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Abstract—In order for neuromorphic computing to attain full
throughput capacity, its hardware design must mitigate any ineffi-
ciencies that result from limited bandwidth to neural and synap-
tic information. In large-scale neuromorphic systems, synaptic
memory access is typically the defining bottleneck, demanding
that system design closely analyze the interdependence between
the functional blocks to keep the memory as active as possible.
In this paper, we formulate principles in memory organization
of digital spiking neural networks, with a focus on systems with
High Bandwidth Memory (HBM) as their bulk memory element.
We present some of the fundamental steps and considerations
required when designing a highly efficient HBM-centric system,
and describe parallelization and pipelining solutions which serve
as a foundational architecture for streamlined operation in
any multi-port memory system. In our experiments using the
Xilinx VU37P FPGA, we demonstrate random, short burst-length
memory read bandwidths in excess of 400 GBps (95% relative
to sequential-access peak bandwidth), supporting dynamically
reconfigurable sparse synaptic connectivity. Therefore, the com-
bination of our proposed network model with practical results
suggest a promising path towards implementing highly parallel
large-scale neuromorphic systems centered on HBM.

Index Terms—neuromorphic, High Bandwidth Memory, in-
memory computing, non-von Neumann architecture, throughput

I. INTRODUCTION

Besides event-driven transmission and processing of bi-
nary events (spikes), two of the defining characteristics of
neuromorphic systems include parallel processing (neurons)
and in-memory compute (synapses) [1], [2]. There is some
leeway in how a neuromorphic system is designed, particularly
with respect to the analog and/or digital components used
for emulating the neural equations and storing the synaptic
weights; however, the amount of parallelism and the process-
ing bottleneck will be ultimately governed by the memory
throughput (for fetching synaptic data) in the system [3].

In digital neuromorphic systems, synaptic weights are nor-
mally stored in DRAM (for compact solutions) or SRAM
(for power-efficient solutions) memory elements [4]. The
neuron typically presents some reconfigurable parameters
(e.g., threshold, membrane potential time constant, synap-
tic/dendritic equations), requiring a non-negligible amount
of digital logic (in relation to an analog counterpart), and,
thus, a large number of physical instantiations of the neu-
ron is not possible. This leads to solutions in which the
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neurons are shared, operating in a time-multiplexed manner.
Analog neuromorphic systems, on the other hand, typically
present physical instantiations of all the neurons, resulting in
a completely non-von Neumann architecture at the processor
level [5]. In terms of synapse representation, however, large-
scale implementations are still not a feasible and reliable
solution, owing greatly to the mismatch effects introduced
through imperfections in the production process. Ultimately,
large-scale versions of these systems rely on digital memory
elements for synaptic connectivity, resulting in mixed-signal
solutions.

Alternatively, a reconfigurable digital system using field-
programmable gate arrays (FPGAs) is interesting as it can
lie anywhere inside the spectrum of physically instantiated
neuron cells — naturally, granted sufficient hardware resources.
Additionally, hardware reconfigurability has the advantage of
tailoring to a wide gamut of use cases and audiences, ranging
from neurosciencientific neuron models consisting of multiple
state variables with thousands of synapses to simple threshold
neurons in machine learning.

To study and define the solutions for mitigating the bot-
tlenecks when designing a large-scale neuromorphic system,
we chose the state-of-the-art in terms of digital memory: High
Bandwidth Memory (HBM). As compared to off-die memory
components, HBM presents lower power consumption, higher
bandwidth, less heating, and overall better performance, ob-
tained using silicon 3D stacking technologies which places
the DRAM in the same package as the processor via a silicon
interposer. In our specific case, the HBM is part of the Xilinx
Virtex UltraScale+ FPGA used in our experiments.

Lastly, an additional advantage of using FPGAs is that there
is basically only a single design focus: optimizing the system
architecture in order to obtain the highest throughput. Since
the physical resources are already there (independently of their
use or not) and power consumption in FPGAs is known to be
in the intermediate part of the scale (when compared to low-
power ASICs and power-hungry CPUs/GPUs), reduced area
and power are not our primary targets. Therefore, in the case
of our proposed architecture, the functional bottleneck should
be memory access, and so our design must work around this
in order to keep the HBM as active as possible.

II. SYSTEM DESIGN

In an ideal neuromorphic system, each neuron would oper-
ate as a dedicated processor, meaning that it would be phys-
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ically instantiated and operate independently of all the other
neurons, having exclusive access to its own local memory.
Seeing as this is not a reality for large systems, how close
can we come to this limit of a completely non-von Neumann
architecture? To answer this question, we must first define
the individual functional components of our system and their
interdependence, to then identify the amount of parallelism
available. In the process, we will also identify the bottleneck
and design the surrounding components in order to minimize
its impact, maximizing the overall system efficiency.

A. Basic components of a neuromorphic system

Motivated by earlier works [4], [6]-[8], we can define the
basic components of a neuromorphic system found inside a so-
called neurosynaptic core. Each core operates in parallel to the
other cores, and presents the following functional blocks (refer
to Fig. 1): (1) a central processor, responsible for organizing
the operation of the other components; (2) presynaptic event
memory, which stores spike information coming into the core;
(3) postsynaptic neuron equations and memory; (4) pointer
memory and FIFO, responsible for decoding spike events into
HBM addresses (pointers) for synaptic connection lookup (and
possibly temporarily storing the pointer in the FIFO); and (5)
synaptic connectivity memory (the bulk of system memory).
Communication of spike events between cores is performed
via a router. Apart from network and core configuration com-
mands (typically only sent prior to actual network execution),
the only information continuously conveyed by the router is
spike information.

Router
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events
Core
processor
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A
\ 4
Synaptic connectivity
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Fig. 1: The functional blocks of a neurosynaptic core.

B. An HBM-centric architecture

As compared to off-die memory components, HBM presents
lower power consumption, higher bandwidth, less heating, and
overall better performance. This is possible because HBM
is a non-planar memory (cube or cuboid) that uses silicon
3D stacking technologies to place the FPGA and the DRAM
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beside each other in the same package via a silicon inter-
poser. In the Xilinx VU37P FPGA there is a total 8 GB of
memory and 32 HBM ports (blue boxes in Fig. 2), accessed
via the Advanced eXtensible Interface (AXI) protocol, part
of the ARM Advanced Microcontroller Bus Architecture 4
specification [9].

As the prime component in our system, the HBM is respon-
sible for storing the bulk of the system memory: the synaptic
connectivity information. In Figure 2 we have depicted the
HBM in the center of the high-level model representation of
our proposed system, with a neurosynaptic core attached to
each of the 32 individual HBM ports. In this manner, each
core can process and access memory in complete parallel
fashion. This parallelism is one way in which our model
moves away from the traditional von Neumann architecture. In
Section III-C, we will show that inside each core there is yet
another level of parallelism, this time based on the amount
of data obtained from HBM at each clock cycle. Lastly, in
the case of the VU37P, the additional functional blocks of the
neurosynaptic core (incoming spikes, neurons, and pointers)
are stored in SRAM devices (Block RAM and/or UltraRAM).
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Fig. 2: The HBM as the central component of our system. Each
neurosynaptic core stores and accesses synaptic connectivity
information via an individual HBM port.

C. System operation

Though our system is comprised of multiple cores operating
in parallel, we must define an algorithmic time step to which
all the cores can synchronize. This is necessary in order to
correctly compute the time-dependent neuron equations and
update the state variables accordingly. Additionally, this gives
the system a window during which all the events and neurons
in a single core are allowed to be processed sequentially,
producing, nonetheless, seemingly parallel computations. The
time step is typically defined in a biological scale, usually in
the order of 1 millisecond.

The proposed system operates in two phases. First, at
the onset of a new time step, the system fetches the active
presynaptic events and pushes their associated (start and
stop) pointers to the pointer FIFO. Next, the pointers of the
active (“spiked”) postsynaptic neurons are also pushed into
the FIFO. The second phase entails popping the FIFO and
using the pointers to access the HBM for synaptic connectivity
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information, including weights to on-core neurons and spike
events to off-core destinations (conveyed via the router). In
order to preserve an accurate algorithmic representation, the
two phases (which include spike generation, processing, and
routing) should be concluded inside the time step window.

III. HIGH-THROUGHPUT: KEEPING THE HBM BUSY

In this section we describe the design principles for max-
imizing system throughput by optimizing the surrounding
components of the synaptic memory. Though these principles
are focused on an HBM-centric architecture, they remain valid
for other multi-port memory systems.

A. Presynaptic-driven memory organization

Event-driven processing is the essence of neuromorphic
systems. In physical realizations of these, memory organiza-
tion and its impact on overall system operation are critical.
Therefore, for a neuromorphic system to be truly event-
driven, synaptic connectivity should be organized in a forward
fashion; that is, connections should be stored sequentially from
the perspective of the presynaptic neuron to all its downstream
neurons [10], [11]. With this, synaptic connectivity memory
access must only be done for active presynaptic neurons, with
the added benefit of sequential burst reads — extremely impor-
tant for optimizing HBM throughput. Additionally, memory
access can be completely avoided for inactive presynaptic
neurons; in this case, an entire portion of the memory (corre-
sponding to all of the presynaptic neuron’s connections) can
be skipped.

B. Presynaptic event storage

There are two main ways of buffering incoming presynaptic
events to be used in the next system time step: bitmap and
FIFO. For a core with /N inputs, a bitmap representation of
the events consumes N bits (one per input). In the FIFO
representation, for given a core input activity density p, a total
of pN log, N bits are required for storing all the spikes. Based
on the number of core inputs and the activity density, we
can then compute the bitmap-FIFO equality activity density
as peq = 1/logy N. The top inset of Fig. 3 shows the curve
of p.q for a range of IV, where storing input events in a bitmap
is more advantageous (in terms of memory cost) for densities
above the curve, while the opposite is true for a FIFO.

Next, we computed the average input activity (i.e. firing
rate of presynaptic neurons), based on the system time step
duration, required to produce the equality activity density.
Using integer n logy, N ranging from 8 to 20, we can
observe in the bottom inset of Fig. 3 that for a 1-ms time
step the average firing rate which produces equivalent memory
costs between bitmap and FIFO lies between 50 and 125 Hz.
Therefore, if for a given network the expected activity per core
can be estimated, the best input activity storage method can
be chosen accordingly based on this graph.

Nonetheless, it is worth mentioning that, even for a sparsely
active core, using a bitmap has two advantages over a FIFO.
First, a FIFO cannot be allocated dynamically, meaning that it
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can overflow depending on an unexpected burst of incoming
events. Second, and most importantly, in a bitmap the events
can be accessed in a consistent order: at the onset of a system
time step we can sequentially read each bitmap position to
determine if the associated input is active. This is a vital detail
for memory throughput optimization given that sequential
read accesses in HBM yield higher throughput than random
accesses.
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Fig. 3: Presynaptic event storage strategy comparison.

C. Intra-core parallelism and pipelining

The final consideration of an efficient HBM-centric system
regards a second layer of parallelism: inside the postsynaptic
neurons. Since a truly event-driven neuromorphic system must
have synaptic connectivity data organized using a presynaptic
perspective (refer to III-A), consecutive weights in HBM will
belong to different postsynaptic neurons.

In the HBM, at each read response we receive a 256-bit
packet of data (per port), containing multiple synaptic weights.
In order to streamline memory access, we must immediately
apply all 256 bits of weights to their respective postsynaptic
neurons. Therefore, the number of weights that can be read
per clock cycle represents the number of neuron processors
which must be physically instantiated in a core, each with its
own SRAM memory block for parallel state variable access.
In sum, it is the combined multi-port access to HBM and the
multi-weight data packet from each HBM port read response
that defines the amount of parallelism in our system — and
how far we can distance it from the traditional von Neumann
architecture.

Lastly, to reduce the clock frequency required to process
and update neuron state variables, we can use the pipelining
strategy depicted in Fig. 4. In this specific case, by duplicating
the number of neuron groups, we can halve each group’s
operating frequency in order to reduce the possibility that the
combinational logic of the neuron groups be the critical path
of the system. In the figure, each neuron group is comprised
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Neuron group 1

Neuron group 1 Neuron group 2

HBM port sequential read can produce
256 bits at every user clock cycle

l HBM
(8 x 32-bit synapses)
addr N LT T 1 [T T 1
addr N+1 T T T [T T 1
addr N+2 LT T T [T T 1
addr N+3 N N | [T T 1
addr N+4 CT T [T T 1
addr N+5 [ I [T [T T 1
f=f f=f

clk clk

(a) HBM port sequential read

(b) Without pipelined neuron groups

(c) With pipelined neuron groups

Fig. 4: Pipelining reduces the possibility of the neuron groups being the critical path of the system.

of 8 individual SRAM blocks (columns), and one physical
neuron is instantiated per column. By pipelining two neuron
groups, each group has to operate only half of the time; the
HBM, nonetheless, can remain continuously active.

IV. EXPERIMENTAL RESULTS: HBM THROUGHPUT

In the Virtex UltraScale+ VU37P FPGA by Xilinx, the 32-
port HBM operates at a maximum frequency of 900 MHz
(double data rate). At each rising and falling HBM clock edge,
a port can access 64 bits of data, resulting in a maximum
theoretical bandwidth of 32 x (2 x 900M) x 64 ~ 460 GBps.
The HBM can be addressed at a granularity of 256 bits
(32 bytes), meaning that 8 GB of HBM requires 28 bits
per address. Additionally, read and write commands can be
performed in bursts, ranging from 1 to 16 data points.

To verify the actual HBM throughput, representing the
capacity of our proposed system, we designed an HBM tester
block in Verilog (Fig. 5). The tester can perform sequential
and (pseudo-)random memory accesses (read_mode), with the
latter being a more faithful representation of actual system
operation. By partitioning the HBM equally among the 32
ports, each port uses a 23-bit address to access its part of
the memory. For generating the pseudo-random addresses, we
created a 23-bit maximal linear-feedback shift register (LFSR).
The tester block outputs the memory read duration and bit-
error count. To analyze the entire HBM, an individual tester
block was instantiated for each of the 32 ports.

- |read_mode test_done [—
32 —
—— num_reads 23418
VIO 23 . . |32 VIO
: ——start_addr addr prn duration |-
(inputs) | 4 —prng (outputs)
= burst_length 32
err_count -
—itest_run AXI
I
HBM-to-AXI
I [JHBM tester
OXilinx IP
HBM

Fig. 5: The HBM port tester block design.

A benchmark maximum HBM throughput of ~ 425 GBps
was obtained by sequentially sweeping the memory using

93

the maximal burst length, requiring one read command for
every 16 read responses. This represents 92.4% of the theo-
retical maximum throughput. Next, we assigned distinct seeds
(start_addr) to each port’s LFSR (addr_prng) and swept the
entire memory (all ports simultaneously) in a pseudo-random
fashion for a range of burst lengths. This method of memory
access is a more accurate representation of the random reads
which are performed independently by each HBM port during
actual synaptic connectivity lookup. HBM throughput results
for all 32 ports performing random read accesses in parallel
are presented in Fig. 6. For burst lengths above 3, a throughput
above 350 GBps is already obtained; for burst lengths above
6 the throughput ranges around 390 and 405 GBps, with the
maximum recorded throughput of 406.6 GBps for burst length
15 (95% of the benchmark sequential read throughput value).

Total HBM throughput (GBps)
450

400
350
300
250

200

150 1 1 1 1 1 1 1 )
2 4 6 8 10 12 14 16

Burst length

Fig. 6: Total HBM throughput for the 32 ports performing
random read access independently and simultaneously.

V. CONCLUSIONS AND CONSIDERATIONS

Though there are many moving parts when designing a
large-scale neuromorphic system, practically speaking, the ac-
tual parallelism and overall system throughput will be defined
by synaptic connectivity memory throughput. In this paper, we
presented some of the fundamental steps and considerations
required when designing a highly efficient system centered
around High Bandwidth Memory. In order to operate as
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close as possible to full throughput capacity, the system
should be designed considering a presynaptic-driven memory
organization, with bitmap representations enabling sequential
memory access, and neuron groups providing additional intra-
core parallelism and pipelining. Experimental results showed
that throughput of over 400 GBps can be obtained even when
performing completely random read access simultaneously
over all 32 HBM ports. Therefore, the combination of our
proposed network model with practical HBM results provide
a promising path towards implementing highly parallel large-
scale digital neuromorphic systems.
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