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ABSTRACT: We demonstrate a coherent vibrational spectroscopy based on molecular s e
infrared (IR)-active resonance. We apply two femtosecond pulses (one in near-IR and the Y .

other in mid-IR) to generate the femtosecond time-resolved IR-resonant third-order sum-
frequency signal. The mid-IR pulse is tuned to be resonant with molecular vibrations.
This experimental configuration converts the IR light into a visible signal and exhibits

high sensitivity to the vibrational mode of the molecule. The technique can be applied to Wy v e
o Lo a . n : : e (g 7 n OOk

acquire chemical information on various biological samples, including living tissues in 7y $R

their natural water-rich state. This approach can also be used to study the dynamics of IR- - e : s

active vibrational modes, that is, measure the decoherence time. 1

KEYWORDS: midinfrared spectroscopy, third-order nonlinearity, sum-frequency generation, molecular dynamics, decoherence time

idinfrared (MIR) radiation with wavelengths from 3 to photothermal effect caused by the resonance absorption. It can

20 pm can resonate with vibrational and rotational detect samples in aqueous environments and provides depth
molecular transitions. This range includes the vibrational resolution.'>~"* Another approach is to convert the MIR light
“fingerprint” region that can be used for spectroscopic into the NIR or visible light via nonlinear optical effects."*">*
identification of molecules. Fourier-transform infrared Previous research has proposed a video-rate, mid-infrared
(FTIR) spectroscopy, based on the Michelson interferometer, hyperspectral up-conversion imaging of biological tissues using
is a widely used MIR technique. Compared to the traditional a lithium niobite crystal to convert a picosecond (ps) MIR
spectroscopy using dispersive spectrometers, FTIR can obtain pulse to a NIR pulse.'” However, this method requires an
the absorption or emission MIR spectra with high sensitivity additional second-order nonlinear crystal for the up-conver-
and spectral resolution,’ which makes it an effective method stion process. An alternative way is to use the nonlinearity of
for the identification and classification of materials, determin- the sample, in which the nonlinear optical conversion and IR
ing the purity of compounds, and detecting the interaction of absorption can share the same transition.'®™° In this case, the

samples with the environment such as the oxidation process at nonlinear processes are sensitive to the vibrational modes and

the molecular level”™® On the other hand, FTIR has the provide vibrational specification in the visible range. The
following drawbacks: (1) it is hard to be implemented in experimental setups are simplified and promoted with a higher
samples with water, 5“'311‘ as hvmg cells, bec:'iuse water has spatial resolution. Compared with IR light, the visible signal
strong and broad absorption in the MIR region, which can has less loss in the watery materials. In principle, this property
obscure the FTIR signal; (2) the FTIR spectroscopy has a long guarantees a deeper penetration depth. The resonant second-
acquisition time that hinders the detection of fast dynamics; order sum-frequency generation spectroscopy has been used
(3)1: r;'leeasurdes ththe absfoag;n:ﬁl mgnfaldco;lmbutnle:l by aEl )th € with one resonant MIR pulse and one nonresonant pulse to
molecules, and thus, it ort of depth resolution; (4) it i . 22-24 . . .
requires IR detectors such as the mercury cadmium telluride generate the sum-frequency signal. The signal is usually in
(MCT) detector, which is more expensive and less efficient
than detectors working in the visible range.

To tackle these problems, several new types of MIR
spectroscopies have been developed. For example, the MIR
dual-comb spectroscopy can dramatically reduce the amount of
time for data acquistion.””” Photothermal spectroscopy usually
utilizes a near-infrared (NIR) or visible light to probe the
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the NIR or visible region that can be easily detected by using a
Si-based detector. Because the second-order nonlinear process
is forbidden in centrosymmetric materials, this sum-frequency
signal is usually generated on surfaces, interfaces, and
noncentrosymmetric materials. To extend the applications of
the IR sum-frequency spectroscopéy, third-order nonlinear
spectroscopy have been developed.'®'7*

Here we develop a femtosecond time-resolved IR-resonant
third-order sum-frequency (ITS) spectroscopy where a visible
photon of the signal is generated by absorbing a resonant MIR
photon plus two off-resonance NIR photons, as shown in
Figure 1. The resonant MIR absorption at the frequency wyag
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Figure 1. Schematic energy levels and transitions of the femtosecond
time-resolved IR-resonant third-order sum-frequency (ITS) spectros-
copy. The red arrow represents one MIR photon at the frequency of
Wyr, Which is resonant with the transition between the ground state |
g) and the excited state |b). The two orange arrows (@y) denote two
NIR photons with a frequency wyr. The green line arrow is the IRS
signal at the frequency of Wy, = Wy + 20y

can result in a coherence between ground state Ig) and excited
state |b). The near light wyr probes the coherence and
generates a third-order nonlinear signal through a two photon
process. The ITS signal is generated at the frequency wg, =
wyp + 2wyp. However, a nonresonant four-wave-mixing

(FWM) signal at the same wavelength accompanies the ITS
signal when the MIR and NIR pulses overlap, which distorts
the ITS signal and makes it difficult to be extracted. ITS signals
usually can be separated from FWM background by adding a
proper time delay, because the nonresonant FWM signal
requires the exact overlap of the input pulses, while ITS signals
decay with the coherence of vibrational states. This approach
can overcome several issues that plague the traditional MIR
spectroscopy. First, for the samples that contain water, the
nonlinear process can happen within the IR penetration depth
and generates visible signals that are in the transparency
window of water. Second, ITS does not require a long
acquisition time due to the resonant process and the large IR
absorption cross-section. Third, the nonlinear signal can
provide depth resolution that, thanks to the nonlinear signal
generation process, requires strong input intensities that can
only be achieved at the focus volume. Finally, the visible signal
can be detected with high efficiency using Si detectors.
Although phase mismatching limits the nonlinear process, it is
not a problem in the tight-focusing configuration or when a
thin sample is studied.

ITS spectroscopy can be compared with the coherent anti-
Stokes Raman spectroscopy (CARS). Both of them are third-
order nonlinear processes, and their output signals contain
nonresonant FWM background, which can be suppressed by
adding delays between pulses. CARS is sensitive to Raman
active modes, but ITS spectroscopy probes IR-active vibra-
tional modes, which are complementary to Raman modes and
have a larger cross section. In addition, ITS uses a simpler
experimental setup that only uses two beams (the MIR pump
and the NIR probe) instead of three in CARS (pump, Stokes,
and probe). The wavelength of the ITS signal is in the visible
range, which is much easier to be separated from the
fundamental IR beams.

B RESULTS

Figure 2a shows the experiment setup. The MIR and NIR
pulses were generated by two separate Optical Parametric
Amplifiers (OPAs; OPerA Solo kHz OPA, Coherent Co.),
which were pumped by pulses from a femtosecond (fs)
amplifier (Astrella, 1 kHz, 75 fs, 7.5 W, Coherent Co.). To
prepare coherent excitation, the wavelength of the MIR pulse
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Figure 2. (a) Setup of the femtosecond time-resolved ITS spectroscopy. The MIR pump beam (red) generated from “OPA 1” and the NIR probe
beam (orange) from “OPA 2” are focused by a concave mirror with a 100 cm focus length on the sample. The ITS signal generated on the sample is
measured by the spectrometer. M: mirror. BS: beam splitter. BPF: bandpass filter. NDF: neutral density filter. HWP: half wave plate. PBS:
polarizing beam sg)litter. L: lens. (b) FT-IR (black) and Raman (red) spectra of low-density polyethylene (LDPE). The four peaks corresponding to

the CH, band.*

(c) Wavevector diagram of the two IR beams and the ITS signal. Ak is the wavevector mismatch.
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Figure 3. (a) X-axis is the delay time between the NIR and MIR pulses. The zero probe delay is the time estimated when the two pulses overlap. Y-
axis is the wavenumber of the visible signal. Each vertical line on the diagram represents a spectrum measured at the delay time x. (b) 2D spectrum
of the nonresonant FWM generated on the coverslip. (c) 2D spectrum of the FWM generated on the LDPE film after subtracting the nonresonant
FWM background. Both (a) and (b) are normalized at 15579 cm™, then use (b) and subtract (a). (d) Three normalized signal intensity lines
change with the time delay at different signal wavenumbers, as shown in (a). Line 1 corresponds to 15579 cm™; Line 2 corresponds to 15739
cm™'; Line 3 corresponds to 15811 cm™. (&) Three normalized signal spectra of the film at different time delays in (a). Line 4 is the spectrum at
the probe delay time —0.21 ps; line S is at the delay time 0.23 ps; Line 6 is at the delay time 0.59 ps.

1
(@, — @xm) + iT

was tuned near-resonant with the vibrational modes of the 5 2N Mo a}ﬂi_uﬂl_bpbxp;;}
sample. A halfwave plate for 3.5 ym (WPLQOSM-3500, xe = ZE (@, — o) + T,
Thorlabs Co.) and a polarization beam splitter (BDY12, ’1 P '
Thorlabs Co.) were used to control the power of the MIR

4me i’

beam. The NIR pulse centered at 1550 nm was sent through a (@ — 20n) +13
delay stage. To increase the spectral resolution of the ITS, we + 1
used a bandpass filter centered at 1550 nm (FB1550-12, (0,5 + oy + i) (@, + 20y + iT})

Thorlabs Co.) to narrow the bandwidth down to 12 nm and
stretched the pulse duration to about 350 fs. To avoid burning where g, b, and g are the energy levels in Figure 1, i and j are

the sample but maintain high signal to noice ratio, the powers sum for different vibrational modes, I'; is the spontaneous
of the MIR and NIR pulses were tuned to about 16 and 17 yJ, decay rate, and y; is the transition dipole moment. This third-
respectively. The two IR pulses were focused on the sample by order nonlinear process requires phase matching. However, for
a spherical mirror (f = 100 cm, CM508-1000-P01, Thorlabs) most materials with normal dispersion, the wavevector
with a small incidence angle (about 0.9°) difference. The long mismatch Ak shown in Figure 2c is nonzero. To generate

focal [ength pmvided a [a_rge focus spot to generate a strong the nonlinear signal, the sample thickness Al needs to be small,

signal. The visible ITS signal was generated in the sample and Ak-Al < 7

emitted in a different direction from the two input beams due =

to the phase-matching condition. The ITS signal was collected which results in Al < 26 um for the LDPE film, and our

by a spectrometer (Chromatix, Andor Co.) with 0.25 nm sample is within this range.

resolution (6.2 cm™). In Figure 3a, we show the 2D spectrum of the output signal
We used a low-density polyethylene (LDPE, 13 um, Glad generated on a LDPE film by scanning the time delay between

ClingWrap, Glad Co.) film as the sample. Figure 2b shows the the NIR and MIR pulses with 6.7 fs step sizes. The acquisition
Raman and FTIR spectra of the LDPE film. The peaks at 2853 time at each step was set to be 0.5 s. To indicate an apparent

and 2926 cm™ in the FTIR spectrum and 2848 and 2881 cn};; difference in the signal of the CH, vibrational modes in the
in the Raman spectrum are assigned to the CH, stretching.”™ LDPE film from the nonresonant FWM background, a
To excite the vibrational modes, we set the center wavelength comparison measurement of glass coverslips (150 um in

of the MIR beam as 3460 nm (2890 cm™!). The broadband thickness) were carried out under the same condition with the
MIR pulse can cover both the 2853 and 2926 cm™ peaks. The acquisition time of 2 s (shown in Figure 3b). Here, only the
wavelength of the ITS signal was around 634 nm, which nonresonant FWM due to the NIR and MIR pulses was

corresponds to around 1.58 X 10* cm™., observed, which means the coverslip has no IR absorption in
The third-order nonlinear susceptibility™ is the spectral region near 3460 nm. In Figure 3a it contains the
1139 https://dx.doiorg/10.1021/acsphotonics.0c01940
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ITS signal resulting from the CH, vibrational states as well as
the nonresonant FWM background. The nonresonant FWM
background was removed from the 2D spectrum of the LDPE
film by the subtraction between the normalized 2D spectra of
the LDPE film and the coverslip (Figure 3c). We noticed that
when the NIR and MIR pulses overlapped in space and time,
two absorptions emerged around 15739 cm™ (line 2) and
15811 cm™* (line 3) with a 72 cm™ difference. They matched
with the 2853 and 2926 cm™" peaks in the FTIR spectra. We
observed that the output signal decreases rather than increases
when the FWM background and the ITS signals are generated
simultaneously. Other groups have reported similar phenom-
ena with the second-order sum-frequency spectroscopy, **
where the authors claimed that the dips resulted from the
destructive interference between the sum-frequency signal and
the nonresonant FWM background. We have a simulation in
the Supporting Information considering the absorption and
prepulse effect. The original spectra of lines 1, 2, and 3 in
Figure 3a are shown in Figure 3d. Along line 2, we notice that a
“tail” emerges after the two IR pulses are separated around 0.5
ps, then gradually declines to zero as the delay is increased. It is
the ITS signal generated from the 2853 cm™' vibrational state.
The decoherence time of the 2926 cm™ vibrational state is so
short that the ITS signal generated from this state, which is
supposed to be another “tail” around line 3, can barely be
measured in this case. Figure 3e shows the spectra at different
probe delay times. The position of the dip on line 5 matches
with the peak of line 6, which is the ITS signal generated from
the 2853 cm™ vibrational state. The spectrum of line 6
illustrates that, by tuning the probe delay at 0.59 ps, only the
ITS signal from the vibrational state is generated, which means
only the molecules with the targeted IR-active vibrational
mode can generate the signal. It is ideal for chemical imaging
without further data process.

The decay rate of the ITS signal reflects the decoherence of
the excited vibrational state. We summed all the signal
intensities in the tail region and then plotted the integrated
intensity as a function of the probe delay time, as shown in
Figure 4. The fitting result exhibits the exponential time
constant is about 150 fs, which shows a subps decoherence
time of polymer materials at room temperature.

+ Experiment |
= Fitting

:

5.77 X 10°¢~t/0-15

8000 -

6000 -

8
s

Intergrated Intensity

:

0.6 0.7 0.8 0.9 1 1.1
Probe Delay (ps)

Figure 4. Integrated intensity as a function of probe delay time. The
intensity is integrated from 15680 to 15790 cm™!, covering the whole
region of the tail signal in Figure 3b. The blue dots are the
experimental data; the red line is the exponential decay fitting.

B DISCUSSION

By combining different types of microscopy, our method can
also be applied in scanning microscopy and wide-field
microscopy for label-free imaging, By setting the delay time
at 0.6 ps in this experiment, we can suppress the nonresonant
FWM signal and keep the ITS signal, which can be used for
spectral imaging. This approach provides a high spatial
resolution and breaks the diffraction limit of the two IR

A

input beams. According to the Abbe diffraction limit d = A

(NA is the numerical aperture), ITS has a higher spatial
resolution, which is several times higher than that of MIR due
to the shorter wavelength A. Moreover, compared to IR
spectroscopy, measurement with visible light benefits from the
commercially available high NA objectives. Take the data in
this experiment, for example, the wavelength 4 is about 634
nm, with a water immersion objective (NA = 1.20), the
diffraction limit is d ~ 265 nm. It has been shown that 0.45 ym
resolution can be achieved with a picosecond laser source in
biological samples at zero time-delay.'®'” The spatial
resolution can be improved by tuning the probe beam to a
shorter wavelength.

The strong absorption of IR can induce the thermal effect at
room temperature, which has been used in photothermal
spectroscopy.'*~ "> This experiment was conducted below the
thermal damage threshold. Since we use 1 kHz laser system,
heat accumulation is very weak. Another possible influence is
the deformation of the film and the thermally induced
fluctuation of the refractive index. According to our
observation, these effects have a negligible impact on the
collection of the ITS signal.

The time-resolved ITS spectroscopy provides the spectral
information as well as decoherence of vibrational states with a
femtosecond temporal resolution. The decoherence time of
certain states is important and fundamental in many fields,
such as alignment of molecules,®*” remote atmospheric
lasing,**** quantum lithography,*>** superradiance,”’~** and
quantum information.*” In principle, the ITS technique can be
extended to study chemical reactions, molecular structure,
environmental dynamics, phonon dynamics, and phonon—
exciton coupling in low-dimensional materials. ITS can be a
complementary technique to two-dimensional infrared spec-
troscopy.

B CONCLUSION

In summary, we have developed a coherent time-resolved
vibrationally sensitive spectroscopic technique that combines
IR-resonant excitation with convenient signal detection in the
visible frequency range. We provide an experimental
demonstration of the femtosecond time-resolved ITS spec-
troscopy by recording a 2D spectrum of the LDPE film. This
technique allows us to measure IR-active modes instead of
Raman-active modes. It can be considered as a complementary
technique to CARS. Moreover, this experiment exhibited that
the nonresonant FWM background could be suppressed by
adding proper pulse delays, which is ideal for chemical imaging
without any extra data processing. On top of that, the time-
resolved ITS spectroscopy provides a new way of measuring
the dynamics of the vibrational states at the molecular level,
like the dynamics of coherence exhibited in this experiment. It
has potential applications, including studying the dynamics of
relaxation, chemical reactions, molecular structure, environ-
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mental dynamics, phonon dynamics, and phonon—exciton
coupling, in low-dimensional materials.
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