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ABSTRACT

We present a microscopic model describing the transition to strong coupling regime for an emitter resonantly
coupled to a surface plasmon in a metal-dielectric structure. We demonstrate that the shape of scattering spectra
is determined by an interplay of two distinct mechanisms. First is the near-field coupling between the emitter
and the plasmon mode which underpins energy exchange between the system components and gives rise to
exciton-induced transparency minimum in scattering spectra prior the transition to strong coupling regime. The
second mechanism is Fano interference between the plasmon dipole and the plasmon-induced emitter’s dipole as
the system interacts with the radiation field. We show that the Fano interference can strongly affect the overall
shape of scattering spectra, leading to the inversion of spectral asymmetry that was recently reported in the
experiment.

1. INTRODUCTION

Strong coupling between surface plasmons in metal-dielectric structures and excitons in semiconductors or dye
molecules has recently attracted intense interest driven to a large extent by possible applications in ultrafast
reversible switching,1–3 quantum computing,4,5 and light harvesting.6 In the strong coupling regime, coherent
energy echhange between excitons and plasmons7 leads to the emergence of mixed polaritonic states with energy
bands separated by the anticrossing gap (Rabi splitting).8 For excitons coupled to cavity modes in microcavities,
the Rabi splitting magnitudes are relatively small on the scale of several meV.9–11 However, in hybrid plasmonic
systems, where surface plasmons are coupled to excitons in J-aggregates,12–22 in various dye molecules23–27 or
in semiconductor nanostructures,28–31 the Rabi splittings can be much greater even reaching hundreds meV.
For single excitons, however, achieving a strong exciton-plasmon coupling is a challenging task as it requires
extremely small plasmon mode volumes, which can mainly be achieved in nanogaps.32–34

At the same time, the scattering spectra of hybrid plasmonic systems, such as excitons in J-aggregates or
colloidal QDs coupled to gap plasmons in nanoparticle-on-metal (NoM) systems35–38 or those in two-dimensional
atomic crystals conjugated with Ag or Au nanostructures,39–44 exhibit a narrow minimum even before reaching
the strong coupling transition point. The emergence of such a minimum in the weak coupling regime is referred
to as exciton-induced transparency (ExIT),45–47 in analogy to electromagnetically-induced transparency (EIT) in
pumped three-level atomic systems that is attributed to Fano interference between different excitation pathways.
Recently, we have shown that, in the linear regime (i.e., in the absence of pump), the emergence of this minimum
is due to imbalance of energy exchange between the emitter and plasmon in a narrow frequency interval.48

Typically, the plasmon plasmon optical dipole moment significantly (by ∼ 104) exceeds that of an exciton in a
semiconductor quantum dot and so the emitter’s direct interaction with the radiation field is relatively weak.49

In this case, the ExIT minimum in scattering spectra is described, with a reasonably good accuracy, by the
dressed plasmon model or by its classical analogue – the coupled oscillators model, in which only the plasmon
interacts with the radiation field, so that the scattering spectra show a narrow ExIT minimum on top of a broad
plasmon band, while the overall spectral weight is tilted towards the higher frequency range.38,47,48

On the other hand, in hybrid plasmonic systems, the optical interference between an exciton and a plasmon
can arise from indirect coupling of exciton to the radiation field. Namely, if the incident light frequency is tuned
to the plasmon resonance, the exciton dipole moment induced by the plasmon near field is not necessarily small,
so that the exciton can substantially contribute, albeit indirectly, to the system optical transition. This gives rise
to Fano interference between the plasmon and plasmon-induced exciton dipoles which can significantly affect the
overall shape of optical spectra. As we show in this paper, such Fano interference effects can lead to inversion



of spectral asymmetry, characterized by spectral weight shift towards lower frequency range, which was observed
for excitons coupled to localized plasmon modes.22,39,40

In this paper, we present a microscopic model for linear optical response of a single exciton resonantly
coupled to a surface plasmon mode in a metal-dielectric structure which accounts for both ExIT and Fano
interference effects as the system transitions to strong coupling regime. Starting with the canonical Hamiltonian
with microscopic coupling parameters,50 we set up the system of Maxwell-Bloch equations for induced dipole
moments which determine scattering spectrum of the hybrid plasmonic system. We further show that while the
ExIT minimum results from the energy exchange imbalance in a narrow frequency interval, the overall spectral
shape of scattering spectra is strongly affected by the Fano interference between radiating plasmon and plasmon-
induced exciton dipoles. Specifically, we demonstrate that Fano interference can lead to an inversion of spectral
asymmetry, consistent with the experiment.22,39,40

2. THE SYSTEM HAMILTONIAN AND MICROSCOPIC COUPLING
PARAMETERS

We consider a quantum emitter (QE) with dipole moment µe and excitation frequency ωe situated at a position
re near a metal-dielectric structure characterized by complex dielectric function ε(ω, r) = ε′(ω, r) + iε′′(ω, r)
supporting localized plasmon modes with frequencies ωm interacting with external electromagnetic (EM) field
E(t). For monochromatic EM field of frequency ω, in the rotating wave approximation (RWA), the system
dynamics is described by the Hamiltonian

H =ℏωmâ†â+ ℏωeσ̂
†σ̂ + ℏg(σ̂†â+ â†σ̂)

−
(
µm ·E â†e−iωt + µe ·E σ̂†e−iωt +H.c.

)
, (1)

where â†m and âm are the plasmon creation and annihilation operators, σ̂† and σ̂ are the raising and lowering
operators for the QE, while the parameters g and µm characterize, respectively, plasmon’s coupling to the QE
and EM field.

For plasmonic nanostructures with characteristic size smaller than the radiation wavelength, the coupling pa-
rameters can be obtained microscopically by relating them to system geometry and local field.50 For such systems,
the plasmon modes are determined by the quasistatic Gauss equation51 ∇·[ε′(ωm, r)∇Φm(r)] = 0, where Φm(r)
is the mode potential that defines the mode field Em(r) = −∇Φm(r), which we choose to be real. To determine
the plasmon dipole moment for optical transitions, we recast the Gauss’s law as ∇ · [Em(r) + 4πPm(r)] = 0,
where Pm(r) = χ′(ωm, r)Em(r) is the electric polarization vector and χ = (ε − 1)/4π is the plasmonic system
susceptibility. The plasmon dipole moment has the form

pm =

∫
dV Pm =

∫
dV χ′(ωm, r)Em(r). (2)

The Gauss’s equation does not determine the overall field normalization,51 but the later can be found by matching
the plasmon radiative decay rate and that of a localized dipole with excitation energy ℏωm. The plasmon radiative
decay rate has the form52 γr

m = W r
m/Um, where

Um =
1

16π

∫
dV

∂[ωmε′(ωm, r)]

∂ωm
E2

m(r), (3)

is the plasmon mode energy53,54 and

W r
m =

p2mω4
m

3c3
, (4)

is the radiated power (c is the speed of light).8 The normalized modes Ẽm(r) are thus determined by setting

γr
m =

4µ2
mω3

m

3ℏc3
, (5)



where µm is the mode optical transition matrix element. We then find the normalization relation as

Ẽm(r) =
1

2

√
ℏωm

Um
Em(r), (6)

where the scaling factor
√

ℏωm/Um converts the plasmon energy Um to ℏωm in order to match the EM field
energy (the factor 1/2 reflects positive-frequency contribution). Accordingly, the plasmon optical transition
matrix element in the Hamiltonian (1) takes the form [compare to Eq. (2)]

µm =

∫
dV χ′(ωm, r)Ẽm(r). (7)

In a similar way, the plasmon non-radiative decay rate is γnr
m = Wnr

m /Um, where W r
m = 1

8π

∫
dV ε′′(ωm, r)E2

m(r)
is the power dissipated in the plasmonic structure due to Ohmic losses. In terms of normalized fields, the
non-radiative rate takes the form

γnr
m =

1

2πℏωm

∫
dV ε′′(ωm, r)Ẽ2

m(r), (8)

and so the plasmon full decay rate is γm = γnr
m + γr

m. Note that in structures with a single metallic component,
the standard expression51 for γnr

m is recovered: γnr
m = 2ε′′(ωm)/[∂ε′(ωm)/∂ωm]. The optical polarizability tensor

of a plasmonic structure describing its response to the external field Ee−iωt has the form

αm(ω) =
1

ℏ
µmµm

ωm − ω − i
2γm

, (9)

where we kept only the resonance term.52

The QE-plasmon coupling in the Hamiltonian (1) is expressed via normalized plasmon mode fields as50

ℏg = −µe ·Ẽm(re). (10)

To present the coupling in a cavity-like form, we use the original plasmon mode fields (6) to obtain7

g2 =
2πµ2

eωm

ℏV
,

1

V
=

2[ne ·Em(re)]
2∫

dV [∂(ωmε′)/∂ωm]E2
m

, (11)

where V is projected plasmon mode volume characterizing plasmon field confinement at the emitter position
re along its dipole orientation ne.

52,54,55 The plasmon mode volume defines the Purcell factor characterizing
radiation enhancement of a QE near a plasmonic structure:

Fp =
γe→m

γr
e

=
6πc3Qm

ω3
mV

(12)

where Qm = ωm/γm is plasmon quality factor, γr
e = 4µ2

eω
3
m/3ℏc3 is the emitter’s radiative decay rate (at plasmon

resonance frequency) and γe→m is the rate of energy transfer (ET) from QE to plasmon, given by

γe→m =
8πµ2

eQm

ℏV
. (13)

Comparing Eqs. (11) and (13), we obtain a relation between the QE-plasmon coupling and decay rates:

g2 =
1

4
γmγe→m =

Fp

4
γmγr

e . (14)

Thus, all coupling parameters in the Hamiltonian characterizing plasmon interactions with the QE and EM
field are expressed via system parameters and related to plasmon and QE decay rates. Below, we employ
these microscopic expressions to elucidate the role of ExIT and Fano interference in scattering spectra of hybrid
plasmonic systems.



3. OPTICAL DIPOLE MOMENT OF A HYBRID PLASMONIC SYSTEM

We are interested in the linear response of hybrid plasmonic system to the external EM field. We assume
that there is only a single excitation in the system and disregard any non-linear effects. In this case, we can
approximate the QE by bosonic operators to setup Maxwell-Bloch (MB) equations for non-diagonal elements of
density matrix (polarizations) ρe(t) and ρm(t) related to QE and plasmon induced dipoles as pe(t) = µeρe(t)
and pm(t) = µmρm(t), respectively. Using the Hamiltonian (1), in the linear approximation, the MB equations
for ρm(t) and ρe(t) are obtained in a standard manner as

iρ̇m = (ωm − iγm/2)ρm + gρe − µm ·E e−iωt,

iρ̇e = (ωe − iγe/2)ρe + gρm − µe ·E e−iωt, (15)

where dot stands for the time-derivative and γe is the QE spectral linewidth assumed much smaller than γm.

In the steady-state case, substituting ρm(t) = ρme−iωt and ρe(t) = ρee
−iωt, we find

ρm =

(
ωe − ω − i

2γe
)
µm ·E − gµe ·E(

ωm − ω − i
2γm

)(
ωe − ω − i

2γe
)
− g2

(16)

and

ρe =

(
ωm − ω − i

2γm
)
µe ·E − gµm ·E(

ωm − ω − i
2γm

)(
ωe − ω − i

2γe
)
− g2

. (17)

The system’s induced dipole moment is ps = pm + pe = µmρm + µeρe. To elucidate the processes contributing
to ps, we define QE polarizability tensor (in RWA) as

αe(ω) =
1

ℏ
µeµe

ωe − ω − i
2γe

, (18)

and introduce plasmon-induced QE dipole moment as

qe(ω) = αe(ω)Ẽm(re) =
µe

ℏ
µe ·Ẽm(re)

ωe − ω − i
2γe

. (19)

Then, the hybrid system dipole moment can be decomposed into three contributions:

ps = pdp + pint + pde. (20)

The main contribution comes from the dressed plasmon characterized by induced dipole moment

pdp =
1

ℏ
µm(µm ·E)

ωm +Σm(ω)− ω − i
2γm

, (21)

where

Σm(ω) = − g2

ωe − ω − i
2γe

= −qe(ω)·Ẽm(re), (22)

is plasmon’s self-energy due to its interactions with the QE. Specifically, the imaginary part of self-energy
determines the ET rate from the plasmon to QE as

γm→e(ω) = −2Σ′′
m(ω) =

g2γe
(ω − ωe)2 + γ2

e/4
, (23)

which represents a Lorentzian centered at QE frequency ωe and maximum value γm→e ≡ γm→e(ωe) = 4g2/γe.

The QE-plasmon interference term has the form

pint =
1

ℏ
µm(qe ·E) + qe(µm ·E)

ωm +Σm(ω)− ω − i
2γm

, (24)



and describes indirect, i.e., mediated by plasmon, interactions of QE with the EM field. The last term represents
dressed QE contribution,

pde =
1

ℏ
µe(µe ·E)

ωe +Σe(ω)− ω − i
2γe

, (25)

where

Σe(ω) = − g2

ωm − ω − i
2γm

, (26)

is the QE self-energy, whose imaginary part now determines the ET rate from the QE to plasmon as

γe→m(ω) = −2Σ′′
e (ω) =

g2γm
(ω − ωm)2 + γ2

m/4
, (27)

which represents a Lorentzian centered at plasmon frequency ωm and maximum value γe→m ≡ γe→m(ωm) =
4g2/γm, matching Eq. (14). Importantly, in a narrow frequency interval |ω − ωe| ≲ γe, the reverse plamon-QE
ET rate γm→e exceeds the direct QE-plasmon ET rate γe→m:

γm→e

γe→m
=

γm
γe

≫ 1. (28)

Although the overall ET balance over the entire frequency range is preserved, the ET imbalance in the frequency
interval ∼ γe leads to emergence of the ExIT minimum in the dressed plasmon spectra.48 For a typical case
µe/µm ≪ 1, the dressed emitter’s dipole moment (25) is negligible small relative to dressed plasmon’s dipole
moment (21) and can be omitted. While the dressed plasmon approximation, i.e., ps ≈ pdp, describes, with a
reasonable accuracy, the position and magnitude of the ExIT minimum in terms of energy exchange between the
QE and plasmon, it does not account for QE interactions with the EM field. The latter is included indirectly
in the interference term (24) via plasmon-induced QE dipole moment qe, which, as we show below, gives rise to
Fano interference that strongly affects the overall shape of scattering spectra as the system transitions to strong
coupling regime.

4. EXCITON-INDUCED TRANSPARENCY VS. FANO INTERFERENCE

The scattering cross-section σsc
s (ω) of a hybrid plasmonic system is obtained by normalizing the radiated power

Ws = (ω4/3c3)|ps(ω)|2 with the incident flux S = (c/8π)E2.8 In the following, we disregard the relatively small
direct QE coupling with the EM field but include the indirect coupling via plasmon-induced dipole moment, so
that the induced system dipole includes the interference term: ps ≈ pdp + pint. The resulting expression for
σsc
s (ω) is quite cumbersome as it depends sensitively on mutual polarizations of the incident light E, the plasmon

dipole moment µm and the QE dipole moment µe. Here, to simplify the analysis, we consider the case when
all dipole moments are parallel to the incident field, i.e. µe ∥ µm ∥ E, so that the coupling between the system
components and to the EM field is strongest. In this case, the two terms in the numerator in Eq. (24) are equal,
and using Eqs. (19) and (22), we obtain

σsc
s (ω) =

8πω4

3ℏ2c4

∣∣∣∣∣ µ2
m

(
ωe + ωF − ω − i

2γe
)(

ωm − ω − i
2γm

)(
ωe − ω − i

2γe
)
− g2

∣∣∣∣∣
2

, (29)

where ωF = −2gµe/µm is QE frequency shift due to Fano interference between the plasmon and plasmon-induced
QE dipole moments as the system interacts with the EM field. In fact, this shift is the only difference between the
current model and dressed plasmon model (with ps ≈ p̃m), which does not include the interference effects.48 To
highlight the role of Fano interference, we relate the scattering cross-section (29) to dressed plasmon scattering
cross-section σsc

dp(ω), which is obtained from (29) by setting ωF = 0, as

σsc
s (ω) = σsc

dp(ω)F (ω), (30)

where F (ω) is the Fano function,

F (ω) =
(δ − q)2 + 1

δ2 + 1
. (31)



Here, δ = 2(ω − ωe)/γe is frequency detuning in units of linewidth and q is the Fano parameter:

q =
2ωF

γe
= − 4gµe

γeµm
. (32)

The Fano function has asymmetric shape that depends on the sign of parameter q. Using Eq. (14), the magnitude
of q can be expressed via the Purcell factor as

|q| = 2γr
e

γe

√
Fp

ηm
, (33)

where ηm = γr
m/γm is the plasmon radiation efficiency. Although the ratio γr

e/γe is typically very small (∼ 10−5)
due to the broadening of spectral linewidth γe by phonons or vibrons, for small nanostructures we have Fp ≫ 1
and ηm ≪ 1, implying that, in a plasmonic hot spot, the actual value of q can be appreciable.

To elucidate the interplay between Fano interference and ExIT, we recall that, in the scattering spectra, the
ExIT minimum emerges in the weak coupling regime as a narrow dip on the top of a wide plasmon band. The
plasmon scattering cross-section is obtained by setting g = 0 in Eq. (29) and, for µm ∥ E, has the form

σsc
m(ω) =

8πω4

3ℏ2c4
µ4
m

(ωm − ω)2 + γ2
m/4

. (34)

To trace the emergence of ExIT minimum, we recast the dressed plasmon scattering cross-section as σsc
dp(ω) =

σsc
m(ω)R(ω), where the function

R(ω) =

∣∣∣∣∣
(
ωm − ω − i

2γm
) (

ωe − ω − i
2γe

)(
ωm − ω − i

2γm
) (

ωe − ω − i
2γe

)
− g2

∣∣∣∣∣
2

(35)

modulates the plasmon band, and so the system scattering cross-section is factorized as

σsc
s (ω) = σsc

m(ω)R(ω)F (ω). (36)

In the frequency interval |ωm − ω|/γm ≪ 1, using the relation (14), the function R(ω) simplifies to

R(ω) =
δ2 + 1

δ2 + (1 + p)2
, (37)

where the parameter

p =
γe→m

γe
=

4g2

γmγe
(38)

characterizes the ExIT minimum depth. The ExIT function (37) describes the emergence of spectral minimum
due to excessively large plasmon-QE ET in the frequency interval ∼ γe. Specifically, in the weak coupling regime,
the dressed plasmon decay rate has the form γdp(ω) = γm + γm→e(ω). Using Eq. (23) and the relation (14), we
obtain

γdp(ω) = γm

(
1 +

p

δ2 + 1

)
, (39)

implying linewidth increase by factor (1 + p) in the frequency interval |ω − ωe| ∼ γe which, in turn, leads to the
ExIT minimum in the dressed plasmon spectrum.

Thus, in the weak coupling regime, the ExIT and Fano interference effects are distinct and described by
different factors in the scattering cross-section (36). While the ExIT factor R(ω) leads to a narrow minimum at
the QE frequency position, the Fano factor F (ω) is an asymmetric function of ω that affects the overall shape of
the scattering spectra. Remarkably, as we show in numerical calculations below, the Fano interference effect is
most visible for intermediate and strong QE-plasmon coupling as it shifts the spectral weight between polaritonic
bands resulting in the inversion of spectral asymmetry.



5. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the results of numerical calculations for a QE situated at a distance d from the tip of
an Au nanorod in water with excitation frequency in resonance with the surface plasmon frequency, ωe = ωm.
The nanorod was modeled by a prolate spheroid with semi-major and semi-minor axes a and b, respectively, the
QE’s dipole orientation was chosen along the nanorod symmetry axis, the Au experimental dielectric function
was used in all calculations,56 and the dielectric constant of water was taken as εs = 1.77. We used the standard
spherical harmonics for calculations of the local fields near prolate spheroid to obtain the plasmon parameters
µm, γm, ηm, the QE-plasmon coupling g and the Purcell factor Fp, which determine the ExIT parameter p
and Fano parameter q. The QE spectral linewidth γe was chosen much smaller than the plasmon decay rate,
γe/γm = 0.1, and its radiative decay time was chosen τ re = 10 ns, which are typical values for excitons in quantum
dots. Note that the QE radiative decay rate γr

e is much smaller that its spectral linewidth: for our system we
have γr

e/γe ∼ 10−5.

Figure 1. (a) The ExIT parameter p is plotted against the QE distance d to the tip of Au nanorod of length 2a = 20
nm placed for different values of aspect ratio a/b = 1.0, 2.0 and 3.0. (b) The Fano parameter q is plotted against the
distance d at nanorod aspect ratio a/b = 3.0 for different values of nanorod length 2a = 40 nm, 20 nm and 10 nm. Inset:
Schematics of a QE situated at a distance d from the tip of Au nanorod in water for QE dipole moment oriented along
the nanorod axis.



In Fig. 1, we plot the calculated ExIT parameter p, given by Eq. (38), and the Fano parameter q, given by
Eq. (32), against the distance to nanorod tip d normalized by a. Fig. 1(a) shows the ExIT parameter p = Fpγ

r
e/γe

for three different values of nanorod aspect ratio: a/b = 1.0 (sphere), 2.0 and 3.0. Note that the Purcell factor
near the tip of elongated particle (a/b = 3.0) is much greater that for a nanosphere (a/b = 1), so that p > 1 in
the former case while being negligibly small in the latter case. In Fig. 1(b), we show distance dependence of the
Fano parameter q for fixed nanorod aspect ratio a/b = 3.0 and different lengths 2a = 40 nm, 20 nm and 10 nm.
The Fano parameter is largest for the smallest nanorod with 2a = 10 nm and is significantly reduced for larger
nanorods with 2a = 20 nm and 40 nm. Both p and q sharply decrease as the QE moves away from the hot spot
near nanorod tip.

In Fig. 2, in order to illustrate the emergence of ExIT, we show the evolution of function R(ω), given by
Eq. (35), and of dressed plasmon’s scattering cross-section σsc

dp(ω) = σsc
m(ω)R(ω) (i.e., without Fano interference

effect) with decreasing QE-nanorod distance for 2a = 20 nm and a/b = 3.0. With decreasing d, the function

Figure 2. (a) The ExIT function R(ω), given by Eq. (35), and its asymptotic expression (dotted lines), given by Eq. (37),
are shown for a QE near the tip of Au nanorod with aspect ratio a/b = 3.0 and length 2a = 20 nm at distances d/a = 0.5,
0.3, and 0.2. (b) Normalized scattering cross-section in the dressed plasmon approximation is shown for the same system
parameters. Dotted line is the plasmon band. All curves are calculated for ωe = ωm. Inset: Schematics of a QE situated
at a distance d from the tip of Au nanorod in water for QE dipole moment oriented along the nanorod axis.



R(ω) develops a minimum, as shown in Fig. 2(a), which modulates the plasmon scattering spectrum, as shown
in Fig. 2(b). as discussed in the previous section, the double-peak structure of σsc

dp(ω is caused by ET imbalance
between the QE and plasmon in a narrow frequency interval. In order to highlight the role of ExIT parameter p,
we plot in Fig. 2(a) the asymptotic expression for R(ω), given by Eq. (37), for each value of QE-nanorod distance
d (dotted lines). Clearly, in the weak coupling regime (small p), the ExIT function Eq. (37) accurately describes
the spectral minimum (blue curves), while for larger p (i.e., closer to the tip) the spectrum develops ”wings”
outside the minimum region as the system undergoes strong coupling transition. The onset of strong coupling
transition can be seen in Fig. 2(b) as well, as for d/a = 0.5 and 0.3, the scattering spectrum develops a narrow
ExIT minimum at QE frequency on top of unchanged plasmon band, while for d/a = 0.2, the overall spectral
width slightly increases signaling the emergence of Rabi splitting. We note that the ExIT function Eq. (37)
accurately reproduces the central part of ExIT minimum for any distance d.

While the dressed plasmon model describes the position and depth of ExIT minimum relatively well, it predicts

Figure 3. (a) The Fano function F (ω), given by Eq. (31), is shown for a QE near the tip of Au nanorod with aspect ratio
a/b = 3.0 and length 2a = 20 nm at distances d/a = 0.5, 0.3, and 0.2. (b) Normalized scattering cross-section, given
by Eq. (36), is shown for the same system parameters. Dotted line is the plasmon band. All curves are calculated for
ωe = ωm. Inset: Schematics of a QE situated at a distance d from the tip of Au nanorod in water for QE dipole moment
oriented along the nanorod axis.



a sustained asymmetry as the spectral weight as the higher frequency region of scattering spectrum carries a
larger spectral weight [see Fig. 2(b)]. In the absence of QE coupling to the EM field, emission takes place
from the plasmonic antenna, whose power spectrum is ∝ ω4 due to larger radiation rate at higher frequencies.
Therefore, in the presence of double peak structure due to either ExIT minimum or Rabi splitting centered at
resonance frequency ω = ωm = ωe, the higher frequency peak is enhanced. Note that similar scattering spectra
are predicted by the classical model of coupled oscillators which disregards optical interference effects.38,47 Below
we demonstrate that extending the dressed plasmon model to include Fano interference between the plasmon
antenna and plasmon-induced QE dipole, as described in Eq. (36), can strongly affect the overall shape of
scattering spectra.

In Fig. 3, we plot the Fano function and scattering spectra for a QE situated at several distances from the
tip of Au nanorod with aspect ratio a/b = 3.0 and overall length 2a = 20 nm. As indicated above, we consider

Figure 4. (a) The Fano function F (ω), given by Eq. (31), is shown for a QE near the tip of Au nanorod with aspect ratio
a/b = 3.0 and length 2a = 10 nm at distances d/a = 0.5, 0.3, and 0.2. (b) Normalized scattering cross-section, given
by Eq. (36), is shown for the same system parameters. Dotted line is the plasmon band. All curves are calculated for
ωe = ωm. Inset: Schematics of a QE situated at a distance d from the tip of Au nanorod in water for QE dipole moment
oriented along the nanorod axis.



the case of QE’s dipole moment oriented along the normal to tip surface (see inset in Fig. 3), so that the Fano
parameter q is positive. For nanorod of this length, q is relative small [see Fig. 1(b)] and so the Fano function’s
variation ranges from about 2% for d = 4 nm to 15% for d = 1 nm, as the QE-plasmon coupling g increases
close to the tip [see Fig. 3(a)]. Importantly, for q > 0, the spectral shape of the Fano function, which enters in
the scattering cross-section (36), leads to the suppression of higher frequency region and enhancement of lower
frequency region. As a result, the aforementioned asymmetry of dressed plasmon scattering spectra in Fig. 2(b)
is largely compensated, and so the full scattering spectra are now close to symmetric [see Fig. 3(b)].

In Fig. 4, we show the Fano function and scattering spectra for a small nanorod of length 10 nm. With
decreasing nanostructure size and, hence, the reduction of plasmon mode volume, the QE-plasmon coupling
increases and so does the Fano parameter q, which now reaches values q ∼ 1 [see Fig. 1(b)]. In this case, the
Fano function variation is larger as well, reaching about 80% close to the nanorod tip [see Fig. 4(a)]. As a
result, the scattering spectra, shown in Fig. 4(b), exhibit inversion of spectral asymmetry relative to the dressed
plasmon spectra [see Fig. 2(b)], with the lower frequency peak now substantially higher that the higher frequency
peak. Note that for smallest d, the system has clearly transitioned to strong coupling regime since the double-
peak structure is well beyond the plasmon resonance envelope. We stress that although the mechanisms of ExIT
and Fano interference are distinct, as discussed in the previous section, the two effects are intimately related as
Fano interference maifests itself via redistribution of spectral weight across the ExiT minimum in the scattering
spectra.

6. CONCLUSIONS

In this paper, we developed a model for exciton-induced transparency (ExIT) and Fano interference in hybrid
plasmonic systems comprised of a single emitter resonantly coupled to a surface plasmon in a metal-dielectric
structure. We have shown that the shape of scattering spectra is determined by two distinct mechanisms. First
is near-field coupling between the emitter and plasmon that defines the energy spectrum of hybrid system. This
mechanism relies upon energy exchange between the system components and gives rise to the ExIT minimum
in scattering spectra and, in the strong coupling regime, to the Rabi splitting of polaritonic bands. The second
mechanism is the Fano interference between the plasmon and the plasmon-induced emitter’s dipoles as the system
interacts with the radiation field. Although the Fano interference does not significantly affect the position or
magnitude of ExIT minimum, it determines the overall shape of scattering spectra. Specifically, the Fano
interference leads to the inversion of spectral asymmetry that was recently reported in the experiment.22,39,40
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