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Abstract—Edge networks offer a promising solution for satisfy-
ing the increasing energy and computation needs of user devices
with new services including augmented and virtual reality. A
mutil-access edge computing (MEC) system with collocated MEC
servers and base-stations/access points (BS/AP) has the ability to
support multiple users for both data computation and wireless
charging. We propose an integrated solution for wireless charging
with computation offloading to satisfy the largest feasible pro-
portion of requested wireless charging while keeping the total
energy consumption at the minimum, subject to the MEC-AP
transmit power and latency constraints. We design a novel nested
algorithm to optimally solve the non-convex problem in order
to jointly perform data partitioning, time allocation, transmit
power control and design the optimal energy beamforming for
wireless charging. The proposed resource allocation scheme offers
minimal energy consumption compared to other schemes while
also delivering a higher amount of wirelessly transferred charge
to the users. The results also show that compared to other
solutions, the energy charging beams for minimum consumption
have a wider main lobe, smaller side lobes, with an absence of
the back lobe. Even with data offloading, the proposed solution
shows significant charging performance, comparable to the case
of charging alone, hence showing the effectiveness of performing
partial offloading jointly with wireless charging.

Index Terms—Edge computing, MEC, wireless power transfer,
energy efficient network, optimization

I. INTRODUCTION

Multi-access Edge Computing (MEC) is a promising tech-

nology which can provide cloud-computing capabilities within

the radio access network in close vicinity to mobile sub-

scribers [1]. Computation offloading can be beneficial, for

instance, in video surveillance cameras offloading to the

edge, or IoT devices or applications like AR/VR offloading

their computation intensive tasks to the MEC servers. These

servers can be co-located with radio base stations connected

via backhaul to the internet core which is connected to the

centralized cloud [2]. By moving the computing features to the

edge, MEC can offer a distributed and decentralized service

environment characterized by proximity, low latency, and high

rate access [3] [4]. Currently, ETSI industry specification

group is the only international standard available for MEC in

the technology field, however, the 3rd Generation Partnership

Project (3GPP) has started to include MEC in the 5G network

standardization [5].

Radio frequency (RF) energy harvesting has lately gar-

nered significant interest for communication systems with

the prospect of far-field wireless power transfer which can

enable energy-constrained devices to replenish their charge

levels without physical connections. Energy harvesting is a

promising technology which has shown some initial com-

mercial deployments [6] [7]. There is also active research in

RF power transfer ranging from signal design to maximize

energy harvesting potential [8] to application centric research

for using UAVs for wireless charging [9]. The potential and

promise of wireless energy transfer technologies can come into

realization as envisioned for beyond 5G and 6G systems [10].

A. Related Work

The availability of Ultra-High-Definition portable consumer

devices and AR/VR applications fuels the growth of mobile

video traffic, however, the limited battery lifetime of these

devices poses a hindrance to the deployment of such power-

hungry designs and computation intensive features [11]. To

this end, the synergy between edge computing and wireless

power transfer has the potential to provide battery sustainabil-

ity and to alleviate the computation load. Dense deployments

of multiple base-stations with co-located MEC servers [2] in

close proximity to connected users can warrant the practicality

of wireless charging and offer high access rates and compu-

tation capabilities. Such scenarios with edge computing and

wireless power transfer are indeed envisioned for future 6G

systems which will support AI-based applications and will em-

brace new radio access interfaces such as THz communications

and intelligent surfaces [12].

Prior works have considered wireless charging in MEC

systems under different implementations, for instance, wire-

less charging in cooperation assisted edge computing [13],

UAV-enabled mobile edge computing [14] and MEC based

heterogeneous networks [15]. Wireless power transfer has been

considered in MEC networks for self-sustained devices, which

rely on wireless charging as their sole power source, in relay-

aided edge systems [13], single user [16] and multiple user

systems [17]. Different from the concept of self-sustained de-

vices which typically have low power requirements and/or low

receiver sensitivity, on-request wireless charging can be more

widely applicable where user devices use wireless charging

to replenish their batteries. In the case of cellular networks,

providing charging may can be a billable service assuming that

the ground users have knowledge of their battery state, and can

inform the MEC-AP about their battery level for requesting

recharge in cases where their battery is critically low.

Computation offloading to the edge has been studied under

two data models; binary offloading where the task is com-
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pletely offloaded to the MEC for computation, or kept entirely

at the user end for local computation; and partial offloading

where the task can be disintegrated such that some of it is

offloaded to the MEC and the remaining is computed locally.

Modern mobile applications are composed of numerous proce-

dures, for example, an AR/VR application can have multiple

computation components such as video rendering, mapping

and tracking, object recognition, etc, which allows implement-

ing fine-grained (partial) computation offloading. Most prior

works consider the traditional binary offloading scheme [18]–

[21], and only recently, partial offloading has been considered

for the problem of AP’s energy minimization subject to users’

latency requirement [17] [22] [31]. While partial offloading

is more complicated to implement in comparison, however,

it is more realistic with possible implementation in practical

edge computing systems and has immense benefits in terms

of energy consumption as shown in [22] [31].

Previous works have considered energy consumption in

MEC systems, focusing on energy minimization either at the

AP [14], [17] or at the user end [11], [16], [23]. In multi-

user MEC systems, sequential offloading schemes, such as

Time Division Multiple Access (TDMA) are typically assumed

where different users offload their computation intensive tasks

in a round-robin fashion [16], [17], [23], [24]. Under such

sequential schemes, the time for offloading is significantly

dominant compared to the computation time at the MEC or the

time taken for downloading the computed results. Therefore, in

such systems it is common to not optimize for downloading

and/or computation time and only schedule and/or optimize

the offloading time [16], [17], [23], [24].

B. This Work

In this work, we propose an integrated model which com-

bines both computation offloading and wireless charging.

Such models have versatile applicability to different use-cases.

Examples include (i) AR/VR applications where complex

processing tasks may be offloaded to the edge network for

sharing and accessing different context information available

in the network, (ii) human-machine interfaces used in smart

factories where computation offloading prevents head-mounted

AR/VR gear from becoming too warm and uncomfortable

to wear [25], (iii) online gaming or training service data

between two 5G connected devices [26], (iv) real-time map

rendering for autonomous vehicular applications [22], and (v)

professional low-latency periodic audio transport services for

Audio-Video (AV) production applications, music festivals etc.

[27]. Support for such AR/VR use-cases, smart factories and

low latency AV production applications for music festivals,

all are part of the 3GPP technical specifications and technical

reports for 5G cellular networks.

RF wireless charging in these scenarios can help with the

growing energy demands for such use-cases and is already

on the horizon [6] [7]. Traditional wireless charging, or in-

duction charging, requires large surface area contact to enable

inductive charge transfer between the magnetic coils within

both devices (charging device and the device being charged)

and hence cannot work with devices such as AR/VR headsets

which are curvy and not conducive to induction charging.

Instead, over-the-air wireless charging which employs smart-

lensing technology to focus energy beams for power transfer

can offer wireless power solution for multiple applications and

devices [28], [29]. Because of this impending need for RF

wireless charging, smartphone companies have also initiated

collaboration with such technology providers for RF power

transfer [30]. RF wireless charging is especially suitable for

integration in an edge network because of the proximity

between edge servers and user devices and is envisioned as

a native support for 5G MEC systems [32] [33].

While edge networks are envisioned in 5G and beyond sys-

tems to support both computation offloading and RF wireless

charging, little work has examined both services jointly in

the same system. We consider a multi-cell multi-user network

scenario where access points equipped with massive MIMO

antenna arrays and with co-located mobile edge computing

servers offer both computation offloading and wireless charg-

ing. This is the first work to consider a joint optimization

between computation offloading and wireless charging in order

to minimize the total energy consumption, while satisfying

a strict latency constraint on computation offloading and

charging the largest amount as feasible. This joint formulation

is different from others such as the sequential formulation

for an opportunistic wireless charging scheme designed to

maximize the received energy by wireless charging at the user

after computation offloading in [31], or the self-sustainable

model where the MEC server wirelessly charges end-devices

as an incentive for them to subsequently offload computing

tasks to the MEC in [34]. These other works do not aim at

minimizing the transmitted energy consumption for wireless

charging and hence lead to higher energy consumption. In this

paper, we formulate a joint problem for resource allocation

of data computation, communication and wireless charging

resources with the aim of minimizing the overall system’s

transmitted energy consumption.

Major Contributions

1) This is the first work to consider an integrated system-level

problem for joint resource allocation of data transmission,

computation and wireless charging resources with shared

constraints on latency and power. We formulate a novel

problem to minimize a weighted sum of the energy con-

sumption at all users in each cell and at the MEC server,

considering the interference from other cells. For com-

putation offloading, we consider partial offloading instead

of traditional binary offloading. For wireless charging, we

optimize multiple energy beams instead of using the single

strongest sub-band for power transfer.

2) We design a novel nested algorithm to solve the non-convex

integrated energy minimization problem. Our nested al-

gorithm architecture includes an outer latency-aware al-

gorithm which solves for data partitioning, and an inner

two-step primal-dual algorithm which jointly solves for

the optimal time allocation and beamforming matrix for
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Figure 1: System functions at the MEC and user end that take place within the latency constraint Td. The user operation contains 2 phases (bottom figure): data offloading and
local computation. The MEC operation contains 4 phases (top figure), where wireless charging occurs during two different phases: (i) concurrently with MEC computation in phase
II (always); and (ii) during the excess time in phase IV (only if MEC computation offloading finishes before latency constraint).

wireless charging. The proposed algorithm is proved to

achieve the optimal solution of the original non-convex

problem. Our algorithms also efficiently exploit the joint

problem structure to achieve a complexity of O(K3) +
O(K log(K)/ε2) + O((N2 + NK)/ε2), where K is the

number of users per MEC-AP and N is the number of

antennas at each AP.

3) Results using our algorithm show that our proposed in-

tegrated solution warrants higher energy efficiency: it

delivers substantially more wireless charge to the users

at a significantly lower transmitted energy consumption

compared to isotropic and equal power wireless charging

schemes. Even with data offloading, our joint algorithm

shows that the amount of charged energy is significant and

comparable with the case of charging alone, showing the

effectiveness of performing partial offloading jointly with

wireless charging. Our proposed joint resource allocation

algorithm also shows faster convergence compared to se-

quential wireless charging schemes.

Notation: X and x denote a matrix and vector respectively,

∇2f(x) is the Hessian matrix, and ∇2f(x)−1 denotes its

inverse. For an arbitrary size matrix, Y , Y ∗ denotes the Her-

mitian transpose, and diag(y1, ..., yN ) is an N ×N diagonal

matrix with diagonal elements y1, ..., yN . I is an identity ma-

trix, and 0, 1 are all zeros and all ones vector respectively. The

standard circularly symmetric complex Gaussian distribution

is denoted by CN (0, I), with mean 0 and covariance matrix

I . Ck×l and R
k×l denote the space of k × l matrices with

complex and real entries, respectively.

II. SYSTEM MODEL

We consider a system where L ≥ 1 Access Points (APs),

each co-located with an MEC Server, are deployed over a

targeted zone/area, for instance in a sports stadium or an

exhibition hall at a busy conference, serving ground users

with computation offloading and power transfer. Each AP is

equipped with a massive antenna array with N antennas while

the user-devices are equipped with single antennas. These APs

wirelessly charge (upon request) ground users in downlink,

collect offloaded data from the users in uplink, and deliver

computed results to users in downlink [1]. We consider K
users requesting wireless charging service and sending data

for computation offloading to each MEC-AP.

For computation offloading at each MEC, we consider the

simple data-partition model, where the task-input bits are bit-

wise independent and can therefore be arbitrarily divided into

different groups to be executed by different entities [35]. We

consider the case of partial offloading, such that for the ith
user, the ui computation bits are partitioned into qi and si bits,
where qi bits are computed locally and si bits are offloaded

to the MEC server. Assuming that such partition at the user-

terminal does not incur additional computation bits, then ui =
qi + si.

Energy at the user terminal is consumed for two tasks; 1) for

local computation which depends on the CPU frequency used,

and 2) for transmitting the data for computation offloading

to the serving MEC-AP in the uplink which depends on the

transmission time and power. Energy at the MEC server is

consumed for three tasks; 1) for data computation of offloaded

tasks, 2) for transmitting the results of computed data to its

users in the downlink, and 3) for wireless charging in the

downlink to the users requesting energy. Consider the case

where wireless charging is requested jointly with computation

offloading. Given a latency constraint of Td, the time span

for data offloading, computation at both the users and the

MEC ends, wireless charging, and delivery of computed results

to the user should not exceed Td. For our formulation, we

consider only one type of service, for example AR/VR appli-

cations. It is out of the current scope of our paper to consider

multiple types of services which would require multiple values

for Td for different types of QoS when there are different types

of services. Our assumption is in-line with the concept of 5G

network slicing where each network slice is an isolated end-to-

end network tailored to fulfill diverse requirements requested

by a particular application [36]. As an extension however, if

we are to consider multiple values for Td, we can assume sub-

groups among users e.g K1, K2, where K1 users adhere to

Td1 and K2 users adhere to Td2.
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Figure 2: Flow diagram for the tasks performed at the MEC and each of the K users requesting computation offloading and wireless charging.

From the MEC-AP’s perspective, the time duration for data

offloading from all users to the MEC is denoted by T1, the

time for wireless charging is denoted as Tc, the computation

for offloaded data at the MEC spans duration T2, and the

transmission of processed results occupies time T3, such that∑3
j=1 Tj ≤ Td. Note that wireless charging can happen

concurrently with data computation at the MEC, and can

continue after the results have been delivered to the users

in downlink. From the user’s side, the time taken for data

offloading by the ith user, tu,i, and the time taken for local

computation of any remaining data for this user, tL,i should

meet the latency constraint, such that tu,i + tL,i ≤ Td. Figure

1 shows these system functions from both the users’ and the

MEC’s perspective.

We assume that computation at the MEC is synchronous,

such that the computation only starts once data from all users

has been offloaded. While it is possible to perform fine-

scale timing optimization by letting the MEC start computing

immediately as soon as it receives a user’s data, the gain

from such a fine-grain optimization is expected to be non-

substantial since the MEC time and energy consumptions

for computation are both relatively small compared to those

for wireless transmissions [22]. Such fine-grain optimization

would also significantly increase the formulation and algo-

rithm complexity. As such, in our model we assume that the

MEC starts computation after receiving data from all users,

where all users upload their data simultaneously. This model

can be applied to both the cases of continuous data and of

burst data offloading, where bursts are usually short enough

such that multiple bursts can fit within the duration T1 [25].

Figure 2 shows the workflow of offloading, computing and

wireless charging processes at the user and the MEC.

A. Wireless Charging

In each cell, we consider K user terminals requesting wire-

less charging from the MEC-AP, where the ith user requests

ei mJ of energy. To cater for the energy requests from the

multiple users, the massive-MIMO enabled MEC-AP employs

transmit energy beamforming in downlink to simultaneously

charge multiple users.

Let xq denote the energy bearing signal from the AP to the

user-terminal, Wq � E

[
‖xq‖2

]
be the transmit covariance

matrix, and Pc = tr(Wq) be the power transmitted from the

AP for wireless charging, in short, the charging power. Then

the received (charged) power at the ith user is given as

Ph,i = ξiE
[∣∣h∗

ixq

∣∣2] = ξitr(h
∗
iWqhi) (1)

where 0 ≤ ξi ≤ 1 is the energy conversion efficiency from

Radio Frequency (RF) to Direct Current (DC), hi ∈ C
N×1 is

the channel from the AP to the ith user. We assume a linear

energy harvesting model since the received power per user

is assumed to be constant over a single time block duration

Td, under strict latency constraints of the problem setting.

However, to account for the difference in received power at

each user location, each ith user has its own energy conversion

efficiency ξi based on the received power in the current time

block. We define Tc as the time duration for wireless charging,

where Tc = T − (T1 + T3) and includes the time consumed

by the computation phase, over which power is transferred to

the users alongside computation at the users and at the MEC

server. The energy consumed at the MEC server for power

transfer, in short the charging energy, is given by

Ec = Tctr(Wq) (2)

For the ith user requesting ei mJ of energy, the received

(charged) energy, Eh,i, is given as

Eh,i = Ph,iTc = ξiTctr(h
∗
iWqhi) ≥ αiei (3)

Here 0 ≤ αi ≤ 1 ∀i ∈ [1,K] is defined as an energy
ratio auxiliary variable to ensure that the received energy is

proportional to the requested amount such that only a portion

of the requested energy may be charged if it is unfeasible for

the AP to satisfy the user’s energy request completely due to

poor channel conditions or high energy request(s) by a single

or few users. The ratio variable αi therefore serves several

reasons: to avoid over charging users’ batteries, to conserve

energy spending since charging is a billable service, and to

ensure that no single user gets an unfairly large amount of the

charged energy at the expense of others.
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B. Data Transmission

1) Offloading Data in Uplink: In a given time slot, K
single-antenna user terminals simultaneously offload to the N
antenna AP. We consider N � K such that the throughput

becomes independent of the small-scale fading with channel

hardening [37]. We define βi � Sσd
−γ
i as the large scale

fading between the ith user and the AP, assuming it to be

the same for all AP antennas (independent of N ), where Sσ

denotes log-normal shadowing with standard deviation σ dB,

di is the distance from the ith user to the AP, and γ is the

path loss exponent. The very large signal vector dimension at

a massive MIMO AP enables the use of linear detectors such

as maximum ratio combining (MRC), in which case the uplink

net achievable transmission rate for the ith user in the lth cell,

ru,i, is given as [38]

ru,i = ν log2

(
1 +

SINRul
li

Γ1

)
, SINRul

li =
Nγl

lipli
σ2
1,li

(4)

where Γ1 ≥ 1 accounts for the capacity gap due to practical

coding schemes, γli is the mean-square channel estimate, and

pli is the transmit power of the ith user in the lth cell. The

constant ν represents the portion of transmission symbols

spent on data transfer in the coherence interval τc. The

interference and noise power, σ2
1,li, includes the receiver noise

power, plus interference caused by channel estimation errors

due to pilot contamination, and inter-cell interference. Denote

the home cell as the lth cell, and denote cells using the same

pilots as the home cell, called contaminating cells, by the set

Pl, where l ∈ Pl. Then the interference plus noise power term

is given as

σ2
1,li = σ2

r+
∑
q∈Pl

K∑
i=1

βl
qipqi+

∑
q/∈Pl

K∑
i=1

βl
qipqi+N

∑
q∈Pl\l

γl
qipqi

(5)

where σ2
r is the receiver noise variance, the second term

represents interference from contaminating cells, the third term

is inter-cell interference, and the last term is interference

due to the mean-square channel estimates from contaminating

cells excluding the home cell and is also called the coherent

interference [38].

The energy consumed for offloading the ith user’s data is

given by EOFF,i = pitu,i, where pi is the transmit power and

tu,i is the transmission time for the ith user. Let B denote the

channel bandwidth, then tu,i =
si

Bru,i
. All users offload their

computation bits simultaneously, and the total energy and time

overhead for simultaneous data offloading is given as

EOFF =
K∑
i=1

pisi
Bru,i

, T1 = max
i∈[1,K]

tu,i. (6)

2) Downloading Results in Downlink: For the ith user in

the lth cell, the downlink transmission rate with maximum

ratio linear precoding at the MEC-AP is given as [38]

rd,i = log2

(
1 +

SINRdl
li

Γ2

)
, SINRdl

li =
NPγl

liηlk
σ2
2,li

(7)

where Γ2 ≥ 1 is the capacity gap similar to (4), and the
interference and noise power term is

σ2
2,li = σ2

i+P
∑

q∈Pl

K∑

i=1

βl
qiηqi+P

∑

q/∈Pl

K∑

i=1

βl
qiηqi+NP

∑

q∈P\l
γq
qiηqi

(8)

where σ2
i is the noise at the ith user terminal in the lth cell,

{ηli} ∈ [0, 1] are the power coefficients satisfying
∑K

i=1 ηli ≤
1 for all l, and P is the AP’s average transmit power. Similar

to the uplink transmission, the second term in (8) is pilot

contamination, the third term is inter-cell interference which

manifests as uncorrelated noise in the home cell, and the

last term is coherent interference resulting from mean-square

channel estimation errors. Since there is no pilot transmission

in this phase, the effective downlink transmission rate is equal

to the data rate [22].

The transmission time for delivering the ith user’s computa-

tion results can be written in terms of the downlink rate in (7)

as td,i =
s̃i

Brd,i
. Here s̃i denotes the number of information bits

generated after processing si offloaded bits of the ith user, and

is assumed to be proportional to si, that is s̃i = μsi. The AP

simultaneously transmits computed results for all users, and

the total energy and time overhead for results downloading

are then given as

EDL =

K∑
i=1

Pηiμsi
Brd,i

, T3 = max
i∈[1,K]

td,i. (9)

C. Data Computation

1) Local computation at the users: The time for compu-

tation depends on the amount of data to be computed and

the CPU cycle frequency. The energy consumption and the

processing time for local computation at the ith user is given

as [35]

ELC =
K∑
i=1

κici(ui − si)f
2
u,i, tL,i =

ci(ui − si)

fu,i
(10)

where κi is the effective switched capacitance, fu,i denotes the
average CPU frequency, ci denotes the CPU cycle information,

and qi = ui − si is the total number of bits required to be

locally computed at ith user respectively. The users’ local

computation time can also extend to Phase III while the

MEC is sending computed results back to users. This fact is

considered later in the problem formulations.

2) Computation of the offloaded data at the MEC server:
MEC servers, with high computation capacities, compute the

tasks of all users in parallel [39] [35]. The energy and time

consumed for computing offloaded bits is given as

EOC =

K∑
i=1

κmf2
midmsi, tM,i =

dmsi
fmi

∀i ∈ [1,K],

T2 = max{tM,i}. (11)

where tM,i is the time for computing ith user’s offloaded task,

si is the number of bits offloaded by the ith user to the MEC,

dm is the number of CPU cycles required to compute one bit
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Table I: Symbols Table

Symbol Definition Variable Parameter

hi channel from the AP to the ith user �
Wq transmit covariance matrix �
ei energy requested (mJ) by ith user �
α energy ratio auxilliary variable �
εi energy conv. efficiency for ith user �
Γ1/Γ2 capacity gap for UL/DL �
σ2
1/2,i

interference for UL/DL �
βi large scale fading �
γi mean-sqaure channel estimate �
pi ith user’s transmit power �
P AP’s average transmit power �
B channel bandwidth �
fu/m CPU cycle frequency at user/MEC �
ui computation bits for ith user �
tu, td offload/download time �
ru/d,i UL/DL transmission rate �
ηi ith user’s power coefficient in DL �
s offloaded bits �
tM/L,i ith user’s compute time at MEC/user �

at the MEC, fmi is the CPU frequency assigned to the ith

user’s task, and κm is the effective switched capacitance of

the MEC server.

For our formulation to follow in Section III, we consider

equal frequency allocation for users’ tasks, that is fm,i =
fm ∀i, based on previous results in [22] showing that dynamic

frequency allocation has little effect on the system energy

consumption since in a typical network setting, the wireless

transmission energy consumption is significantly dominant

compared to the computation energy consumption. Table I

summarizes all the symbols we use in modeling the system.

III. FORMULATION AND ANALYSIS OF JOINT ENERGY

MINIMIZATION

Considering a multi-cell multi-MEC network, we formulate

an edge computing problem which explicitly accounts for

physical layer parameters including available transmit powers

from each user and the MEC, associated massive MIMO data

rates with realistic pilot contamination and interference. For

simplicity of notation, we assume that all K users which

are offloading their computation to the MEC server are also

requesting wireless charging.

A. Joint Energy Minimization Problem Formulation

The total energy consumption by all users, based on equa-

tions (6) and (10), can be written as

Eu =
K∑
i=1

[
tu,i(2

si
νtu,iB − 1)Γ1σ

2
1,i

Nγi
+κici(ui−si)f

2
u,i

]
(12)

Similarly, the total energy consumption at the MEC server,

based on equations (2), (9) and (11), can be written as Em =
Em1 + Em2 where

Em1 =
K∑
i=1

[
td,i(2

μsi
td,iB − 1)Γ2σ

2
2,i

Nγi
+ κmdmf2

misi

]
(13)

Em2 = (Td − T1 − T3)tr(Wq) (14)

Here Em1 is the energy consumed for computation and

transmission and Em2 is the energy consumed for wireless

charging. In these expressions, using (4) and (7), and by

definition of the uplink and downlink transmission rates as

ru,i =
si

νtu,iB
and rd,i =

μsi
td,iB

respectively, we have implicitly

replaced the power allocation variables for per-user uplink

transmission power (pli) and per-user downlink power (ηli)
as functions of the time allocation and data partitioning as

follows

pli =
(2

si
νtu,iB − 1)Γ1σ

2
1,i

Nγi
, ηli =

(2
μsi

td,iB − 1)Γ2σ
2
2,i

PNγi
(15)

Below we discuss an integrated formulation which jointly

optimizes for the wireless charging transmit beamforming

matrix, the amount of data offloaded from each user, and the

time duration for each phase within a total latency requirement

with aim of system level energy minimization. The joint

energy minimization problem can be written as

(Pint) : min
s,t,Wq

Etotal = (1− w)Eu + w(Em1 + Em2) (16)

s.t. Eqs. (12)− (14) (a-c)

3∑
j=1

(Tj) ≤ Td, (d)

ci(ui − si)

fu,i
+ tu,i − Td ≤ 0 ∀i ∈ [1,K] (e)

tu,i − T1 ≤ 0 ∀i ∈ [1,K], (f)

td,i − T3 ≤ 0 ∀i ∈ [1,K], (g)

dmsi
fmi

− T2 ≤ 0 ∀i ∈ [1,K], (h)

Tc = Td − T1 − T3 (i)

tr(Wq)− P ≤ 0, (j)

ξitr(h
∗
iWqhi)Tc − αiei ≥ 0 (k)

Here Etotal is weighted sum of energy consumed at all users

(Eu given in (12)) and the MEC (Em1 and Em2 given in

(13) and (14)), with 1 − w and w as the respective weights.

The optimizing variables of this problems are time alloca-

tion t = [tu,1...tu,K , td,1...td,K , T1, T2, T3, Tc], offloaded data

s = [s1...sK ], and beamforming matrix for wireless charging

Wq ∈ R
N×N . Given parameters of the problems are Td as the

total latency constraint, P as the AP’s transmit power, B as the

channel bandwidth, Γ1, Γ2 as the uplink and downlink capacity

gaps, (κi, ci) and (κm, dm) as the switched capacitance and

CPU cycle information at the users and the MEC respectively.

Parameter Td is the total latency constraint, and (d) repre-

sents the constraint that both the time consumed for all three

phases at the MEC, and the time consumed for offloading tu
and local computation at each user tL should not exceed Td.

Constraints (f-h) show that the time consumed separately for

offloading tu, computation of users’ tasks at the MEC tM ,

and downloading time td for each user’s results must be less

than the maximum allowable time, {T1, T2, T3}, for that phase
as given in {(6),(11), (9)} respectively. Constraint (h) denotes
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that wireless charging occupies all the time within Td outside

the data transmission operations.

In terms of power constraints, (j) represents the maximum

transmission power of the AP. which can be used for wireless

charging. Note that wireless charging and data transmission

from MEC do not occur at the same time, and the power

constraint for data transmission is implicitly included in (15)

where the transmit power allocation in downlink is constrained

such that
∑K

i=1 ηli ≤ 1. Constraint (k) shows that the amount

of received (charged) energy at the ith user is proportional to

the amount of requested energy depending on the availability

of the system. Here the proportional factor αi (0 ≤ αi ≤ 1)
is an auxiliary variable to ensure feasibility of the charging

problem for cases when the available time or MEC-AP power

for wireless charging cannot satisfy the full requested energy

amount. We are interested in the largest values of αi for which

the problem is feasible, as such these αi values will also be

optimized.

Pint jointly optimizes for both computation offloading vari-

ables and wireless charging beams. To our knowledge, this

is the first formulation to consider such a joint optimization.

It is different from [31] where we considered two sequential

problems, one to minimize the transmitted energy consumption

for computation offloading, followed by the other to maximize

the energy received by the users through wireless charging.

Here the objective for (Pint) is to jointly minimize the total

transmitted energy consumption for both computation offload-

ing and wireless charging. The inclusion of transmitted energy

for wireless charging in the minimizing objective function

consequently leads to completely different algorithms and

optimization results.

B. Problem Analysis and Decomposition

In this section we analyze the integrated problem (Pint) and
show that they can be decomposed into simpler problems. The

multivariable problem in (16) is a non-linear and non-convex

optimization problem. This is due to constraint (16b) in which

the term f2
misi is neither convex nor concave since its Hessian

is indefinite with one positive and one negative eigenvalue,

making this constraint and consequently problem (Pint) non-

convex. We can show, however, that the objective function

f0 for (Pint) is a convex function of si since the second-

order derivative for the objective function with respect to si
is positive for all considered ranges of problem parameters.

[22]. Furthermore, if the gradient of f0(·) with respect to si
evaluated at si = 0 satisfies the non-negativity condition{

(1− w)2
si

νtu,iB ln 2Γ1σ
2
1,i

νBNγi
+

wμ2
μsi

td,iB ln 2Γ2σ
2
2,i

BNγi

+ wκmdmf2
m,i − (1− w)κicif

2
u,i

}∣∣∣∣∣
si→0

≥ 0, (17)

then the total energy in problem (Pint) is an increasing function
of each si. For typical network settings, with multiple APs

and users located in a reasonable size target area, because of

the dominant energy consumptions for wireless transmissions

and MEC computation over local computation, the condition

in (17) will hold true [22]. On the other hand, by offloading

data to the MEC, the total computation time can be reduced.

Therefore, there exists an optimal point, s�i ∀i ∈ [1,K], which
minimizes Etotal within the latency constraint.

If offloaded data s is fixed, then problem (Pint) turns out to
be convex in the remaining variables as stated in the following

lemma. Lemma 1 lets us decompose the original non-convex

problem (Pint) into simpler convex subproblems which will be

used in the subsequent algorithm design.

Lemma 1. For a given set of offloaded data s, the problem
(Pint) is convex in the remaining variables t,Wq .

Proof. Proof follows by examining each constraint and show-

ing that with fixed si, it is a convex function. Details in

Appendix A.

Since CPU frequencies are not optimizing variables due

their negligible impact on the total energy consumption [22],

for a given value of the offloaded data si, the computation time

for the offloaded data T2 can be pre-determined in closed form

directly from constraint (g) in (16) and hence constraint (16g)

can be excluded from the problem (Pint). Also, at a fixed value

of s, considering wireless charging as an opportunistic feature

in addition to computation offloading, (Pint) is also separable

in t and Wq as stated in the lemma below.

Lemma 2. Given that wireless charging is opportunistic, at
a fixed value of si, problem (Pint) is separable in terms of
variable t and Wq as follows

(P2) min
t

(1− w)Eu + wEm1 s.t. (16a,b,d-f) (18)

(P3) min
Wq

wEm2 s.t. (16c,h-j) (19)

This decomposition of (Pint) into sub-problems (P2) and (P3)
is optimal and retains the optimality of the solutions, where
the optimal T �

c from (P2) is used as a parameter for (P3).

Proof. The objective function of (Pint) in (16) constitutes

of distinct components as separate functions of the time

allocation variables tu,i, td,i and the transmit covariance matrix

Wq , as seen from the expressions for Eu, Em1 and Em2 in

(12), (13) and (14) respectively. Thus Pint can be divided into

two sub-problems of minimizing the energy consumption for

wireless charging (P3) and for computation offloading (P2),

where the only variable coupling these two problems is Tc

which must satisfy Tc = Td−T1−T3. If we fix the value of Tc,

the two problems are then completely separable in terms of the

offloading and the wireless charging variables. The question

then becomes what is the optimal value for Tc.

Consider the computation offloading problem, the "best" Tc

is the optimal T �
c resulting from solving problem (P2), since

that value of Tc corresponds to the minimum energy consumed

for computation offloading. Any change from T �
c will result in

an increased energy consumption for computation offloading.
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For wireless charging, since the goal is to minimize the

amount of consumed energy while satisfying the largest feasi-

ble portion of the request (by picking the largest α feasible),

it is of interest for wireless charging to be able to have the

largest possible Tc while the largest feasible αi < 1 ∀i.
Noting also that the energy consumption for wireless charging

is a monotonously increasing function of Tc, thus taking

Tc = T �
c , the optimal value from the computation offloading

problem (P2), is also optimal for wireless charging while

feasible α < 1. Any increase of Tc beyond this value T �
c

will increase the energy consumption for both computation

offloading and wireless charging. On the other hand, if α = 1
is feasible with Tc = T �

c , that means the charging phases

can fully satisfy the charging requests within a time duration

less than T �
c . Therefore, T �

c now acts as an upper bound

on the time necessary for wireless charging, and changing

Tc slightly to a smaller value from T �
c does not change

the energy consumption for charging, while increasing the

energy consumption for computation offloading. Thus again

T �
c results in the minimum amount of energy consumption

for both computation offloading and wireless charging while

satisfying the charing requests.

Thus in all cases of the largest feasible α value, the optimal

T �
c resulting from solving sub-problem (P2) is optimal for the

joint problem (Pint). Thus (Pint) can be optimally decomposed

into two sub-problems (P2) and (P3) where the optimal value

T �
c from sub-problem (P2) is used as a parameter for sub-

problem (P3).

C. Wireless Charging With Largest Feasible α

The goal of sub-problem (P3) is to design the optimal

energy beamforming Wq to minimize the energy consumption

for wireless charging (during both computation phase II and

the excess latency time), while satisfying the largest portion of

the energy requests as feasible. We re-write (P3) with relevant

constraints from (16) as follows

(P3) : min
Wq

Tctr(Wq) (20)

s.t. tr(Wq) ≤ P (a)

ξitr(h
∗
iWqhi)Tc ≥ αiei ∀i = 1...K (b)

Here αi is an auxiliary variable representing a proportion of

the requested amount, whereas 0 < αi ≤ 1, with the largest

feasible value of αi will be sought for the optimal solution.

Before analyzing (P3), it is worthwhile noting the difference

between this formulation and others which maximize the

amount of charged (received) energy ξitr(h
∗
iWqhi)Tc, such as

the one considered in [31]. These two different objectives lead

to different constraints where the amount of received energy

is upper-bounded in [31] to ensure that it is no more than

requested. Here since the goal is to minimize the amount of

transmitted energy, the amount of received energy is instead

lower-bounded.

P3 introduces a best-feasibility approach towards wireless

charging, such that the energy delivered to the users is the

largest feasible while also minimizing the overall energy

consumption. This best-feasibility result is obtained by using

the auxiliary variable αi to ensure that the received energy is at

least an αi portion of the requested energy. The largest values

for αi which are feasible, that is, ensuring problem (P3) have a

energy beamforming solution within the power constraint and

available time, will be sought as the solution of the problem.

IV. OPTIMALITY CONDITIONS AND OPTIMAL SOLUTIONS

In this section, we analyze the optimality conditions for the

two sub-problems established in Section III to derive the opti-

mal time durations for computation offloading and the optimal

beam directions for wireless charging as functions of the dual

variables. We also derive the solution for the largest feasible

value of auxiliary variable α, which provides the portion of

requested energy that can be charged by the transmit power

constraint within one time slot. These optimality conditions are

then used in designing a nested algorithm in the next section

for solving the original problem Pint.

A. Optimal Time Durations For Computation Offloading

Here we present the solution for the optimal time allocation

for the computation offloading problem (P2). Since the prob-

lem is convex based on Lemma 1, we adopt a primal-dual

solution using the Lagrangian duality analysis similar to that

proposed in [22, Theorem 1] and derive the optimal solution

as given in Theorem 1 below.

Theorem 1. The offloading and downloading time, tu,i and
td,i respectively, can be obtained as a solution of the form

x =
cB

ln 2

(
W0

(−y

σ2e
− 1

e

)
+ 1
)

(21)

where y = − βi+θi
(1−w) , x = x1,i = 1

tu,i
, c = ν

si
, σ2 =

Γ1σ
2
1,i

Nγi

to solve for tu,i, and y = −φi

w , x = x2,i =
1

td,i
, c = 1/μsi,

and σ2 =
Γ2σ

2
2,i

Nγi
to solve for td, i. Here θi, βi and φi are the

dual variables associated with the constraints (d), (e) and (g)
of problem (Pint) in (16) respectively.

Proof. The solution in (21) can be obtained directly by apply-

ing KKT conditions on the Lagrangian dual of the problem

(P2) or Pseq,CO with respect to tu,i and td,i. Detailed proof can

be obtained using an approach similar to that in [22, Theorem

1] and is omitted for brevity.

B. Optimal Energy Beam Directions and Power

Problem (P3) is a semi-definite programming with linear

objective function and linear constraints and hence is convex.

We can show that strong duality holds since Slater’s condition

is satisfied, that is, we can find a strictly feasible point (Wq =
pIN×N , p ≤ P/N , 0 ≤ αi ≤ 1 ∀i) in the relative interior of

the domain of the problem where the inequality constraints

hold with strict inequalities [40].

From the definition of charging time, as Tc = Td−T1−T3,

the problem (P3) has an interdependency on the optimization

problem (P2). However, based on Lemma 2, since (P2) and

(P3) are separable, we can use the optimal time allocation

8
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obtained as a solution of (P2) to find the energy beamforming

matrix, Wq in (P3). Theorem 2 below provides the optimal

beam directions for wireless charging.

Theorem 2. Let the eigenvalue decomposition of the optimal
energy beamforming matrix be Wq

� = UqΛ
�
qU

∗
q , where

Uq ∈ R
N×N defines the directions of energy beams and

diagonal Λ�
q is the beam power allocation matrix. Then

the optimal directions for energy beams are U�
q = UB ,

where UB is obtained from the eigenvalue decomposition of
B = UBΛBU∗

B , such that λB,1 ≤ . . . ≤ λB,N , where

B = (Tc + λ5)I − ξiTc

K∑
i=1

ψiαihih
∗
i

Here λ5 and ψi are the dual variables associated with
constraint (20a) and the ith constraint in (20b) respectively.

Proof. See Appendix B.

Theorem 2 provides the optimal directions of the energy

beams for the beamforming matrix, Wq . What is left now

is to obtain the optimal power allocation across the energy

beams, that is, the eigenvalues of the transmit covariance

matrix for wireless charging. To this end, we substitute the

optimal beam directions from Theorem 2 into (P3) and re-

write the formulation in terms of the beam power allocation

only as (P4) below. Beam power allocation, λq , can then be

obtained as a solution to a Linear Programming (LP) problem

given in Theorem 3 below.

Theorem 3. The optimal beam power allocation is derived
by solving the LP problem below

(P4) : min
λq

K∑
i=1

λq,i (22)

s.t.
K∑
i=1

λq,i ≤ P, (a)

λq,1 ≥ ... ≥ λq,K ≥ 0 (b)

Aλq ≥ diag(α)b (c)

where λq = [λq,1, ..., λq,K ]T , A ∈ R
K×K = [a∗

1...a
∗
K ],

ai
∗ = diag(qiq

∗
i ), q

∗
i = h∗

iUB and b ∈ R
K×1 = [π1...πK ],

πi =
ei

ξiTc
∀i = 1...K.

Proof. See Appendix B.

C. Largest Feasible Charged Ratio α

The inclusion of the auxiliary αi variables in the original

problem (Pint) in (16) for feasibility and consequently finding

the largest feasible values of αi for wireless charging is a novel

feature of this formulation. As such, α appears in problem (P4)

as an auxiliary variable to ensure that the amount of charged

energy is feasible within the transmit power constraint. While

different values of α will result in different power allocation,

we are interested in the largest α ∈ [0, 1] that makes (P4)

feasible, so that the amount of received energy is largest while

minimizing the transmit power.

Solving for the largest feasible α usually requires establish-

ing a sequence of feasibility problems, where we increase the

value of α in each subsequent problem until the problem just

becomes infeasible. In (P4), however, we are able to exploit

the problem structure to solve for the largest feasible α in

closed form, thus requiring no separate algorithms for finding

α. The following lemma provides the optimal value of α.

Lemma 3. The largest energy ratio auxiliary variable α which
ensures that (P3) and (P4) stay feasible is obtained as

α =

⎧⎨
⎩
1,

∑K
i=1 λ

(0)
q,i <= P

diag(b)−1Aλ(0)
q

P
∑K

i=1 λ
(0)
q,i

, otherwise (23)

where λ(0)
q are the optimal values of λq,i obtained from (P4)

when setting αi = 1 and sum power constraint P is removed.

Proof. Since the optimal solution of the LP in (P4) is linear

in the constraint P , we can solve this problem without loss

of optimality by first setting α = 1 and removing the power

constraint, then solve for the resulting LP. If the sum of solved

λ
(0)
q,i is more than P , then α will be the scaling vector to bring

this sum to be equal to P while still satisfying constraint (22c)

with equality, and all optimal values λ�
q,i will be scaled by αi.

Otherwise αi stays as 1 and λ�
q,i stays unchanged as λ

(0)
q,i . The

largest energy ratio α is hence obtained as in (23).

V. A NESTED ALGORITHM

While problem (Pint) is not convex in all the optimizing

variables, Lemma 1 shows that by fixing the offloaded bits s,
the problem is convex in all the remaining optimizing variables

with a convex objective function and a convex feasible set.

This suggests an iterative procedure where we can fix the

offloaded bits s and solve for the rest of the variables, then

adjust s and repeat until convergence is achieved. As long as

the gradient condition (17) holds in typical network settings,

the total energy consumption is increasing with s and the

optimization in terms of s can be achieved using a descent

algorithm with an added criterion for the latency.

When fixing s and solving for the rest of the variables

including the time allocation t and transmit covariance matrix

Wq , instead of using a convex solver which is unable to

exploit the problem structure and hence can be inefficient,

we make use of Lemma 2 and optimally divide this convex

problem further into two sub-problems: problem (P2) to find

the optimal time allocation t�, and (P3) to solve for the

transmit covariance matrix W �
q .

Note that the decompositions into sub-problems still main-

tain the optimality of the solution for the original joint

problem. We next propose an optimal and customized nested

algorithm which includes an outer algorithm to determine s�

and an inner two-step algorithm to solve for t� and W �
q to

efficiently reach the solution for problem (Pint).

A. Nested Algorithm Architecture

Based on Lemma 1, the algorithm for solving (Pint) is

designed to have a nested architecture with an outer and an

9
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inner loop, in which the outer loop solves for si decrementally

while the inner loop solves for the remaining variables at a

fixed value of si. Specifically, the nested algorithms work as

follows.

1) Outer Latency-Aware Descent Algorithm for si: We first

initialize the offloaded bits s and the dual variables in the outer

algorithm. At the current value of s, the inner algorithm is

executed, for which we use a primal-dual approach employing

a subgradient method. At convergence where the stopping

criterion for the dual problem is satisfied, the inner algorithm

returns the control to the outer algorithm. Based on the

newly updated primal solution from the inner algorithm, we

proceed to updating s by some Δsi for each user for the

next iteration of the outer algorithm, using a latency aware

descent algorithm [40]. Similar to [22], the latency aware

descent algorithm is based on the standard Newton’s method

with a novel modification to the classical stopping criterion

to account for the latency constraint [22]. The latency based

stopping criterion is given as

Ttotal = max (tu,i + tL,i,
3∑

j=1

Tj) ≤ Td (24)

The outer algorithm works as follows. We initialize 0 <
si,0 < ui, input the simulation parameters, and update the step

or search direction Δs. We then execute the inner algorithm

for finding the optimal time and frequency allocation for the

given value of s. Next we proceed to the sequential update

of si. We use backtracking line search to find the step-length

at the kth iteration as the vector t(k), with t
(k)
i as the step-

length for the ith user, and update the offloaded bits for the

next iteration as s
(k+1)
i = s

(k)
i + tiΔsi. We then check the

stopping criteria for convergence of the outer algorithm. In

this step, we introduce a novel modification to the classical

stopping criterion for descent methods, which is necessary to

arrive at the optimal solution for the original problem (Pint)

as shown in the next proposition. Note that for the implicit

constraint on computation bits, 0 ≤ si ≤ ui ∀i, the upper

bound automatically holds since we start the latency-aware

Newton’s method with a feasible point, with an initial si that
is smaller than ui, and then keep decreasing until zero or until

the latency condition is met. The lower bound condition is

checked in the algorithm such that in the update step, the

value for si is positive, if not then it is set to zero.

2) Inner Algorithms for Other Variables: For each iteration

of the outer algorithm, we solve for the inner optimization

problems (P2) and (P3) in sequence. For a given value of s, we
solve (P2) to obtain time allocation, and calculate the charging

time Tc = Td−T1−T3 which is used by problem (P3) to find

the optimal energy beamforming matrix, as discussed in detail

in the next subsection. These steps for the nested optimization

are repeated until a minimum point for the weighted total

energy consumption is reached where all the constraints in

the original problem (Pint) are satisfied. At each iteration of

(P3), we solve the LP problem (P4) to find the optimal beam

power allocation using a standard convex solver. The algorithm

flow is depicted in Figure 3 and the steps for solving (Pint)
are given in Alg. 1.

The nested algorithm proposed here is different from the

algorithm in [31]. The formulation in (Pint) is a joint opti-

mization of all variables, where the solution for energy beam-

forming is a part of the inner algorithm solving subproblem

(P3). On the other hand, the formulation in [31] constructs

two sequential problems to solve for Wq and the optimal s
and t separately, where the transmit covariance matrix Wq is

solved as an independent problem after obtaining the optimal

s and t. As a result, here the energy beamforming matrix Wq

is updated at every iteration along with the current values of

variables s and t, instead of being updated separately only

after establishing the optimal values of s and t as in [31].

The resulting optimal Wq
� is also very different from [31] in

both beam directions and beam power allocation, as will be

illustrated in our numerical results section.

B. Inner Primal-Dual Algorithms

For the inner algorithm to solve for Wq and t, we design

two primal-dual algorithms where the primal variable values

are obtained as closed form functions of the dual variables,

and the dual variables are found by solving the dual problem

using a sub-gradient methods. The Lagrangian of problem (P2)

is given in (25). The dual-function for the convex optimization

problem (P2) can be defined as

gP2(λ1,β, θ, φ) = inf
t
LP2(t, λ1,β, θ, φ) (26)

and the dual-problem is defined as

P2-dual: max gP2(λ1,β, θ, φ)

s.t. λ1 ≥ 0, βi, θi, φi ≥ 0 ∀i = 1...K (27)

where λ1, β, θ, and φ are the dual variables associated with

constraints (c-f) in (16), respectively.

Similarly, the dual-function for the convex optimization

problem (P3) is obtained as

gP3(ψ, λ5) = min
Wq

LP3(Wq, ψ, λ5) (28)

LP2 = λ1(
3∑

j=1

Tj − Td) +

Ku∑
i=1

tu,i(2
si

νtu,iB − 1)Γ1σ
2
1,i

Nγi
+

Ku∑
i=1

κici(ui − si)f
2
u,i +

Ku∑
i=1

td,i(2
μsi

td,iB − 1)Γ2σ
2
2,i

Nγi

+

Ku∑
i=1

κmdmf2
misi +

K∑
i=1

βi(tu,i − T1) +
K∑
i=1

θi

(
ciqi
fu,i

+ tu,i − Td

)
+

K∑
i=1

φi(td,i − T3) (25)
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Figure 3: Nested algorithm architecture for Pint: Each outer loop advances the data
partitioning using a latency-aware descent algorithm, whereas each inner loop jointly
solves for the optimal time allocation and the optimal energy beamforming matrix using
a primal-dual algorithm. All iterations satisfy the latency and power constraints.

where the Lagrangian is given in (33). The dual-problem for

(P3) is then given as

P3-dual: max gP3(ψ, λ5)

s.t. λ5 ≥ 0, ψi ≥ 0 for i = 1...K (29)

Using closed form expressions for primal variables in terms

of dual-variables as in Theorems 1-2, the dual functions above

are functions of only the dual-variables. These dual problems

can then be solved using the subgradient method [41].

The subgradient terms with respect to all dual variables of

the original problem (P2) and (P3) are as given in (30a-d-f).

We use the subgradient method, for the inner algorithms,

to solve the constrained convex optimization problems (P2)

and (P3) [41]. Since the dual problems in (29, 27) are

maximization problems for the respective dual functions, the

inner algorithms find the subgradient for the negative dual

functions (−gP2,−gP3). The primal variables are updated, at

each iteration, based on Theorems 1-3.

The dual variables vector x is updated as

x(k+1) = x(k) − βkg
(k) (31)

where βk is the kth step-size, and g(k) is the subgradient vector

at the kth iteration evaluated using the sub-gradient expressions
in (30a-d-f). In our proposed algorithm, we use βk = 1/

√
k.

For this non-summable diminishing step size, the algorithm

is guaranteed to converge to the optimal value as k → ∞
with a theoretical iteration complexity of O(1/ε2) [41] [42].

At each iteration of the inner algorithm, the best point for

the dual functions is retained since the subgradient method

is not a descent method. These primal-dual update steps are

repeated until the desired level of precision, ε2, is reached for

the stopping criterion.

Algorithm 1 Solution for (Pint)

Given: Distances di ∀i. Channel H = GT . Precision, ε1, ε2,
Data ui, Latency Td. Initialize: si
Begin Outer Algorithm for Pint
Given a starting point s, Repeat
1) Initialize dual variables, λ1, λ5, βi, θi, φi, ψi∀i and com-

pute Δs using Newton’s method, where

Δs := −∇2f0(s)
−1∇f0(s)

and f0(.) is the objective function in (18) .

2) Offloading Sub-Algorithm for (P2)
• Calculate tu,i and td,i, using (21). Then T �

1 = max t�u,i
and T �

3 = max t�d,i.
• Update pi and ηi using (15) and calculate σ2

1,i and σ2
2,i.

Repeat
– Find dual function in (26) using Theorem 1

– Find subgradients in (30a-d)

– Update dual variables using the subgradient method

Until subgradients converge with ε2 as in (32)

3) Charging Sub-Algorithm for (P3)
• Calculate time for wireless charging

T �
c = Td − T �

1 − T �
3

• Find λq
� by solving the LP in (P4).

• Set Wq
� = UBΛ�

qU
∗
B , where Λ�

q = diag(λq
�)

Repeat
– Find dual function in (28) using Theorem 2

– Find subgradients in (30e-f)

– Update dual variables using the subgradient method

Until subgradients converge with ε2 as in (32)

• Obtain α as in (23)

4) Line search and Update. si := si + tiΔsi.

• If any si < 0, set si = 0

Until stopping criterion for Newton’s method is satisfied:

λ2/2 < ε1, where λ := −∇f0(s)
T
Δs, or latency constraint

in (24) is met.

End Outer Algorithm for Pint

In the subgradient method, the key quantity is not the

function value but rather the Euclidean distance to the optimal

set [41]. Therefore, for our implementation we employed a

stopping criterion as

‖g(k+1) − g(k)‖2 ≤ ε2 (32)

such that the iterations stop when the relative change is less

than ε2. This is a classical stopping criterion similar to the one

∇λ1L =
3∑

j=1

Tj − Tdelay, ∇βiL = tu,i − T1, ∇φiL = td,i − T3 ∇θiL =
ciqi
fu,i

+ tu,i − Td, (30a-d)

∇ψi
L = αiei − ξitr

(
h∗
iWqhi

)
Tc ∇λ5

L = tr(Wq)− P (30e-f)

11

Authorized licensed use limited to: TUFTS UNIV. Downloaded on August 06,2021 at 04:09:26 UTC from IEEE Xplore.  Restrictions apply.



1932-4553 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2021.3098963, IEEE Journal
of Selected Topics in Signal Processing

proposed for the rapidly convergent iterative method in [43].

The steps for the integrated algorithm are shown in Alg. 1.

C. Complexity Analysis

We proceed to analyze the complexity of the proposed

nested Algorithm 1. This algorithm consists of four mains

steps as numerically labeled in Algorithm 1. Except for Step

4 which is a simple line search and update, we will discuss

the computational complexity per iteration in each other step,

as well as the number of iterations, or iteration complexity,

required in each step. These analyses will let us compute the

overall order of complexity.

1) Computational Complexity: First, consider the outer

algorithm based on Newton’s method. Step 1 in the outer

algorithm is a calculation of Newton’s search direction. For

K users and s ∈ R
K×1, the computation cost for each

Newton search direction requires O(K3) flops [44]. In Step

4, the backtracking line search requires O(K) flops per inner
backtracking step. The novel latency-aware stopping criterion

in (24) is a max operation over K users, with complexity

O(K) [22]. Putting these together, the main computation

cost in each outer algorithm’s iteration, excluding the inner

algorithm steps, is therefore O(K3).
Next, consider Step 2 and Step 3 in Algorithm 1, which

correspond to the inner primal-dual algorithms for (P2) and

(P3) respectively. In Step 2, we use the subgradient method for

computation offloading resource allocation in (P2), for which

the Lambert function evaluation for the primal variables tu, td
is more computationally dominant, since it requires Halley’s

iteration to invert x exp(x), using a first-order asymptotic

approximation as the initial estimate. Halley’s iteration method

is a higher-order generalization of Newton’s method which

requires analytical and numerical computation of higher-order

derivatives of the function, such that using FFT multiplication,

it has a complexity of O(log(K)) [45]. For 2K primal

variables, (tu,i, td,i∀i ∈ [1,K]), the complexity for this step

is of the order O(2K log(K)). The chosen stopping criterion

for both (P2) and (P3) is a norm calculation which requires

requiresO(2(3K+1)) andO(2(K+1)) flops based on the size
of the subgradient vector g(k) for (P2) and (P3), respectively.

The total computation complexity for each iteration in the

primal-dual algorithm for (P2) in Step 2 is then O(K log(K)).
In Step 3, the charging sub-algorithm for (P3), finding the

optimal beam directions for an N -antenna massive MIMO

array requires performing the SVD of C ∈ C
N×N with a

computation cost of O(N2). At each iteration of this inner al-

gorithm for (P3), we also solve a linear programming problem

(P4) with computational complexity O(3K+1) [46]. Finally,
Wq = UBΛ�

qU
∗
B is obtained through matrix multiplication.

Taking into account theK non-zero-elements ofΛq by writing

Wq =
∑K

i=1 λq,iuiui
∗, the complexity for this multiplication

operation is of the order O(NK). Thus the total computation

complexity for each iteration of the primal-dual algorithm for

(P3) in Step 3 is O(N2 +NK).
2) Iteration Complexity: The convergence of the outer

algorithm depends on Newton’s method which has a linear

start and then hits the quadratic convergence after a certain

number of iterations which depends on the starting point [40].

In our latency-aware descent outer algorithm, since we add

an additional stopping criterion based on the latency, the

algorithm may stop earlier than the standard implementation.

The latency-aware Newton’s method may not hit the quadratic

convergence if the latency constraint is met before that.

The sub-algorithm for (P2) in Step2 and sub-algorithm for

(P3) in Step3 are both based on the subgradient method where

we use the non-summable diminishing step size for which the

number of iterations required to reach convergence is of the

order O(1/ε2) [41] [42]. The sub-algorithm for (P2) in Step2

also includes the Halley’s iterative method for computing

tu, td which uses linear-over-linear approximation and has

a cubic rate of convergence, O(log3(n)), for n-bit accuracy
[45]. The sub-algorithm for (P3) in Step3 includes a linear-

programming step which is solvable in polynomial time [46].

3) Total Complexity: Putting together the analyses above,

we can compute the complexity of each sub-algorithm alone,

and then put them together to compute the complexity of

the overall nested algorithm. The complexity for the sub-

algorithm for (P2) in Step 2 is equal to the product between its

iteration complexity and computation complexity, which gives

O(c1K log(K)/ε2), where c1 = O(log3(n)) is the number of

iterations for Halley’s method which does not grow with K
or N . Similarly, the complexity for the sub-algorithm for (P3)

in Step 3 is O((N2 +NK)/ε2).
The total complexity of the nested algorithm can then be

computed as

Total complexity of nested Algorithm 1

= iteration complexity of outer algorithm

× (computation complexity for Step 1

+ iteration complexity× computation complexity for Step 2

+ iteration complexity× computation complexity for Step 3
)

= c
(O(K3) +O(c1K log(K)/ε2) +O((N2 +NK)/ε2)

)
=
(O(K3) +O(K log(K)/ε2) +O((N2 +NK)/ε2)

)
where c is the number of latency-aware Newton iterations

for the outer algorithm which does not grow with problem

size. The final complexity expression is a function of both the

number of antennas N and number of users per cell K. In a

typical network scenario, we often have N � K, which leads

to the complexity dominated by and growing quadratically

with N . The number of users K, however, also plays an

important role since often N is fixed in a given network but

K can change. In the numerical results section, we analyze

the complexity of each sub-algorithm in terms of K.

VI. NUMERICAL RESULTS

In this section, we evaluate the solution of energy min-

imization problem (Pint) with respect to energy and time

consumption, the partition of bits offloaded to the MEC for

computation and the received energy via wireless charging.

For simulations, we consider an exhibition room setting within

12
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Figure 4: Simulation system layout: A 4-cell network with 4 MEC-AP, each serving 10
randomly located users within an area of 20m × 20m.
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Figure 5: Alg. 1 convergence vs. (a) number of iterations, and (b) number of users in the
network, for both computation offloading (sub-problem P2, ε1 = 10−5, ε2 = 10−3)
and wireless charging (sub-problem P3, ε2 = 10−6), in comparison with sequential
wireless charging in [31].

an area of 20m × 20m with 4 APs each with N = 100
antennas and 40 active users randomly located with K = 10
users per AP’s coverage area as shown in Figure 4. Note that

the total number of users on the ground can be much larger,

but these are the number of active UEs requesting offloading

and wireless charging services at each time. For simulations,

w = 10−3, Td = 20ms (for AR/VR applications [47]),

B = 5MHz, τc = BTd, Γ1 = Γ2 = 1.25, μ = 2, κi = 0.5pF,
κm = 5pF, ci = 1000, dm = 500, γ = 2.2, σ = 2.7dB,
σ2
r = −127dBm, σ2

k = −122dBm, fu,i = fu = 1800 MHz ∀i.
Each MEC processor has 24 cores with maximum frequency

of 3.4GHz, and we use fm,i = fm = (24 × 3400)/K MHz

∀i. Transmit power available at user and AP is 23 dBm and

46 dBm respectively. To calculate the interference and noise

power (σ2
1,i, σ

2
2,i) which include massive MIMO pilot contami-

nation and intercell interference, we assume that user terminals

transmit at their maximum power, that is pqi = 23dBm, and

the interfering APs use equal power allocation in the downlink,

that is ηqi =
1
K ∀i. Numerical results are averaged independent

channel realizations of H and G for 1000 spatial realizations

(randomly generated user locations).

A. Algorithm Convergence

Figure 5 shows, on the left, the convergence of the two

algorithms solving optimization sub-problems (P2) and (P3)
with ui = u = 10kbits, ei = e = 1J ∀i. On the right, the mean

time per iteration is plotted against the number of users K.

Note that both (P2) and (P3) use the subgradient method with

an iteration complexity of O(1/ε2), however (P3) converges
in fewer iterations compared to (P2) since (P3) uses a linear-
programming step which is solvable in polynomial time, and

the primal-dual steps in the sub-algorithm for (P3) converge

significantly faster compared to those in (P2) which use the

iterative Halley’s method for each time allocation variable

(tu,i, td,i∀i). We observe, however, that even though the sub-

algorithm for (P2) takes more iterations to converge, it eventu-

ally hits the quadratic convergence region where the difference

between the current objective function value and the optimal

value drops off dramatically with each additional iteration.

This observation agrees with our convergence analysis of the

outer algorithm based on Newton’s method.

Figure 5 (right) shows that the run time per iteration for the

sub-algorithm for (P3), or charging sub-algorithm, increases
linearly with the number of users K, in agreement with the

computation complexity analysis result of O(NK +N2). On
the other hand, the mean time per iteration for subalgorithm

(P2) increases super-linearly with the number of users in the

network. This result also agrees with the earlier complexity

analysis which shows the computation complexity for (P2)

sub-algorithm as O(K log(K)).
We also compare the proposed charging sub-algorithm

for the joint energy minimization to the sequential energy

maximizing opportunistic charging scheme in [31], showing

significantly faster convergence for the proposed joint charging

scheme as seen in Figure 5. For our implementation on a

personal computer, the time unit in Figure 5 (right) is a

second, however for faster machines, such as MEC servers,

with the high-performance CPUs and parallel processing, this

time-step may be significantly smaller. Notwithstanding the

complexity, the performance of these algorithms can also be

used as a benchmark for joint computation offloading and

wireless charging on MEC systems.

Figure 6 (left) shows the total runtime for the sub-algorithm

for (P2) and the sub-algorithm for (P3). These results are also

in agreement with those in Figure 5 in that the total runtime for

computation offloading is significantly higher than for wireless

charging. For wireless charging (P3), we see that the total

run time increases linearly with the increase in number of

users. For computation offloading (P2) however, we observe

an interesting result that the total runtime actually decreases as

the number of users increases beyond a certain threshold. This

phenomenon can be explained by a decrease in the number of

iterations as the number of user increases. According to Figure

6 (right), as the number of users increases, the average amount

of data offloaded to the MEC also increases, which leads to a

longer mean time per iteration. However, the number of outer

iterations in the latency-aware algorithm actually decreases,

leading to an overall faster convergence time.

B. Comparison of Wireless Charging Schemes

Figure 7 shows a comparison of the proposed integrated

and sequential wireless charging schemes with two other

schemes: (i) isotropic scheme where Wq = P
N I and equal

charging power P/N is allocated across all N antennas of
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Figure 6: Total runtime versus the number of users for each algorithm on computation
offloading and wireless charging (left) and the mean amount of offloaded data to the
MEC-AP with increasing network size (right).
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Figure 7: Comparison of the proposed energy beamforming scheme for wireless charging
with isotropic wireless charging, and directed K-beam charging with equal power
allocation (equal K): (left) Total received wirelessly charged energy; (right) Total
transmitted energy consumption for wireless charging.

the AP, and (ii) equal K with directional charging using the

beamforming directions proposed in Theorem 2, but with

equal power allocation P/K across K energy beams. For

fairness of comparison, we use power scaling for the other two

schemes such that the users receive energy at most equal to

the requested amounts similar to the proposed scheme. Since

wireless charging is proposed as a billable service for future

networks, this is also a necessary design consideration from

the service providers’ and consumers’ perspective.

Figure 7 shows the received energy on the left and the

transmitted energy on the right. As illustrated in this figure, the

sum received energy for the proposed scheme is significantly

larger than the other two schemes. The wireless charging per-

formance for the isotropic and beamforming with equal power

allocation scheme are similar. However, for smaller networks

the equal power allocation scheme with directed power transfer

does offer some improvement over the isotropic scheme in

terms of the received energy. The proposed integrated charging

energy minimization scheme consumes the lowest charging

energy overall and offers significantly better received energy

performance than both the isotropic and equal power schemes.

C. Energy Charging Beams

Figure 8 shows the beam radiation pattern for the proposed

joint energy minimization scheme and the opportunistic max-

received wireless charging scheme proposed in [31] respec-

tively, under the same channel conditions. For the proposed

energy minimization scheme, we see that the nulls are not

as deep which allows for increased charging energy levels

to users in low coverage areas. This "null-fill" property is a

Figure 8: A typical wireless charging beam pattern for simultaneously charging multiple
UEs from an MEC-AP, where shown is the strongest beam out of 10 beams for this
channel realization: (a) The proposed joint energy minimization scheme, (b) Sequential
energy maximization opportunistic charging scheme in [31]. System setting: 10 UEs
simultaneously receiving wireless charging from this MEC-AP, with 30 interfering UEs
in other cells, locations of UEs and MEC-APs are as given in Figure 4. The beam patterns
show that the proposed joint wireless charging scheme consumes a much smaller amount
of energy by having lower intensity beams and no backscatter beams.

common design feature to alter the energy distribution for the

various antenna elements in the array [48]. In both schemes,

however, users may receive wireless charging not only from

the main beam but also from the side lobes which can be an

important consideration for wireless charging. One significant

difference among the two schemes is the reduction in number

of side lobes and elimination of back lobes for the proposed

scheme, which curbs energy losses and enhances the objective

of energy minimization.

Another interesting finding presented in the plot (bottom) in

Figure 9 is the optimal number of energy beams for K = 10
users per cell. For the isotropic wireless charging, there are

always N > K energy beams. For the case of K beams

with equal power allocation, the number of beams is equal to

the number of users in the cell. While multiple energy beams

may be necessary for a multi-user system as also previously

discussed in [49], the optimal number of energy beams for

the integrated charging energy minimization scheme is usually

less than the number of users as seen in Figure 9. Since

each energy beam can contribute as additional RF charging

sources for neighboring users, the transmit beamforming can

be intelligently designed as proposed to limit the number of

energy beams which can prevent energy losses caused by

transmitting energy in numerous directions and hence also

contribute to energy minimization.

D. Charging Efficiency

Figure 10 shows the average percentage of received energy

at the users end compared to the requested energy. Here

the requested energy is assumed to be 66mJ/ms for each

user, however, for a lower value of the requested energy,

the percentage received energy would be higher. The figure

shows a comparison for the directed equal power and isotropic

schemes to the proposed scheme under two operating modes,

the charging only mode where connected users request wire-

less charging but do not require computation at the edge, and

the data and charging mode where connected users request

both wireless charging as well as computation offloading.

The average charged percentage is seen to decrease with an
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LP3 = Tctr(Wq) + λ5 (tr(Wq)− P )− ξiTctr

((
K∑
i=1

ψihih
∗
i

)
Wq

)
+

K∑
i=1

ψiαiei

= tr

([
(Tc + λ5)I − ξiTc

K∑
i=1

ψihih
∗
i

]
Wq

)
+

K∑
i=1

ψiαiei − λ5P = tr (BWq) +

K∑
i=1

ψiαiei − λ5P (33)
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Figure 9: Distribution of the number of charging energy beams for the proposed joint
scheme for K = 10 users over 1000 spatial realizations. System setting: 10 UEs receiving
wireless charging from this MEC-AP, with 30 interfering UEs in other cells, locations
of UEs and MEC-APs are as given in Figure 4.
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Figure 10: Per-user charged energy as percentage of requested energy with each user
requesting 66mJ, 4 MEC-APs and system layout as shown in Figure 4 averaged over
1000 spatial realizations. While the amount of charged energy per-user reduces as the
number of users in the network increases, the total amount of energy received via wireless
charging increases with more users as shown in Figure 7.

increase in the network size as expected. While the directed

beams equal charging scheme shows some improvement over

the isotropic scheme for small network sizes, both schemes

generally have less than 50% efficiency compared to the

proposed scheme. Further, as illustrated, even under the joint

data and charging mode, where the MEC-AP simultaneously

optimizes the resources required for both computation offload-

ing as well as wireless charging, the decrease in charging

efficiency is negligible compared to the charging only mode.

VII. CONCLUSION

We considered a latency constrained multi-cell multi-user

wireless system with collocated MEC-AP servers providing

computation offloading and wireless charging services to its

connected users. We formulated a novel system-level problem

to minimize the total transmit energy consumption while

ensuring the largest amount of received energy as feasible.

We design an efficient nested algorithm by an optimal division

into convex subproblems to solve for data partitioning, time

allocation and transmit energy beamforming matrices. Our

algorithm demonstrates that even with significant amounts of

data to be computed, the network can deliver decent amounts

of charged energy to the users. The MEC-AP wireless charging

beams for minimizing the overall energy consumption also

have no back lobe and have significantly more power concen-

trated in the main lobe, hence delivering a more efficient and

effective energy transfer. These results validate the potential of

wireless charging in concurrent with computation offloading

from edge networks and can provide a performance benchmark

for practical implementations.

VIII. APPENDIX

A. Appendix A - Proof for Lemma 1

Consider problem (Pint) in (16) at fixed values of si. The
objective function is affine and convex. Convexity in t can be

established similar to [22, Lemma 1]. Constraint (b) contains

a function of the form f1 = (Td − T1 − T3)tr(Wq), with
affine term Tdtr(Wq). Considering f̃1 = −T1tr(Wq), to check

for joint convexity in T1 and Wq , the Hessian of f̃1 is the

block matrix, ∇2f̃1 = [0N×N − IN×N ;−IN×N 0N×N ],
with repeated eigenvalues ±1 and therefore doesn’t show

convexity. However, the sublevel sets {(T1 ∈ R
+,Wq ∈

R
N×N ),−T1tr(Wq) ≤ α} are jointly convex in T1 and Wq

in the domain of the function, (T1 ≥ 0,Wq � 0), therefore
the function f̃1 is quasiconvex [40, Example 3.31]. Therefore

constraint (16b) is a sum of convex and quasiconvex functions

with convex sets and sublevel sets respectively. Similarly,

constraint (i) also has convex sublevel sets with a quasiconvex

function of the form −Tctr(h
∗
iWqhi). Constraints (j) is the

linear trace of Wq and hence is convex.

Based on the above, the objective is convex and all con-

straints are either convex or have convex sub-level sets in the

remaining variables. Thus the problem is convex at a given si.

B. Appendix B - Proof for Theorem 2 and 3

1) Proof for Theorem 2: To minimize the Lagrangian for

problem (P3) as given in (33) to obtain the dual function in

(28), we only need to consider the term involving Wq

min
Wq

tr (BWq) (34)

By applying an inequality relating the trace of a matrix

product to the sum of eigenvalue products [50, Ch. 9, H.1.h.],

tr(BWq) is minimized by choosing Uq = UB such that

tr(BWq) =
N∑
i=1

λB,i · λq,i (35)

where the eigenvalues of Wq are in descending order λq,1 ≥
λq,2 ≥ . . . ≥ λq,N and those of matrix B are in ascending
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order such that λB,1 ≤ λB,2 ≤ . . . ≤ λB,N and the

eigenvectors UB are obtained based on this order of the

corresponding eigenvalues in ΛB = diag(λB). Since the

eigenvalues of B and Wq are in reverse order to each other,

the sum of their eigenvalue products yields the minimum value

for tr(BWq) in (35).

2) Proof for Theorem 3: In the eigenvalue decomposition

of W �
q as Wq = UqΛqU

∗
q , the diagonal matrix Λq ∈ R

N×N

has power allocated across K diagonal elements and the

remaining eigenvalues for the N − K beams is set to zero.

Based on Theorem (2), equation (20b) can be rewritten as

tr(h∗
iUqΛqU

∗
qhi) = πi (36)

where πi =
ei

ξiTc
∀i = 1...K. We define the row vector, q∗

i =

h∗
iUq = h∗

iUB . Then

tr(q∗
i Λqqi) = πi (37)

Define row vector ai
∗ = diag(qiq

∗
i ) for i ∈ [1,K], A ∈

R
K×K = [a∗

1...a
∗
K ], and vector b ∈ R

K×1 = [π1...πK ]. This
results in constraint (22c) in (P4). The ordering of λq needs

to be in reverse from λB , that is, in descending order, so as

to minimize (33) as in (35), which gives us (22b) in (P4).
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