wireless
transmission.

taryi

III. OPTIMIZATION PROBLEM FORMULATIONS

Considering a multi-cell multi-MEC network, we formulate
an edge computing problem which explicitly accounts for
physical layer parameters including available transmit powers
from each user and the MEC, associated massive MIMO data
rates with realistic pilot contamination and interference. For
simplicity of notation, we assume that all K users which
are offloading their computation to the MEC server are also
requesting wireless charging.

In this section, we discuss a sequential formulation and
consider the problems of computation offloading (Pco) and
wireless charging (Pwc) independently in terms of energy
optimization. The aim of (Pco) is to minimize the energy
consumption for computation offloading, while the goal of
(Pwc) is to maximize the energy received at the users through
wireless charging. Wireless charging happens during the time
available after timing has been optimally allocated for com-
putation offloading. This leads to a sequential optimization
process where the optimization for wireless charging will
follow that of computation offloading. It should be emphasized
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that the sequential process is only in terms of optimization,
as once all the variables and parameters are optimized, the
operations of computation offloading and wireless charging
can occur simultaneously as discussed in the system model of
Section II.

A. Minimization Of Energy Consumption For Computation
Offloading

Using the uplink and downlink transmission rates, respec-
tively defined as r,; = thifB and rq; = tifj?’ and based
on (4) and (6), we can express the per-user power allocation
variables for uplink (p;;) and downlink (7;;) transmissions
as functions of the time allocation and data partitioning as

follows:

nsg

(277 — )T'10?, (27457 — 1)Ty03,

N ’

P = Ny =

Replacing these expressions into (5) and (8), the total energy
consumption by all users can be written as

K tu,i(QIIt’“?iB _ 1)1‘\10.%1_

Euzz N~i

=1

(1D
Similarly, based on equations (7) and (9), the total energy
consumption at the MEC server for computation offloading is

+ K;C; (ul —

Noy;

The energy minimization problem for computation offloading
can then be given as

(PCO) : Hlltn Eiotal = (1 - w)Eu +wky, (13)
s.t. Egs. (11) — (12) (a-b)
3
> (1)) < T, ©)
j=1
Cq(’UJZ — Si) .
T+tu7i—Td§OVze[l,K} (d)
tui—T1 <0, Viel[l,K] (e)
ta; —T5 <0, Viell, K] ()
i _ T, <0 Viell, K] (2)

mi

Here Eiy. is weighted sum of energy consumed at all users
(Ey) and the MEC (F,,), with 1 —w and w as the respective
weights. The optimizing variables of this problems are time
allocation t = [ty 1...tu k', td1.--ta i, T1, T2, T3, T;], and of-
floaded data s = [s1...sx]. Given parameters of the problems
are T, as the total latency constraint, P as the AP’s transmit
power, B as the channel bandwidth, 'y, I's as the uplink and
downlink capacity gaps, (k;, ¢;) and (K., d,,) as the switched
capacitance and CPU cycle information at the users and the
MEC respectively.

Constraints (a-b) show the total energy consumption at
the users and the MEC respectively, which includes the en-
ergy consumed for offloading/downloading and computation.
Constraints (c-d) represent the constraint that both the time
consumed for all three phases at the MEC, and the time
consumed for offloading ¢,, and local computation at each
user tr, should not exceed 7};. Constraints (e-g) show that the
time consumed separately for offloading ¢,,, computation of
users’ tasks at the MEC tps, and downloading time t4 for
each user’s results must be less than the maximum allowable
time, {74, T»,T5}, for that phase as given in {(5),(9), (7)}
respectively.

B. Maximization Of Received Energy By Wireless Charging

The above offloading problem is followed by the wireless
charging problem given below

K
(Pwc) : max ;gitr(hjwqhi)Tc (14)
s.t. tr(Wy) <P (a)

fjtr(h;‘thi)TC < €; Vi=1.K (b)

Here the charging time is defined as 1T, = Ty — T} — 17,
where 77 and T3 are the optimal time allocation for offloading
and downloading operations obtained by solving (Pco). In
this way, the two problems are formulated in a sequential
manner in compliance with the overall latency constraint. The
charging time 7, denotes that wireless charging occupies all
the time within 7; outside the data transmission operations
of offloading and downloading. The optimizing variable is the
beamforming matrix for wireless charging W, € RV*N_ The
objective function is a sum of the received energy for all users
and the objective is to maximize this overall received energy at
the users. Constraint (a) represents the physical layer constraint
on the maximum transmission power of the AP. Constraint (b)
shows that the amount of received (charged) energy at the i
user is no more than the energy that it requests.

Problem (Pco) is a semi-definite programming problem
where the objective function and constraints are linear trace
functions of W, and hence convex. We can show that strong
duality holds since Slater’s condition is satisfied, that is, we
can find a strictly feasible point (Wy = pInxn, p < P/N)
in the relative interior of the domain of the problem where the
inequality constraints hold with strict inequalities [36].

1V. DATA PARTITIONING AND TIME ALLOCATION FOR
COMPUTATION OFFLOADING

A. Problem Analysis

In this section we analyze the computation offloading prob-
lem (Pco) and show that it can be decomposed into simpler
problems. The multivariable problem in (13) is a non-linear
and non-convex optimization problem. Following a similar
approach as in [5], the objective function fy for (Pco) is a
convex function of s;. Furthermore, provided that the gradient
of fo(-) with respect to s; evaluated at s; = 0 is positive,
which is often satisfied in typical network settings, then the
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total energy in problem (Pco) is an increasing function of
each s; and there exists an optimal point, s} Vi € [1, K|, which
minimizes Fi,, within the latency constraint. If offloaded data
s is fixed, then problem (Pco) turns out to be convex in the
remaining variables as stated in the following lemma. Lemma
1 lets us decompose the original non-convex problem (Pco)
into simpler convex subproblems which will be used in the
subsequent algorithm design.

Lemma 1. For a given set of offloaded data s, the problem
(Pco) is convex in the time allocation variable t.

Proof. Proof follows by examining each constraint and show-
ing that with fixed s;, it is a convex function. Details in
Appendix A. O

Since CPU frequencies are not optimizing variables, for
given s; in (Pcp), we can find in closed form the optimum
time consumed by the MEC to compute each user’s tasks, and
the overall time 75 spent for the data computation function at
the MEC as in Lemma 2 next.

Lemma 2. For a given value of the offloaded data s;, the
computation time for the offloaded data T> can be pre-
determined in closed form as follows

dmsi

Ty = max (15)

g mi

and hence constraint (13g) can be excluded from the problem

(Pco)-

Proof. Directly from constraint (g) in (13) for a given s;. [

B. Optimal Primal Solution

Next we present the solution for the optimal time allocation
for the computation offloading problem (Pro). Since the
problem is convex based on Lemma 1, we adopt a primal-
dual solution using the Lagrangian duality analysis similar to
that proposed in [5] and derive the optimal solution as given
in Theorem 1 below.

Theorem 1. The offloading and downloading time, t, ; and
tq,; respectively, can be obtained as a solution of the form

cB — 1
x:—(WO(—y—7>+1) (16)
In2 oZe e
2
where y = —fffi"), T=T1 =5, €= 4, o? = FIIVL,;
to solve for t, ;, and y = _U(?i, T =T, = i, c = 1/ps;,

2
o Taos,; .
and 0° = 5 10 solve for tg,i. Here 0;, 3; and ¢; are the

dual variables associated with the constraints (d), (e) and (g)
of problem (Pcg) in (13) respectively.

Proof. The solution in (16) can be obtained directly by apply-
ing KKT conditions on the Lagrangian dual of the problem
Pco with respect to t,,; and t4;. Detailed proof can be
obtained using an approach similar to that in [5, Theorem
1] and is omitted for brevity. O

V. ENERGY BEAMFORMING FOR WIRELESS CHARGING
A. Sequential And Nested Algorithm Structures

In this section, we derive the solution for the optimal
transmit covariance matrix, Wy by finding the optimal energy
beam directions and also the optimal beam power allocation.
For the received energy maximization problem (Pwc), we
use Lagrangian duality analysis to obtain the optimal beam
directions as described in Theorem 2 below.

Theorem 2. For maximizing the received energy, the optimal
directions for energy beams are U;‘ = Ugc, where Uc is ob-
tained from the eigenvalue decomposition of C = UcAcU/,

such that A\c.1 > Ac,2 > ... > Ac,N, where
K

C=xI+T.> &1+ pi)h;h}

i=1

a7

Here x and p; are the dual variables associated with con-
straint (14a) and the i constraint in (14b) respectively.

Proof. See Appendix B. O

Theorem 2 provides the optimal directions of the energy
beams for the beamforming matrix, Wy. What is left now
is to obtain the optimal power allocation across the energy
beams, that is, the eigenvalues of the transmit covariance
matrix for wireless charging. To this end, we substitute the
optimal beam directions from Theorem 2 into (Pwc) and re-
write the formulation in terms of the beam power allocation
only as (Pgp) below. Beam power allocation, Ag4, can then be
obtained as a solution to a Linear Programming (LP) problem
given in Theorem 3 below.

Theorem 3. The optimal beam power allocation which maxi-
mizes the received energy through wireless charging is derived
as a solution of the LP problem below

K
(Psp) : max > diag (18)
7 =1

K
stoY A <P A1 == Ak >0 (a-b)
=1

DA, <b ©
where Aq = [Mg1,-Agic)T, D € REXK dy...d5],
d;* = diag(r;r}), v} = hjUc = h;Ug" and b € REX1 =
(M), mi= g4 Vi=1..K.

Proof. Obtained by substituting optimal beam directions from
Theorem 2 in (Pywc). Details in Appendix C. O

Note that in the above solutions for (Pyc), since the goal
is energy maximization, the eigenvalues of Wy and C' are
of the same order. All the eigenvectors of each matrix are
ordered according to their corresponding eigenvalues. The
optimal solutions derived thus far are specific to the respective
problems (Pco) and (Pwc), and thus reveal the optimal
solution structure that otherwise would be obscured by using a
generic solver. Next we use these optimal solutions to design
customized algorithms to solve these problems.
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Figure 3: Structure of the main algorithm Alg. 1, consisting of sequential sub-algorithms
for solving Pco and Pyc.

VI. ALGORITHM DESIGN

In this section, we discuss the algorithm structure to solve
the two sequentially formulated problems FPro and Pyc. Based
on the way these two problems are formulated, Pco will
be solved first to obtain the optimal data partitioning and
time allocation for computation offloading. This optimal time
allocation will then be used in Pyc as a given parameter in
order to find the optimal energy beamforming structure.

The algorithm for solving (Pro) is designed based on
Lemma 1 to have a nested architecture with an outer and an
inner loop, in which the outer loop solves for s; decrementally
while the inner loop solves for ¢ at a fixed value of s;.
Specifically, the nested algorithm works as follows. We first
initialize the offloaded bits s and the dual variables in the outer
algorithm. At the current value of s, the inner algorithm is
executed, for which we use a primal-dual approach employing
a subgradient method. At convergence where the stopping
criterion for the dual problem is satisfied, the inner algorithm
returns the control to the outer algorithm. Based on the
newly updated primal solution from the inner algorithm, we
proceed to updating s by some As; for each user for the next
outer-loop iteration, using a latency aware descent algorithm.
Similar to [5], the latency aware descent algorithm is based
on the standard Newton method, with a novel modification
to the classical stopping criterion to account for the latency
constraint.

Problem (Pwc) solves for the transmit covariance matrix
W, as an independent problem after obtaining the optimal
time allocation solution from (Pro) to calculate the charging
time T, as T, = Ty—T7—T5. The algorithm for solving (Pyc)
also has a nested structure, with an outer algorithm to establish
the optimal beam directions and an inner algorithm for the
beam power allocation. Specifically, at each iteration of (Pyc),
an outer algorithm step finds the optimal dual variables for
the beam direction solutions in Theorem 2 via a subgradient
method, and calls to an inner algorithm which solves the LP
problem (Pgp) in Theorem 3 for the optimal beam power
allocation using a standard convex solver. Once the beam
power allocation is found, the inner algorithm returns to the
outer one in order to update the dual variables, and the process
continues until convergence is reached in the outer algorithm.
In the case of (Pyc), the outer algorithm is primal-dual, and
the inner algorithm is linear programming. The algorithm flow
is depicted in Figure 3 and steps for solving both problems
(Pco) and (Pwc) are given in Algorithm 1.

Algorithm 1 Solution for (Pco) and (Pwc)

Given: Distances d; Vi. Channel H = G . Precision, €1, €2,
Data u;, Latency Tj. Initialize: s;

Begin Sub-algorithm for (Pco)

Outer Loop (Latency-aware Newton Method): Repeat

1) Compute As using the Newton method, where
-1
As = —=V?fo(s)  Vfo(s)

and fo(.) is the objective function in (13)
2) Inner Loop (Subgradient Method)
o Calculate t,, ; and ¢4 ;, using (16). Then 77" = max tZ,i,
and T5 = maxty ;.
o Update p; and 7; using (10) and calculate o7 ; and 03 ;.
o Solve the dual problem in (20):
— Establish the dual function in (19) by using Theo-
rem 1
— Repeat
a) Compute subgradients in (22a-d)
b) Update dual-variables using subgradient method
Until dual subgradients converge with €5 as in (23)
3) Line search and Update. s; := s; + t;As;.
Until stopping criterion for Newton method is satisfied:
A2/2 < ¢ or latency constraint Ty is met. A := —V fo(s)” As
End Sub-algorithm for (Pco)

Given: Optimal time allocation from (P2) in Step 2 above,
find T, =T, — T} — T3
Begin Sub-algorithm for (Pywc)
Outer Loop (Subgradient Method): Repeat
1) Solve for beam directions Ug as function of dual vari-
ables as in Theorem 2
2) Inner Loop (Linear Programming):
« Solve for beam power allocation Ag* as an LP (Pgp)
in Theorem 3

3) Update primal variable
Wy* =UcAUE, where Ay = diag(A\g")
4) Update the dual problem in (21):

« Establish the dual function in (26) by using Theorems
2 and 3

o Compute subgradients in (22e-f)

o Update dual-variables using subgradient method

Until dual subgradients converge with es as in (23)
End Sub-algorithm for (Pyc)

A. Primal-Dual Algorithms

For the inner optimization in (Pco) and the outer algorithm
in (Pwc), we design primal-dual algorithms where the primal
variable are obtained as closed-form functions of the dual
variables, which are found by solving the dual problem using
a sub-gradient method. The dual-function for the convex
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Figure 4: Comparison of the proposed wireless charging scheme with isotropic wireless charging, and directed K-beam charging with equal power allocation (equal K): (left) amount
of total received (charged) energy; (middle) total transmitted energy consumption; (right) the average charging efficiency defined as in (24).

optimization problem (Pco) at a given s; can be defined as
gCO(/\lvﬂa &, ¢) = lrtlf £C0(ta A1, 85 iy ¢>)

where Lo is the Lagrangian for problem (Pco). The optimal
value of t which minimizes this Lagrangian is given in
Theorem 1, based on which the dual function can be obtained.
Then the dual-problem for (Pco) is defined as

Peo-dual: max gco (A1, B &y @)
st. A1 >0,6:,0;,¢0, >0Vi=1...K

19)

(20)

where A1, 3, &;, and ¢ are the dual variables associated with
constraints (c-f) in (13), respectively.

Similarly by maximizing the Lagrangian in (25) for problem
(Pwc), using the optimal W as derived from Theorems 2 and
3, the dual function gwc(p, x) for (Pwc) can be established
as in (26), and its dual problem is given as

Pwc-dual: :min  gwe(p, X)

st. x>0,p;, >0fori=1.K 21)

Using the closed form expressions for the optimal primal
variables in terms of the dual-variables in Theorems 1-3, the
dual functions above are functions of only the dual-variables.
The subgradient terms with respect to all dual variables of
original problems (Pco) and3 (Pwc) are as given below

Vol = Tj— Tieny (22a)
j=1

Vi, L=ty — T, (22b)

Vg, L =tq; — T3, (22¢)

Vo, L = jjq? + by — Ta, (22d)

Vpiﬁ = gitl' (h:thz) Tc — €4, (226)

VL =tr(W,) - P (22f)

For implementation of the primal-dual algorithms, we use
the subgradient method to solve the constrained convex op-
timization problems (Pco) and (Pwc) [37]. The designed
algorithms find the subgradients for the negative dual function
—gco, since the dual problem in (20) is a maximization
problem for the dual function, and for the positive dual
function gwc, since the dual problem in (21) is a minimization
problem. At each iteration, the primal variables are updated

based on Theorems 1-3. The dual variables vector x is updated
as xFt1) = £(®) — 5, (%) where By, is the k™ step-size, and
g®) is the subgradient vector at the k™ iteration evaluated
using the sub-gradient expressions in (22a-f). We use the non-
summable diminishing step size, setting 3, = 1/+/k. Since the
subgradient method is not a descent method, the algorithms
keep track of the best point for the dual functions at each
iteration of the inner algorithm. These primal-dual update
steps are repeated until the desired level of precision, e, is
reached for the stopping criterion. In the subgradient method,
since the key quantity is not the function value but rather the
Euclidean distance to the optimal set [37], therefore, for our
implementation we define the stopping criterion as

g+ — g® 5 < e (23)

B. Algorithm Complexity

For (Pco), the outer algorithm is a latency-aware de-
scent algorithm based on the Newton method and solves
the optimization problem ming f(s), where f = Eiy, and
dom(f) € RX. For K users and s € RE*!, the computation
cost for each Newton iteration requires O(K?) flops [38] and
the backtracking line search requires O(K) flops per inner
backtracking step. The novel latency-aware stopping criterion
is a max operation over K users, with complexity O(K) [5].
The inner algorithm is based on the subgradient method where
we use the non-summable diminishing step size for which the
algorithm is guaranteed to converge to the optimal value with
a theoretical iteration complexity of O(1/€?) [37] [39]. The
chosen stopping criterion of the inner subgradient algorithm
is a norm calculation which requires 2(3/K + 1) flops based
on the size of the subgradient vector g(*) for (Pco).

For (Pywc), in the outer algorithm, the most computationally
intensive step is finding the optimal beam directions for
an N-antenna massive MIMO array which requires SVD
of C € CN*N with a computation cost of O(N?). The
inner algorithm is to solve a linear programming problem
(Pgp), where an LP has complexity class P. Finally W is
obtained through matrix multiplication in which we take into
account the zero-elements of A, and hence it has complexity
O(N?K?). The chosen stopping criterion for the outer al-
gorithm is again a norm calculation which requires requires
2(K 4 1) flops based on the size of the subgradient vector
g'® for (Pyc).
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Figure 5: Simulation network layout of a conference exhibition hall with 4 AP-MEC
serving multiple and randomly located users. The number of active users requesting
computation offloading and wireless charging varies between 16-40.

VII. NUMERICAL RESULTS

In this section, we evaluate the solution of the sequential
problem with respect to energy and time consumption, the
partition of bits offloaded to the MEC for computation and
the received energy via wireless charging. We consider a
20m x 20m area (typical service area for AR applications with
bi-directional transmission [3]) with 4 MEC-APs, each with
N = 100 antennas as shown in Figure 5. We start with 16
users randomly located in the network with /' = 4 users per
AP’s coverage area, and increase the number of active users
up to 40 users (K = 10 per AP area) in various simulations.
For simulations, w = 1073, T; = 20ms (for AR/VR appli-
cations [40]), B = 5MHz, 7. = B1y, I'y = I's = 1.25,
uw = 2, k; = 0.5pF, k,, = bpE, ¢; = 1000, d,,, = 500,
v = 22, 0 = 2.7dB, 02 = —127dBm, o} = —122dBm,
Sui fu = 1800 MHz Vi. Each MEC processor has
24 cores with maximum frequency of 3.4GHz, and we use
S = [ = 222249 MHz Vi. Transmit power available at
user and AP is 23 dBm and 46 dBm respectively. To calculate
the interference and noise power (a%,i, ag,i) which include
massive MIMO pilot contamination and intercell interference,
we assume that user terminals transmit at their maximum
power, that is p,; = 23dBm, and the interfering APs use
equal power allocation in the downlink, that is 7, = % Vi.
Numerical results are averaged over 100 independent channel
realizations of H and G. The results in Figures 4, 7, 12, 13
and 14 are averaged over 200 spatial realizations (randomly
generated user locations).

A. Comparison of Wireless Charging Schemes

Figure 4 shows a comparison of the proposed maximization
wireless charging scheme with two other schemes: (i) isotropic
scheme where W, = %I and equal charging power P/N is
allocated across all N antennas of the AP, and (ii) equal K
with directional charging using the beamforming directions
proposed in Theorem 2, but with equal power allocation P/ K
across K energy beams. For fairness of comparison with the
sequential scheme, we use power scaling for the other two
schemes such that each user only receives an amount of energy
at most equal to requested, similar to the sequential scheme.
Since wireless charging is proposed as a billable service for

60
30 330

150 210
180

Figure 6: A typical wireless charging beam pattern for simultaneously charging multiple
UEs from an MEC-AP, where shown is the strongest beam out of 10 beams for this
channel realization
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Figure 7: Distribution of the number of charging beams for K = 10 users per cell (left),
and the average number of charging beams vs the number of users in each cell (right).

future networks, this is also a necessary design consideration
from the service providers’ and consumers’ perspectives.

Figure 4 shows the received energy on the left, the transmit-
ted energy in the middle, and the average charging efficiency
on the right. Average charging efficiency (per time block) is
defined as the average percentage of received energy, in the
q'" time block as denoted by (gq), at the users end compared
to the requested energy, given as

K €t (hy Wah) T,
231 et?)
R (24)

Note that the requested energy at the ¢*" time block excludes
the amount of energy requests already fulfilled in the previous
time block(s). As illustrated in this figure, the sum received
energy for the energy maximization sequential scheme is
significantly larger than the other two schemes. Beamforming
with equal power allocation scheme performs better than the
isotropic scheme, since it consumes lesser charging energy
and still delivers higher energy to the users. Comparing the
average charging efficiency for all the schemes, however, the
wireless charging maximization scheme enables substantially
higher charging efficiency. The average efficiency is seen to
decrease with an increase in the network size as expected.

Avg. Charging Efficiency (%) =
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Figure 8: A typical example of system performance for K users over multiple time-
slots under three modes (a) Computation and Charging, (b) Computation only, and (c)
Charging only

B. Charging Beams

Figure 6 shows a typical beam radiation pattern of the
proposed scheme for the simultaneous wireless charging of
all active UEs requesting charging. We see that in addition to
the main lobe, there are a large number of side lobes where
the nulls are not as deep, which allows for increased charging
energy levels to users. This "null-fill" property is a common
design feature to alter the energy distribution for the various
antenna elements in the array [41]. For maximal received
energy, users may receive wireless charging not only from
the main beam but also from the side lobes and backscattering
which can be an important consideration for wireless charging.

Figure 7 shows the distribution of the optimal number
of energy beams for K = 10 users per cell (left) and the
average number of beams for an increasing number of users
in the network (right). In comparison, for the isotropic wireless
charging, there are always /N > K energy beams. For the case
of K beams with equal power allocation, the number of beams
is equal to the number of users in the cell. While multiple
energy beams may be necessary for a multi-user system as
also previously discussed in [13], the optimal number of
energy beams for the proposed wireless charging scheme is
usually less than the number of users. Since each energy
beam can charge multiple users simultaneously, the transmit
beamforming can be intelligently designed as proposed to
limit the number of energy beams which can prevent energy
losses caused by transmitting energy in numerous directions.
Therefore, for the proposed received energy maximization, the
optimal number of beams on the average is much lower than
the number of users.

C. Charging Profile

Figure 8 shows a typical example of the system’s charging
performance over time under the three modes of operation,
namely, data and charging, data only, and charging only. The
charging only and data only modes are special cases/subsets
of the data and charging mode. For the joint data and charging
mode, both data and energy requests are non-zero, that is u; >
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Figure 9: Comparison of time and energy consumption between proposed partial and
binary offloading schemes, showing more energy and time efficiency when data can be
split for partial offloading.

0,e; > 0 V ¢. For the data only mode, e; = 0 and for the
charging only mode, u; = 0. The figure shows the time profile
for the received energy by the users. The time axis is plotted
in terms of the coherence interval 7., to show that the energy
values are calculated for a new channel realization after every
coherence interval which corresponds to the variation in the
received energy value over time in the bottom plot. For the
results shown we assume 7. = BT,, with T; = 20ms.

The cumulative energy on the top figure show that during
the data only operation in which no users request wire-
less charging, there is no increase in the charged energy
as expected. Correlating with the bottom plot, we see a
decrease in the mean received energy during the joint phase
of computation and power transfer (data and charging) as
compared to the charging only phase. The results verify that
our algorithm works as expected since with computation, a
portion of time from 7. is spent on data computation and
wireless transmission, as compared to the charging only mode
where the entire duration is spent for wireless charging. The
cumulative top plot show that over an extended period of time
over both computation and non-computation intervals, wireless
charging can deliver a significant amount of energy.

D. Effect of the Amount of Data Requested and Partitioning

Figure 9 shows a comparison of the proposed partial of-
floading scheme, where data partitioning is used to divide
the computation between the MEC and each user, with the
binary offloading scheme where the task is atomic and is
either offloaded or computed locally as a whole. We compare
the time and energy consumption for the two schemes as the
amount of data requested is increased under a fixed latency
constraint of 7; = 20ms. To evaluate the solution for the
binary offloading scheme, we consider all possible binary
offloading combinations and choose the one with the lowest
overall energy consumption.

We see significant disparity between the binary and partial
offloading schemes when large amounts of data are requested.
For low data requests, local processing at users is optimal so
both schemes consume the same energy and the entire duration
is spent for wireless charging by the MEC concurrently with
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Figure 10: Amount of charged (received) energy comparison between binary offloading
and the proposed partial offloading scheme: (top) for all K=4 users, each requesting
500mJ of energy, (bottom) for an individual user requesting 500mJ

the local computation at the users. For larger data requests,
however, the binary offloading scheme spends far less time for
charging, since the time for wireless transmission to offload all
the data to the MEC is greater. Owing to this increased time
for wireless transmission in the binary scheme, the overall
weighted system energy consumption is much larger than
that of partial offloading. Partial offloading not only results
in a lower overall weighted energy consumption, but also
leads to higher received energy at the users during wireless
charging by the MEC because of the longer charging time.
Partial offloading with data partitioning therefore appears as
a potent design variable for the resource allocation problem,
with significant impact on the wireless charging capability of
the system.

E. Effect of the Latency Constraint and Charging Time

Figure 10 (top) shows the total received or charged at
the users, each requesting 500mJ of energy, as the delay
constraint is relaxed, that is, T} is increased at a fixed amount
of requested data, u; = 50 kbits. For this amount of data,
binary offloading results in lower received energy since all
data is offloaded to the MEC to meet the latency requirement.
This results in larger time consumption for wireless transmis-
sion, consequently reducing the charging time and hence the
charged energy. For relaxed latency, however, both binary and
partial offloading schemes compute data locally, and hence the
plots converge.

Figure 10 (bottom) shows the received energy, that is the
amount of charge the user receives through wireless power
transfer, as the charging time is increased. We show the
requested and received energy for one user in a 16 user
network, where each user requests 500 mJ of energy from
the MEC, and the network is in charging only mode, that is,
the users do not request any data for computation. For longer
charging times, the MEC fulfills the user’s demand for wireless
charging almost completely.

F. Effect of the amount of Energy Requested

Figure 11 shows the amount of energy received by a user
through wireless charging, as the amount of energy requested
by the user is increased in the data and charging mode, that

25 - T T
—&— i = 70 kbits, Td = 20 ms

—#— ui = 70 kbits, Td = 40 ms A
==+==+=- ui = 30 kbits, Td = 20 ms

ok

Avg. Received Energy per user (J)

0 L L L L
0 2 4 6 8 10

Energy requested, e, (J)

Figure 11: Amount of received energy by a user as it requests more energy under different
computation and time requirements

is the users jointly request data computation and wireless
charging. We assume all the users requesting the same amount
of energy, that is e; = e Vi. For lower amounts of requested
energy, we see that the MEC-AP strives to fulfill the energy
demand to a large extent, however, as the energy demands are
increased by all the users simultaneously, the wireless charging
by the MEC-AP cannot cope with the wireless charging
demand in full.

We compare the amount of energy received through wireless
charging for three scenarios (a) all users request 70 kbits of
data for computation, that is u; = 70 kbits V¢ under a latency
requirement of T; = 20ms, (b) u; = 70 kbits with relaxed
latency T,; = 40 ms, and (c) reduced data request u; = 30
kbits at T; = 20 ms. Even with less than half of the amount of
data request, the amount of wireless charged energy increases
only slightly, showing that the amount of data for offloading
(while feasible) has a small impact wireless charging. On the
other hand, a twice-relaxed latency constraint has a significant
impact on wireless charging by increasing the charged energy
substantially.

G. Effect of Network Size

Figure 12 shows the total amount of energy received by all
users during the wireless charging function, as the number of
users in the network is increased, each requesting e; = 500mJ

3000

—— Charging Only
—— Charging w/ relaxed latency
2500 H— — Joint Data and Charging

]
3
s
3

1500 -

Received Energy (mJ)

3

3

3
T

500

L L L
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Number of Users in Network

Figure 12: Amount of charged energy received at all users, each requesting 500mJ

of energy, with and without data computation as the number of users in the network
increases.

12

1536-1276 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt&)://www.ieeeor /publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: TUFTS UNIV. Downloaded on August 06,2

21 at 04:08:55 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3075920, IEEE

Transactions on Wireless Communications

104

== Proposed
w/o power alloc

© =) Q
© 1S) o

Time Consumption (%)

©
>

94

0 10 20 30 40
Number of Users in Network

2500

=t Proposed
w/o power alloc

2000

1500

1000

Received Energy (mJ)

500

0 10 20 30 40
Number of Users in Network

Figure 13: Effects of MEC transmit power control for computation offloading on (left) the time consumption of computation offloading, showing the scheme without power control
starts violating the latency as the number of users increases; and (right) the amount of energy received via wireless charging.

of energy. We compare the charged energy under different
scenarios, namely (i) Charging Only where each user only
has energy requests and no data to offload, (ii) Charging
w/ relaxed latency with charging-only mode but the latency
constraint is relaxed from 20 ms to 7; = 40 ms, and (iii) Joint
Data and Charging where each user request u; = 70 kbits
of data for computation along with its energy request. Either
relaxing the latency constraint or having no data significantly
increases the received energy during the wireless charging
phase. The total received energy increases with the network
size but exhibits a diminishing effect because of the total
transmit power constraint.

H. Effect of MEC Transmission Power Allocation in Compu-
tation Offloading

Figure 13 also shows the effect of transmission power al-
location in data transferring phases of computation offloading
on the received energy as the network is increased, where
each user requests e; = 500mJ of energy and w; = 40 kbits
of data for computation. In our proposed scheme, transmit
power control is implemented indirectly through the time
and data partitioning, given by (10) via the optimized time
allocation variables t,, and t4. In the scheme without power
allocation, we fix the transmit power such that the MEC-AP
allocates equal power for transmission beamforming to all
users in downlink, and all users use the maximum transmit
power available. Note that this is the power allocation for data
transmission in offloading and not to be mistaken with power
allocation for the energy beamforming discussed in Sec. VI

An important finding for large network sizes is that without
transmission power allocation, the network cannot cope with
the data and energy requests within the latency constraint, evi-
dent by the percentage time consumption exceeding 100% for
35 or more users in the network. As the network size increases,
transmit power allocation for computation offloading also has a
positive impact on the amount of received energy via wireless
charging. Transmit power control is only consequential for
large network sizes and can be excluded from the optimization
problem to reduce complexity in small networks.

I. Algorithm Convergence

Figure 14 shows, on the left, the convergence of the two
algorithms solving optimization sub-problems Pro and Pyc
with u; = uw = 10kbits, e; = e = 1J Vi. The algorithm
for Pwc, or Pwc sub-algorithm in short, based on nested
subgradient method and linear programming converges in
significantly fewer iterations compared to the algorithm for
Pco, or Pco sub-algorithm, based on nested latency-aware
Newton descent and subgradient methods. Not only does Pyc
sub-algorithm converge in fewer iterations compared to the
Pco sub-algorithm, the time taken per iteration is also shorter
for Pyc as shown in Figure 14 on the right.

The computation offloading Pco sub-algorithm optimizes
for data partitioning and time allocation for each user, leading
to the number of optimizing variables for K users as 2K.
However, a key contributing factor to the increased number of
iterations for Pro is the size of the subgradient vector, which
in this case is g(*) € R3%5+! whereas for Pyc, g*) € RE+,
Since the subgradient algorithm is the most time consuming
step in both sub-algorithms, the mean time per iteration for
Peo is larger than that for Pyc as seen in Figure 14.

Moreover, the wireless charging Pyc sub-algorithm calcu-
lates the beam directions for all K users through a single
matrix factorization per iteration as in Theorem 2. The power
allocation per energy beam is then solved via an efficient inner
linear programming algorithm which scales slowly with the
number of users in the network. For our implementation on a
personal computer, the time step unit in Figure 14 is a second,
however for faster machines, such as MEC servers, with the
high-performance CPUs, this time-step may be significantly
smaller.

VIII. CONCLUSION

We examined a massive MIMO enabled multi-access edge
computing network providing computation offloading and on-
request wireless charging to its connected users under a
round trip latency constraint. We formulated a novel system-
level problem to minimize the energy consumption for data
offloading and to maximize the received energy from wireless
charging, and design efficient algorithms to solve for data
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partitioning, time allocation and transmit energy beamforming
matrices. Our algorithms demonstrated that data partitioning
is a potent optimizing variable, as partial data offloading when
possible leads to significant reduction in system energy con-
sumption, lower transmission times and consequentially higher
amount of received charged energy at users. On the other
hand, MEC-AP transmit power allocation for downlink data
transmission has little effect on the system energy consumption
for small network sizes.

Our algorithm also illustrated that even with significant
amounts of data to be computed, the network can deliver de-
cent amounts of charged energy to the users over an extended
period of multiple computation time-slots, therefore validating
a practical coexistence of computation offloading and wireless
charging. A comparison with isotropic power transfer and
equal power energy beamforming shows that optimal design of
the energy beamforming directions and beam power allocation
in wireless charging is crucial for energy efficiency, and
is necessary for adopting on-request wireless charging as a
billable service for future networks.

IX. APPENDIX
A. Appendix A - Proof for Lemma 1

Consider problem (Pco) in (13) at fixed values of s;. The
objective function is affine in £, and E,,, and hence convex.To
show that the Pro is convex in ¢, we need to consider each
constraint as follows.

o Constraints (c), (e), (f), (h) for (P) in (13) are linear in .

o For constraints (a) and (b), the first terms are of the form

fgx) = 227 in tu; and tq,; respectively, with V2 f(x)

2% > 0 for > 0, and hence f(z) is convex in .

K K
D Gpihily | Wo | =Y pies
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K
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(25)

o Relevant constraints are also linear and convex in F,,
E,, and Tj Vj.
Based on the above, the objective is convex and all the
constraints are convex in the remaining variables. Thus the
problem is convex at given s;. 0

B. Appendix B - Proof for Theorem 2

To establish the optimal beamforming directions in terms
of the dual variables, we analyze the Lagrangian function
of problem (Pwc). Specifically, the Lagrangian for problem
(Pwc) can be obtained as in (25), where  and p; are the dual
variables associated with constraint (14a) and the i™ constraint
in (14b), and the matrix C is defined as in (17). The dual-
function for the problem (Pwc) can then be defined as

gwe(p, X) = max Lwec(Wg, p, x) (26)

We wish to find the beamforming matrix Wy to maximize
the Lagrangian Lwc. Applying the inequality relating trace of
matrix product to the sum of eigenvalue products [42, Ch. 9,
H.1.g.], we have
N

max tr(CWy) = Zl Acii - Agii (27)
where the eigenvalues of C' and Wy are in the same de-
scending order, A\c;1 >,...,> Agn,and A1 >,..., > Ag N,
and the sum of their eigenvalue products yields the maximum
value for tr(CWy) in (27). This maximum value is achieved
if and only if the eigenvectors of C and W, align, that is,
Uy, = Uc, where the eigenvectors Uc are obtained based
on the descending order of the corresponding eigenvalues in

AC = dlag()\c) ]
14
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C. Appendix C - Proof For Theorem 3

In the eigenvalue decomposition of W* as W, =
UquU;, the diagonal matrix A, € RN <& contains the
eigenvalues which signify the beam power allocation. Based
on Theorem (2), constraint (14b) can be rewritten under the
optimal beam solutions as

€4

where m; = T Vi = 1...K. Define the row vector r; =

h;U, = h;Uc, then the above equation becomes

tr(r; Agr;) < (29)

Define row vector d;* = diag(r;r}) for i = 1...K, matrix
D € REXK = [df...d},], and vector b € RE*! = [7..7k],
then (28) can be re-written as in constraint (18c) in (Pgp).
Recall from the proof for Theorem 2, the ordering of elements
in Agq needs to be the same as in Ac, that is, in descending
order, so as to maximize Lagrangian by (27) which leads to
constraint (18b) in (FPgp). ]
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