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This paper introduces a sharp interface method to simulate fluid-structure interaction 
(FSI) involving rigid bodies immersed in viscous incompressible fluids. The capabilities 
of this methodology are benchmarked using a range of test cases and demonstrated 
using large-scale models of biomedical FSI. The numerical approach developed herein, 
which we refer to as an immersed Lagrangian-Eulerian (ILE) method, integrates aspects 
of partitioned and immersed FSI formulations by solving separate momentum equations 
for the fluid and solid subdomains, as in a partitioned formulation, while also using non-
conforming discretizations of the dynamic fluid and structure regions, as in an immersed 
formulation. A simple Dirichlet-Neumann coupling scheme is used, in which the motion 
of the immersed solid is driven by fluid traction forces evaluated along the fluid-structure 
interface, and the motion of the fluid along that interface is constrained to match the 
solid velocity and thereby satisfy the no-slip condition. To develop a practical numerical 
method, we adopt a penalty approach that approximately imposes the no-slip condition 
along the fluid-structure interface. In the coupling strategy, a separate discretization of 
the fluid-structure interface is tethered to the volumetric solid mesh via stiff spring-
like penalty forces. Our fluid-structure coupling scheme relies on an immersed interface 
method (IIM) for discrete geometries, which enables the accurate determination of both 
velocities and stresses along complex internal interfaces. Numerical methods for FSI can 
suffer from instabilities related to the added mass effect, but computational tests indicate 
that the methodology introduced here remains stable for selected test cases across a broad 
range of solid-fluid mass density ratios, including extremely small, nearly equal, equal, 
and large density ratios. Biomedical FSI demonstration cases include results obtained using 
this method to simulate the dynamics of a bileaflet mechanical heart valve in a pulse 
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duplicator, and to model transport of blood clots in a patient-averaged anatomical model 
of the inferior vena cava.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Predictive numerical models of fluid-structure interaction (FSI) have long been of major interest in the scientific com-
puting community. Numerical simulations of FSI problems can be characterized by the solution approach taken for the 
coupled system of momentum equations associated with the fluid and structure. Partitioned formulations of FSI describe a 
fluid-structure system using distinct, non-overlapping fluid and structure regions. Commonly used numerical methods of 
this type include well-known arbitrary Lagrangian-Eulerian (ALE) schemes [1–4]. These formulations can yield outstand-
ing resolution of flows and stresses up to the fluid-structure interface. Despite their high accuracy, however, ALE methods 
for FSI can be constrained by the difficulties of body conforming grid regeneration and mesh morphing, which can make 
it challenging to use these approaches to simulate systems involving very large structural displacements or deformations, 
and to handle transient contact between moving structures. Overset methods using overlapping Chimera grid systems are 
another class of partitioned methods that have been used to simulate moving rigid and flexible bodies [5–9]. In these 
approaches, a complex domain is decomposed into multiple geometrically simple overlapping grids, and boundary infor-
mation is exchanged between these grids through interpolation. Immersed formulations of FSI [10–13] are alternatives to 
body-fitted methods. Many immersed approaches to FSI have been developed, including Peskin’s immersed boundary (IB) 
method [10] and various sharp-interface IB methods [14–20]. These methods commonly describe the fluid in Eulerian form 
(i.e. using fixed physical coordinates) and the structure in Lagrangian form (i.e. using material coordinates attached to the 
structure), and they use non-conforming discretizations along the fluid-structure interface. Because these methods avoid 
using body-conforming discretizations of the interface, they are readily able to treat models with very large structural de-
formations or displacements, and they facilitate simulations that fundamentally involve contact or near-contact between 
structures [13,21]. The method presented herein, which we call an immersed Lagrangian-Eulerian (ILE) method, combines a 
partitioned approach to FSI with an immersed coupling strategy.

The key challenge in developing immersed methods for FSI is linking the Eulerian and Lagrangian variables. Peskin’s IB 
methods, for example, regularize singular forces and stress discontinuities along the fluid-structure interface, which enables 
straightforward discretization approaches but can yield low accuracy in the flows and stresses near the interface. Efforts 
have been made to improve the accuracy of the method, including the development of formally second-order IB methods 
that realize second-order accuracy when applied to specific problems [22,23] and IB methods that use Cartesian grid adap-
tive mesh refinement to enhance spatial resolution near fluid-structure interfaces [24,25]. For general FSI problems, however, 
formally second-order accurate IB methods still only realize first-order convergence rates [23,25]. Motivated by the goal of 
improving the accuracy of the original IB method, the immersed interface method (IIM) was introduced by LeVeque and Li 
[26] for elliptic PDEs with discontinuous coefficients and singular forces. The IIM subsequently was extended to the incom-
pressible Stokes [27,28] and Navier-Stokes [29–31] equations, and it was combined with level set methods to represent the 
interface [32–34]. When applied to the incompressible Navier-Stokes equations, the IIM sharply imposes interfacial stress 
discontinuities through an extended finite difference discretization that accounts for jump conditions induced by singular 
forces at the interface. Modern IIMs use generalized Taylor series expansions to extend the physical jump conditions from 
the interface to the finite difference discretization of the Eulerian equations while permitting the use of efficient linear 
solvers based on the unmodified finite difference discretizations [31,35]. The IIM has been used to simulate various phe-
nomena, including acoustics and elastodynamic wave propagation [36], fluid interfaces with insoluble surfactants [34], the 
osmotic swelling of a deforming capsule [37], and vesicle electrohydrodynamics [38–40]. Other sharp interface FSI methods 
have been developed [14–16,18–20], and most of these methods achieve higher-order accuracy by adopting approaches that 
are similar to body-fitted discretization methods, such as local modifications to the finite difference stencils, to allow for the 
accurate reconstruction of boundary conditions in the vicinity of the immersed interface.

Many different IB methods have been developed to treat FSI problems involving rigid bodies. Differences between these 
approaches are mainly related to the way that the rigidity constraint is enforced to account for the effect of the structure 
in the fluid region. Previous IB approaches to rigid-body FSI that use regularized coupling operators include Lagrange-
multiplier-based fictitious-domain methods [41–45], direct forcing IB methods [46–48], projection-based methods [49–51], 
immersed finite element methods [52,53], methods based on computing exact Lagrange multipliers for the rigidity constraint 
[54,55], penalty immersed boundary methods [56], immersed boundary lattice Boltzmann methods [57–60], and level set 
based approaches [61,62]. Sharp-interface approaches designed for rigid-body FSI include embedded boundary methods 
[63,64], cut-cell methods [11,65,66], and the curvilinear immersed boundary method [16,19]. These methods typically solve 
the fluid equations only in the exterior fluid region surrounding the immersed object, unlike the IB approach introduced 
by Peskin. Of the sharp-interface IB methods considered here, immersed interface methods are the most similar to Peskin’s 
IB method because they treat thin interfaces that are fully immersed in fluid, which enables the use of fast Cartesian grid 
fluid solvers. IIMs have been developed for bodies with prescribed motion [17,31,67,68], but they are more commonly used 
for thin flexible interfaces [31,69–72]. To our knowledge, the few IIM models that treat volumetric rigid structures do not 
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simulate fluid-structure interaction per se, but instead prescribe the motion of the immersed body [31,67,73–75]. Xu and 
Wang used a feedback control to construct the singular force density [17,73]. Recent work by some of us introduced an 
IIM for discrete surfaces described by a general finite element mesh to sharply resolve fluid dynamics for problems with 
prescribed motion [68], but that work did not consider fully coupled FSI models. The present study uses the IIM for discrete 
surfaces [68] to develop a new sharp interface approach to rigid-body FSI.

The present ILE method introduces a partitioned approach to FSI with an immersed coupling strategy that sharply re-
solves flow features up to the fluid-structure interface. Like partitioned formulations, the present approach uses distinct 
momentum equations for the fluid and solid regions. However, like immersed methods, and unlike typical partitioned meth-
ods, our ILE approach uses a non-conforming discretization of the dynamic fluid-structure interface that does not require 
any grid regeneration or mesh morphing to treat large structural motions. The fluid and solid subproblems are solved in a 
partitioned manner using independent, non-conforming discretizations and are coupled only through interface conditions. 
The ILE equations of motion are first introduced using an exactly constrained formulation that exactly imposes kinematic 
interface conditions through a Lagrange multiplier force distribution applied along the fluid-structure interface. Solving the 
exactly constrained equations would require the solution of an extended saddle-point system involving an exact Lagrange 
multiplier force along with the Eulerian velocity and pressure fields. Developing efficient linear solvers for such systems is 
challenging even for conventional IB formulations with regularized delta functions [54,55]. Consequently, to obtain a prac-
tical numerical method, we next reformulate this scheme using a penalty approach that relaxes the kinematic constraint, 
and we use this penalty ILE method in all of our numerical tests. Specifically, our penalty formulation uses two represen-
tations of the fluid-structure interface, including a surface mesh moving with the fluid and the boundary of a volumetric 
structural mesh, that are connected by forces that impose kinematic and dynamic interface conditions. The dynamics of the 
volumetric structural mesh are driven by the exterior fluid traction obtained from solving the equations of fluid dynamics. 
The surface mesh moves according to the local fluid velocity and locally exerts an approximate Lagrange multiplier force 
distribution back to the fluid generated from stiff spring-like penalty forces that link the surface mesh to the boundary of its 
volumetric counterpart. At least formally, in the limit of infinite spring stiffness, the two interface representations become 
exactly conformal in their motion. Results demonstrate that this approach is able to control these discrepancies effectively, 
and for sufficiently large penalty spring stiffnesses, the penalty formulation has little impact on the computed dynamics. 
To discretize the jump conditions, we leverage our recently developed IIM for discrete surfaces [68], which allows us to 
impose stress jump conditions along complex interfaces within a Cartesian grid framework and to use fast structured-grid 
solvers for the incompressible Navier-Stokes equations. This IIM formulation describes fluid dynamics on both sides of the 
fluid-structure interface. However, only the fluid forces exerted by the exterior fluid have a physical effect on the structural 
dynamics, and the motion of the structure determines the fluid velocity at the fluid-structure interface.

Our approach also can be viewed as a sharp implementation of the distributed Lagrange multiplier (DLM) technique 
first introduced by Glowinski, Patankar, and coworkers for immersed rigid structures [41,42]. In the DLM approach to FSI, 
a Lagrange multiplier force field is introduced to impose the kinematic condition at the fluid-structure interface. In the 
DLM literature, the Lagrange multiplier field (either exact or approximate) has typically been smoothed, e.g., via regularized 
delta functions like those used in Peskin’s IB method. From this standpoint, our approach is different from other sharp 
interface immersed methods, in which the velocity matching condition is imposed directly, for example, through velocity 
reconstruction [16] or cut-cell approaches [15]. Those approaches forgo Lagrange multipliers entirely and instead solve the 
fluid momentum equations only within the fluid subdomain. In contrast, immersed approaches, including DLM methods, 
typically extend the fluid domain into the solid domain, so that the fluid momentum equation is solved on the entire com-
putational domain. The fluid velocity determined within the solid region can be different from the actual solid velocity, 
although volumetric DLM formulations can impose the constraint that the fictitious fluid velocity matches the solid velocity 
within the overlapping region occupied by the structure. Ultimately, however, it is necessary only for the fluid and solid 
velocities to match along the fluid-structure interface. To our knowledge, the present method is the first DLM-type formu-
lation to sharply impose this constraint. In addition, the current scheme uses a constant-coefficient flow solver and yet can 
readily treat immersed bodies that are lighter than the ambient fluid because it only imposes the kinematic condition along 
the fluid-solid interface. This is in contrast to volumetric DLM schemes, such as the approach of Nangia et al. [76], which 
approximately constrains the fluid and solid velocities to match in the extended fluid domain and allows for solid-fluid mass 
density ratios less than one only through the use of a variable-density fluid solver [77].

Instabilities due to artificial added mass effect have been observed in weakly coupled FSI schemes in which the fluid 
and solid equations are linked via explicit time stepping schemes. Such instabilities can occur if the mass density of the 
solid ρs is comparable to or less than the mass density of the fluid ρf . Added mass effect instabilities have been discussed 
in both sharp-interface IB-type methods for FSI [19,78,79] as well as body-fitted methods, including ALE methods for FSI 
[4,80–82]. Various approaches, including subcycling or using modified coupling conditions, have been developed to maintain 
stability [19,80,83,84]. Strong coupling schemes, in which the governing equations for the fluid and solid subdomains are 
simultaneously integrated in time [85–87], have been shown to improve the stability of these FSI formulations. In one 
common strong coupling approach, solutions are transferred between the fluid and structure multiple times within each 
time step (i.e. through subiterations) until convergence is achieved in the forces and displacements [2,46,82,88]. Using 
subiterations substantially increases the computational cost per time step, however. Further, instabilities at low density ratios 
have still been reported in some situations even if using strong coupling [19,89,90]. Substantial work has been devoted to 
understanding the sources of these instabilities and to developing methods to overcome these instabilities [80,83,84,91–94]. 
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We computationally examine the performance of the ILE method across a broad range of density ratios and, at least for the 
examples considered herein, we do not detect added mass-related instabilities. Specifically, as detailed here, we are able to 
use a simple Dirichlet-Neumann coupling scheme [84,93,95] while achieving reasonable time step sizes and avoiding the 
use of subcycling [2,46,88] or other iterative techniques for models involving extremely small, nearly equal, equal, and large 
mass density ratios.

To assess the robustness and accuracy of the proposed algorithm, results obtained using our ILE method are compared to 
experimental and computational data from benchmarks widely used to test numerical methods for FSI [3,96–100]. We con-
sider test cases in two and three spatial dimensions involving both smooth and sharp geometries, in various fluid conditions 
with Reynolds numbering reaching up to Re = 1147, and with different numbers of translational and rotational degrees of 
freedom. Finally, cases demonstrating the application of this methodology to biomedical models are presented, including to 
simulating the dynamics of a bileaflet mechanical heart valve in a pulse duplicator with a peak Reynolds number of 22600, 
and to modeling the transport of blood clots in a patient-averaged anatomical model of the inferior vena cava with a peak 
Reynolds number of 1500.

2. Continuous equations of motion

This section outlines our ILE approach to fluid-structure interaction. Our methodology builds on a conventional par-
titioned formulation for FSI, detailed in Sec. 2.1, while leveraging a coupling scheme based on the immersed interface 
method.

2.1. Partitioned formulation of FSI

Typical partitioned formulations describe the fluid-structure system occupying a computational domain � via moving 
fluid and structure subdomains, respectively �f

t and �s
t and indexed by time t , so that � = �f

t ∪ �s
t ; see Fig. 1. The regions 

meet along the fluid-structure interface, �fs
t = �f

t ∩ �s
t . Fixed physical coordinates are x ∈ �. We describe the structural 

kinematics in Lagrangian form via reference coordinates X ∈ �s
0 attached to the solid, and we use the motion map ξ :

(�s
0, t) �→ �s

t to determine the physical position of a solid material point X at time t . In the absence of additional loading 
terms, the equations of motion are

ρf
Du

Dt
(x, t) = ∇ · σf(x, t), x ∈ �f

t, (1)

∇ · u(x, t) = 0, x ∈ �f
t, (2)

∂ξ

∂t
(X, t) = u(ξ(X, t), t), X ∈ �fs

0 , (3)

d

dt

∫
�s

0

ρs
∂ξ

∂t
(X, t)dX =

∫

�fs
t

τ f(x, t)da, (4)

d

dt

∫
�s

0

(
X − Xc

)×(
ρs

∂ξ

∂t
(X, t)

)
dX =

∫

�fs
t

(
x− ξ c(t)

)×τ f(x, t)da, (5)

in which u(x, t) is the fluid velocity, ρf is the mass density of the fluid, ρs is the mass density of the structure, ξ c(t) and Xc

are, respectively, the center of mass of the structure in the current and reference configurations, σf(x, t) is the fluid stress 
tensor,

σf(x, t) = −p(x, t) I + μf

(
∇u(x, t) + ∇uT (x, t)

)
, x ∈ �f

t, (6)

p(x, t) is the fluid pressure, μf is the dynamic viscosity of the fluid, τ f(x, t) = σf(x, t) · n(x, t) is the fluid traction, and 
n(x, t) is the unit normal vector pointing into �f

t along �fs
t . Eq. (1) describes the fluid momentum in Eulerian form, Eq. (2)

is the incompressibility constraint, Eq. (3) is the kinematic condition along the fluid-structure interface, which implies the 
no-slip and no-penetration conditions, and Eqs. (4) and (5) describe the dynamics of the linear and angular momentum of 
the immersed rigid body in Lagrangian form. Eqs. (4) and (5) also account for the dynamic conditions at the fluid-structure 
interface because the rigid-body forces are balanced by the fluid traction.

2.2. Immersed Lagrangian-Eulerian (ILE) formulation

We now introduce an immersed formulation of FSI that describes the same physical model as the partitioned formulation 
detailed in Sec. 2.1. As in that formulation, the computational domain is �, with x ∈ � indicating fixed physical coordinates. 
As in Sec. 2.1, the structural kinematics are described in Lagrangian form via reference coordinates X ∈ �s attached to the 
0
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Fig. 1. The computational domain � includes time-dependent fluid and solid subdomains, �f
t and �s

t . The solid is described using reference coordinates 
X ∈ �s

0 , and reference and current coordinates are connected by the mapping ξ : (�s
0, t) �→ �s

t .

solid, and we use the same motion map ξ : (�s
0, t) �→ �s

t to determine the physical position of solid material point X at time 
t . In the immersed formulation, however, we solve the incompressible Navier-Stokes equations on the full computational 
domain �, including both the fluid and solid subdomains. We split the computational domain � into an exterior fluid 
region �f,+

t and an interior fluid region �f,−
t , each parameterized by time t , with superscripts ‘+’ (‘−’) indicating values 

obtained from the ‘exterior’ (‘interior’) side of the fluid-structure interface. Using this notation, we have �f,−
t ≡ �s

t and 
�fs
t = �

f,+
t ∩ �

f,−
t . We extend the definition of the fluid velocity u, pressure p, viscosity μf, and stress tensor σf to hold in 

the entire computational domain �, so that the extended fluid stress tensor σf is

σf(x, t) = −p(x, t) I + μf

(
∇u(x, t) + ∇uT (x, t)

)
, x ∈ � = �f

t ∪ �s
t . (7)

Our approach applies a singular surface force density along the fluid-structure interface to impose the kinematic constraint, 
which implies a discontinuity in the traction associated with the extended fluid stress, σf , along �fs

t . A jump in a scalar field 
ψ(x, t) at position x = ξ(X, t) along the interface is denoted by

�ψ(x, t)� = lim
ε↓0 ψ(x+ εn(x, t), t) − lim

ε↓0 ψ(x− εn(x, t), t) = ψ+(x, t) − ψ−(x, t), (8)

in which �·� indicates the jump in the value across the interface, n(x, t) is the outward unit normal vector (into the exterior 
fluid region) along �fs

t , and ψ+(x, t) and ψ−(x, t) are the limiting values approaching the interface position x from the 
exterior fluid region �f,+

t and interior fluid region �f,−
t , respectively. By considering the jump in the extended fluid stress, 

the governing equations are

ρf
Du

Dt
(x, t) = −∇p(x, t) + μf ∇2u(x, t), x ∈ �, (9)

∇ · u(x, t) = 0, x ∈ �, (10)

�σf(ξ(X, t), t) · n(ξ(X, t), t)� = − J−1(X, t) F (X, t), X ∈ �fs
0 , (11)

∂ξ

∂t
(X, t) = u(ξ(X, t), t), X ∈ �fs

0 , (12)

d

dt

∫
�s

0

ρs
∂ξ

∂t
(X, t)dX =

∫

�fs
t

τ+
f (x, t)da, (13)

d

dt

∫
�s

0

(
X − Xc

)×(
ρs

∂ξ

∂t
(X, t)

)
dX =

∫

�fs
t

(
x− ξ c(t)

)×τ+
f (x, t)da, (14)

in which J (X, t) is the surface Jacobian determinant [68], F (X, t) is an interfacial surface force density that is the Lagrange 
multiplier to maintain the kinematic condition for the constraint in Eq. (12) applied along the fluid-solid interface �fs

t , and 
τ+
f (x, t) is the exterior fluid traction. An important feature of this formulation is that Eqs. (13) and (14), which account for 

the dynamic interface condition, imply that only the fluid momentum and stresses from the exterior fluid subregion have 
any physical effect in driving the dynamics of the structure.

The jump discontinuity in Eq. (11) can be decomposed into discontinuities in the pressure and viscous stress, which in 
current coordinates are

�p(x, t)� = J−1(ξ−1(x, t), t) F (ξ−1(x, t), t) · n(x, t), x ∈ �fs
t , (15)�

μf
∂u

∂n
(x, t)

�
= −(I − n(x, t) ⊗ n(x, t)) J−1(ξ−1(x, t), t) F (ξ−1(x, t), t), x ∈ �fs

t . (16)

Higher order jump conditions, including those associated with the first normal derivative of the pressure and the second 
normal derivative of the velocity, can be also derived [35,101].
5
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Fig. 2. (a) The immersed interface domain and (b) the partitioned fluid (�f
t ) and solid (�s

t ) subdomains. (c) In the penalty-ILE method, the configuration 
of the explicit representation of the fluid-structure interface (determined by the deformation mapping χ) conforms to the boundary of the structure 
(determined by the deformation mapping ξ ) in an approximate sense. Specifically, the motion of the surface representation is determined by the local 
fluid velocity at the fluid-structure interface �fs

t , whereas the no-slip condition is satisfied in an approximate sense by spring-like forces that penalize 
displacements between the two representations of the fluid-structure interface. The displacement between the two representations is exaggerated here for 
illustration purposes. In our computational tests, we always ensure that the maximum displacement is no more than 0.1 of the Cartesian grid spacing.

2.3. A penalty approach to the ILE formulation

The formulation introduced in Sec. 2.2 requires the solution of a saddle-point system that couples the Eulerian and 
Lagrangian variables [54]. To develop a practical numerical method, we relax the kinematic constraint, Eq. (12), by intro-
ducing two representations of the fluid-structure interface and applying penalty forces to penalize displacements between 
the two representations. This penalty method determines an approximate Lagrange multiplier force instead of solving for 
the Lagrange multiplier to exactly impose the condition [54]. Specifically, along with the mapping ξ (X, t) that determines 
the kinematics of the structure, we introduce an explicit representation of the fluid-structure interface that is described 
by χ(X, t) and that moves with the fluid, so that ∂χ (X, t)/∂t = u(χ(X, t), t); see Fig. 2. In this study, we use a penalty 
formulation similar to one proposed by Goldstein et al. [102], in which the rigidity constraint is approximately imposed 
through a linear spring-like force via

F (X, t) = κ (ξ(X, t) − χ(X, t)) , X ∈ �fs
0 . (17)

Here, κ is the spring stiffness penalty parameter. This force penalizes deviations from the constraint ξ (X, t) = χ(X, t) and, 
in the discretized equations, acts to ensure that the volumetric and surface meshes are at least approximately conformal 
in their motion. Note that it is possible to control the discrepancy between the two configurations because as κ → ∞, the 
formulation exactly imposes the constraint that the two interface representations move together.

2.4. Rigid-body dynamics

The general formulation describing the kinematics of a rigid body includes both translational and rotational motions of 
material points in the body. The current position at time t of reference coordinate X in the solid can be written in terms of 
reference coordinates as

ξ(X, t) = Q(t)
(
X − Xc

)+ Xc + dc(t), (18)

in which Xc is the position of the center of mass in the reference coordinates, dc(t) is the displacement of the center of 
mass, and Q(t) is the rotation matrix. The rotation matrix Q(t) can be expressed using the Euler angles, φ = φ(t), θ = θ(t), 
and ψ = ψ(t), as

Q(t) =
⎛
⎝cos(ψ) cos(θ) − sin(φ) cos(φ) + cos(ψ) sin(θ) sin(φ) sin(φ) sin(φ) + cos(ψ) sin(θ) cos(φ)

sin(ψ) cos(θ) cos(φ) cos(φ) + sin(ψ) sin(θ) sin(φ) − cos(φ) sin(φ) + sin(ψ) sin(θ) cos(φ)

− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)

⎞
⎠ , (19)

here using the x-y-z convention in the rotation order. Following the approach of Akkerman et al. [103], we avoid explicitly 
forming the Euler angles except for cases in which there is only one rotational degree of freedom. As detailed in Sec. 3, in 
the time integration of the rigid-body dynamics, the rotation matrix is an additional problem unknown that is integrated 
in time along with the displacement and rotational degrees of freedom. This significantly reduces the complexity of the 
calculation of the rotation angle for three degree of freedom (3-DOF) problems in two spatial dimensions and six degree 
of freedom (6-DOF) problems in three spatial dimensions. Using Eq. (18), the rigid-body displacement and velocity are 
respectively defined as

d(X, t) = (Q(t) − I)
(
X − Xc

)+dc(t) (20)

and
6



E.M. Kolahdouz, A.P.S. Bhalla, L.N. Scotten et al. Journal of Computational Physics 443 (2021) 110442
ḋ(X, t) = Q̇(t)
(
X − Xc

)+ ḋc(t). (21)

Denoting the rigid-body center of mass in the current configuration as ξ c(t) = ξ(Xc, t) = Xc + dc(t), Eq. (21) becomes

ḋ(X, t) = Q̇(t)Q−1(t)
(
ξ(X, t) − ξ c(t)

)+ ḋc(t) = Ω(t)
(
ξ(X, t) − ξ c(t)

)+ ḋc(t), (22)

in which

Ω(t) = Q̇(t)Q−1(t) =
⎡
⎣ 0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

⎤
⎦ (23)

is the skew-symmetric angular velocity matrix. The pseudovector ω(t) = (ω1(t), ω2(t), ω3(t)) can be extracted from this 
matrix. Using the angular velocity vector, the rigid-body velocity field in Eq. (22) can be rewritten in terms of ω(t) as,

ḋ(X, t) = ω(t) × (
ξ(X, t) − ξ c(t)

)+ ḋc(t). (24)

For a three-dimensional problem, the three components of the translational velocity of the center of mass ḋc(t), together 
with the three components of the angular velocity ω(t), form the six degrees of freedom that completely determine the 
kinematics of the rigid body.

Linear and angular momentum conservation in the rigid body are described by a system of six ordinary differential 
equations,

d

dt

(
m ḋc(t)

) = F net(t), (25)

d

dt

(
J(t)ω(t)

) = T net(t), (26)

in which m is the mass of the solid object, F net(t) is the global force including the sum of all the forces exerted on the rigid 
body, and T net(t) is the net torque vector. J(t) is the inertia tensor of the solid body in the current configuration, which is 
defined in terms of the inertia tensor in the reference configuration, J0, via

J(t) = Q(t)J0 QT (t), (27)

in which J0 is

J0 =
∫
�s

0

ρs
(
X − Xc

)·(X − Xc
)
IdX −

∫
�s

0

ρs
(
X − Xc

)⊗(
X − Xc

)
dX . (28)

In our fluid-structure interaction framework, the net force and torque vectors in Eqs. (25) and (26) are computed as

F net = (ρs − ρf)V g +
∫

�fs
t

τ+
f (x, t)da, (29)

T net =
∫

�fs
t

(
x− ξ c(t)

)×τ+
f

(
x, t

)
da, (30)

in which V is the volume of the solid object, g is the gravity vector, and τ+
f (x, t) is the exterior fluid traction vector exerted 

on the solid object by the fluid. In the penalty formulation of the ILE method, Eqs. (29) and (30) are evaluated on �fs
t , which 

moves with the local fluid velocity.

3. Discrete equations of motion

This section introduces numerical methods for the penalty formulation of the immersed Lagrangian-Eulerian method de-
tailed in Sec. 2.3. This approach leverages our immersed interface method (IIM) for discrete surface representations [68]. We 
include only the key aspects of this method; for additional details and benchmarking studies of problems with prescribed 
motion, see Kolahdouz et al. [68]. Standard methods are used for the rigid-body dynamics. A second-order accurate Strang 
time step splitting approach [104] is used to obtain systems of equations that can be treated via efficient linear solvers.
7
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3.1. Eulerian discretization

The incompressible Navier-Stokes equations are discretized on an adaptively refined Cartesian grid using a staggered-
grid finite difference discretization [105] in which the pressure is approximated at the centers of the Cartesian grid cells 
and the components of the velocity are approximated at the centers of the edges (in two spatial dimensions) or faces (in 
three spatial dimensions) of the grid cells. Standard compact second-order accurate differencing schemes are used for the 
divergence, gradient, and Laplace operators. The discrete divergence of the velocity D · u is evaluated at the cell centers, 
whereas the discrete pressure gradient G p and the components of the discrete Laplacian of the velocity Lu are evaluated 
at the cell edges (in two spatial dimensions) or faces (in three spatial dimensions). For the nonlinear advection terms, 
a staggered-grid version [105,106] of the xsPPM7 variant [107] of the piecewise parabolic method (PPM) [108] is used. 
Physical boundary conditions are prescribed along the boundaries of the computational domain � as described previously 
[105,109]. Adaptive computations use a discretization approach described by Griffith [109] that employs Cartesian grid 
adaptive mesh refinement (AMR).

To account for the jump conditions along the fluid-solid interface that occur in the ILE formulation, we modify the 
definitions of G p and Lu for those stencils that cross the immersed interface. Using generalized Taylor series expansions 
[29,35], it can be shown that if the interface cuts between two Cartesian grid points at location x◦ = (x◦, y◦, z◦), such that 
xi, j,k ≤ x◦ < xi+1, j,k , with xi, j,k ∈ �f,− and xi+1, j,k ∈ �f,+ , then for a piecewise differentiable quantity ψ , we have

∂ψ

∂x
(xi+ 1

2 , j,k) = ψi+1, j,k − ψi, j,k

�x
+ sgn{nx}

�x

2∑
m=0

(d+)m

m!
�

∂mψ

∂xm

�
x◦

+ O (�x2), (31)

∂2ψ

∂x2
(xi, j,k) = ψi+1, j,k − 2ψi, j,k + ψi−1, j,k

�x2
+ sgn{nx}

�x2

3∑
m=0

(d+)m

m!
�

∂mψ

∂xm

�
x◦

+ O (�x2), (32)

in which �x is the grid spacing in the x direction, ψi, j,k = ψ(xi, j,k), d+ = xi+1, j,k − x◦ > 0, and nx is the x-component 
of the normal vector n = (nx, ny, nz) at the intersection point x◦ . The full implementation of this approach to the three-
dimensional incompressible Navier-Stokes equations, including the application of the jump corrections to the stencils of the 
pressure and the viscous terms and algorithms for identifying intersections between the finite difference stencils and the 
discrete interface representation, is detailed in our earlier work [68].

3.2. Lagrangian discretization

Let Th be a triangulation of �s
0, the reference configuration of the volumetric rigid body, composed of elements Ue such 

that Th = ∪eUe , in which e indexes the mesh elements. We take {X l}Ml=1 to be the positions of the M nodes of the mesh 
in the reference configuration, 

{
ξ l(t)

}M
l=1 to be the current positions of the nodes, and {φl(X)}Ml=1 to be the corresponding 

interpolatory nodal (Lagrangian) basis functions. A continuous description of the configuration of the structure is defined by

ξh(X, t) =
M∑
l=1

ξ l(t)φl(X), X ∈ �s
0. (33)

The configuration of the fluid-structure interface representation that moves with the fluid is described by the mapping 
χ : (�fs

0 , t) �→ �fs
t . To obtain a discrete representation of this interface, we use a surface mesh that corresponds to the 

restriction of the volumetric solid mesh to ∂�s
0 ≡ �fs

0 . For the discrete representation of the fluid-structure interface we 
have

χh(X, t) =
M∑
l=1

χ l(t)φl(X), X ∈ �fs
0 , (34)

except that in practice, we only need to evaluate this sum over the lower-dimensional subset of nodes that are located on 
surface mesh, and not over all of the nodes in the volumetric representation. The reason is that the interpolatory (nodal) 
basis functions associated with interior nodes vanish on the surface. Similarly, the surface force density is determined by

F h(X, t) =
M∑
l=1

F l(t)φl(X), X ∈ �fs
0 . (35)

Again, this sum only needs to be evaluated using the Mfs surface nodes. In an implementation, it is straightforward to 
use separate data structures for the volumetric and surface structural meshes. For the remainder of the paper, we adopt 
the convention that all computations involving the surface representation are performed using only a surface mesh with 
appropriate nodal degrees of freedom and surface-restricted nodal basis functions.
8



E.M. Kolahdouz, A.P.S. Bhalla, L.N. Scotten et al. Journal of Computational Physics 443 (2021) 110442
Stress jump conditions are imposed by evaluating the correction terms from the interfacial forces and interface configu-
ration (i.e. generalizations of Eqs. (31) and (32)). Geometrical quantities, including the surface normals and surface Jacobian 
determinant, that are needed by the IIM discretization are obtained by directly differentiating Eq. (33). Note, however, that 
the standard nodal basis functions are C0 but not C1 at element boundaries, and so quantities that are obtained in terms of 
∂χh/∂X are generally discontinuous in both the reference and current configurations. In particular, the pointwise jump con-
ditions determined from the mesh geometry and the surface Jacobian J are generally discontinuous between the elements. 
Following the approach introduced in our prior work [68], we obtain a continuous approximation to the jump conditions 
through the L2 projection. Briefly, given a function ψ ∈ L2(�fs

0 ), its L2 projection Phψ onto the subspace Sh = span{φl(X)}Mfs

l=1
is defined by requiring Phψ to satisfy

∫

�fs
0

(
ψ(X) − Phψ(X)

)
φl(X)dA = 0, ∀l = 1, . . . ,Mfs. (36)

The L2 projection of a vector-valued quantity is determined component-wise. Because the L2 projection is defined via 
integration, the function ψ does not need to be continuous or even to have well-defined nodal values. By construction, 
however, Phψ will inherit any smoothness provided by the subspace Sh . In particular, for C0 Lagrangian basis functions, Phψ

will be at least continuous. In our numerical scheme, we separately compute the projection of the normal and tangential 
components of the surface force per unit current area, J−1F h(X, t), onto Sh , as needed to specify the jump conditions for 
the pressure and the viscous stress. We drop the subscript “h” in the remainder of the paper to simplify notation. To solve 
for the projected jump conditions, linear systems of equations involving the mass matrix M need to be solved, in which 
M has components Mkl = ∫

φkφl dA. Eq. (36) is evaluated using seventh-order Gaussian quadrature. Notice that these 
projections are computed only along the fluid-solid interface and involve only surface degrees of freedom. Consequently, the 
computational cost of evaluating these projections is asymptotically smaller than the solution of the fluid equations. Note 
also that similar to the conventional IB method, a force-spreading operator S = S[χ ] can be defined to evaluate and apply 
the correction terms S[χ ]F to the Eulerian discretization via a discrete Eulerian force density f = S[χ ]F [68].

The velocity of the fluid-structure interface representation that moves with the fluid is determined by evaluating the 
Eulerian velocity u(x, t) on the interface. As detailed previously [68], it is possible to interpolate the discretized Eulerian 
velocity field u to the Lagrangian interface mesh using a corrected bilinear (or, in three spatial dimensions, trilinear) inter-
polation scheme that accounts for the known discontinuities in ∂u/∂n. In general, however, the basic interpolation scheme 
will produce an interface velocity field that is not in the space spanned by the nodal basis functions, which implies that 
it cannot be used directly to update the configuration of the interface. To obtain a suitable surface mesh velocity field, we 
project the interpolated velocity field onto the space spanned by the nodal basis functions. This procedure implicitly defines 
a velocity-restriction operator J = J [χ , F ], so that U = J [χ , F ] u.

The FSI coupling approach used herein crucially relies on the accurate evaluation of the exterior fluid traction. This 
requires evaluating the exterior fluid pressure and exterior viscous shear stress. To evaluate the exterior pressure at a 
position x ∈ �fs

t , we use

p+
h (x, t) = �p(x, t)� + I[p](x−, t), (37)

in which p− = I[p](x−, t) is the interior pressure interpolated to a position x− away from the interface in the opposite 
direction of the normal vector n and at a distance equal to 1.3 times the diagonal size of one grid cell. This factor has 
been chosen on an empirical basis [68]. Here, I is the unmodified bilinear (or trilinear) interpolation operator involving 
quantities on one side of the interface. To evaluate the exterior wall shear stress, a one-sided approximation to the normal 
derivative of the velocity is calculated using the same interfacial velocity reconstruction procedure that is used to determine 
the interface velocity along with the velocity value at a neighboring location �x+ in the direction of the normal vector. As 
with the pressure, unmodified bilinear (or trilinear) interpolation is used to obtain the velocity away from the interface. A 
one-sided finite difference formula is used to calculate the normal derivative,

(
∂u

∂n

)+

h
(x, t) = I[u](x+, t) − u(x, t)

ĥ
, (38)

in which the distance ĥ is chosen to be slightly larger than the diagonal size of the Cartesian mesh (1.05 times the diagonal 
size), so that regular bilinear (or trilinear) interpolation can be used to evaluate I[u](x+, t, ̂h) ensuring that the interpolation 
only uses values on one side of the interface. It is possible to use a second-order formula with a three-point stencil which 
requires interpolating an additional point in the normal direction, but preliminary numerical experiments (data not shown) 
suggest the computation using only two points is more stable. Moreover, as shown previously [68], this simple scheme 
is adequate to achieve a pointwise first-order accurate approximation to the wall shear stress. Note that as with velocity 
interpolation, the pressure and wall shear stress can be evaluated at arbitrary locations along the interface. We also use a 
surface-restricted L2 projection to obtain nodal values of these interfacial quantities.
9
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3.3. Time integration scheme

In advancing from time step n at time t to time step n +1 at time t +�t , we define a vector of variables ϒ that includes 
all of the Eulerian and Lagrangian quantities that need to be updated as ϒ = [u, p, χ , dc, ̇dc, ω, Q, J]. We use the second-
order Strang splitting scheme [104], in which within three steps we: 1) solve the rigid-body dynamics equations over a 
half time step �t/2, treating the fluid traction as constant in time; 2) solve the IIM/FSI equations over a full time step �t , 
treating the configuration of the solid as constant in time; and 3) solve the rigid-body dynamics equations over a final half 
time step �t/2, treating the fluid traction as constant in time. The details of the time stepping for the rigid-body dynamics 
equations, the IIM/FSI equations, and the overall algorithm are given below.

3.3.1. Rigid-body time integration scheme
Although we ultimately employ a time step splitting approach that advances the rigid-body configuration in two half-

steps, to simplify the discussion, the approach for a fixed time step size �t is detailed here. Denote by L�t the action of 
the Lagrangian rigid-body dynamics solver over the time increment �t that acts on a solution vector ϒ. This solution vector 
includes all of the Eulerian and Lagrangian variables, but only advances the volumetric structural variables dc, ḋc, ω, Q, and 
J while keeping the remaining variables fixed. Briefly, discretizations of Eqs. (26)–(27) are solved over the time increment 
�t to obtain dn+1

c , ḋn+1
c , ωn+1,k , and Qn+1,k via

m
ḋ
n+1
c − ḋ

n
c

�t
=

∫

�fs
t

τ+
f (x)da, (39)

dn+1
c − dnc

�t
= 1

2

(
ḋ
n+1
c + ḋ

n
c

)
, (40)

Qn+1,kJ0 (Qn+1,k)T ωn+1,k − QnJ0(Qn)Tωn

�t
=

∫

�fs
t

(x− ξ c) × τ+
f (x)da, (41)

Qn+1,k − Qn

�t
= 1

4
(Ωn+1,k + Ωn)(Qn+1,k + Qn). (42)

Eqs. (41) and (42) can be solved through a few subiterations to obtain the new rotation matrix Qn+1 and the angular 
velocity ωn+1; starting from Qn+1,k=1 ≡ Qn and ωn+1,k=1 ≡ ωn at each time step, subiterations are performed by looping 
over k until 

∣∣∣∣Qn+1,k − Qn+1,k−1
∣∣∣∣∞ ≤ ε or 

∣∣∣∣ωn+1,k − ωn+1,k−1
∣∣∣∣∞ ≤ ε with ε = 10−8. These iterations are inexpensive, and 

between one and three are typically needed to reach the convergence criteria. Seventh-order Gaussian quadrature rules are 
used to approximate integrals on the left side of Eqs. (40) and (42). The updated configuration of ξ (X, t) is then evaluated 
using Eq. (18). Similarly, the moment of inertia is determined using a discretization of Eq. (27),

Jn+1 = Qn+1J0(Q
n+1)T . (43)

3.3.2. IIM time integration scheme

Starting from χn and un at time tn and pn− 1
2 at time tn− 1

2 , we compute χn+1, un+1, and pn+ 1
2 . Denote by E�t the action 

of the IIM solver over a full time step that acts on the solution vector ϒ that includes all of the Eulerian and Lagrangian 
variables but only advances u, p, and χ . Briefly, using the discrete velocity restriction operator J n = J [χn, Fn], we first 
obtain initial approximations to the interface position at time tn+ 1

2 via

χ̂n+1 = χn + �t

2
J nun, (44)

χn+ 1
2 = χ̂n+1 + χn

2
. (45)

Next, we solve for χn+1, un+1, and pn+ 1
2 via

ρ

(
un+1 − un

�t
+ An+ 1

2

)
= −G pn+ 1

2 + μf L

(
un+1 + un

2

)
+S Fn+ 1

2 , (46)

D · un+1 = 0, (47)

χn+1 − χn

�t
= Un+ 1

2 =J n+ 1
2

(
un+1 + un

2

)
, (48)
10
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in which An+ 1
2 = 3

2 A
n − 1

2 A
n−1 is obtained from a high-order upwind spatial discretization of the nonlinear convective term 

u · ∇u [105], and J n+ 1
2 = J [χn+ 1

2 , Fn+ 1
2 ] is the velocity restriction operator at the half time step configuration. This time 

stepping scheme requires only linear solvers for the time-dependent incompressible Stokes equations. We solve this system 
of equations by the flexible GMRES (FGMRES) algorithm with a preconditioner based on the projection method that uses 
inexact subdomain solvers [105]. In the initial time step, a two-step predictor-corrector method is used to determine the 
velocity, deformation, and pressure; see Griffith and Luo [110] for further details.

3.3.3. Fluid-structure interaction time stepping scheme
For the solution vector ϒ over one time step using the Strang splitting scheme we have,

ϒn+1 = L�t/2E�tL�t/2ϒ
n. (49)

With this time-staggered approach, the overall algorithm to solve the fluid-structure problem is

Step I: Solve the rigid-body dynamics in Eqs. (39)–(42) over a half time step �t/2 to advance from step n to n + 1
2 and 

obtain dc
n+ 1

2 , ḋn+ 1
2

c , ωn+ 1
2 , and Qn+ 1

2 , and the new position of the volumetric Lagrangian mesh.
Step II: Calculate the penalty force using the most recent position of the volumetric solid mesh and the surface mesh that 

moves with the fluid.
Step III: Solve for the IIM subsystem in Eqs. (46)–(48) over a full time step and obtain the updated Eulerian velocity field 

un+1 and pressure pn+ 1
2 as well as the Lagrangian velocity Un+ 1

2 and positions χn+1 of the surface mesh and the 
exterior fluid traction forces τ+

f .
Step IV: Using the exterior fluid traction force τ+

f from Step III, solve the rigid-body dynamics in Eqs. (39)–(42) over a half 
time step �t/2 to advance from step n + 1

2 to n + 1 and obtain dc
n+1, ḋn+1

c , ωn+1, and Qn+1.
Step V: Move the Lagrangian mesh of the bulk solid and obtain the new positions ξn+1.

4. Numerical examples

This section presents computational examples to characterize the performance of the present methodology in two and 
three spatial dimensions. As a demonstration of the method’s ability to tackle more challenging problems, applications to 
two biomedical models are also presented, including simulations of the dynamics of a bileaflet mechanical heart valve in 
a pulse duplicator system and the transport of blood clots in a patient-averaged anatomical model of the inferior vena 
cava. Where possible, comparisons are made to available experimental or computational results. We begin by considering 
model problems involving a limited number of translational, but not rotational, degrees of freedom (DOF). We systematically 
increase the complexity of the tests by incorporating additional translation and rotational degrees of freedom. We also 
consider both smooth immersed structures as well as structures with sharp corners. The fluid-solid interface representation 
that moves with the fluid is discretized either by piecewise-linear (P1) elements for two-dimensional cases, or by piecewise 
linear (P1) or piecewise bilinear (Q 1) elements for three-dimensional cases. Unless otherwise noted, the structural meshes 
are constructed so that the ratio of the Lagrangian element size to the Eulerian grid spacing, denoted by Mfac, is Mfac ≈ 2
at least along the fluid-structure interface. In all cases, the Eulerian domain is discretized using an adaptively refined grid. 
The Cartesian grid spacing on the finest level of the locally refined grid is hfinest = r−(N−1)hcoarsest, in which hcoarsest is 
the grid spacing on the coarsest level, r is the refinement ratio, and N is the number of refinement levels. Except where 
otherwise noted, the spring penalty parameters are computationally determined as approximately the largest values allowed 
by our explicit time stepping algorithm at the time step sizes used in the simulations. In those cases, the penalty parameter 
values are tuned using bisection. Centimeter-gram-second (CGS) units are used unless otherwise noted. For models involving 
gravitational forcing, gravitational acceleration is set to g = 981 cm · s−2. The large scale three-dimensional simulations in 
Secs. 4.4, 4.6, 4.7, and 4.8 were performed using the Dogwood cluster provided by the Research Computing Division of 
University of North Carolina at Chapel Hill Information Technology Services. Each node is comprised of 2.4 GHz Intel Xeon 
E5-2699Av4 processors with the Broadwell-EP micro-architecture, 512 GB memory, and 44 cores per node, and nodes are 
connected by a high bandwidth Infini-band EDR switching fabric. The smaller benchmark models are run on a workstation 
with two 32-core Intel Xeon E5-2680 v3 2.5 GHz processors and 32 GB of memory.

4.1. Vortex-induced vibration of a cylinder

The problem of viscous flow past an elastically mounted two-dimensional cylinder undergoing vortex-induced vibration 
(VIV) has been widely studied both numerically and experimentally because of its broad range of engineering applications 
and its interesting vortex dynamics. This problem has also seen substantial use in benchmarking FSI algorithms [3,19,88,
111–113]. Here we consider two separate cases in two spatial dimensions, one using a single vertical degree of freedom, 
and the second with two degrees of freedom (2-DOF). The governing equations for the 2-DOF cylinder motion are
11
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Fig. 3. (a) Schematic diagram of the computational domain and boundary conditions for flow around an elastically mounted rigid circular cylinder (Sec. 4.1.1). 
(b) Maximum transverse displacement of the oscillating cylinder for different values of U∗ with m∗ = 8/π , Re = 150, and ζ = 0. Results from the present 
ILE approach fall within the range of values reported in previous studies.

Fig. 4. Time history of the transverse displacement of the oscillating cylinder (Sec. 4.1.1) under grid refinement. Simulation parameters include U∗ = 4, 
m∗ = 8/π , Re = 150, and ζ = 0.

Msd̈xc + Csḋxc + Ksd
x
c = f x, (50)

Msd̈
y
c + Csḋ

y
c + Ksd

y
c = f y, (51)

in which dxc and dy
c are the horizontal and vertical displacements of the center of mass, Ms is the mass per unit length of the 

cylinder, Cs and Ks are the damping and stiffness constants characterizing the spring, and f x and f y are the instantaneous 
drag and lift forces, respectively. To facilitate comparisons to previous work, we define the non-dimensional horizontal and 
vertical displacements of the cylinder center in the streamwise and transverse directions, respectively, as dxc = dxc/D and 
dy
c = dy

c /D , in which D is the diameter of the cylinder. Taking U∞ as the free stream flow velocity, the mass ratio and 
reduced velocity are respectively defined as m∗ = ρs/ρf and U∗ = U∞/( fnD), in which fn = √

Ks/Ms/(2π) is the natural 
frequency of the structure. The damping ratio is ζ = Cs/(2

√
KsMs).

4.1.1. 1-DOF transverse oscillation
We first consider the benchmark problem of a circular cylinder undergoing VIV with a single vertical degree of free-

dom. We are interested in capturing the well characterized vortex “lock-in” phenomenon observed in previous studies 
[3,19,111,114]. Within the lock-in regime, the vortex shedding frequency is close to the natural frequency of the structure, 
which results in large amplitude vibrations. Physical parameters are selected to match benchmark results in the litera-
ture. A schematic of the simulation setup is shown in Fig. 3(a). The computational domain is � = [−30 cm, 45 cm] ×
[−30 cm, 30 cm], a rectangle of size Lx × L y = 75 cm × 60 cm. The cylinder has diameter D = 1 cm and is initially at 
rest and centered at the origin. A uniform inflow velocity U = (U∞ = 1 cm · s−1, 0 cm · s−1) is imposed on the left 
boundary (x = −30 cm), and zero normal traction and tangential velocity outflow conditions are imposed at the right 
boundary (x = 45 cm). Along the bottom (y = −30 cm) and top (y = 30 cm) boundaries, zero normal velocity and 
tangential traction are imposed. The domain is discretized using N = 6 nested grid levels, with coarse grid spacing 
hcoarsest = L y/64 = 0.9375 cm and refinement ratio r = 2 between levels, leading to hfinest ≈ 0.029 cm. With Mfac = 2, this 
12
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Fig. 5. Spatial convergence of the difference in the displacement between the two Lagrangian representations (Sec. 4.1.2). (a) L∞ norm of the difference 
between the positions of the two representations of the fluid-structure interface after the onset of the vortex shedding at t = 55 s. (b) Time history of the 
L∞ difference, indicating a consistent behavior for all discretizations throughout the simulation.

Fig. 6. Centerline displacement response of the 2-DOF elastically mounted rigid cylinder (Sec. 4.1.2) under grid refinement. There is excellent agreement 
between the ILE result on the finest grid and the results of Blackburn and Karniadakis [114] using a high-order spectral element method. Simulation 
parameters include U∗ = 5, m∗ = 4/π , Re = 200, and ζ = 0.01.

results in approximately 54 linear elements around the perimeter of the disk. The time step size is �t = (0.1 s · cm−1) hfinest
with a penalty spring constant κ = (0.00125 g · cm−2)/�t2. The Reynolds number Re = ρfU∞D/μf is fixed at 150, the 
damping ratio is set to zero (ζ = 0), and the mass ratio is m∗ = 8/π .

First, the effect of the reduced velocity on the maximum displacement of the cylinder is studied by systematically varying 
U∗ within the range 3 ≤ U∗ ≤ 8. Vortex shedding occurs in all cases. Fig. 3(b) shows the maximum displacement with 
respect to U∗ . These results demonstrate that for U∗ ∈ [4, 7] there is a large increase in the vibration amplitude. Fig. 3(b) 
also compares results obtained by our method to previous numerical studies, including a geometrically conservative finite 
volume ALE method [3], a curvilinear immersed boundary method [19], and a finite element based ALE approach [111]. 
Excellent agreement is obtained over the full range of U∗ values considered here.

In addition, we perform a grid refinement study using the reduced velocity with the largest maximum displacement 
(i.e. U∗ = 4) while fixing the previous values of all other parameters. To achieve this in our AMR framework, we vary the 
number of refinement levels N between 5 and 7. Fig. 4 shows the time-history of the maximum displacement for N = 5, 
6, and 7 levels of refinement. The displacement values obtained for N = 6 and 7 closely match each other, whereas the 
coarser case, using N = 5 levels of refinement, under-predicts the maximum displacement in the vortex shedding region. 
Notice that these results indicate that using N = 6 levels of refinement provides essentially grid-converged results for this 
benchmark problem.

4.1.2. 2-DOF oscillation
The 2-DOF oscillation is studied using the same physical parameters as Blackburn and Karniadakis [114], who used 

a spectral element approach. The size of the computational domain, the cylinder diameter and initial position, and the 
physical boundary conditions are all the same as the 1-DOF example in Sec. 4.1.1. The Reynolds number is Re = 200, the 
reduced velocity is U∗ = 0.5, the damping ratio is ζ = 0.01, and the mass ratio is m∗ = 4/π .

We use this example to investigate the order of spatial convergence of the difference in the displacement between the 
two Lagrangian representations (i.e. the fluid-structure interface representation that moves with the fluid, and the surface of 
13



E.M. Kolahdouz, A.P.S. Bhalla, L.N. Scotten et al. Journal of Computational Physics 443 (2021) 110442
Table 1
Dimensionless origin of oscillation (xc/D) and the Strouhal number (St) for the 2-DOF elas-
tically mounted rigid cylinder (Sec. 4.1.2). Simulation parameters include m∗ = 4/π , U∗ = 5, 
ζ = 0.01, and Re = 200, which generate vortex-induced vibrations (VIV).

xc/D St

Blackburn and Karniadakis [114] 0.620 -
Yang et al. [88] 0.639 -
Yang & Stern [112] - 0.187
Kim et al. [113] 0.622 0.186
Qin et al. [59] 0.626 0.187
ILE method 0.619 0.187

Fig. 7. Phase plots of the center of mass displacement and velocity responses for an elastically mounted cylinder with mass ratio of m∗ = 4/π (Sec. 4.1.2). 
Other simulation parameters include U∗ = 5, ζ = 0.01, and Re = 200.

the volume mesh). As discussed in Sec. 2.3, the two representations are tethered together by spring-like forces that penalize 
relative motion between them. The Cartesian grid spacing on the coarsest level for all four cases is hcoarsest = 60/64 cm. 
We consider four sets of discretizations, ranging from a very coarse composite grid with N = 4 levels of refinement to 
a reasonably fine grid with N = 7 levels of refinement, using refinement ratio r = 2 between levels. The penalty spring 
constant is κ = (0.125 g · s−2)/h2, and a small constant time step size �t = 0.001 s is chosen for all cases. In our recent 
work [68], it was shown that the present IIM algorithm yields second-order convergence in the displacement of the interface 
in both L2 and L∞ with suitable scalings for the penalty parameter κ . As in our previous work, for the choice of κ used 
here, pointwise second-order convergence is also expected for the displacement between the positions of the two interface 
representations. Fig. 5 shows ||ξ(X, t) − χ(X, t)||∞ , the L∞ norm of the discrepancy between the Lagrangian points at 
the surface mesh and the corresponding points on the boundary of the volume mesh. Fig. 5(a) indicates that the method 
converges at second order in the maximum norm at t = 55 s. To investigate the change of the L∞ norm of the discrepancy 
over time, this value is plotted on a semi-log scale in Fig. 5(b) for the four discretizations. The overall behavior of the 
error norm remains consistent for all discretizations throughout the entire simulation. Note that the difference shown in 
ξ(X, t) −χ(X, t) is proportional to the tethering penalty force that connects the two representations. Because of the periodic 
“figure-of-eight” nature of the cylinder’s dynamics, a undulatory pattern in the loading force is to be expected over time. 
This pattern is anticipated to be present in ‖ξ (X, t) − χ(X, t)‖ as well because of its proportionality to the force. Specifically, 
if we wish to achieve ‖ξ(X, t) − χ(X, t)‖ = O (h2), it is necessary that the penalty parameter κ also satisfies κ = O (1/h2), 
so that an applied penalty force of the form F = κ(ξ (X, t) − χ(X, t)) satisfies ‖F‖ = O (1) under grid refinement [68].

As another verification, the centerline displacement response of the cylinder is compared to the numerical results of 
Blackburn and Karniadakis [114]. It is expected that the vortex shedding of the oscillating cylinder will lead to a periodic 
“figure-of-eight” behavior. This is shown in Fig. 6 for three locally refined Cartesian grids with N = 5, 6, and 7 levels along 
with the solution from Blackburn and Karniadakis [114]. The trajectory clearly converges under grid refinement. Moreover, 
the trajectory of the cylinder for the finest discretization agrees extremely well with the spectral element solution [114]. The 
origin of oscillations xc, which is defined as the intersection point in the periodic figure-of-eight trajectory of the cylinder’s 
14
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Fig. 8. Phase plots of the center of mass displacement and velocity responses for an elastically-mounted cylinder (Sec. 4.1.3) with a low mass ratio m∗ =
0.4/π . Other simulation parameters include U∗ = 5, ζ = 0.01, and Re = 200.

center of mass, and the Strouhal number, which is calculated as St = f D/U∞ with f representing the oscillation frequency, 
are reported in Table 1 for the finest ILE computation (N = 7) along with the results of Blackburn and Karniadakis and 
several other studies. The center of oscillations agrees very well with the original work of Blackburn and Karniadakis [114]. 
Moreover, the Strouhal number matches the values reported from studies by Yang et al. [88], Yang and Stern [112], Kim et 
al. [113], and Qin et al. [59]. The centerline trajectory and the dimensionless displacement-velocity phases of x/D − ux/U∞
and y/D − uy/U∞ for this case are shown in Fig. 7. The phase response obtained from our solution agrees well with 
previous observations reported by Yang and Stern [115] and Liu and Hu [116].

4.1.3. 2-DOF oscillation with low mass ratio
We now briefly consider significantly lower mass ratios than the one studied above. We first consider a case with 

density ratio of m∗ = 0.4/π , which is 10 times smaller than the first example. The remainder of the simulation parameters 
are identical to the finest case in the previous example (Sec. 4.1.2). Fig. 8(a) shows that the cylinder travels more than 7 
diameters downstream before undergoing the same periodic figure-of-eight motion. Fig. 8 also reveals that the oscillations 
for this light cylinder occur at a higher amplitude and with larger horizontal and, to a lesser extent, vertical velocity 
magnitudes. Fig. 9 shows the instantaneous vorticity contours around this light structure at six time points. Vortex shedding 
is observed, with two vortices shed during one cycle of the quasi-periodic oscillation. The wake footprint and the associated 
vorticity patterns also indicate that the cylinder is undergoing periodic motion. Notice that previous work has reported 
severe instabilities in computing such cases using both weak and strong coupling approaches [113]. The present method 
appears to remain stable even for extremely light structures. Table 2 reports the center of oscillations along the x-axis 
for a wide range of mass ratios along with the results of Kim et al. [113], the only other study that we are aware of 
to also consider such small mass ratios. To the authors’ knowledge, results obtained using mass ratios smaller than 0.3 
have not been previously reported for this benchmark case. The present method yields a slightly larger distance than the 
work of Kim et al. [113] for the origin of the oscillations. In the work of Kim et al. [113], the mass ratio of m∗ = 0.3 was 
reported as the lowest ratio for a stable solution using a strong coupling approach. The present method is able to predict the 
dynamics at substantially smaller mass ratios (nearly two orders of magnitudes smaller) as shown for m∗ = 0.005 in Table 2. 
Although stable results were obtained for lower density ratios, the accuracy of the dynamics requires further validation that 
can be performed once additional experimental data are available. Note that to accommodate the extended horizontal 
movement of the cylinder for m∗ < 0.1, the computational domain for these cases was changed to � = [−120 cm, 180 cm] ×
[−120 cm, 120 cm], a rectangle of size Lx × L y = 300 cm×240 cm. To keep the grid spacing the same as before, N = 8 nested 
grid levels were used, and the Cartesian grid spacing on the coarsest level was set to hcoarsest = L y/64.

4.1.4. Stability and sensitivity studies for κ
Because we use an explicit time stepping approach to couple the fluid and solid degrees of freedom, if we fix the 

spatial and temporal discretization parameters, there will be a largest stable value of the penalty spring parameter κ . 
As mentioned at the beginning of Sec. 4, in practice, we typically use values of κ close to the stability limit, which we 
approximately determine using the method of bisection. To study the sensitivity of the numerical algorithm to the penalty 
parameter κ and the influence of this parameter on the accuracy of the computed solution, we reconsider the 2-DOF vortex-
15
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Fig. 9. Vorticity field of the 2-DOF oscillating cylinder (Sec. 4.1.3) with low mass ratio m∗ = 0.4/π at times (a) t = 178.82 s, (b) t = 179.82 s, (c) t = 180.82 s, 
(d) t = 181.82 s, (e) t = 182.82 s, and (f) t = 183.82 s.

Table 2
Dimensionless origin of oscillation (xc/D) for low and very low mass ratios of the 2-DOF elastically mounted rigid cylinder (Sec. 4.1.3).

m∗ = 0.3 m∗ = 0.2 m∗ = 0.1 m∗ = 0.05 m∗ = 0.01 m∗ = 0.005

Kim et al. [113] 2.27 - - - - -
ILE method 2.83 4.41 9.39 19.01 91.50 160.10

Fig. 10. Impact of the penalty parameter κ on the computed dynamics for the 2-DOF elastically mounted light cylinder (Sec. 4.1.4). Other simulation 
parameters in these computations are m∗ = 0.4/π , U∗ = 5, ζ = 0.01, and Re = 200 (a) Accuracy and stability thresholds of κ for a range of time step sizes. 
(b) The ratio between the maximum norm of the difference in the positions of the two Lagrangian representations to the finest Cartesian grid spacing over 
the entire course of the simulation, determined using �t = 0.001 and κ = 500, 1000, and1400. (c) Centerline displacements of the cylinder for the three 
values of κ highlighted in panel (b).

induced vibration of a light cylinder with density ratio m∗ = 0.4/π (Sec. 4.1.3). Except for the values of κ and the time step 
size �t , all other simulation parameters are the same as Sec. 4.1.3. We use a locally refined grid with N = 7 levels of 
refinement, and the final simulation time is t = 200 s, which is long after vortex induced vibration has been established. 
We computationally determine minimum and maximum values of κ that 1) satisfy a minimum threshold in displacement 
between the two Lagrangian representations and 2) remain stable. Accuracy thresholds are determined to be the minimum 
values of κ required to achieve tolerances of 0.1 hfinest, which is commonly used in IB models of rigid structures, along 
with a tighter tolerance of 0.06 hfinest. The maximum stable value of κ determines a stability threshold. Fig. 10(a) shows 
the computationally determined accuracy and stability thresholds for this case. Because it is not practical to determine the 
16
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Fig. 11. (a) Schematic diagram of the computational domain and boundary conditions for the galloping rectangle (Sec. 4.2) with ζ θ
s = 0.25. (b) Pitch angle 

(θ ) as a function of time. (c)–(e) Vorticity field at times t = 293.9 s, t = 305.9 s, and t = 321.9 s, respectively.

precise values of these thresholds across all time step sizes, error bars indicate the small uncertainty in the lower and 
upper bounds. For the smallest time step size considered here, the range of values of κ that satisfy both criteria spans 
nearly three orders of magnitude, from the minimum value that achieves the minimum accuracy criterion to the maximum 
value that results in a stable computation with 0.06 hfinest displacement threshold. For the largest time step, there is at 
least about three-fold difference between the minimum and maximum values of κ . Fig. 10(b) shows the effect of κ on the 
ratio between the maximum norm of the two Lagrangian representations and the finest grid spacing for three stable spring 
constants of κ = 500, 1000, and1400 using the time step �t = 0.001. Notice that the maximum displacement between 
the representations scales like κ−1. Fig. 10(c) shows the trajectory of the center of mass of the cylinder for the same 
three κ values. Deviations in the trajectories are small and converge as κ increases. It is worth noting that the maximum 
discrepancies for the highest and lowest choices of κ are less than the spacing on the finest grid level, hfinest .

4.2. Galloping rectangular structure

This example uses a rectangular plate undergoing galloping motion to test the accuracy of the method for models involv-
ing only rotational degrees of freedom. Flow-induced rotational galloping oscillations occur in many areas of structural [117], 
aeronautical [118], and mechanical [119] engineering applications. This problem has also been widely used as a benchmark 
problem to validate numerical algorithms [96,112,115]. In this section, only a single rotational degree of freedom is used, 
and the translational heave (horizontal) and surge (longitudinal) motions are eliminated. The governing equation for the 
mass-spring-damper model with one rotational degree of freedom is

Iθs θ̈ + Cθ
s θ̇ + K θ

s θ = Mθ , (52)

in which θ is the rotational angle of the body, Iθs is the rotational moment of inertia, Cθ
s is the torsional damping constant, 

K θ
s is the torsional spring constant, and Mθ is the moment acting on the rigid structure from exterior fluid forces. In our 

simulations, we consider a rectangular structure with a width-to-thickness ratio of � = L/H = 4. To enable comparisons 
with prior studies, we define the non-dimensional moment of inertia by I∗s = Iθs /(ρsH4), the non-dimensional damping 
ratio by ζ θ

s = Cθ
s /(2

√
K θ
s I

θ
s ), and the reduced velocity by U∗ = U∞/( f θ H). In the latter formula, U∞ is the free stream 

velocity and fs
θ =

√
K θ
s /Iθs /2π is the natural frequency of the body. Following the work of Robertson et al. [96], the 

non-dimensional parameters are taken to be I∗s = 400, U∗ = 40, and ζ θ
s = 0.25. A schematic of the computational setup 

and the boundary conditions is given in Fig. 11(a). The rectangular structure is centered at the origin with an initial zero 
angular velocity and a non-zero angle of θ0 = 1◦ . The computational domain is � = [−32 cm, 96 cm] × [−32 cm, 32 cm], 
a rectangle of size Lx × L y = 128 cm × 64 cm. The domain is discretized using N = 4 nested grid levels, with coarse grid 
spacing hcoarsest = L y/32 = 2.0 cm and refinement ratio r = 4 between levels, leading to hfinest = 0.0625 cm. A uniform 
inflow velocity of U = (U∞ = 1 cm · s−1, 0 cm · s−1) is imposed on the left boundary (x = −32 cm). Using the free stream 
velocity, the Reynolds number Re = ρfU∞H/μf is set to 250. The penalty spring constant is κ = 400 g · cm−2 · s−2, and the 
time step size is �t = (0.02 s · cm−1) hfinest. Zero normal traction and tangential velocity are imposed at the right boundary 
(x = 96 cm). Along the bottom (y = −32 cm) and top (y = 32 cm) boundaries, the normal velocity and tangential traction 
17
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Fig. 12. Representative results for the galloping rectangle (Sec. 4.2) with zero damping (ζ θ
s = 0). (a) Pitch angle (θ ) as a function of time. (b)–(d) Vorticity 

field at times t = 377.9 s, t = 385.9 s, and t = 397.8 s, respectively. Here both the solid region (shown in gray) and the surface mesh of the structure 
(shown in black) are illustrated to show the effectiveness of the coupling approach and to confirm that the two representations move together.

Table 3
Comparison of the maximum pitch angle (θmax) and galloping frequency ( f θ ) for the galloping 
rectangular structure (Sec. 4.2) with zero damping (ζ θ

s = 0) and non-zero damping (ζ θ
s = 0.25).

ζ θ
s = 0 ζ θ

s = 0.25

θmax f θ θmax f θ

Robertson et al. [96] - - 15◦ 0.0191
Yang & Stern [115] 123◦ 0.0244 15.7◦ 0.0198
Yang et al. [112] 125◦ 0.0243 16.1◦ 0.0197
ILE method 124◦ 0.0243 15◦ 0.0198

are set to zero. Fig. 11(b) shows the time history of the pitch angle of the galloping rectangle for the damped oscillation of 
the structure. Once the vortex shedding state is established, the structure starts to undergo a periodic rotation with well-
characterized frequency and upper bound of the maximum angle. This behavior is clearly captured by the present method. 
Fig. 11 panels (c)–(e) show snapshots of the structural rotation along with the vortex structure of the flow at three different 
times.

To demonstrate the ability of the algorithm in modeling larger rotational angles, an additional case is considered with 
ζ θ
s = 0. The initial angle is set to θ0 = −5◦ . All the other parameters, including the time step size and penalty spring 
constant, are the same as before. As seen in Fig. 12(a), the method generates periodic behavior with maximum gallop-
ing amplitude of approximately θmax = 124◦ . Fig. 12 panels (b)–(d) show the flow patterns around the structure at three 
different times.

To compare the rotational response of the structure with previous work, the maximum pitch angle and frequency for 
the above two cases are reported in Table 3 along with values from other studies. The work of Robertson et al. [96] uses a 
body-fitted spectral element method in a non-inertial reference frame. The methods used by Yang and colleagues [112,115]
are different variations of a strongly-coupled direct forcing approach with a field extension strategy for the pressure/velocity 
derivatives. Table 3 demonstrates excellent quantitative agreement of both vortex shedding characteristics of θmax and the 
galloping frequency f θ for the two cases in comparison with other numerical studies.

4.3. Freely falling rectangular plate

We now consider a model of a falling rigid plate in a water tank that is based on the experiments by Andersen et 
al. [97]. This example tests the action of the instantaneous fluid forces on an object with sharp corners that leads to 
extremely complex trajectories. This benchmark case has also been investigated in the context of fluid-structure interaction 
algorithms in prior studies [115,116,120]. We consider two cases from Anderson et al. [97], one undergoing fluttering motion 
at Re = 1147 and the other undergoing tumbling motion at Re = 837. Different modes of fluttering and tumbling motions 
are captured in both the experiments [97] and the simulations.
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Fig. 13. (a) Schematic diagram of the computational domain and boundary conditions for freely falling fluttering plate (Sec. 4.3.1). (b) Vorticity field at 
t = 2.68 s. (c) Comparison of the trajectory of the center of mass using the present ILE method (solid blue line) to the experimental data of Andersen et 
al. [97] (red circles). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 14. Enlarged views of the vorticity field for the fluttering plate (see Fig. 13(b)) at times (a) t = 1.40 s, (b) t = 1.45 s, (c) t = 1.50 s, (d) t = 1.59 s, (e) 
t = 1.65 s, and (f) t = 1.74 s.

4.3.1. Fluttering motion
For the case of a freely fluttering plate, the plate thickness is taken to be H = 8.1 × 10−2 cm with width-to-thickness 

ratio of � = L/H = 14. The density of the plate and fluid are ρs = 2.7 g · cm−3 and ρf = 0.997 g · cm−3, respectively. To 
achieve a Reynolds number of Re = 1147, the fluid viscosity is set to μf = 8.87 × 10−3 g · cm−1 · s−1. A schematic of the 
problem setup is shown in Fig. 13(a). The computational domain is � = [−40 cm, 40 cm] ×[−56 cm, 24 cm], a square of size 
Lx × L y = 80 cm×80 cm. The center of the plate is initially located at (x0, y0) = (5 cm, 0 cm) with an initial angle of θ0 = 60◦
with respect to the x-axis. Zero normal traction and tangential velocity conditions are imposed at the top boundary. Along 
the left and right boundaries zero normal velocity and tangential traction are imposed. The no-slip condition is imposed 
at the bottom boundary. The domain is discretized using N = 6 nested grid levels, with coarse grid spacing hcoarsest =
L y/16 = 5 cm and refinement ratio r = 4 between levels, leading to hfinest = 0.00488 cm. Using Mfac = 1.8, this leads to the 
thickness of the plate being discretized by approximately 10 linear elements. A constant time step size of �t = 0.01 ms is 
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Fig. 15. Comparison of the (a) horizontal velocity, (b) vertical velocity, and (c) angular velocity between the ILE method (solid blue lines) and the experi-
mental data of Andersen et al. [97] (dashed red lines) for the fluttering plate (Sec. 4.3.1).

used, and the penalty spring constant is κ = 7.45 × 105 g · cm−2 · s−2. Figs. 13(b) and 13(c) shows the overall dynamics 
of the plate during its fluttering free fall. Fig. 13(b) shows the vortex structure over the course of the simulation. Periodic 
fluttering motion is clearly observed. Fig. 13(c) shows the trajectory of the center of mass along with the experimental data 
of Andersen et al. [97]. Overall, our numerical results are in good agreement with the experimental data for the gliding 
motion of the plate from side to side as it flutters in its free fall. Discrepancies around turning points can be, in part, 
attributed to the interaction of the complex vortex dynamics with sharp corners of the rectangular object. There are also 
uncertain differences in the simulation and experimental operating conditions that could explain these differences. Future 
studies should further investigate the accuracy of the present IIM coupling strategy for objects with sharp corners, including 
assessing grid sensitivity.

Fig. 14 shows close-up views of the fluttering plate at six different time points. With a low angle of attack, the plate 
glides from a turning point on one side to reach a new turning point on the opposite side. Towards the end of its glide and 
before it changes direction, there is a sharp increase in the magnitude of the angular velocity. Because of the sharp edge of 
the structure, the flow separates on the lower surface (Fig. 14(c)) and shortly thereafter flow separation also occurs on the 
upper surface as well (Fig. 14(d)). As the plate pitches upward, it begins to glide in the opposite direction, and this process 
repeats itself in a periodic manner. The interaction of vortices in the locations where the plate reverses direction creates a 
complex pattern of vortices, as shown in the figure. Fig. 15 shows the time history of the horizontal and vertical velocity 
components as well as the angular velocity along with a comparison to the experimental results [97]. Overall, there is very 
good agreement between the two results despite the complex dynamics. Although the algorithm is able to correctly predict 
the periodic dynamics, small deviations from measured data are observed particularly around troughs and crests of both 
translational and angular velocity plots. We speculate that these deviations could potentially be due to sensitivity of the 
results to the complex interaction of the shed vortices with the sharp corners, or possibly other uncertainties that are not 
accounted for in the comparison.

4.3.2. Tumbling motion
For the tumbling case, the plate thickness is kept fixed at H = 8.1 ×10−2 cm, but the width-to-thickness ratio is changed 

to � = L/H = 8. The initial location and angle of attack are (x0, y0) = (−20 cm, 0 cm) and θ0 = −45◦ , respectively. Note that 
because of the different width of the plate in this example, the Reynolds number is Re = 837. The penalty spring constant 
is κ = 5.5 × 105 g · cm−2 · s−2. The remaining simulation parameters, including the computational domain extent and size, 
spatial resolution, time step size, boundary conditions, and fluid properties, are identical to the fluttering case; see also the 
schematic in Fig. 16. Fig. 17 shows the overall dynamics of the tumbling plate. As shown in Fig. 17(a), the complex vortex 
structure of the tumbling plate is well resolved by the simulation. After the plate is released, it begins a gliding motion. 
Shortly after, it pitches upward, similar to the fluttering case. Because of the large angular momentum, however, at the 
turning point the plate rotates more than 90◦ clockwise. This large rotation, creates a large restoring moment that causes 
the plate to rotate slightly counter-clockwise and then continue falling, with an inclination to the right side. The plate 
travels a path towards the bottom-right corner of the computational domain by a sequence of descending and accelerating 
motions. At the turning points, the plate undergoes a full 360◦ tumbling rotation, such that the lower surface during the 
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Fig. 16. Schematic diagram of the computational domain and boundary conditions for freely falling tumbling plate (Sec. 4.3.2).

Fig. 17. Freely falling rectangular plate (Sec. 4.3.2) undergoing tumbling motion at Re = 837. (a) Vorticity field at time t = 2.06 s. (b) Comparison of the 
trajectory of the center of mass using the present ILE method (solid blue line) to the experimental data of Andersen et al. [97].

gliding re-configures as upward facing. Fig. 17(b) compares the vortex structure and trajectory of the tumbling plate to 
experimental measurements [97]. As in the fluttering case, the results are in very good agreement with the experimental 
data, and the trajectory of the plate agrees very well for the portion of the trajectory where experimental data are available. 
Fig. 18 shows enlarged views of the vorticity field at different times. Flow separation on the lower side of the plate is clearly 
observed in Fig. 18(c). This is followed by separation of the flow on the opposite side as the plate rotates (Fig. 18(d)). The 
gliding and diving towards the bottom left resumes at the end of each tumbling motion, as seen in Fig. 18(f).

Fig. 19 shows the time history of translational and rotational velocities. Unlike the fluttering case, in which the vertical 
velocity appeared to have twice as larger frequency than the other two velocities, here the number of periods demonstrates 
that approximately the same frequency is observed among all velocities. In addition, the significantly larger angular velocity 
in this case compared to the fluttering case in Fig. 15 indicates faster rotation near the turning points. The average horizontal 
and vertical velocity components and the average angular velocity obtained from three full cycles of the present simulation 
are found to be ux = 15.87 cm · s−1, uy = −11.32 cm · s−1, and ωz = 15.95 rad · s. For comparison, the experimental 
measurements of Andersen et al. [97] for the same average velocities are ux = 15.94 cm · s−1, uy = −11.5 cm · s−1, and 
ωz = 14.5 rad · s−1. The relative discrepancies in these quantities are 0.19%, 1.57%, and 9.93%, respectively.
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Fig. 18. Enlarged views of the vorticity field for the tumbling plate (see Fig. 17(a)) at times (a) t = 0.64 s, (b) t = 0.66 s, (c) t = 0.70 s, (d) t = 0.72 s, (e) 
t = 0.74 s, and (f) t = 0.78 s.

Fig. 19. Time history of the (a) horizontal velocity, (b) vertical velocity, and (c) angular velocity for the tumbling plate (Sec. 4.3.2).

4.4. Free falling of a dense sphere

This section investigates the dynamics of a freely falling steel bead in water using an unconstrained rigid-body structure 
model. This problem follows the experimental setup of Mordant and Pinton [98]. The density of the steel bead is ρs =
7.85 g · cm−3, and the diameter is D = 0.1 cm. The Reynolds number is Re = (ρf V̄ D)/μf = 430, and a terminal velocity 
of V̄ = 38.3 cm · s−1 is reported in the original work. With a fluid density of ρf = 997 g · cm−3, this results in a dynamic 
viscosity of μf = 8.88 ×10−3 g ·cm−1 ·s−1. The computational domain is � = [−16D, 16D] ×[−448 D, 64 D] ×[−16 D, 16 D], 
a rectangular cuboid of size Lx × L y × Lz = 32D × 512D × 32D; see Fig. 20(a) for a schematic of the problem setup. Zero 
normal traction and tangential velocity conditions are imposed at the top boundary. Along the peripheral walls zero normal 
velocity and tangential traction are imposed. The no-slip condition is imposed at the bottom boundary. The domain is 
discretized using N = 3 nested grid levels, with coarse grid spacing hcoarsest = Lx/64 = 0.05 cm and refinement ratio r = 4
between levels, leading to hfinest = 0.003125 cm. The volumetric mesh of the sphere consists of hexahedral elements leading 
to a surface mesh composed of bilinear quadrilateral elements with Mfac = 2. A fixed time step size of �t = 0.01 ms is 
used, and the penalty spring constant is κ = 5 × 105 g · cm−2 · s−2. The center of the sphere is initially positioned at the 
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Fig. 20. (a) A schematic of the initial setup for the freely falling steel bead (Sec. 4.4) with ρs/ρf = 7.8. Note that lengths in the schematic are not to scale. 
(b) Vertical velocity of the freely falling steel bead, including a comparison to the experimental data of Mordant and Pinton [98] and the numerical results 
of Yang and Stern [115] and Liu and Hu [116]. (c)–(e) Instantaneous wake vortex patterns illustrated as isosurfaces of the Q criterion at the time t = 0.132 s, 
t = 0.146 s, and t = 0.179 s, respectively.

origin and released with zero initial translational and angular velocities. Fig. 20(b) shows the time history of the vertical 
velocity. After being released, the steel bead starts to accelerate until reaching its terminal velocity. The acceleration of 
the bead is in good agreement with the experimental data of Mordant and Pinton [98], and the terminal velocity is also 
in excellent agreement with the experimental measurement. Fig. 20(c)–(e) show isosurfaces of the Q-criterion [121] to 
visualize the vortex dynamics. Note that there is no constraint in the motion of the sphere, and that all of the degrees of 
freedom, including the rotational ones, are included in the solution. Shortly after the sphere reaches its terminal velocity 
V̄ = 38.3 cm · s−1, the flow behind the sphere becomes irregular due to the moderately large Reynolds number. Although 
small lateral movements are observed in the simulation with the deviation of center of mass reaching to about 0.25D =
8hfinest, no consistent pattern of “zig-zagging” motion is apparent. Fig. 20 also compares our results to two other numerical 
studies [115,116].

4.5. Free fall of a sphere with near-unity density ratio

This section explores the performance of the ILE methodology with respect to two challenging aspects of FSI: the in-
fluence of the wall and the ability of the method to handle near-unity density ratios in a fully unconstrained rigid-body 
motion. This case is based on the experimental data reported by ten Cate et al. [99] of a sphere settling in a confined 
flow chamber. The sphere has diameter D = 1.5 cm and density ρs = 1.120 g · cm−3, which is close to that of the sur-
rounding fluid; see Table 4. The Reynolds number is Re = ρs V̄ D/μf , in which the terminal velocity V is taken to be the 
settling velocity in an infinite domain. Two different cases with Reynolds numbers of Re = 1.5 and Re = 31.9 are consid-
ered, which are achieved in the experiments by varying the density and viscosity of the fluid. The computational domain is 
� = [−5 cm, 5 cm] × [−12 cm, 4 cm] × [−5 cm, 5 cm], a rectangular cuboid of size Lx × L y × Lz = 10 cm× 16 cm× 10 cm. The 
sphere is initially positioned in the x-z mid-plane and towards the top of the box at a height of 12 cm, measured from the 
bottom of the sphere to the bottom of the box; see Fig. 21(a). Zero normal traction and tangential velocity conditions are 
applied at the top boundary while no-slip condition is imposed at all other boundaries.
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Table 4
Parameters for freely falling sphere with near-unity density ratio (Sec. 4.5).
Case ρf [g · cm−3] ρs/ρf μf [g · cm−1 · s−1] V̄ [cm · s−1] Re

1 (case 1 of ten Cate et al. [99]) 0.970 1.155 0.0373 3.8 1.5
2 (case 4 of ten Cate et al. [99]) 0.960 1.167 0.058 12.8 31.9

Fig. 21. (a) A schematic of the initial setup of a single sphere in a small flow chamber with near unity solid-fluid density ratio (Sec. 4.5). (b) Time history 
of the vertical position and (c) vertical sedimentation velocity.

The domain is discretized using N = 3 nested grid levels, with coarse grid spacing hcoarsest = Lx/32 = 0.3125 cm and 
refinement ratio r = 2 between levels, leading to hfinest = 0.078125 cm. The volumetric mesh of the sphere consists of 
hexahedral elements leading to a surface mesh composed of bilinear quadrilateral elements with Mfac = 2. A fixed time step 
size of �t = 0.5 ms is used, and the penalty spring constant is κ = 5 × 104 g · cm−2 · s−2. Because of the confinement effect 
of the walls, we expect the settling of the sphere to be different from a free falling sphere in an infinite medium. Upon 
release, the particle accelerates until reaching its terminal velocity, which occurs quickly in the lower Reynolds number 
case. The sphere then starts to decelerate as it approaches to the bottom the flow chamber. Fig. 21 panels (b)–(c) show the 
time histories of the non-dimensional vertical gap between the sphere and bottom wall (h/D) and the vertical velocity of 
the sphere (V ) for both cases. The method yields excellent agreement with the experimental measurements of ten Cate et 
al. [99] for both the gap size over time and the terminal velocity. Specifically, the present method captures the dynamics of 
the sphere while also remaining stable even as the sphere reaches the bottom of the box. For the lower Reynolds number 
case, the sphere has more time to travel through the box because of its lower speed, and this results in a larger flat region, 
when the sphere experiences a nearly constant downward velocity, before it starts to decelerate as it approaches the bottom 
wall. Indeed, at Re = 1.5, we observe stable sedimentary motion of the sphere in the simulation even past the latest time 
reported in the experiment. At Re = 31.9, the sphere does not experience an extended period of time at terminal-like 
velocity as it quickly reaches the bottom of the box. The simulation is also stable for this case even after the sphere impacts 
the bottom; see Fig. 21(b).

4.6. Freely rising sphere

This section considers a rising sphere using a fully unconstrained rigid-body structural model. Such problems can pose 
substantial challenges to FSI algorithms using weak coupling schemes, which can become unstable [116]. Experimental 
results of Horowitz and Williamson [100] are used as a benchmark to validate the dynamics generated by our numerical 
method. We consider a challenging case in which the parameters are chosen such that the sphere oscillates periodically 
and vigorously in a “zig-zag” trajectory within a tight vertical plane. The sphere has diameter D = 1.3 cm and mass ratio 
m∗ = 0.11. The experiments are at Re = ρfUD/μf = 450. To match the experimental Reynolds number, the dynamic viscosity 
is μf = 0.125 g · (cm · s)−1. The computational domain is � = [−16 D, 16 D] × [−112 D, 16 D] × [−16 D, 16 D]; see the 
schematic in Fig. 22. The domain is discretized using N = 3 nested grid levels, with coarse grid spacing hcoarsest = Lx/64 =
0.65 cm and refinement ratio r = 4 between levels, leading to hfinest ≈ 0.04 cm. The volumetric mesh of the sphere consists 
of hexahedral elements leading to a surface mesh composed of bilinear quadrilateral elements with Mfac = 2. The center of 
the sphere is initially positioned at (0, −96 D, 0) and is released with zero initial translational and angular velocity. Zero 
normal traction and tangential velocity conditions are imposed at the top boundary. The no-slip condition is imposed at 
the bottom boundary. Along the peripheral walls zero normal velocity and tangential traction are imposed. The no-slip 
condition is imposed at the bottom boundary. A fixed time step size of �t = 0.01 ms is used, and the penalty spring 
constant is κ = 5.2 × 105 g · cm−2 · s−2.
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Fig. 22. Schematic diagram of the computational domain for freely rising sphere (Sec. 4.6).

Fig. 23. Trajectory of the center of mass for the rising sphere (Sec. 4.6) in the (a) x-y and (b) x-z planes along with the experimental data of Horowitz 
and Williamson [100]. The vortex wake structure for the rising sphere at locations A, B, and C shown on the x-y plane trajectory. Simulation parameters 
include Re = 450, m∗ = 0.11, and D = 1.3 cm.

Fig. 23 demonstrates that the sphere motion is approximately planar, and captures the periodic zig-zag trajectory ob-
served experimentally. We emphasize that in our simulation, no constraints are imposed on the motion of the sphere. 
Specifically we do not impose either planar motion or the zig-zag trajectory. According to Horowitz and Williamson [100], 
the periodic motion of the sphere at this particular density ratio resembles the dynamics at much higher Reynolds number 
and is always confined to a plane. The simulation results predict the same kind of in-plane motion as observed in the 
experiment. As the sphere goes through the zig-zag motion it creates a complex but organized wake pattern with vortex 
rings forming at the turning points. The numerical simulation clearly captures the vortices behind the sphere. Further, there 
is generally excellent agreement with the trajectory obtained from the experiment.
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Fig. 24. Model setup of the bileaflet mechanical heart valve (Sec. 4.7). (a) Schematic cross-section view of the aortic test section on the x-y mid-plane 
plane showing the dimensions and boundary conditions. A three-element Windkessel model is used at the downstream and upstream of the test section 
while all other boundaries are set to solid wall boundary. (b) Assembly of the aortic test section including the bileaflet valve and their position around the 
hinges. (c) Computational mesh of the aortic test section and the valve. (d) The computational domain in which the aortic test section is embedded in. The 
block-structured adaptively refined Cartesian grid is shown on the x-y mid-plane.

4.7. Bileaflet mechanical heart valve at physiological conditions

Bileaflet mechanical heart valves remain commonly used in heart valve replacement because of their durability. In this 
section, we consider the simulation of fluid flow through a geometrically realistic model of a 25 mm St Jude Medical 
RegentTM bileaflet mechanical heart valve in the aortic test section of an experimental pulse duplicator platform [122,123]. 
These systems are used in academia, industry, and regulatory agencies to assess the performance of prosthetic heart valves. 
This simulation aims to demonstrate the ability of the present approach in modeling a realistically complex problem that 
involves multiple moving and stationary parts, including the small-scale feature of the hinge geometry. These parts come 
in close contact with each other and undergo substantial pressure loading when closed. In particular, we use experimental 
pressure and flow data obtained from a real pulse duplicator to establish realistic boundary models for the FSI model. These 
boundary models are calibrated in isolation from the rest of the system in that the motion of the leaflets, including the 
timing of valve opening and closing, is not prescribed, and the simulated pressures, flow rates, and leaflet kinematics all 
emerge from integrating these three model components. The experiments conducted to calibrate the model used saline as 
a test fluid, which we model as a Newtonian fluid with uniform density ρf = 1.0 g · cm−3 and uniform dynamic viscosity 
μ = 1.0 cP. The computational domain is � = [0, Lx] ×[0, L y] ×[0, Lz] a rectangular cuboid of size Lx × L y × Lz = 7.07 cm×
10.1 cm × 7.07 cm. Fig. 24 shows the geometrically detailed three-dimensional model including the valve leaflets and the 
aortic test section of the pulse duplicator, the computational mesh, and relevant boundary conditions. The Eulerian domain 
is discretized using N = 4 nested grid levels, with coarse grid spacing hcoarsest = Lx/34 ≈ 0.208 cm and refinement ratio 
r = 2 between levels, leading to hfinest ≈ 0.026 cm. The volumetric mesh of each valve leaflet consists of hexahedral elements 
leading to a surface representation composed of bilinear quadrilateral elements with Mfac ≈ 2. The test section is a stationary 
surface described by bilinear quadrilateral elements with Mfac = 3. The thickness of the valve leaflets is about 0.07 cm and 
the density is ρs = 1.8 g · cm−3. The gap distance between the two valves is measured to be 0.0275 cm. The penalty spring 
constant associated with the valves is set to κ = 5 × 106 g · cm−2 · s−2. The motion of each leaflet is constrained to consist 
only of rotation about predefined hinge axes. A restoring spring-damper tortional force is used to restrict the motion of 
the right valve leaflet but in its rotation between θmin = 24◦ and θmin = 82◦ . The same rule is applied to keep the left 
valve leaflet restricted with mirrored angles. The test section is kept stationary by means of spring-type penalty forces with 
κ = 1.5 × 106 g · cm−2 · s−2. A fixed time step size of �t = 2 μs is used for the simulation. Three-element Windkessel 
models establish upstream driving conditions and downstream loading conditions for the aortic test section. A combination 
of normal traction and zero tangential velocity boundary conditions are used at the inlet and outlet to couple the reduced-
order models to the detailed description of the flow within the test section. The values of the resistances and compliance 
for the upstream model are CVIA = 0.1 mL · mmHg−1 and R1 = R2 = 0.15 mmHg · mL−1 · s. The values at the downstream 
model are Rc = 0.0077 mmHg · mL−1 · s, Rp = 1.226 mmHg · mL−1 · s, and C = 1.039 mL · mmHg−1; see Griffith et al. [124]
and Lee et al. [125] for further discussion on the specification and parameterization of the Windkessel models. Solid wall 
boundary conditions are imposed on the remaining boundaries of the computational domain.
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Fig. 25. Velocity magnitudes of bileaflet mechanical heart valve (Sec. 4.7) on the x-y mid-plane bisecting the valve, given at times (a) t = 0.0225 s, 
(b) t = 0.1050 s, (c) t = 0.1275 s, (d) t = 0.1875 s, (e) t = 0.2925 s, (f) t = 0.3550 s, (g) t = 0.3675 s, and (h) t = 0.375 s.

Fig. 25 shows the velocity magnitudes on the plane bisecting the valves at different time points within the simulated 
cardiac cycle. At early times when the valves are closed, there exists a large pressure difference across the test section 
that forces jets of the fluid to escape from the small gaps around the valves with a velocity magnitude that reaches about 
450 cm · s−1 at its peak. These hinge gap flows have been well characterized for bileaflet mechanical valves and result from 
gaps between the leaflets and the housing and around the hinge areas in a fully closed position [123,126,127]. These flows 
create a complex vortical interaction later in the diastole phase of the cardiac cycle, when the valve is closed and supporting 
a physiological pressure load. Von Karman like vortex shedding clearly occurs during the systolic phase, when the valves 
are fully open. Many prior numerical simulations of mechanical heart valve models have been restricted to imposing either 
experimental flow rates, or flow dynamics under prescribed leaflet motion. Because the flow rate is not imposed in the 
present model, and because the time-dependent configuration of the valve determines the resistance of the aortic test 
section, this simulation demonstrates a non-trivial test of the numerical method.
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Fig. 26. Computational mesh of the patient-averaged model of the inferior vena cava (IVC), the locally refined Cartesian grid and rigid spherical clots inside
IVC (Sec. 4.8).

Fig. 27. Transport of spherical clots inside IVC under exercise condition (Sec. 4.8). The snapshots are given from left to right at times t = 5.0 s, t = 6.75 s, 
t = 7.50 s, and t = 8.50 s. A top view of velocity magnitudes are shown for cross section A.

4.8. Transport of rigid blood clots in the inferior vena cava at exercise flow conditions

As a demonstration of the method’s capability in modeling the motion of unconstrained three-dimensional objects in 
a complex geometry, we simulate transport of rigid blood clots through the inferior vena cava (IVC) at a high flow rate 
of 100 cm3/s, which corresponds to exercise flow conditions with a maximum Reynolds number of about Re = 1500. The 
IVC is a large vein that transports deoxygenated blood from lower extremities of the body back to the right atrium of 
the heart. The geometry of the IVC shown in Fig. 26 is a modified version of the patient-averaged model by Rahbar et 
al. [128] that has been recently used in studies of the hemodynamics [68,129,130]. The infrarenal IVC downstream of the 
iliac bifurcation has average hydraulic diameter Dh = 2.8 cm. The density of the fluid is ρf = 1.817 g·cm−3, and the viscosity 
is μf = 5.487 ×10−2g ·(cm ·s)−1. Steady fully-developed parabolic velocity boundary conditions are imposed at the upstream 
inlets of the iliac veins. The two inlets are circular with diameter D = 2.44 cm, which then transitions to an elliptical shape a 
short distance downstream. The surface of the IVC is described using bilinear quadrilateral elements with Mfac ≈ 2. The IVC 
is embedded in a rectangular computational domain of size � = Lx × L y × Lz = 50 cm×25 cm×50 cm. The Eulerian domain 
is discretized using a three-level locally refined grid with a refinement ratio of four between the grid levels, resulting in 
a grid spacing of hcoarsest = 25

16 cm = 1.5625 cm on the coarsest level and hfinest = 25
16×42

cm ≈ 0.098 cm on the finest grid 
level. At the outlet, the normal traction and tangential velocities are set to zero. Solid-wall boundary conditions are imposed 
along the remainder of ∂�. Once steady state condition of the flow has been reached at t = 5.0 s, two neutrally buoyant 
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rigid spherical clots (ρs = ρf) of diameter 1 cm are released from positions close to the two inlets. The volumetric mesh 
of each sphere consists of hexahedral elements leading to a surface mesh composed of bilinear quadrilateral elements with 
Mfac = 2. A fixed time step size of �t = 0.1 ms is used. The penalty spring constant associated with both the IVC and the 
clots is κ = 1.05 × 105 g · cm−2 · s−2. Fig. 27 shows the transport of rigid blood clots under the unconstrained rigid-body 
model. A few streamlines are also plotted to show the direction of the flow. Despite the moderately high Reynolds number 
of the flow and the complex pathway, the clots migrate towards the outlet through the iliac veins while being confined 
within the IVC structure. After passing the confluence of the veins, the clots come in very close contact with each other in a 
more complex fluid environment where we expect the emergence of a pair of counter-rotating vortices after the confluence 
as a result of the two streams from iliac veins merging together [68]. The clots continue migrating towards the outlet with 
a higher speed where towards the end, the clot from the right ilict vein tends to get ahead. This can be attributed to the 
complex nature of the flow in the region above the confluence.

5. Discussion and conclusions

This work introduces a numerical approach to simulating fluid-structure interaction that we refer to as an immersed 
Lagrangian-Eulerian (ILE) method. Results from applying this ILE method to benchmark problems of rigid-body fluid-
structure interaction with increasing difficulty are presented. In addition, we also show representative results from applica-
tions of this methodology to two biomedical FSI models: a bileaflet mechanical heart valve under physiological conditions 
in a model of the aortic test section of a commercial pulse duplicator, and transport of rigid blood clots inside a patient-
averaged model of the inferior vena cava under exercise conditions. Unlike existing partitioned methods for FSI, the ILE 
formulation uses an immersed approach to couple the fluid and structure subdomains and thereby reduces or even elim-
inates the need for grid regeneration during dynamic simulations. In this formulation, it is crucial to deploy a coupling 
approach that provides the forces from only the exterior physical fluid region, and in this work, we use a coupling scheme 
based on the immersed interface method, which enables us to evaluate these external fluid tractions along the fluid-
structure interface. At least in principle, however, the present method could be used with any coupling strategy that 
determines the net exterior fluid force acting on the fluid-solid interface. Notice that this excludes conventional immersed 
boundary formulations using regularized delta functions because such formulations provide the total force from both the
exterior (physical) and interior (nonphysical) fluid regions. We remark that the jump conditions associated with the singular 
interfacial force are projected onto continuous Lagrangian basis functions, as described previously [68]. This requires the 
solution of linear systems of equations. We emphasize, however, that these solves involve only surface degrees of freedom, 
and thus are an order of magnitude smaller than the volumetric fluid equations that also are solved in each time step. 
In addition, the linear systems involve discrete L2 projection equations that can be solved optimally using simple iterative 
methods (e.g. by a Krylov method preconditioned with a diagonal or lumped mass matrix). Overall, the dominant cost of 
each time step is in solving the incompressible Navier-Stokes equations, and the remaining computations are relatively in-
expensive. A strength of the current approach is that it enables the use of fast Cartesian grid solvers for the incompressible 
Navier-Stokes equations.

The FSI coupling strategy allows fluid and solid subproblems to be solved in a partitioned manner as independent, non-
conforming discretizations that are coupled through interface conditions. In our discretization approach, there exist two 
Lagrangian representations of the fluid-solid interface, including the boundary of the volumetric mesh used in solving the 
equations of rigid-body dynamics and a surface mesh that moves with the local fluid velocity. These two representations 
are constrained to move together by a Lagrange multiplier surface force. Exactly imposing the constraint would require the 
solution of a saddle-point system that couples the Eulerian and Lagrangian variables, but we develop a practical numerical 
scheme that avoids the complex numerical linear algebra associated with such systems by relaxing this constraint using 
a penalty formulation. In the penalty formulation, the surface mesh moves according to the local fluid velocity but exerts 
force locally to the fluid as a weak imposition of the no-slip condition. Discrepancies in the positions of the boundary repre-
sentations can be controlled by increasing the penalty parameter. In the present work, the maximum relative displacement 
is always less than 0.1 of the Cartesian grid spacing.

An attractive feature of the present ILE method is that, at least for the specific examples considered herein, it enables 
the use of a simple Dirichlet-Neumann coupling scheme [84,93,95] without requiring either strong coupling or subiterations 
to maintain stability. In particular, the motion of the solid mesh is driven by the exterior fluid traction, and the motion 
of the solid mesh drives the motion of the fluid-structure interface representation used to impose the no-slip condition. 
Although we do not theoretically determine whether the ILE formulation suffers from added mass-related instabilities, the 
computational tests reported herein suggest that it can stabily treat a broad range of density ratios, including structures that 
are less dense than the fluid, more dense than the fluid, and neutrally buoyant. This is demonstrated for multiple benchmark 
problems. For instance, in a 2-DOF model of the oscillation of a cylinder under vortex induced vibration, we obtain stable 
results for mass ratios up to 40 times smaller than smallest value reported in recent prior work [113]. In the literature, 
added mass instabilities are typically ascribed to the treatment of fluid regions that become “uncovered” by the structure as 
it moves through the computational domain. These include ALE approaches [91,92,131] and other sharp interface methods 
[19,132]. Specialized approaches can be needed with these methods to avoid pressure fluctuations for cases involving low 
and near-equal density ratios. Although the total mass and momentum of the fluid are conserved, there are local changes in 
the fluid mass and momentum in the regions that are both “covered” and “uncovered” by the moving structure. Evidently, 
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these localized changes in the fluid mass and momentum can induce temporal discontinuities in the velocity. In the IIM 
approach introduced by Li and Lai [29], the fluid equations are solved on the entire computational domain, including the 
region occupied by the structure, similar to diffuse-interface formulations like those used in Peskin’s IB method. Continuity 
of the velocity field across the fluid-structure interface implies �u(x, t)� = 0. A direct consequence of this condition for the 
immersed interface approach is that the jump in the material derivative of the velocity is also zero, i.e. �Du

Dt (x, t)� = 0. This 
means that fluid trajectories do not cross the moving interface and fluid locations that are “uncovered” by the motion of 
the structure automatically possess velocities that are consistent with the equations of motion. In contrast, for methods in 
which the fluid domain only exists on one side of the interface, the temporal jump associated with the material derivative of 
the velocity may be non-zero going from one time step to the next as a fixed Eulerian grid point may switch sides between 
consecutive time steps. This temporal discontinuity in the fluid acceleration could be important as added mass instabilities 
arise when the inertial effect due to fluid forces are dominant. This could result in a fluid pressure that is out of phase with 
the fluid acceleration. Although this has yet to be proved rigorously, we hypothesize that the apparent robustness of the 
method to artificial added mass instabilities results from its consistent treatment of the momentum of the fluid near the 
fluid-structure interface. Added mass-type instabilities might also be suppressed by our use of rigid-body structure models, 
which are driven by the net fluid force acting on the immersed structure rather than by pointwise forces. Rigorous stability 
analyses and analytical investigations of the methodology similar to those recently developed for overset grid methods 
[83,84,94,133] may reveal stability criteria or clarify the absence of added mass-type instabilities in this formulation. Finally, 
we note that although the formulation presented here assumes the use of a rigid-body structural model, it is natural to 
extend this approach to immersed elastic bodies.
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