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Abstract—Edge networks offer a promising solution for satisfy-
ing the increasing energy and computation needs of user devices
with new services including augmented and virtual reality. A
mutil-access edge computing (MEC) system with collocated MEC
servers and base-stations/access points (BS/AP) has the ability to
support multiple users for both data computation and wireless
charging. We propose an integrated solution for wireless charging
with computation offloading to satisfy the largest feasible pro-
portion of requested wireless charging while keeping the total
energy consumption at the minimum, subject to the MEC-AP
transmit power and latency constraints. We design a novel nested
algorithm to optimally solve the non-convex problem in order
to jointly perform data partitioning, time allocation, transmit
power control and design the optimal energy beamforming for
wireless charging. The proposed resource allocation scheme offers
minimal energy consumption compared to other schemes while
also delivering a higher amount of wirelessly transferred charge
to the users. The results also show that compared to other
solutions, the energy charging beams for minimum consumption
have a wider main lobe, smaller side lobes, with an absence of
the back lobe. Even with data offloading, the proposed solution
shows significant charging performance, comparable to the case
of charging alone, hence showing the effectiveness of performing
partial offloading jointly with wireless charging.

Index Terms—Edge computing, MEC, wireless power transfer,
energy efficient network, optimization

I. INTRODUCTION

Multi-access Edge Computing (MEC) is a promising tech-
nology which can provide cloud-computing capabilities within
the radio access network in close vicinity to mobile sub-
scribers [1]. Computation offloading can be beneficial, for
instance, in video surveillance cameras offloading to the
edge, or IoT devices or applications like AR/VR offloading
their computation intensive tasks to the MEC servers. These
servers can be co-located with radio base stations connected
via backhaul to the internet core which is connected to the
centralized cloud [2]. By moving the computing features to the
edge, MEC can offer a distributed and decentralized service
environment characterized by proximity, low latency, and high
rate access [3] [4]. Currently, ETSI industry specification
group is the only international standard available for MEC in
the technology field, however, the 3rd Generation Partnership
Project (3GPP) has started to include MEC in the 5G network
standardization [5].

Radio frequency (RF) energy harvesting has lately gar-
nered significant interest for communication systems with
the prospect of far-field wireless power transfer which can
enable energy-constrained devices to replenish their charge

levels without physical connections. Energy harvesting is a
promising technology which has shown some initial com-
mercial deployments [6] [7]. There is also active research in
RF power transfer ranging from signal design to maximize
energy harvesting potential [8] to application centric research
for using UAVs for wireless charging [9]. The potential and
promise of wireless energy transfer technologies can come into
realization as envisioned for beyond 5G and 6G systems [10].

A. Related Work

The availability of Ultra-High-Definition portable consumer
devices and AR/VR applications fuels the growth of mobile
video traffic, however, the limited battery lifetime of these
devices poses a hindrance to the deployment of such power-
hungry designs and computation intensive features [11]. To
this end, the synergy between edge computing and wireless
power transfer has the potential to provide battery sustainabil-
ity and to alleviate the computation load. Dense deployments
of multiple base-stations with co-located MEC servers [2] in
close proximity to connected users can warrant the practicality
of wireless charging and offer high access rates and compu-
tation capabilities. Such scenarios with edge computing and
wireless power transfer are indeed envisioned for future 6G
systems which will support Al-based applications and will em-
brace new radio access interfaces such as THz communications
and intelligent surfaces [12].

Prior works have considered wireless charging in MEC
systems under different implementations, for instance, wire-
less charging in cooperation assisted edge computing [13],
UAV-enabled mobile edge computing [14] and MEC based
heterogeneous networks [15]. Wireless power transfer has been
considered in MEC networks for self-sustained devices, which
rely on wireless charging as their sole power source, in relay-
aided edge systems [13], single user [16] and multiple user
systems [17]. Different from the concept of self-sustained de-
vices which typically have low power requirements and/or low
receiver sensitivity, on-request wireless charging can be more
widely applicable where user devices use wireless charging
to replenish their batteries. In the case of cellular networks,
providing charging may can be a billable service assuming that
the ground users have knowledge of their battery state, and can
inform the MEC-AP about their battery level for requesting
recharge in cases where their battery is critically low.

Computation offloading to the edge has been studied under
two data models; binary offloading where the task is com-
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pletely offloaded to the MEC for computation, or kept entirely
at the user end for local computation; and partial offloading
where the task can be disintegrated such that some of it is
offloaded to the MEC and the remaining is computed locally.
Modern mobile applications are composed of numerous proce-
dures, for example, an AR/VR application can have multiple
computation components such as video rendering, mapping
and tracking, object recognition, etc, which allows implement-
ing fine-grained (partial) computation offloading. Most prior
works consider the traditional binary offloading scheme [18]-
[21], and only recently, partial offloading has been considered
for the problem of AP’s energy minimization subject to users’
latency requirement [17] [22] [31]. While partial offloading
is more complicated to implement in comparison, however,
it is more realistic with possible implementation in practical
edge computing systems and has immense benefits in terms
of energy consumption as shown in [22] [31].

Previous works have considered energy consumption in
MEC systems, focusing on energy minimization either at the
AP [14], [17] or at the user end [11], [16], [23]. In multi-
user MEC systems, sequential offloading schemes, such as
Time Division Multiple Access (TDMA) are typically assumed
where different users offload their computation intensive tasks
in a round-robin fashion [16], [17], [23], [24]. Under such
sequential schemes, the time for offloading is significantly
dominant compared to the computation time at the MEC or the
time taken for downloading the computed results. Therefore, in
such systems it is common to not optimize for downloading
and/or computation time and only schedule and/or optimize
the offloading time [16], [17], [23], [24].

B. This Work

In this work, we propose an integrated model which com-
bines both computation offloading and wireless charging.
Such models have versatile applicability to different use-cases.
Examples include (i) AR/VR applications where complex
processing tasks may be offloaded to the edge network for
sharing and accessing different context information available
in the network, (ii) human-machine interfaces used in smart
factories where computation offloading prevents head-mounted
AR/VR gear from becoming too warm and uncomfortable
to wear [25], (iii) online gaming or training service data
between two 5G connected devices [26], (iv) real-time map
rendering for autonomous vehicular applications [22], and (v)
professional low-latency periodic audio transport services for
Audio-Video (AV) production applications, music festivals etc.
[27]. Support for such AR/VR use-cases, smart factories and
low latency AV production applications for music festivals,
all are part of the 3GPP technical specifications and technical
reports for 5G cellular networks.

RF wireless charging in these scenarios can help with the
growing energy demands for such use-cases and is already
on the horizon [6] [7]. Traditional wireless charging, or in-
duction charging, requires large surface area contact to enable
inductive charge transfer between the magnetic coils within
both devices (charging device and the device being charged)

and hence cannot work with devices such as AR/VR headsets
which are curvy and not conducive to induction charging.
Instead, over-the-air wireless charging which employs smart-
lensing technology to focus energy beams for power transfer
can offer wireless power solution for multiple applications and
devices [28], [29]. Because of this impending need for RF
wireless charging, smartphone companies have also initiated
collaboration with such technology providers for RF power
transfer [30]. RF wireless charging is especially suitable for
integration in an edge network because of the proximity
between edge servers and user devices and is envisioned as
a native support for 5G MEC systems [32] [33].

While edge networks are envisioned in 5G and beyond sys-
tems to support both computation offloading and RF wireless
charging, little work has examined both services jointly in
the same system. We consider a multi-cell multi-user network
scenario where access points equipped with massive MIMO
antenna arrays and with co-located mobile edge computing
servers offer both computation offloading and wireless charg-
ing. This is the first work to consider a joint optimization
between computation offloading and wireless charging in order
to minimize the total energy consumption, while satisfying
a strict latency constraint on computation offloading and
charging the largest amount as feasible. This joint formulation
is different from others such as the sequential formulation
for an opportunistic wireless charging scheme designed to
maximize the received energy by wireless charging at the user
after computation offloading in [31], or the self-sustainable
model where the MEC server wirelessly charges end-devices
as an incentive for them to subsequently offload computing
tasks to the MEC in [34]. These other works do not aim at
minimizing the transmitted energy consumption for wireless
charging and hence lead to higher energy consumption. In this
paper, we formulate a joint problem for resource allocation
of data computation, communication and wireless charging
resources with the aim of minimizing the overall system’s
transmitted energy consumption.

Major Contributions

1) This is the first work to consider an integrated system-level
problem for joint resource allocation of data transmission,
computation and wireless charging resources with shared
constraints on latency and power. We formulate a novel
problem to minimize a weighted sum of the energy con-
sumption at all users in each cell and at the MEC server,
considering the interference from other cells. For com-
putation offloading, we consider partial offloading instead
of traditional binary offloading. For wireless charging, we
optimize multiple energy beams instead of using the single
strongest sub-band for power transfer.

2) We design a novel nested algorithm to solve the non-convex
integrated energy minimization problem. Our nested al-
gorithm architecture includes an outer latency-aware al-
gorithm which solves for data partitioning, and an inner
two-step primal-dual algorithm which jointly solves for
the optimal time allocation and beamforming matrix for
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Figure 1: System functions at the MEC and user end that take place within the latency constraint 77;. The user operation contains 2 phases (bottom figure): data offloading and
local computation. The MEC operation contains 4 phases (top figure), where wireless charging occurs during two different phases: (i) concurrently with MEC computation in phase
II (always); and (ii) during the excess time in phase IV (only if MEC computation offloading finishes before latency constraint).

wireless charging. The proposed algorithm is proved to
achieve the optimal solution of the original non-convex
problem. Our algorithms also efficiently exploit the joint
problem structure to achieve a complexity of O(K?3) +
O(Klog(K)/€*) + O((N? + NK)/€*), where K is the
number of users per MEC-AP and N is the number of
antennas at each AP.

Results using our algorithm show that our proposed in-
tegrated solution warrants higher energy efficiency: it
delivers substantially more wireless charge to the users
at a significantly lower transmitted energy consumption
compared to isotropic and equal power wireless charging
schemes. Even with data offloading, our joint algorithm
shows that the amount of charged energy is significant and
comparable with the case of charging alone, showing the
effectiveness of performing partial offloading jointly with
wireless charging. Our proposed joint resource allocation
algorithm also shows faster convergence compared to se-
quential wireless charging schemes.

3)

Notation: X and x denote a matrix and vector respectively,
V2f(x) is the Hessian matrix, and V2f(z)~! denotes its
inverse. For an arbitrary size matrix, Y, Y™ denotes the Her-
mitian transpose, and diag(y, ..., yn) is an N x N diagonal
matrix with diagonal elements v, ..., yn. I is an identity ma-
trix, and 0, 1 are all zeros and all ones vector respectively. The
standard circularly symmetric complex Gaussian distribution
is denoted by CA(0, I), with mean O and covariance matrix
I. C**! and R¥*! denote the space of k x [ matrices with
complex and real entries, respectively.

II. SYSTEM MODEL

We consider a system where L > 1 Access Points (APs),
each co-located with an MEC Server, are deployed over a
targeted zone/area, for instance in a sports stadium or an
exhibition hall at a busy conference, serving ground users
with computation offloading and power transfer. Each AP is
equipped with a massive antenna array with N antennas while
the user-devices are equipped with single antennas. These APs
wirelessly charge (upon request) ground users in downlink,

collect offloaded data from the users in uplink, and deliver
computed results to users in downlink [1]. We consider K
users requesting wireless charging service and sending data
for computation offloading to each MEC-AP.

For computation offloading at each MEC, we consider the
simple data-partition model, where the task-input bits are bit-
wise independent and can therefore be arbitrarily divided into
different groups to be executed by different entities [35]. We
consider the case of partial offloading, such that for the ith
user, the u; computation bits are partitioned into ¢; and s; bits,
where ¢; bits are computed locally and s; bits are offloaded
to the MEC server. Assuming that such partition at the user-
terminal does not incur additional computation bits, then u; =
¢ + Si-

Energy at the user terminal is consumed for two tasks; 1) for
local computation which depends on the CPU frequency used,
and 2) for transmitting the data for computation offloading
to the serving MEC-AP in the uplink which depends on the
transmission time and power. Energy at the MEC server is
consumed for three tasks; 1) for data computation of offloaded
tasks, 2) for transmitting the results of computed data to its
users in the downlink, and 3) for wireless charging in the
downlink to the users requesting energy. Consider the case
where wireless charging is requested jointly with computation
offloading. Given a latency constraint of 7y, the time span
for data offloading, computation at both the users and the
MEC ends, wireless charging, and delivery of computed results
to the user should not exceed 7. For our formulation, we
consider only one type of service, for example AR/VR appli-
cations. It is out of the current scope of our paper to consider
multiple types of services which would require multiple values
for Ty for different types of QoS when there are different types
of services. Our assumption is in-line with the concept of 5G
network slicing where each network slice is an isolated end-to-
end network tailored to fulfill diverse requirements requested
by a particular application [36]. As an extension however, if
we are to consider multiple values for 7};, we can assume sub-
groups among users e.g Ki, Ko, where K; users adhere to
T1 and K5 users adhere to Tyo.
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Figure 2: Flow diagram for the tasks performed at the MEC and each of the K users requesting computation offloading and wireless charging.

From the MEC-AP’s perspective, the time duration for data
offloading from all users to the MEC is denoted by 77, the
time for wireless charging is denoted as 7, the computation
for offloaded data at the MEC spans duration 75, and the
transmission of processed results occupies time 73, such that
Z?Zl T; < Tgy. Note that wireless charging can happen
concurrently with data computation at the MEC, and can
continue after the results have been delivered to the users
in downlink. From the user’s side, the time taken for data
offloading by the ™ user, ty,i, and the time taken for local
computation of any remaining data for this user, ¢z, ; should
meet the latency constraint, such that ¢, ; +tr,; < Ty. Figure
1 shows these system functions from both the users’ and the
MEC’s perspective.

We assume that computation at the MEC is synchronous,
such that the computation only starts once data from all users
has been offloaded. While it is possible to perform fine-
scale timing optimization by letting the MEC start computing
immediately as soon as it receives a user’s data, the gain
from such a fine-grain optimization is expected to be non-
substantial since the MEC time and energy consumptions
for computation are both relatively small compared to those
for wireless transmissions [22]. Such fine-grain optimization
would also significantly increase the formulation and algo-
rithm complexity. As such, in our model we assume that the
MEC starts computation after receiving data from all users,
where all users upload their data simultaneously. This model
can be applied to both the cases of continuous data and of
burst data offloading, where bursts are usually short enough
such that multiple bursts can fit within the duration 77 [25].
Figure 2 shows the workflow of offloading, computing and
wireless charging processes at the user and the MEC.

A. Wireless Charging

In each cell, we consider K user terminals requesting wire-
less charging from the MEC-AP, where the i user requests
e; mJ] of energy. To cater for the energy requests from the
multiple users, the massive-MIMO enabled MEC-AP employs
transmit energy beamforming in downlink to simultaneously
charge multiple users.

Let x4 denote the energy bearing signal from the AP to the
user-terminal, W, £ ELquHQ} be the transmit covariance
matrix, and P, = tr(Wy) be the power transmitted from the
AP for wireless charging, in short, the charging power. Then
the received (charged) power at the i user is given as

Pri=6&E [\h;‘wqﬂ = &tr(hXWyh;) (1)
where 0 < & < 1 is the energy conversion efficiency from
Radio Frequency (RF) to Direct Current (DC), h; € CN*! is
the channel from the AP to the i user. We assume a linear
energy harvesting model since the received power per user
is assumed to be constant over a single time block duration
Ty, under strict latency constraints of the problem setting.
However, to account for the difference in received power at
each user location, each i user has its own energy conversion
efficiency &; based on the received power in the current time
block. We define T as the time duration for wireless charging,
where T, = T — (T} + T3) and includes the time consumed
by the computation phase, over which power is transferred to
the users alongside computation at the users and at the MEC
server. The energy consumed at the MEC server for power
transfer, in short the charging energy, is given by

E. = T.u(W,) )

For the i™ user requesting e; mJ of energy, the received
(charged) energy, E, ;, is given as

Eni = Py T, = &Tetr(h; Wah;) > ey 3)
Here 0 < «; < 1 Vi € [1,K] is defined as an energy
ratio auxiliary variable to ensure that the received energy is
proportional to the requested amount such that only a portion
of the requested energy may be charged if it is unfeasible for
the AP to satisfy the user’s energy request completely due to
poor channel conditions or high energy request(s) by a single
or few users. The ratio variable «; therefore serves several
reasons: to avoid over charging users’ batteries, to conserve
energy spending since charging is a billable service, and to
ensure that no single user gets an unfairly large amount of the
charged energy at the expense of others.
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B. Data Transmission

1) Offloading Data in Uplink: In a given time slot, K
single-antenna user terminals simultaneously offload to the NV
antenna AP. We consider N > K such that the throughput
becomes independent of the small-scale fading with channel
hardening [37]. We define 3; £ S,d; " as the large scale
fading between the i" user and the AP, assuming it to be
the same for all AP antennas (independent of N), where S,
denotes log-normal shadowing with standard deviation o dB,
d; is the distance from the i*" user to the AP, and ~ is the
path loss exponent. The very large signal vector dimension at
a massive MIMO AP enables the use of linear detectors such
as maximum ratio combining (MRC), in which case the uplink

net achievable transmission rate for the %" user in the I*" cell,
Tu,i, 1 given as [38]
SINR}/ NALpy
Tui = V10g2 1+ = s SINRZI = % (4)
’ I 11

where I'; > 1 accounts for the capacity gap due to practical
coding schemes, ~;; is the mean-square channel estimate, and
pi; is the transmit power of the i" user in the I™ cell. The
constant v represents the portion of transmission symbols
spent on data transfer in the coherence interval 7.. The
interference and noise power, 0% 1i» includes the receiver noise
power, plus interference caused by channel estimation errors
due to pilot contamination, and inter-cell interference. Denote
the home cell as the [t" cell, and denote cells using the same
pilots as the home cell, called contaminating cells, by the set
‘P;, where | € P;. Then the interference plus noise power term
is given as

K K
a%,li = o+ Z Z 5¢l1ipqi+ Z Z Béipqi+N Z ’V(Iquz‘

q€Py i=1 g Py i=1 g€P\l
)
2

where o7 is the receiver noise variance, the second term
represents interference from contaminating cells, the third term
is inter-cell interference, and the last term is interference
due to the mean-square channel estimates from contaminating
cells excluding the home cell and is also called the coherent
interference [38].

The energy consumed for offloading the i*" user’s data is
given by Eorp; = pily,i, where p; is the transmit power and
ty,i 1s the transmission time for the it" user. Let B denote the
channel bandwidth, then ¢, ; = Bii All users offload their
computation bits simultaneously, and the total energy and time
overhead for simultaneous data offloading is given as

Eorr = Ty = max ty;. (6)

2) Downloading Results in Downlink: For the i'" user in
the [t" cell, the downlink transmission rate with maximum
ratio linear precoding at the MEC-AP is given as [38]

SINR¥
1+ —1

N P~
T, 2

, SINRY = (7)

T4 = log,
0315

where ['s > 1 is the capacity gap similar to (4), and the
interference and noise power term is

K K
031 =0T +P Y > Buinai+P D > Buna+NP Y ving
q€Py i=1 qg Py i=1 q€P\L

®)
where o7 is the noise at the i user terminal in the I cell,
{nii} € [0, 1] are the power coefficients satisfying Efil i <
1 for all [, and P is the AP’s average transmit power. Similar
to the uplink transmission, the second term in (8) is pilot
contamination, the third term is inter-cell interference which
manifests as uncorrelated noise in the home cell, and the
last term is coherent interference resulting from mean-square
channel estimation errors. Since there is no pilot transmission
in this phase, the effective downlink transmission rate is equal
to the data rate [22].

The transmission time for delivering the i*” user’s computa-
tion results can be written in terms of the downlink rate in (7)
astq; = Bf; - Here 5; denotes the number of information bits
generated after processing s; offloaded bits of the i user, and
is assumed to be proportional to s;, that is §; = us;. The AP
simultaneously transmits computed results for all users, and
the total energy and time overhead for results downloading
are then given as

y T3 = max td,i- (9)
1€[1,K]

C. Data Computation

1) Local computation at the users: The time for compu-
tation depends on the amount of data to be computed and
the CPU cycle frequency. The energy consumption and the
processing time for local computation at the i*" user is given

as [35]

K
Erc = Z Kici(u; — Si)fg,i, tr: = (10)
i=1

where £; is the effective switched capacitance, f, ; denotes the
average CPU frequency, ¢; denotes the CPU cycle information,
and ¢; = u; — s; is the total number of bits required to be
locally computed at i*" user respectively. The users’ local
computation time can also extend to Phase III while the
MEC is sending computed results back to users. This fact is
considered later in the problem formulations.

2) Computation of the offloaded data at the MEC server:
MEC servers, with high computation capacities, compute the
tasks of all users in parallel [39] [35]. The energy and time
consumed for computing offloaded bits is given as

K

Eoc =) Kmfmidmsi, twi=
i=1

T2 = max{tM’i}.

dmsi

fmi

Vi € [1, K],

Y

where ¢ ; is the time for computing it" user’s offloaded task,
s; is the number of bits offloaded by the i user to the MEC,
d,, is the number of CPU cycles required to compute one bit
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Table I: Symbols Table

Symbol  Definition Variable  Parameter
h; channel from the AP to the i™ user v
Wq transmit covariance matrix v

e energy requested (mJ) by 5™ user

a energy ratio auxilliary variable v

€; energy conv. efficiency for ith user v
'/ capacity gap for UL/DL v
o% /2,0 interference for UL/DL v

Bi large scale fading v
Yi mean-sqaure channel estimate v
i i™ user’s transmit power v

P AP’s average transmit power v
B channel bandwidth v
fu/m CPU cycle frequency at user/MEC v
Uj computation bits for i user v
tu,tq offload/download time v

Tu/d,i UL/DL transmission rate v

i i user’s power coefficient in DL v

s offloaded bits v

tar/Ly i™ user’s compute time at MEC/user v

at the MEC, f,,; is the CPU frequency assigned to the i
user’s task, and r,, is the effective switched capacitance of
the MEC server.

For our formulation to follow in Section III, we consider
equal frequency allocation for users’ tasks, that is fy,; =
fm Vi, based on previous results in [22] showing that dynamic
frequency allocation has little effect on the system energy
consumption since in a typical network setting, the wireless
transmission energy consumption is significantly dominant
compared to the computation energy consumption. Table I
summarizes all the symbols we use in modeling the system.

III. FORMULATION AND ANALYSIS OF JOINT ENERGY
MINIMIZATION

Considering a multi-cell multi-MEC network, we formulate
an edge computing problem which explicitly accounts for
physical layer parameters including available transmit powers
from each user and the MEC, associated massive MIMO data
rates with realistic pilot contamination and interference. For
simplicity of notation, we assume that all K users which
are offloading their computation to the MEC server are also
requesting wireless charging.

A. Joint Energy Minimization Problem Formulation
The total energy consumption by all users, based on equa-

tions (6) and (10), can be written as

K [t,:(27 — 1)lo?,

E, = Z eD

i=1

+rici(ui—si) fui| (12)

Similarly, the total energy consumption at the MEC server,
based on equations (2), (9) and (11), can be written as E,,, =
FE,.1 + E,,2 where

K4
K [taa(2705% — 1)Ta03

_ 2 ..
B = ; e? + K frisi|  (13)
Bz = (Ta — Th — T3)tr(Wy) (14)

Here FE,,; is the energy consumed for computation and
transmission and FE,,2 is the energy consumed for wireless
charging. In these expressions, using (4) and (7), and by
definition of the uplink and downlink transmission rates as
Tui = ﬁ and rq,; = tssB respectively, we have implicitly
replaced the power allocation variables for per-user uplink
transmission power (p;;) and per-user downlink power (7;;)
as functions of the time allocation and data partitioning as
follows

(27 — )0, (2747 — 1)l03,

P = Nr; y M =

Below we discuss an integrated formulation which jointly
optimizes for the wireless charging transmit beamforming
matrix, the amount of data offloaded from each user, and the
time duration for each phase within a total latency requirement
with aim of system level energy minimization. The joint
energy minimization problem can be written as

(Pint) : min Egg = (1 —w)Ey + w(Em1 + Epa)  (16)
s,t,Wy
s.t. Egs. (12) — (14) (a-c)
3
> (1) < Ty, (d)
j=1
W+tu,i—Td<OVie[1,K] ©)
tu,i_Tl <0Vie [1,K], (f)
dm i .

" Ty <o0Vie LK), (h)
Te=Tq—1T1 - 13 ()
tr(Wy) — P <0, @
fitr(h;‘ thi)Tc —a4e; >0 (k)

Here Fi is weighted sum of energy consumed at all users
(E, given in (12)) and the MEC (F,,; and E,,» given in
(13) and (14)), with 1 — w and w as the respective weights.
The optimizing variables of this problems are time alloca-
tion t = [tu,l---tu,K7 td,l---td,K> T, T, Ts, Tc}, offloaded data
8 = [$1...8k]|, and beamforming matrix for wireless charging
Wy € RY*N  Given parameters of the problems are T}; as the
total latency constraint, P as the AP’s transmit power, B as the
channel bandwidth, I'y, I'5 as the uplink and downlink capacity
gaps, (K, ¢;) and (K, d,,) as the switched capacitance and
CPU cycle information at the users and the MEC respectively.

Parameter 7Ty is the total latency constraint, and (d) repre-
sents the constraint that both the time consumed for all three
phases at the MEC, and the time consumed for offloading t,,
and local computation at each user ¢y, should not exceed T}.
Constraints (f-h) show that the time consumed separately for
offloading t,,, computation of users’ tasks at the MEC ¢y,
and downloading time t4 for each user’s results must be less
than the maximum allowable time, {77, 7%, T3}, for that phase
as given in {(6),(11), (9)} respectively. Constraint (h) denotes

6
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that wireless charging occupies all the time within 7}; outside
the data transmission operations.

In terms of power constraints, (j) represents the maximum
transmission power of the AP. which can be used for wireless
charging. Note that wireless charging and data transmission
from MEC do not occur at the same time, and the power
constraint for data transmission is implicitly included in (15)
where the transmit power allocation in downlink is constrained
such that Zszl n1; < 1. Constraint (k) shows that the amount
of received (charged) energy at the i user is proportional to
the amount of requested energy depending on the availability
of the system. Here the proportional factor «; (0 < a; < 1)
is an auxiliary variable to ensure feasibility of the charging
problem for cases when the available time or MEC-AP power
for wireless charging cannot satisfy the full requested energy
amount. We are interested in the largest values of «; for which
the problem is feasible, as such these «; values will also be
optimized.

P, jointly optimizes for both computation offloading vari-
ables and wireless charging beams. To our knowledge, this
is the first formulation to consider such a joint optimization.
It is different from [31] where we considered two sequential
problems, one to minimize the transmitted energy consumption
for computation offloading, followed by the other to maximize
the energy received by the users through wireless charging.
Here the objective for (Py,) is to jointly minimize the total
transmitted energy consumption for both computation offload-
ing and wireless charging. The inclusion of transmitted energy
for wireless charging in the minimizing objective function
consequently leads to completely different algorithms and
optimization results.

B. Problem Analysis and Decomposition

In this section we analyze the integrated problem (Py,) and
show that they can be decomposed into simpler problems. The
multivariable problem in (16) is a non-linear and non-convex
optimization problem. This is due to constraint (16b) in which
the term f2,s; is neither convex nor concave since its Hessian
is indefinite with one positive and one negative eigenvalue,
making this constraint and consequently problem (P;,) non-
convex. We can show, however, that the objective function
fo for (Py) is a convex function of s; since the second-
order derivative for the objective function with respect to s;
is positive for all considered ranges of problem parameters.
[22]. Furthermore, if the gradient of fy(-) with respect to s;
evaluated at s; = O satisfies the non-negativity condition

nsg

wp2tdi? In 2F20’§$Z—
BN~;

(1 — w)27® In 2002,
vBN~;

>0

Si*)O

+ WKy dp, 3” - (1- w)/{icifii , (17)

then the total energy in problem (P, ) is an increasing function
of each s;. For typical network settings, with multiple APs
and users located in a reasonable size target area, because of

the dominant energy consumptions for wireless transmissions
and MEC computation over local computation, the condition
in (17) will hold true [22]. On the other hand, by offloading
data to the MEC, the total computation time can be reduced.
Therefore, there exists an optimal point, s} Vi € [1, K], which
minimizes Fiy, Within the latency constraint.

If offloaded data s is fixed, then problem (P;,) turns out to
be convex in the remaining variables as stated in the following
lemma. Lemma 1 lets us decompose the original non-convex
problem (P, ) into simpler convex subproblems which will be
used in the subsequent algorithm design.

Lemma 1. For a given set of offloaded data s, the problem
(Pint) is convex in the remaining variables t, W.

Proof. Proof follows by examining each constraint and show-
ing that with fixed s;, it is a convex function. Details in
Appendix A. O

Since CPU frequencies are not optimizing variables due
their negligible impact on the total energy consumption [22],
for a given value of the offloaded data s;, the computation time
for the offloaded data 75 can be pre-determined in closed form
directly from constraint (g) in (16) and hence constraint (16g)
can be excluded from the problem (Py,). Also, at a fixed value
of s, considering wireless charging as an opportunistic feature
in addition to computation offloading, (P,) is also separable
in £ and Wy, as stated in the lemma below.

Lemma 2. Given that wireless charging is opportunistic, at
a fixed value of s;, problem (Py,) is separable in terms of
variable t and Wy as follows

(P2)
(P3)

(1 —w)Ey +wE, st
WEpy2 s.t. (16¢,h-j)

(16a,b,d-f) (18)

19)

min
t

min
q

This decomposition of (Py,) into sub-problems (P2) and (P3)

is optimal and retains the optimality of the solutions, where
the optimal T from (P2) is used as a parameter for (P3).

Proof. The objective function of (P,) in (16) constitutes
of distinct components as separate functions of the time
allocation variables ?,, ;, ¢4 ; and the transmit covariance matrix
Wy, as seen from the expressions for E,, E,,; and E,,2 in
(12), (13) and (14) respectively. Thus F;,; can be divided into
two sub-problems of minimizing the energy consumption for
wireless charging (P3) and for computation offloading (P2),
where the only variable coupling these two problems is 7.
which must satisfy T, = T,;—T7 —T3. If we fix the value of T,
the two problems are then completely separable in terms of the
offloading and the wireless charging variables. The question
then becomes what is the optimal value for 7.

Consider the computation offloading problem, the "best" T
is the optimal T} resulting from solving problem (P2), since
that value of T} corresponds to the minimum energy consumed
for computation offloading. Any change from 7" will result in
an increased energy consumption for computation offloading.

7
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For wireless charging, since the goal is to minimize the
amount of consumed energy while satisfying the largest feasi-
ble portion of the request (by picking the largest o feasible),
it is of interest for wireless charging to be able to have the
largest possible 7. while the largest feasible a; < 1 Vi.
Noting also that the energy consumption for wireless charging
is a monotonously increasing function of 7., thus taking
T. = T, the optimal value from the computation offloading
problem (P2), is also optimal for wireless charging while
feasible o < 1. Any increase of 7, beyond this value T
will increase the energy consumption for both computation
offloading and wireless charging. On the other hand, if ¢ = 1
is feasible with 7, = T, that means the charging phases
can fully satisfy the charging requests within a time duration
less than 77*. Therefore, 77 now acts as an upper bound
on the time necessary for wireless charging, and changing
T, slightly to a smaller value from 77 does not change
the energy consumption for charging, while increasing the
energy consumption for computation offloading. Thus again
T results in the minimum amount of energy consumption
for both computation offloading and wireless charging while
satisfying the charing requests.

Thus in all cases of the largest feasible « value, the optimal
T resulting from solving sub-problem (P2) is optimal for the
joint problem (Py). Thus (P;y) can be optimally decomposed
into two sub-problems (P2) and (P3) where the optimal value
T} from sub-problem (P2) is used as a parameter for sub-
problem (P3).

O

C. Wireless Charging With Largest Feasible o

The goal of sub-problem (P3) is to design the optimal
energy beamforming W, to minimize the energy consumption
for wireless charging (during both computation phase II and
the excess latency time), while satisfying the largest portion of
the energy requests as feasible. We re-write (P3) with relevant
constraints from (16) as follows

(P3): Iagl Tetr(Wy) (20)

st. tr(Wy) <P (a)

Here «; is an auxiliary variable representing a proportion of
the requested amount, whereas 0 < «; < 1, with the largest
feasible value of «; will be sought for the optimal solution.

Before analyzing (P3), it is worthwhile noting the difference
between this formulation and others which maximize the
amount of charged (received) energy &;tr(h; Wyh;)T,, such as
the one considered in [31]. These two different objectives lead
to different constraints where the amount of received energy
is upper-bounded in [31] to ensure that it is no more than
requested. Here since the goal is to minimize the amount of
transmitted energy, the amount of received energy is instead
lower-bounded.

P3 introduces a best-feasibility approach towards wireless
charging, such that the energy delivered to the users is the

largest feasible while also minimizing the overall energy
consumption. This best-feasibility result is obtained by using
the auxiliary variable «; to ensure that the received energy is at
least an «; portion of the requested energy. The largest values
for a; which are feasible, that is, ensuring problem (P3) have a
energy beamforming solution within the power constraint and
available time, will be sought as the solution of the problem.

IV. OPTIMALITY CONDITIONS AND OPTIMAL SOLUTIONS

In this section, we analyze the optimality conditions for the
two sub-problems established in Section III to derive the opti-
mal time durations for computation offloading and the optimal
beam directions for wireless charging as functions of the dual
variables. We also derive the solution for the largest feasible
value of auxiliary variable c, which provides the portion of
requested energy that can be charged by the transmit power
constraint within one time slot. These optimality conditions are
then used in designing a nested algorithm in the next section
for solving the original problem P.

A. Optimal Time Durations For Computation Offloading

Here we present the solution for the optimal time allocation
for the computation offloading problem (P2). Since the prob-
lem is convex based on Lemma 1, we adopt a primal-dual
solution using the Lagrangian duality analysis similar to that
proposed in [22, Theorem 1] and derive the optimal solution
as given in Theorem 1 below.

Theorem 1. The offloading and downloading time, t, ; and
tq,; respectively, can be obtained as a solution of the form

cB -y 1
x:—W(——f) 1) 21
ln2( No2e ¢ + 0
2
where y = —(ﬂlfi) T =21 = ﬁ c=Z o? = F;V:li
to solve for t, ;, and y = 75)’ T =T, = ﬁ ¢ =1/us;,
. r
and 0? = FQNLW“ to solve for tq,i. Here 0;, 3; and ¢; are the

dual variables associated with the constraints (d), (e) and (g)
of problem (Py,) in (16) respectively.

Proof. The solution in (21) can be obtained directly by apply-
ing KKT conditions on the Lagrangian dual of the problem
(P2) or Pyeqco with respect to t,, ; and 4 ;. Detailed proof can
be obtained using an approach similar to that in [22, Theorem
1] and is omitted for brevity. O

B. Optimal Energy Beam Directions and Power

Problem (P3) is a semi-definite programming with linear
objective function and linear constraints and hence is convex.
We can show that strong duality holds since Slater’s condition
is satisfied, that is, we can find a strictly feasible point (W, =
pInxn, p < P/N,0 < a; <1 Vi) in the relative interior of
the domain of the problem where the inequality constraints
hold with strict inequalities [40].

From the definition of charging time, as T, = Ty — T} —T5,
the problem (P3) has an interdependency on the optimization
problem (P2). However, based on Lemma 2, since (P2) and
(P3) are separable, we can use the optimal time allocation

8
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obtained as a solution of (P2) to find the energy beamforming
matrix, Wy in (P3). Theorem 2 below provides the optimal
beam directions for wireless charging.

Theorem 2. Let the eigenvalue decomposition of the optimal
energy beamforming matrix be Wg* = UqA;U;, where
U, € RYXN defines the directions of energy beams and
diagonal A; is the beam power allocation matrix. Then
the optimal directions for energy beams are U; = Up,
where Up is obtained from the eigenvalue decomposition of
B =UABU}, such that A\p1 < ... < Ap N, where

K
B = (T.+X)I = &T. ) ticshih
i=1
Here )5 and 1; are the dual variables associated with
constraint (20a) and the i" constraint in (20b) respectively.

Proof. See Appendix B. O

Theorem 2 provides the optimal directions of the energy
beams for the beamforming matrix, W,. What is left now
is to obtain the optimal power allocation across the energy
beams, that is, the eigenvalues of the transmit covariance
matrix for wireless charging. To this end, we substitute the
optimal beam directions from Theorem 2 into (P3) and re-
write the formulation in terms of the beam power allocation
only as (P4) below. Beam power allocation, Aq, can then be
obtained as a solution to a Linear Programming (LP) problem
given in Theorem 3 below.

Theorem 3. The optimal beam power allocation is derived
by solving the LP problem below

K
(P4) : min > A (22)
T =1

K
st Y Agi <P, (a)
i=1
Ag1 = o 2 A >0 (b)
AXg > diag(a)b ()

where Aq = Mg, AT, A € REXE = [a* _.a%],
a;* = diag(q;q}), qf = h;Up and b € REXL = [7y...7k],
T = gf,}c Vi=1...K.

Proof. See Appendix B. O

C. Largest Feasible Charged Ratio o

The inclusion of the auxiliary «; variables in the original
problem (P,y) in (16) for feasibility and consequently finding
the largest feasible values of «; for wireless charging is a novel
feature of this formulation. As such, o appears in problem (P4)
as an auxiliary variable to ensure that the amount of charged
energy is feasible within the transmit power constraint. While
different values of o will result in different power allocation,
we are interested in the largest o € [0, 1] that makes (P4)
feasible, so that the amount of received energy is largest while
minimizing the transmit power.

Solving for the largest feasible o usually requires establish-
ing a sequence of feasibility problems, where we increase the
value of « in each subsequent problem until the problem just
becomes infeasible. In (P4), however, we are able to exploit
the problem structure to solve for the largest feasible o in
closed form, thus requiring no separate algorithms for finding
a. The following lemma provides the optimal value of c.

Lemma 3. The largest energy ratio auxiliary variable o which
ensures that (P3) and (P4) stay feasible is obtained as

1, S )\floz) <=P
diag(b) LAXY) L otherwise 23)
where )‘go) are the optimal values of )\, ; obtained from (P4)
when setting «; = 1 and sum power constraint P is removed.

Proof. Since the optimal solution of the LP in (P4) is linear
in the constraint P, we can solve this problem without loss
of optimality by first setting &« = 1 and removing the power
constraint, then solve for the resulting LP. If the sum of solved
)\51?3 is more than P, then o will be the scaling vector to bring
this sum to be equal to P while still satisfying constraint (22c)
with equality, and all optimal values A} ; will be scaled by «;.

Otherwise a; stays as 1 and A} ; stays unchanged as )‘51(,)1') . The
largest energy ratio « is hence obtained as in (23). O]

V. A NESTED ALGORITHM

While problem (Py) is not convex in all the optimizing
variables, Lemma 1 shows that by fixing the offloaded bits s,
the problem is convex in all the remaining optimizing variables
with a convex objective function and a convex feasible set.
This suggests an iterative procedure where we can fix the
offloaded bits s and solve for the rest of the variables, then
adjust s and repeat until convergence is achieved. As long as
the gradient condition (17) holds in typical network settings,
the total energy consumption is increasing with s and the
optimization in terms of s can be achieved using a descent
algorithm with an added criterion for the latency.

When fixing s and solving for the rest of the variables
including the time allocation ¢ and transmit covariance matrix
Wy, instead of using a convex solver which is unable to
exploit the problem structure and hence can be inefficient,
we make use of Lemma 2 and optimally divide this convex
problem further into two sub-problems: problem (P2) to find
the optimal time allocation t*, and (P3) to solve for the
transmit covariance matrix W;.

Note that the decompositions into sub-problems still main-
tain the optimality of the solution for the original joint
problem. We next propose an optimal and customized nested
algorithm which includes an outer algorithm to determine s*
and an inner two-step algorithm to solve for ¢* and W7 to
efficiently reach the solution for problem (Pj).

A. Nested Algorithm Architecture

Based on Lemma 1, the algorithm for solving (P,) is
designed to have a nested architecture with an outer and an
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inner loop, in which the outer loop solves for s; decrementally
while the inner loop solves for the remaining variables at a
fixed value of s;. Specifically, the nested algorithms work as
follows.

1) Outer Latency-Aware Descent Algorithm for s;: We first
initialize the offloaded bits s and the dual variables in the outer
algorithm. At the current value of s, the inner algorithm is
executed, for which we use a primal-dual approach employing
a subgradient method. At convergence where the stopping
criterion for the dual problem is satisfied, the inner algorithm
returns the control to the outer algorithm. Based on the
newly updated primal solution from the inner algorithm, we
proceed to updating s by some As; for each user for the
next iteration of the outer algorithm, using a latency aware
descent algorithm [40]. Similar to [22], the latency aware
descent algorithm is based on the standard Newton’s method
with a novel modification to the classical stopping criterion
to account for the latency constraint [22]. The latency based
stopping criterion is given as

3
T = max (tu; +tri » T;) < Ty (24)

J=1

The outer algorithm works as follows. We initialize 0 <
5i,0 < u;, input the simulation parameters, and update the step
or search direction As. We then execute the inner algorithm
for finding the optimal time and frequency allocation for the
given value of s. Next we proceed to the sequential update
of s;. We use backtracking line search to find the step-length
at the k" iteration as the vector t*), with tgk) as the step-
length for the i*" user, and update the offloaded bits for the
next iteration as sl(-kﬂ) = sl(»k) + t;As;. We then check the
stopping criteria for convergence of the outer algorithm. In
this step, we introduce a novel modification to the classical
stopping criterion for descent methods, which is necessary to
arrive at the optimal solution for the original problem (F;y)
as shown in the next proposition. Note that for the implicit
constraint on computation bits, 0 < s; < wu; Vi, the upper
bound automatically holds since we start the latency-aware
Newton’s method with a feasible point, with an initial s; that
is smaller than u;, and then keep decreasing until zero or until
the latency condition is met. The lower bound condition is
checked in the algorithm such that in the update step, the
value for s; is positive, if not then it is set to zero.

2) Inner Algorithms for Other Variables: For each iteration
of the outer algorithm, we solve for the inner optimization
problems (P2) and (P3) in sequence. For a given value of s, we
solve (P2) to obtain time allocation, and calculate the charging

5§

T 1)y 02

3 K, tu 71(2
£P2:/\1(ZTJ-—Td)—|-Z : No,
j=1 i=1 v

K, K
+ Z Ko f2:51 + Z Bi(tu,i —T1)
i=1 i=1

time T, = T, —T1 — T3 which is used by problem (P3) to find
the optimal energy beamforming matrix, as discussed in detail
in the next subsection. These steps for the nested optimization
are repeated until a minimum point for the weighted total
energy consumption is reached where all the constraints in
the original problem (Py,) are satisfied. At each iteration of
(P3), we solve the LP problem (P4) to find the optimal beam
power allocation using a standard convex solver. The algorithm
flow is depicted in Figure 3 and the steps for solving (Piy)
are given in Alg. 1.

The nested algorithm proposed here is different from the
algorithm in [31]. The formulation in (P;,) is a joint opti-
mization of all variables, where the solution for energy beam-
forming is a part of the inner algorithm solving subproblem
(P3). On the other hand, the formulation in [31] constructs
two sequential problems to solve for Wy and the optimal s
and ¢ separately, where the transmit covariance matrix Wy is
solved as an independent problem after obtaining the optimal
s and £. As a result, here the energy beamforming matrix Wy
is updated at every iteration along with the current values of
variables s and t, instead of being updated separately only
after establishing the optimal values of s and ¢ as in [31].
The resulting optimal W™ is also very different from [31] in
both beam directions and beam power allocation, as will be
illustrated in our numerical results section.

B. Inner Primal-Dual Algorithms

For the inner algorithm to solve for W, and ¢, we design
two primal-dual algorithms where the primal variable values
are obtained as closed form functions of the dual variables,
and the dual variables are found by solving the dual problem
using a sub-gradient methods. The Lagrangian of problem (P2)
is given in (25). The dual-function for the convex optimization
problem (P2) can be defined as

gr2(A1, B, 0, ) = nf Lps(t, A1, 8,6, ¢) (26)
and the dual-problem is defined as
P2-dual: max gpa(A1,8,0, @)
st. A\ >0,8:,0;,¢0;, >0Vi=1..K 27

where A1, 3,0, and ¢ are the dual variables associated with
constraints (c-f) in (16), respectively.

Similarly, the dual-function for the convex optimization
problem (P3) is obtained as

gp3(¥, As) = vanﬁpa(an P, As) (28)
q
K. K, B 2
. td,i(2 aiB 1)F20 ;
1,2 + ; ﬁici(ui — 5;) 371- =+ - N/W 2,
Ciq; K
2t — Td> + Y ilta; — Ts) (25)
u, i—1
10

1932-4553 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt&) //www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: TUFTS UNIV. Downloaded on August 06,2

21 at 04:09:96 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOT 10.1109/JSTSP.2021.3098963, IEEE Journal

of Selected Topics in Signal Processing

Outer loop: Find optimal data partition

Inner loop:

¢ Solve P2: Find time allocation

 Solve P3: Find energy
beamforming matrix

$

Solution to P

Figure 3: Nested algorithm architecture for Pj,: Each outer loop advances the data
partitioning using a latency-aware descent algorithm, whereas each inner loop jointly
solves for the optimal time allocation and the optimal energy beamforming matrix using
a primal-dual algorithm. All iterations satisfy the latency and power constraints.

where the Lagrangian is given in (33). The dual-problem for
(P3) is then given as

P3-dual: max gp3(, As5)

st. Xy >0, >0fori=1.K  (29)

Using closed form expressions for primal variables in terms
of dual-variables as in Theorems 1-2, the dual functions above
are functions of only the dual-variables. These dual problems
can then be solved using the subgradient method [41].

The subgradient terms with respect to all dual variables of
the original problem (P2) and (P3) are as given in (30a-d-f).

We use the subgradient method, for the inner algorithms,
to solve the constrained convex optimization problems (P2)
and (P3) [41]. Since the dual problems in (29, 27) are
maximization problems for the respective dual functions, the
inner algorithms find the subgradient for the negative dual
functions (—gps, —gp3). The primal variables are updated, at
each iteration, based on Theorems 1-3.

The dual variables vector x is updated as

D) — p(k) _ ﬁkg(k) (31)
where f3;; is the k™ step-size, and g(*) is the subgradient vector
at the k" iteration evaluated using the sub-gradient expressions
in (30a-d-f). In our proposed algorithm, we use 3 = 1/Vk.
For this non-summable diminishing step size, the algorithm
is guaranteed to converge to the optimal value as k — oo
with a theoretical iteration complexity of O(1/e?) [41] [42].
At each iteration of the inner algorithm, the best point for
the dual functions is retained since the subgradient method
is not a descent method. These primal-dual update steps are
repeated until the desired level of precision, €s, is reached for
the stopping criterion.

3
VL= ZT] — Tetays Vg, L=ty; —T1, Vg, L=tq;—T5 Vo, L=

Jj=1

i

Vy

L=ae; — &t (REWhi) T, Vi L =tw(Wy) — P

Algorithm 1 Solution for (Py)

Given: Distances d; Vi. Channel H = G™. Precision, €, €,
Data u;, Latency Tjy. Initialize: s;
Begin Outer Algorithm for P,
Given a starting point s, Repeat
1) Initialize dual variables, A1, A5, 5;, 05, ¢;, ¥;Vi and com-
pute As using Newton’s method, where
As = —V2fy(s) 'V fo(s)
and fo(.) is the objective function in (18) .
2) Offloading Sub-Algorithm for (P2)
o Calculate t,,; and ¢4, using (21). Then 7T} = maxty ;
and T§ = maxtj ;.
« Update p; and 7; using (15) and calculate o7 ; and 03 ;.
Repeat

— Find dual function in (26) using Theorem 1
— Find subgradients in (30a-d)
— Update dual variables using the subgradient method
Until subgradients converge with ey as in (32)
3) Charging Sub-Algorithm for (P3)
o Calculate time for wireless charging
T =T, —-T1TF - T3
« Find A" by solving the LP in (P4).
. ;eetp‘e/:lfg* = UBA;UE, where A; = diag(A\g")
— Find dual function in (28) using Theorem 2
— Find subgradients in (30e-f)
— Update dual variables using the subgradient method

Until subgradients converge with ey as in (32)
e Obtain « as in (23)
4) Line search and Update. s; := s; + t;As;.

o Ifany s; <0, set s;, =0
Until stopping criterion for Newton’s method is satisfied:
A2/2 < €, where A := —V fo(s)” As, or latency constraint
in (24) is met.
End Outer Algorithm for Py

In the subgradient method, the key quantity is not the
function value but rather the Euclidean distance to the optimal
set [41]. Therefore, for our implementation we employed a
stopping criterion as

lg™* ) — gMls < e (32)

such that the iterations stop when the relative change is less
than e5. This is a classical stopping criterion similar to the one

Ciqq

fu,i

+tui — Ta, (30a-d)

(30e-f)
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proposed for the rapidly convergent iterative method in [43].
The steps for the integrated algorithm are shown in Alg. 1.

C. Complexity Analysis

We proceed to analyze the complexity of the proposed
nested Algorithm 1. This algorithm consists of four mains
steps as numerically labeled in Algorithm 1. Except for Step
4 which is a simple line search and update, we will discuss
the computational complexity per iteration in each other step,
as well as the number of iterations, or iteration complexity,
required in each step. These analyses will let us compute the
overall order of complexity.

1) Computational Complexity: First, consider the outer
algorithm based on Newton’s method. Step 1 in the outer
algorithm is a calculation of Newton’s search direction. For
K users and s € REXL the computation cost for each
Newton search direction requires O(K?) flops [44]. In Step
4, the backtracking line search requires O(K) flops per inner
backtracking step. The novel latency-aware stopping criterion
in (24) is a max operation over K users, with complexity
O(K) [22]. Putting these together, the main computation
cost in each outer algorithm’s iteration, excluding the inner
algorithm steps, is therefore O(K?).

Next, consider Step 2 and Step 3 in Algorithm 1, which
correspond to the inner primal-dual algorithms for (P2) and
(P3) respectively. In Step 2, we use the subgradient method for
computation offloading resource allocation in (P2), for which
the Lambert function evaluation for the primal variables t,,, tg4
is more computationally dominant, since it requires Halley’s
iteration to invert xexp(x), using a first-order asymptotic
approximation as the initial estimate. Halley’s iteration method
is a higher-order generalization of Newton’s method which
requires analytical and numerical computation of higher-order
derivatives of the function, such that using FFT multiplication,
it has a complexity of O(log(K)) [45]. For 2K primal
variables, (t,;,tq;Vi € [1, K]), the complexity for this step
is of the order O(2K log(K)). The chosen stopping criterion
for both (P2) and (P3) is a norm calculation which requires
requires O(2(3K+1)) and O(2(K+1)) flops based on the size
of the subgradient vector g(k) for (P2) and (P3), respectively.
The total computation complexity for each iteration in the
primal-dual algorithm for (P2) in Step 2 is then O(K log(K)).

In Step 3, the charging sub-algorithm for (P3), finding the
optimal beam directions for an N-antenna massive MIMO
array requires performing the SVD of C € CN*¥ with a
computation cost of O(N?). At each iteration of this inner al-
gorithm for (P3), we also solve a linear programming problem
(P4) with computational complexity O(3K + 1) [46]. Finally,
W, = UBA;UE is obtained through matrix multiplication.
Taking into account the K non-zero-elements of A4 by writing
W,y = Efil Ag,itb;u; ™, the complexity for this multiplication
operation is of the order O(NK). Thus the total computation
complexity for each iteration of the primal-dual algorithm for
(P3) in Step 3 is O(N? + NK).

2) Iteration Complexity: The convergence of the outer
algorithm depends on Newton’s method which has a linear

start and then hits the quadratic convergence after a certain
number of iterations which depends on the starting point [40].
In our latency-aware descent outer algorithm, since we add
an additional stopping criterion based on the latency, the
algorithm may stop earlier than the standard implementation.
The latency-aware Newton’s method may not hit the quadratic
convergence if the latency constraint is met before that.

The sub-algorithm for (P2) in Step2 and sub-algorithm for
(P3) in Step3 are both based on the subgradient method where
we use the non-summable diminishing step size for which the
number of iterations required to reach convergence is of the
order O(1/¢2) [41] [42]. The sub-algorithm for (P2) in Step2
also includes the Halley’s iterative method for computing
ty,tq which uses linear-over-linear approximation and has
a cubic rate of convergence, O(logs(n)), for n-bit accuracy
[45]. The sub-algorithm for (P3) in Step3 includes a linear-
programming step which is solvable in polynomial time [46].

3) Total Complexity: Putting together the analyses above,
we can compute the complexity of each sub-algorithm alone,
and then put them together to compute the complexity of
the overall nested algorithm. The complexity for the sub-
algorithm for (P2) in Step 2 is equal to the product between its
iteration complexity and computation complexity, which gives
O(c1 K log(K)/e?), where ¢; = O(logz(n)) is the number of
iterations for Halley’s method which does not grow with K
or N. Similarly, the complexity for the sub-algorithm for (P3)
in Step 3 is O((N? + NK)/€?).

The total complexity of the nested algorithm can then be
computed as

Total complexity of nested Algorithm 1
= iteration complexity of outer algorithm
X (computation complexity for Step 1
+ iteration complexity X computation complexity for Step 2
+ iteration complexity x computation complexity for Step 3)
=c(O(K®) + O(c1 K log(K)/€®) + O((N? + NK) /€?))
= (O(K®) + O(K log(K)/€®) + O((N? + NK)/e?))

where c is the number of latency-aware Newton iterations
for the outer algorithm which does not grow with problem
size. The final complexity expression is a function of both the
number of antennas N and number of users per cell K. In a
typical network scenario, we often have N > K, which leads
to the complexity dominated by and growing quadratically
with N. The number of users K, however, also plays an
important role since often N is fixed in a given network but
K can change. In the numerical results section, we analyze
the complexity of each sub-algorithm in terms of K.

VI. NUMERICAL RESULTS

In this section, we evaluate the solution of energy min-
imization problem (P;,) with respect to energy and time
consumption, the partition of bits offloaded to the MEC for
computation and the received energy via wireless charging.
For simulations, we consider an exhibition room setting within
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Figure 4: Simulation system layout: A 4-cell network with 4 MEC-AP, each serving 10
randomly located users within an area of 20m X 20m.
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Figure 5: Alg. 1 convergence vs. (a) number of iterations, and (b) number of users in the
network, for both computation offloading (sub-problem P2, e; = 107°, €5 = 1073)
and wireless charging (sub-problem P3, ex = 1079), in comparison with sequential
wireless charging in [31].

an area of 20m x 20m with 4 APs each with N = 100
antennas and 40 active users randomly located with K = 10
users per AP’s coverage area as shown in Figure 4. Note that
the total number of users on the ground can be much larger,
but these are the number of active UEs requesting offloading
and wireless charging services at each time. For simulations,
w = 1073, T; = 20ms (for AR/VR applications [47]),
B =5MHz, 7. = BT;, 'y =12 = 1.25, up = 2, k; = 0.5pF,
km = OpF, ¢; = 1000, d,,, = 500, v = 2.2, 0 = 2.7dB,
02 = —127dBm, 07 = —122dBm, f,,; = f, = 1800 MHz Vi.
Each MEC processor has 24 cores with maximum frequency
of 3.4GHz, and we use fy,; = fm = (24 x 3400)/K MHz
V4. Transmit power available at user and AP is 23 dBm and
46 dBm respectively. To calculate the interference and noise
power (07 ;, 03 ;) which include massive MIMO pilot contami-
nation and intercell interference, we assume that user terminals
transmit at their maximum power, that is p,; = 23dBm, and
the interfering APs use equal power allocation in the downlink,
thatis ng; = % Vi. Numerical results are averaged independent
channel realizations of H and G for 1000 spatial realizations
(randomly generated user locations).

A. Algorithm Convergence

Figure 5 shows, on the left, the convergence of the two
algorithms solving optimization sub-problems (P2) and (P3)
with u; = u = 10kbits, e; = e = 1J Vz. On the right, the mean
time per iteration is plotted against the number of users K.
Note that both (P2) and (P3) use the subgradient method with

an iteration complexity of O(1/€2), however (P3) converges
in fewer iterations compared to (P2) since (P3) uses a linear-
programming step which is solvable in polynomial time, and
the primal-dual steps in the sub-algorithm for (P3) converge
significantly faster compared to those in (P2) which use the
iterative Halley’s method for each time allocation variable
(tu,i,ta,iVi). We observe, however, that even though the sub-
algorithm for (P2) takes more iterations to converge, it eventu-
ally hits the quadratic convergence region where the difference
between the current objective function value and the optimal
value drops off dramatically with each additional iteration.
This observation agrees with our convergence analysis of the
outer algorithm based on Newton’s method.

Figure 5 (right) shows that the run time per iteration for the
sub-algorithm for (P3), or charging sub-algorithm, increases
linearly with the number of users K, in agreement with the
computation complexity analysis result of O(N K + N?). On
the other hand, the mean time per iteration for subalgorithm
(P2) increases super-linearly with the number of users in the
network. This result also agrees with the earlier complexity
analysis which shows the computation complexity for (P2)
sub-algorithm as O(K log(K)).

We also compare the proposed charging sub-algorithm
for the joint energy minimization to the sequential energy
maximizing opportunistic charging scheme in [31], showing
significantly faster convergence for the proposed joint charging
scheme as seen in Figure 5. For our implementation on a
personal computer, the time unit in Figure 5 (right) is a
second, however for faster machines, such as MEC servers,
with the high-performance CPUs and parallel processing, this
time-step may be significantly smaller. Notwithstanding the
complexity, the performance of these algorithms can also be
used as a benchmark for joint computation offloading and
wireless charging on MEC systems.

Figure 6 (left) shows the total runtime for the sub-algorithm
for (P2) and the sub-algorithm for (P3). These results are also
in agreement with those in Figure 5 in that the total runtime for
computation offloading is significantly higher than for wireless
charging. For wireless charging (P3), we see that the total
run time increases linearly with the increase in number of
users. For computation offloading (P2) however, we observe
an interesting result that the total runtime actually decreases as
the number of users increases beyond a certain threshold. This
phenomenon can be explained by a decrease in the number of
iterations as the number of user increases. According to Figure
6 (right), as the number of users increases, the average amount
of data offloaded to the MEC also increases, which leads to a
longer mean time per iteration. However, the number of outer
iterations in the latency-aware algorithm actually decreases,
leading to an overall faster convergence time.

B. Comparison of Wireless Charging Schemes

Figure 7 shows a comparison of the proposed integrated
and sequential wireless charging schemes with two other
schemes: (i) isotropic scheme where W, = %I and equal
charging power P/N is allocated across all N antennas of
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Figure 6: Total runtime versus the number of users for each algorithm on computation
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Figure 7: Comparison of the proposed energy beamforming scheme for wireless charging
with isotropic wireless charging, and directed K-beam charging with equal power
allocation (equal K): (left) Total received wirelessly charged energy; (right) Total
transmitted energy consumption for wireless charging.

the AP, and (ii) equal K with directional charging using the
beamforming directions proposed in Theorem 2, but with
equal power allocation P/K across K energy beams. For
fairness of comparison, we use power scaling for the other two
schemes such that the users receive energy at most equal to
the requested amounts similar to the proposed scheme. Since
wireless charging is proposed as a billable service for future
networks, this is also a necessary design consideration from
the service providers’ and consumers’ perspective.

Figure 7 shows the received energy on the left and the
transmitted energy on the right. As illustrated in this figure, the
sum received energy for the proposed scheme is significantly
larger than the other two schemes. The wireless charging per-
formance for the isotropic and beamforming with equal power
allocation scheme are similar. However, for smaller networks
the equal power allocation scheme with directed power transfer
does offer some improvement over the isotropic scheme in
terms of the received energy. The proposed integrated charging
energy minimization scheme consumes the lowest charging
energy overall and offers significantly better received energy
performance than both the isotropic and equal power schemes.

C. Energy Charging Beams

Figure 8 shows the beam radiation pattern for the proposed
joint energy minimization scheme and the opportunistic max-
received wireless charging scheme proposed in [31] respec-
tively, under the same channel conditions. For the proposed
energy minimization scheme, we see that the nulls are not
as deep which allows for increased charging energy levels
to users in low coverage areas. This "null-fill" property is a

Proposed Integrated Min Charging Sequential Max Charging [31]
0 3

60 60
30 330 30 330

150 210 150 210
180 180
(a) ®)

Figure 8: A typical wireless charging beam pattern for simultaneously charging multiple
UEs from an MEC-AP, where shown is the strongest beam out of 10 beams for this
channel realization: (a) The proposed joint energy minimization scheme, (b) Sequential
energy maximization opportunistic charging scheme in [31]. System setting: 10 UEs
simultaneously receiving wireless charging from this MEC-AP, with 30 interfering UEs
in other cells, locations of UEs and MEC-APs are as given in Figure 4. The beam patterns
show that the proposed joint wireless charging scheme consumes a much smaller amount
of energy by having lower intensity beams and no backscatter beams.

common design feature to alter the energy distribution for the
various antenna elements in the array [48]. In both schemes,
however, users may receive wireless charging not only from
the main beam but also from the side lobes which can be an
important consideration for wireless charging. One significant
difference among the two schemes is the reduction in number
of side lobes and elimination of back lobes for the proposed
scheme, which curbs energy losses and enhances the objective
of energy minimization.

Another interesting finding presented in the plot (bottom) in
Figure 9 is the optimal number of energy beams for K = 10
users per cell. For the isotropic wireless charging, there are
always N > K energy beams. For the case of K beams
with equal power allocation, the number of beams is equal to
the number of users in the cell. While multiple energy beams
may be necessary for a multi-user system as also previously
discussed in [49], the optimal number of energy beams for
the integrated charging energy minimization scheme is usually
less than the number of users as seen in Figure 9. Since
each energy beam can contribute as additional RF charging
sources for neighboring users, the transmit beamforming can
be intelligently designed as proposed to limit the number of
energy beams which can prevent energy losses caused by
transmitting energy in numerous directions and hence also
contribute to energy minimization.

D. Charging Efficiency

Figure 10 shows the average percentage of received energy
at the users end compared to the requested energy. Here
the requested energy is assumed to be 66mlJ/ms for each
user, however, for a lower value of the requested energy,
the percentage received energy would be higher. The figure
shows a comparison for the directed equal power and isotropic
schemes to the proposed scheme under two operating modes,
the charging only mode where connected users request wire-
less charging but do not require computation at the edge, and
the data and charging mode where connected users request
both wireless charging as well as computation offloading.
The average charged percentage is seen to decrease with an
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Figure 9: Distribution of the number of charging energy beams for the proposed joint
scheme for K = 10 users over 1000 spatial realizations. System setting: 10 UEs receiving
wireless charging from this MEC-AP, with 30 interfering UEs in other cells, locations
of UEs and MEC-APs are as given in Figure 4.

Percentage of charged energy over requested amount

Figure 10: Per-user charged energy as percentage of requested energy with each user
requesting 66mJ, 4 MEC-APs and system layout as shown in Figure 4 averaged over
1000 spatial realizations. While the amount of charged energy per-user reduces as the
number of users in the network increases, the total amount of energy received via wireless
charging increases with more users as shown in Figure 7.

increase in the network size as expected. While the directed
beams equal charging scheme shows some improvement over
the isotropic scheme for small network sizes, both schemes
generally have less than 50% efficiency compared to the
proposed scheme. Further, as illustrated, even under the joint
data and charging mode, where the MEC-AP simultaneously
optimizes the resources required for both computation offload-
ing as well as wireless charging, the decrease in charging
efficiency is negligible compared to the charging only mode.

VII. CONCLUSION

We considered a latency constrained multi-cell multi-user
wireless system with collocated MEC-AP servers providing
computation offloading and wireless charging services to its
connected users. We formulated a novel system-level problem
to minimize the total transmit energy consumption while
ensuring the largest amount of received energy as feasible.
We design an efficient nested algorithm by an optimal division
into convex subproblems to solve for data partitioning, time
allocation and transmit energy beamforming matrices. Our
algorithm demonstrates that even with significant amounts of

> wihihl | Wy

i=1

K
+ Zwiaiei
i=1

K K
+ > whiaie; — AP =tr (BWy) + > tiovie; — AsP - (33)

i=1 =1

data to be computed, the network can deliver decent amounts
of charged energy to the users. The MEC-AP wireless charging
beams for minimizing the overall energy consumption also
have no back lobe and have significantly more power concen-
trated in the main lobe, hence delivering a more efficient and
effective energy transfer. These results validate the potential of
wireless charging in concurrent with computation offloading
from edge networks and can provide a performance benchmark
for practical implementations.

VIII. APPENDIX
A. Appendix A - Proof for Lemma 1

Consider problem (P,) in (16) at fixed values of s;. The
objective function is affine and convex. Convexity in t can be
established similar to [22, Lemma 1]. Constraint (b) contains
a function of the form f; (Tqy — Th — T3)tr(Wg), with
affine term Tytr(W,,). Considering f; = —Tjtr(W,), to check
for joint convexity in 77 and Wy, the Hessian of f1 is the
block matrix, V2f; = [Onxy — Inxn;—Inxy Onxn)s
with repeated eigenvalues +1 and therefore doesn’t show
convexity. However, the sublevel sets {(T} € RT, W, €
RN*NY —T1tr(Wy) < a} are jointly convex in Ty and W,
in the domain of the function, (Th > 0, Wq = 0), therefore
the function f; is quasiconvex [40, Example 3.31]. Therefore
constraint (16b) is a sum of convex and quasiconvex functions
with convex sets and sublevel sets respectively. Similarly,
constraint (i) also has convex sublevel sets with a quasiconvex
function of the form —Tctr(h;.*th,-). Constraints (j) is the
linear trace of Wy and hence is convex.

Based on the above, the objective is convex and all con-
straints are either convex or have convex sub-level sets in the
remaining variables. Thus the problem is convex at a given s;.

B. Appendix B - Proof for Theorem 2 and 3

1) Proof for Theorem 2: To minimize the Lagrangian for
problem (P3) as given in (33) to obtain the dual function in
(28), we only need to consider the term involving W,

r&gl tr (BWy) (34)

By applying an inequality relating the trace of a matrix

product to the sum of eigenvalue products [50, Ch. 9, H.1.h.],
tr(BWy) is minimized by choosing U, = Ug such that

N
r(BWy) = Api- Agii (35)
1=1

where the eigenvalues of W, are in descending order A\g ;1 >
Ag2 = ... > Mg~ and those of matrix B are in ascending
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order such that Ap; < Aga < < Ap,n and the
eigenvectors Up are obtained based on this order of the
corresponding eigenvalues in Ap = diag(Ag). Since the
eigenvalues of B and W, are in reverse order to each other,
the sum of their eigenvalue products yields the minimum value
for tr(BWy) in (35).

2) Proof for Theorem 3: In the eigenvalue decomposition
of W as Wy = UgA4Uy, the diagonal matrix Ay € RNV*Y
has power allocated across K diagonal elements and the
remaining eigenvalues for the N — K beams is set to zero.
Based on Theorem (2), equation (20b) can be rewritten as

tr(hjUgAqUrhy) = m; (36)

where m; = eT Vi = 1...K. We define the row vector, q; =

hiU, = thZBC. Then

tr(q; Aqqi) = T; 37)

Define row vector a;* = diag(q;q}) fori € [1,K], A €
REXK = [a%..a}], and vector b € RF*! = [my...7x]. This
results in constraint (22c) in (P4). The ordering of A4 needs
to be in reverse from Ap, that is, in descending order, so as
to minimize (33) as in (35), which gives us (22b) in (P4).
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