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High-order numerical methods for solving elliptic equations over arbitrary domains typ-
ically require specialized machinery, such as high-quality conforming grids for finite ele-
ments method, and quadrature rules for boundary integral methods. These tools make it 
difficult to apply these techniques to higher dimensions. In contrast, fixed Cartesian grid 
methods, such as the immersed boundary (IB) method, are easy to apply and generalize, 
but typically are low-order accurate. In this study, we introduce the Smooth Forcing Ex-
tension (SFE) method, a fixed Cartesian grid technique that builds on the insights of the 
IB method, and allows one to obtain arbitrary orders of accuracy. Our approach relies on a 
novel Fourier continuation method to compute extensions of the inhomogeneous terms 
to any desired regularity. This is combined with the highly accurate Non-Uniform Fast 
Fourier Transform for interpolation operations to yield a fast and robust method. Numer-
ical tests confirm that the technique performs precisely as expected on one-dimensional 
test problems. In higher dimensions, the performance is even better, in some cases yield-
ing sub-geometric convergence. We also demonstrate how this technique can be applied 
to solving parabolic problems and for computing the eigenvalues of elliptic operators on 
general domains, in the process illustrating its stability and amenability to generalization.

Published by Elsevier Inc.

1. Introduction

A long-standing challenge in the numerical study of elliptic partial differential equations is the development of high-
order methods for arbitrary domains. Over the years, various approaches have been proposed and extensively analyzed, 
refined, and applied to problems from diverse settings. The finite element and boundary integral methods provide elegant 
formulations of the problem and yield powerful solvers. However, they require additional tools and machinery that limit 
their scope and hinder their generalization to higher dimensions. The finite element method, for instance, requires a high 
quality mesh [1]; in the case of moving boundaries, generating such conforming grids at each time-step can be computa-
tionally infeasible. Similarly, boundary integral methods require specialized quadrature rules to resolve the nearly singular 
kernels [2–4]; while they perform impressively in two dimensions, it is unclear how these tools optimally extend to three 
dimensions.
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At the other end of the spectrum are fixed Cartesian grid methods. Broadly speaking, these techniques embed the 
physical domain in a simpler computational domain and solve the appropriately modified equations on a non-conformal 
structured mesh. The immersed boundary (IB) method was introduced by Peskin [5,6] for simulating fluid flow around 
immersed elastic bodies. Applied to elliptic problems, it operates by extending the inhomogeneous terms trivially to the 
computational domain. Any resulting discontinuities in the derivative of the solution are accounted for by the addition of 
singular terms to the equations. These compactly supported spreading terms act as Lagrange multipliers to enforce the 
boundary conditions. This formulation is combined with a finite difference discretization, with regularized delta functions 
used to numerically handle the spreading and interpolation operations. The technique yields first-order accuracy but pos-
sesses the key advantages of straightforward generalizability to higher dimensions, the ability to handle moving boundaries, 
and amenability to adaptive mesh refinement [7]. As a result, this method has been successfully used for a wide range of 
problems [8–12].

An alternative approach to achieving higher-order accuracy in the IB method is the Immersed Boundary Smooth Exten-
sion (IBSE) method [13,14]. The key insight in the design of this technique is that the bottleneck in achieving high-order 
accuracy is the smoothness of the posited solution on the computational domain. The method poses a high-order PDE 
outside the physical domain, with boundary conditions matching the exact solution. This problem is solved using the IB 
method, and the solution extension in turn is used to supply the necessary extension to the forcing. The modifications 
indeed lead to high-order accuracy; however, its use of regularized delta functions limits its efficacy. More damagingly, its 
introduction of a high-order equation yields an unwieldy structure that, in some cases, may lead to ill-conditioning and 
instabilities.

In this paper, we present a new fixed Cartesian grid method for solving elliptic problems by further developing the 
insights introduced in the IBSE method. Our technique eschews directly solving for a smooth extension to the unknown 
solution and instead uses a novel Fourier extension method to extend the forcing. This approach demonstrably resolves the 
“mountain-in-fog” problem and can be used to compute the extension to any desired regularity [15]. Coupled with highly 
accurate inversion and interpolation procedures using the Fast Fourier Transform (FFT), this leads to a rapid, robust, and 
highly accurate technique for solving elliptic equations. A hallmark of our approach is its simplicity, which allows it to 
be used for complex domains (including those with sharp corners) in any number of dimensions. Moreover, our method 
possesses strong stability properties that, as we shall demonstrate, allow it to be extended to parabolic problems and be 
used to compute the eigenvalues of elliptic operators on arbitrary domains.

Our technique is also amenable to other discretization approaches. For instance, one could employ a finite difference 
discretization based on a uniform grid and make use of fast iterative solvers, notably multigrid methods, instead of the 
Fourier solver. It must be ensured, however, that the corresponding interpolation procedures are not based on high-order 
polynomials to avoid the instabilities associated with uniform grids.

Another alternative is to use a tensor product of one-dimensional Chebyshev–Lobatto grids. This technique has the advan-
tage of allowing rapid FFT-based transforms to representations in terms of Chebyshev polynomials [16]. These polynomials 
are inexpensive to differentiate and lend themselves to fast and accurate evaluation at off-grid points by formulas based 
on the Clenshaw recurrence formula [17]. Thus, this choice enables interpolation to be performed efficiently. However, 
this comes at the cost of being unable to use the fast finite difference solvers. Instead, we are required to use a Galerkin 
formulation that leads to dense stiffness matrices, making this approach somewhat prohibitive.

Prior efforts devoted to improving upon the IB method have also led to the development of widely used techniques such 
as the Immersed Interface method [18,19], the Ghost Fluid method [20,21], and the Active Penalty method [22]. Another 
recent technique that uses an approach similar to that described herein is the Fourier Continuation Alternate Direction (FC-
AD) Implicit method pioneered by Bruno and Lyon [23,24]. This approach relies on the ADI procedure to reduce an evolution 
equation to a sequence of one-dimensional elliptic problems, which are extended by a highly accurate Fourier Continuation 
routine to the appropriate computational domains. Also of note is the recent work on smooth selection embedding, which 
attempts to solve the extension problem by formulating it as a Sobolev norm optimization problem [25,26]. In general, 
Fourier continuation methods have a rich history; see [15] for an exhaustive review. Yet another exciting contribution is the 
partition of unity extension approach developed in the context of boundary integral methods and applied to heat and fluid 
flow problems [4,27,28].

2. The smooth forcing extension method

2.1. Mathematical formulation

We describe our method by outlining its use for the problem{
Lu = f , on �,

u = g, on ∂�.
(1)

Here, � is an arbitrary bounded domain in Rd or Td , L is an elliptic operator, and f ∈ C∞(�); we shall frequently refer to 
f as the forcing. For clarity of exposition, we have restricted ourselves to a Dirichlet problem for now; we shall later show 
that our technique can easily handle all types of boundary conditions.
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We begin by embedding � in a computational domain C and defining the extension region E = C − �. In addition, for 
k ≥ 0, let T ∗

k denote the evaluation operator for the first k normal derivatives at the boundary. Note then that S∗ := T ∗
0 is 

simply the interpolation operator.
An important step in the development of the IBSE method was the observation that, in principle, u can be extended 

smoothly to C . Contrary to how this technique proceeds, however, we shall not explicitly solve for the extension to the 
solution. Instead, we further note that any additional forcing induced by the extended solution must remain restricted to E , 
as L is a local operator. Thus, we can search for the extension to the forcing in a space of functions supported on E .

Let {φ j}1≤ j≤ J be a family of smooth functions on C ; this shall serve as the basis of the space in which we shall look for 
the extension to the forcing. Set h = ∑ J

j=1 c jφ j and consider the extended problem
{
Lue = χ� f + χEh, on C,

S∗ue = g, on ∂�.
(2)

Here, χA denotes the characteristic function for a set A. Assuming that L is invertible on C , we obtain

ue = L−1(χ� f ) +L−1(χEh) = L−1(χ� f ) +
J∑

j=1

c jL−1(χEφ j). (3)

Applying S∗ throughout and using S∗ue = g yields

J∑
j=1

c j S
∗L−1(χEφ j) = g − S∗L−1(χ� f ). (4)

Next, observe that if ue is sufficiently smooth on C , some of this regularity would be inherited by the extended forcing 
fe = χ� f + χEh. This condition can be enforced by requiring that

J∑
j=1

c j T
∗
k φ j = T ∗

k h = T ∗
k f , (5)

for some k ≥ 0. It follows from elliptic regularity theory that if fe ∈ Ck(C) and L is of order l, then ue ∈ Ck+l(C) [29]. 
Note, however, that f may not be known outside �, or, its analytic continuation may contain singularities, so T ∗

k f may be 
ill-defined. To remedy this, we may instead enforce T ∗

k h = T ∗
k fe , which reduces to

J∑
j=1

c j T
∗
k (χ�φ j) = T ∗

k (χ� f ). (6)

Taken together, equations (4) and (5) (or (6)) prescribe the conditions that must be met to yield a problem with a sufficiently 
smooth solution on C . These conditions are to be satisfied at the boundary so a discretization s = (si)1≤i≤nb of ∂� would 
result in a linear system of size nb(k + 2) × J . Thus, by choosing J so that the system is square (or under-determined), we 
can solve for the coefficients {c j} (in the minimum norm sense) and obtain the extended solution ue using (3).

2.2. Implementation details

After outlining the basic ideas behind our method, we shall now discuss some details regarding its implementation that 
allow us to harness its full accuracy, efficiency and robustness.

Our approach to discretization is aimed at making full use of Fourier-based techniques. The computational domain C
is taken as the d-dimensional periodic box Td , with equal-sized grid cells, and the extension functions are chosen as the 
trigonometric polynomials {eij·x}. A significant advantage of this approach is the simplicity, speed and accuracy of inverting 
the differential operator L: the derivative ∂α1

x1 ∂
α2
x2 . . . ∂

αd
xd is replaced by its symbol (iξ1)α1 (iξ2)α2 . . . (iξd)αd in Fourier space, 

so that implementing L−1 reduces to a pair of FFTs and a term-wise algebraic solve. In addition, we can take advantage 
of Non-Uniform FFT (NUFFT) algorithms to discretize T ∗

k extremely accurately and efficiently [30,31]. More precisely, given 
a function f on C , a discretization s = (si)1≤i≤nb of the boundary ∂� and unit normal vectors {ni}1≤i≤nb at the respective 
nodes, we compute

T ∗
k f = (

f (s) Dn f (s) D2
n f (s) . . . Dk

n f (s)
)T

, (7)

where Dl
n f (s) = (

Dl
ni

f (si)
)
1≤i≤nb

consists of the lth directional derivatives of f at all the boundary nodes, in the direction 

of the corresponding normal vectors. If ni = (a(i) a(i)
. . . a(i)

)T , these normal derivatives are given by
1 2 d

3
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Dl
ni

f (si) =
⎛
⎝ d∑

j=1

a(i)
j ∂x j

⎞
⎠

l

f (si) =
∑

α1+...+αd=l

(
l

α1, . . . ,αd

) d∏
m=1

(
a(i)
m ∂xm

)αm
f (si). (8)

The partial derivatives of f can be computed in Fourier space and evaluated at the boundary nodes by using NUFFT.
An issue with this approach is that we may lose the invertibility of L that we made use of earlier since Td has no 

boundaries (so we cannot impose additional boundary conditions on ∂C ). This would be the case, in particular, if L = �. 
We specify the recipe for this example because of its ubiquity, although a similar procedure can be followed for any self-
adjoint L. Decompose

ue = U + u0, (9)

where U = |C |−1
∫
C ue dx, so that 

∫
C u0 dx = 0 and �ue = �u0. One can then replace L−1 in (4) by the “zero-mean” inverse 

A of the Laplacian to obtain

J∑
j=1

c j S
∗A(χEφ j) + U = g − S∗A(χ� f ). (10)

In addition, we average the first equation in (2) over C and use 
∫
C �ue dx = ∫

C �u0 dx = 0 to obtain the additional 
equation

J∑
j=1

c j

∫
C

χEφ j dx = −
∫
C

χ� f dx. (11)

As above, equations (10) and (11) can be complemented with the regularity constraints (5) (or (6)) to form a system of 
size (nb(k + 2) + 1) × ( J + 1) and can be used to solve for ue. In the case the system is under-determined, the solutions are 
not unique. We then use the Moore–Penrose pseudo-inverse to find the minimum norm solution [32].

3. Numerical results

In order to demonstrate the effectiveness of our algorithm, we shall present results from a variety of contexts. We begin 
by solving some simple problems in one dimension to further elucidate its implementation and assess its performance, 
before moving to test problems in two dimensions.

3.1. The extension algorithm

As a preliminary test, we investigate the extension routine: given a function f on �, we extend it to fe on the compu-
tational domain C = Td such that fe|� = f . A highly desirable property of an extension algorithm is that it circumvent the 
“mountain-in-fog” problem [15]. This refers to the pitfall that an algorithm chooses the analytic continuation of f that may 
contain singularities in the extension region.

For a simple one-dimensional example of such a function, let � = (2, 5) and f (x) = 1/(x − 1). We define the extension 
by

fe(x) = χ� f (x) + χE

J∑
j=− J

c je
i jx, (12)

where E = T − �̄; the reality conditions c− j = c∗
j for all j imply that we effectively have (2 J + 1) real degrees of freedom. 

The only conditions on the {c j} are the regularity constraints (5) that provide matching conditions for the values and first 
k derivatives at ∂�. For a given k, we choose J = k + 1 to obtain a system of size (2k + 2) × (2k + 3), which is solved (in 
the minimum norm sense) to yield the k-regular extension f [k]

e . In this computation, the right hand side of (5), T ∗
k f , is 

calculated exactly since f is known in closed-form. If f was only known at the grid points in �, we would have instead 
used regularity conditions of the form given in equation (6).

If f [k]
e ∈ Ck(T ), its Fourier coefficients should decay asymptotically as O ( j−(k+2)). The extensions for different values of 

k are shown in Fig. 1 along with the decay of their Fourier coefficients. The decay rates are as expected, indicating the 
effectiveness of our extension technique for arbitrary k. Higher values of k also exhibit the same trend but are omitted from 
the plot. A notable point is that, while the extensions in Fig. 1(a) appear to approach the singularity at x = 1 for increasing 
values of k, they avoid the “mountain-in-fog” problem. This is primarily because we only use the boundary data and search 
for the extension in a low-dimensional space. Traditional techniques extrapolate the function after sampling it in the interior 
of � and, as a result, are more likely to mimic the pathological behavior.
4
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Fig. 1. (a) The extensions f [k]
e for different k, for f (x) = 1/(x − 1) and � = (2, 5). Note that the functions approach the singularity at x = 1 for higher k, 

since that is a feature of the analytic continuation, but still remain well-behaved. (b) The Fourier coefficients of the extensions shown in (a) decay like 
O ( j−(k+2)). Results for higher k are omitted for clarity.

3.2. Poisson equation in one dimension

Next, we consider the Poisson equation{
uxx = 1/(x− 1), on � = (2,5),

u(2) = u2, u(5) = u5.
(13)

The exact solution to this problem can be used for comparison against the numerical solutions. To calculate the forcing 
extensions, we also impose the boundary conditions (10) and averaging condition (11); as a result, the particular extensions 
in this case will be different from those shown in Fig. 1(a) while possessing the same regularity. In fact, we can also 
compute a forcing extension without imposing any smoothness requirements; we refer to this as k = −1; the resulting 
extension has a jump discontinuity at ∂�. Finally, for a given k, we set J = k + 2 to yield an under-determined system of 
size (2k + 5) × (2k + 6).

Since the operator L = ∂2
x is second-order, by the earlier discussion, a k-regular extension should yield a solution u[k]

e ∈
Ck+2(C). As a result, we expect convergence in the L2 norm at rate O (N−(k+3)), where N is the number of grid points. 
Fig. 2 shows the results with u2 = 1 and u5 = −1 in the L∞ norm. We employ this norm as it bounds the L2 norm while 
also allowing us to assess convergence at points close to the boundary. It can be seen that the errors indeed converge at 
the desired rates and achieve 13 digits of accuracy in all the cases.

Small modifications in our method allow us to handle different boundary conditions. Consider the same problem as (13)
with ux(2) = u2 and u(5) = u5. The Neumann condition is imposed by changing (10) to

J∑
j=1

c j
[
T ∗
1A(χEφ j)

]
x=2 = u2 − [

T ∗
1A(χ� f )

]
x=2 . (14)

The Dirichlet condition at x = 5 is imposed in exactly the same manner. Note that the mean correction U does not appear 
in (14) since it vanishes upon differentiation. The results, for u2 = 1 and u5 = −1 with the same number of extension 
functions as above, are shown in Fig. 3. Observe that the errors decay at O (N−(k+2)). The reduction in order is due to the 
fact that the accuracy of the derivative–interpolation operator T ∗

j decreases with increasing j. Thus, applying condition (14)
introduces a bottleneck, which is reflected in the error decays of the solutions.

3.3. Heat equation in one dimension

As our final one-dimensional example, we show how to adapt this method to solve the heat equation. Consider the more 
general time-dependent problem⎧⎨

⎩
ut −Lu = f (t, x), for x ∈ �,

u(0, x) = u0(x), for x ∈ �,

u(t, x) = g(t, x), for x ∈ ∂�, t > 0.
(15)
5
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Fig. 2. Errors in the L∞ norm in the numerically computed solutions for problem (13). The solution derived from forcing with k continuous derivatives on 
C can be seen to converge at rate O (N−(k+3)), for arbitrary k.

Fig. 3. L∞ errors in the numerically computed solutions for the 1D Poisson equation with mixed boundary conditions. The solutions converge to the true 
solution at O (N−(k+2)); the reduction in order is due to the loss of accuracy while imposing the Neumann condition.

We employ the following iteration scheme, obtained from the four-step Backward Differentiation Formula (BDF-4), to 
discretize the time derivative:(

I − 12�t

25
L

)
un+1 = 12�t f n+1 + 48un − 36un−1 + 16un−2 − 3un−3

25
. (16)

Setting

L̂ = I − 12�t

25
L, Fn+1 = 12�t f n+1 + 48un − 36un−1 + 16un−2 − 3un−3

25
, (17)

allows us to write (16) as

L̂un+1 = Fn+1, (18)

with corresponding boundary conditions un+1(x) = g((n + 1)�t, x), for x ∈ ∂�. This formulation lends itself naturally to 
the extension technique described earlier. The computationally intensive task of building the matrices corresponding to 
equations (4) and (5) needs to be performed just once (for a specified �t) for the entirety of a simulation.
6
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Fig. 4. L∞ errors for problem (20). The solutions can be seen to converge more or less as O (N−(k+3)).

Observe that Fn+1 requires solutions over four previous time-steps. Hence, for the first three iterations of this technique, 
we need either additional initial conditions (going back three time-steps) or we need to couple the method with a single-
step time integrator for jump-starting the algorithm. In the results presented here, we have followed the second approach 
since it requires fewer inputs and is more broadly applicable. We opt for the Backward Euler method due to its simplicity 
and A-stability. However, its use introduces a time discretization error in addition to the O (�t4) error from the BDF-4 
scheme. To ensure that the errors decay at a comparable rate, we further divide each of the first three time intervals into 
M parts. More precisely, we discretize (15) as(

I −
(

�t

M

)
L

)
u(l+1)/M =

(
�t

M

)
f (l+1)/M + ul/M , (19)

for 0 ≤ l ≤ 3M − 1. This procedure yields the approximations un for 1 ≤ n ≤ 3 that can then be fed into the higher order 
scheme (18). The total time discretization error adds up to O  

(
M

(
�t
M

)2 + �t4
)

= O  
(

�t2

M + �t4
)
. As a result, scaling M as 

(�t)−2 ensures that the overall time discretization error is fourth-order.
For an iterative procedure of this form, we find that imposing regularity constraints of the form (5) leads to an unstable 

system. This happens because building the right-hand sides of (16) and (19) requires past solutions that possess unphysical 
extensions outside �. Smoothness conditions (5) re-use these values and lead to spurious behavior. Using (6), meanwhile, 
avoids this issue altogether as it only makes use of the forcing on �, and has the added benefit of not requiring the values 
of f (t, x) for x /∈ �.

In the case of the heat equation, we have L = �, so (18) reduces to a Helmholtz equation. Fig. 4 shows the results for 
� = (2, 5) with

f (t, x) = sin(x), u0(x) = esin(x), u(t,2) = 1, u(t,5) = 0. (20)

The problem was solved up to T = 1, with time-step �t = 2.5 × 10−3 and M = 1 for all values of k and N . As the errors in 
Fig. 4 do not appear to plateau, we deduce that time integration errors are negligible, thus allowing for a comprehensive test 
of the accuracy and stability properties of our algorithm. The asymptotic error decay rates can be seen to be O (N−(k+3)).

3.4. Poisson equation in two dimensions

After solving the one-dimensional test problems, we turn our attention towards problems in two dimensions. Let B1(2, 3)
be the unit disc centered at (2, 3) and define � = [0, 2π)2 − Ē (see Fig. 5(a)). Consider the Poisson problem{−�u = 5 sin(x) cos(y), on �,

u = 0, on ∂�.
(21)

To solve this, we embed � in T 2, place a uniform grid with N points along each axis, and use the extension family 
{ei( j1x+ j2 y)}− J≤ j1, j2≤ J . As in the solution to problem (13), we impose the boundary conditions (10) and averaging condition 
(11). The boundary ∂� is discretized by placing a total of nb equidistant points on it. We choose nb = �0.5N� to ensure that 
7
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Fig. 5. (a) The physical domain � along with its boundary ∂� and extension region E . The fixed grid is shown in �, along with the boundary nodes, for 
N = 26 and nb = 32. (b) The L∞ errors for a Poisson equation solved on the domain shown in (a). The solutions converge faster than O (N−(k+3)) in all 
cases and sub-geometrically for k = −1; a reasonable fit appears to be O (exp(−N1/2)).

the spacing �s between successive boundary nodes is roughly twice the grid spacing �x. This ratio has been empirically 
observed to yield an optimal balance between conditioning and accuracy for fixed grid methods [13,33]. In our experiments, 
we have also found that it leads to superior performance over other choices.

For a k-regular extension, we impose a total of nb(k +2) +1 constraints. Since we have (2 J +1)2 +1 degrees of freedom, 
we set

J =
⌈√

nb(k + 2)

2
− 1

⌉
(22)

to obtain the customary under-determined system. Instead of computing the exact solution to (21) by another technique for 
comparison, we use solutions on successively refined grids to compute the errors. The resulting refinement study, displayed 
in Fig. 5(b), shows that the technique performs better than expected. The convergence exceeds O (N−(k+3)) in all cases and, 
in particular, is faster than any power of 1/N for k = −1. The rate is still slower than spectral, and is therefore termed 
sub-geometric. Indeed, as shown in the plot, O (exp(−N1/2)) models the decay reasonably well.

To investigate this further, we next solve the Poisson equation on more challenging domains. Traditional fixed grid 
methods work reasonably well for domains with smooth boundaries, as in (21), but suffer from poor performance when 
applied to non-smooth boundaries.

First, we consider the eye-shaped domain shown in Fig. 6(a). This is centered at (3, 3) and built out of a pair of arcs, 
each subtended by an angle of 
 = 3π/4 and radius R = 3. As it is not immediately obvious how the corners should be 
treated while discretizing the boundary, we explore two approaches. First, as shown in inset (I), we place nodes on the 
corners and choose a symmetrical normal vector direction. For the second approach, we avoid placing nodes on the corners 
altogether and jump over from one arc to the other, as shown in inset (II). In both instances, we use nb =

⌈
R
N
2π

⌉
to ensure, 

as earlier, that boundary node spacing is roughly twice the grid spacing. We also solve the problem over the diamond 
domain shown in Fig. 6(b). The boundary in this case is a square of side-length s = 3 centered at (3, 3.5) and rotated by 
45◦ . We take nb = ⌈ sN

π

⌉
and again consider both boundary discretization approaches (insets (I) and (II)). The number of 

extension functions are calculated by (22)
We test our algorithm on these domains by solving a problem with a known solution. We take u(x, y) = 1

x2+y2
with 

corresponding forcing f (x, y) = − 4
(x2+y2)2

. Note that both the solution and the forcing possess singularities outside the 
physical domains, making this another instance of the “mountain-in-fog” test. We enforce regularity constraints of type (6)
to get around the singularities and non-periodicity of the natural extension of f on T 2.

The errors for the eye-shaped domain, shown in Fig. 7, can be seen to decay sub-geometrically again. The convergence 
for node placement of type (I) is better than for type (II), which fluctuates more and is asymptotically slower. In either case, 
the convergence rates comfortably exceed the expected O (N−(k+3)). However, increasing the value of k does not appear to 
lead to improved results and may even lead to marginally larger errors.

This is not the case for the diamond domain. The error plots, shown in Fig. 8, show that the convergence improves 
significantly with increasing k. In this case, the errors can be seen to decay algebraically in 1/N , although still exceeding 
8
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Fig. 6. (a) The eye-shaped domain � along with its boundary ∂� and extension region E . The fixed grid is shown in �, along with the boundary nodes, 
for N = 27 and nb = 144. In discretization approach (I), we place nodes on the corners and choose normal vectors symmetrically. In (II), we avoid placing 
nodes on the corners altogether. (b) The diamond domain � with the fixed grid and boundary nodes for N = 27 and nb = 124. Insets (I) and (II) illustrate 
the two boundary discretization approaches.

Fig. 7. (a) The convergence results for the Poisson equation solved on the eye-shaped domain shown in Fig. 6(a) with boundary nodes chosen as in (I). The 
solutions appear to converge sub-geometrically again, as shown by the speed-up in error decay rates from O (N−2) to O (N−8) for increasing N . Moreover, 
there appears to be little improvement for increasing values of k. (b) The same problem and domain as in (a) with boundary nodes as shown in inset (II) 
of Fig. 6(a). The convergence properties are broadly similar to those in (a). However, the errors somewhat fluctuate for small N before decaying at steady 
rates that are marginally slower than in (a).

the O (N−(k+3)) threshold. As earlier, the performance is less prone to fluctuations when nodes are placed on corners. To 
sum up, these tests show that our technique works at least as well as designed for C0 boundaries with more consistent 
performance with nodes placed on corners.

3.5. Computing eigenvalues on arbitrary domains

Next, we use our method to find the eigenvalues of the Laplacian on the domains considered earlier. Since our technique 
allows for rapid and accurate inversion of elliptic operators, it is well-suited to the power method. This shall also serve as 
a useful test of the stability of our algorithm, in that it avoids spurious eigenvalues, which is a critical issue while solving 
time-dependent problems. Consider the eigenvalue problem,
9
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Fig. 8. (a) The convergence results for the Poisson equation solved on the diamond domain shown in Fig. 6(b) with boundary nodes and normal vectors 
chosen as in (I). Unlike the earlier Poisson tests in 2D (Figs. 5 and 7), the errors converge algebraically in 1/N . The convergence rates are still much higher 
than the expected O (N−(k+3)). Moreover, we observe significant improvement as the value of k is increased. (b) The same problem and domain as in (a), 
with the nodes placed away from the corners, as in inset (II) of Fig. 6(b). While the errors decay are similar to those seen in (a), they fluctuate more. For 
k = 1, the asymptotic rate is also slightly slower.

{−�u = λu, on �,

u = 0, on ∂�.
(23)

It is well-known that the eigenvalues of the Laplacian are real, positive and can be arranged as

0 < λ1 < λ2 < λ3 < . . . (24)

To compute λi we choose a real shift σ such that

|λi − σ | < |λ j − σ |, j �= i, (25)

so that the smallest eigenvalue (in the absolute sense) of (−� − σ) is (λi − σ). Thus, applying the power method to 
(−� − σ)−1 should allow us to find λi . More precisely, we compute⎧⎨

⎩
(−� − σ)vn+1 = un, on �,

vn+1 = 0, on ∂�,

un+1 = vn+1/‖vn+1‖L2(�),

(26)

and λ̃n+1 = 〈un+1, −�un+1〉, for n ≥ 0. The initial seed u0 is chosen randomly; the values {λ̃n} then converge geometrically 
to the desired eigenvalue λi with high probability.

Our approach to solving (26) requires � to be embedded in the computational domain C = Td . To avoid imposing an 
averaging condition of the form (11), we choose σ so that (−� − σ) is invertible on C ; this can be achieved easily by 
choosing σ to be non-integer since (−� − σ) fails to be invertible on C if and only if σ = ∑d

l=1m
2
l , with ml ∈ Z, for all l. 

By varying σ , we can find all the eigenvalues.
The iterations (26) are continued until the deviations

dn = max{|λ̃n+1 − λ̃n|,‖un+1 − un‖L2(�)} (27)

fall below a pre-determined tolerance τ . In our computations, we use τ = 10−10 with k = −1 for the extension and N = 29

for the grid-size.
The first few computed eigenvalues, over the domains considered earlier, are shown in Table 1. The eigenvalues for the 

“interior” problems in Figs. 6(a) and 6(b) have been scaled by the areas of the domains, to make the results independent 
of the side-lengths or radii used. We use boundary discretizations of type (I) for these domains because, as established in 
Figs. 7 and 8, this choice leads to more accurate results. The accuracy of these computations can be assessed by comparing 
them to analytically calculated values. For instance, the eigenvalues for the diamond in Fig. 6(b) obey

λm,n = π2

|�| (m
2 + n2), m,n ∈Z+. (28)

It can be seen that the corresponding values in Table 1 are indeed just the appropriate multiples of π2.
10
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Table 1
The first seven eigenvalues of (−�) for the various two-dimensional 
domains considered earlier, with homogeneous Dirichlet boundary con-
ditions, shown up to six significant figures. For the eye-shape and dia-
mond, they have been scaled by the areas to make them independent 
of the parameters used to define these domains.

Fig. 5(a) Fig. 6(a) Fig. 6(b)

λi λi |�| λi |�|
0.219308 19.3222 19.7392
1.06247 41.0926 49.3480
1.23047 56.7845 78.9568
1.63043 71.3660 98.6960
2.19414 89.1973 128.305
2.55057 110.091 167.783
3.75893 116.318 177.653

Fig. 9. The L∞ errors at final time T = 2 in the solutions to the 2D heat equation. The time-step sizes are chosen sufficiently small so that time integration 
errors are negligible. The convergence in space is sub-geometric for k ≤ 0, as seen earlier on a domain with a smooth boundary. For smoother extensions, 
the convergence still comfortably exceeds expectations.

3.6. Heat equation in two dimensions

Finally, we apply the methodology to the heat equation. As discussed earlier, applying the BDF-4 time discretization leads 
to a Helmholtz problem of type (18) at each time step. We consider the “external” problem on the domain in Fig. 5(a) and 
calculate the forcing, initial condition and boundary values from the exact solution

u(t, x, y) = esin(x) cos(y) cos(t). (29)

As we are using an exact solution, we do not need to jump-start the multi-step scheme by using a single step method 
for the initial few steps. As in the time-dependent example seen earlier, we opt for regularity constraints of the form (6). 
In contrast, however, we vary the time-step size with grid spacing due to stability considerations. Recall that we invert the 
Helmholtz operator L̂ = I − 12�t

25 � at each time-step; an exceedingly small time-step makes it harder to damp out the 
high frequencies. Instead, we find it more beneficial to scale the number of time steps with the number of grid points. 
Specifically, we opt for �t = 1/4N , so that �t = �x/8π . The high order time integration scheme then ensures that the 
time-stepping errors are negligible, allowing us to assess the accuracy in space of the solutions to the iterated Helmholtz 
problems.

The solutions to an elliptic problem on a domain with a smooth boundary have already been seen to converge faster 
than O (N−(k+3)) and, in particular, sub-geometrically for k = −1. In addition, that repeated iterations of the solver lead 
to accurate results has been established by the solutions to the eigenvalue problems. These ingredients combine to yield 
the L∞ convergence plots shown in Fig. 9. We note that both k = −1 and k = 0 extensions appear to yield sub-geometric 
convergence. For higher k, the errors still decay faster than expected.
11
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4. Conclusion

In this study, we have introduced a technique for solving elliptic problems on arbitrary domains. Our approach uses and 
further develops the ideas and insights that power fixed Cartesian grid techniques such as the IB and the IBSE methods. In 
this sense, it may be seen as a next step in the sequence. At the same time, it eschews many of the tools that are pervasive 
in these approaches, such as discretized delta functions and local corrections via spreading operators, in the process making 
it more accurate.

A signature feature of our methodology is that one can obtain arbitrary orders of accuracy by appropriately setting 
the regularity of the extension to the forcing. The manner in which this is done avoids the “mountain-in-fog” problem 
and enables one to solve problems whose analytic solutions may have ill-behaved natural extensions. The use of NUFFT 
algorithms for interpolation, apart from speeding up the computations, also ensures that there is no barrier to the highest 
achievable accuracy. Moreover, the technique is demonstrably stable: repeatedly iterating the solvers, as we did while solving 
the time-dependent problems and computing the eigenvalues, does not lead to numerical blow-up, to which some spectral 
methods are susceptible [34–36].

For one-dimensional problems, the observed rates of convergence are in perfect agreement with theory, indicating the 
soundness of our approach. The performance of our technique for two-dimensional domains, however, is much better than 
anticipated. The convergence rates comfortably exceed the expected rates and, in specific cases, appear to be sub-geometric.

The simplicity of this approach makes it easy to extend it to higher dimensions. Another avenue for exploration is in the 
development of algorithms for solving fluid equations, such as the Stokes and Navier–Stokes models. A further potentially 
fruitful extension is to models of viscoelastic fluids. Low order methods generally fail to capture the stress values close to 
boundaries, which limits their usefulness in such regimes [37]. Since our technique allows the order of accuracy to be set 
arbitrarily, its application to these problems has the potential to lead to significant advances.
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