
Design Principles of Large-Scale Neuromorphic
Systems Centered on High Bandwidth Memory

Bruno U. Pedroni1, Stephen R. Deiss2, Nishant Mysore2, and Gert Cauwenberghs1,2
1Institute for Neural Computation, 2Department of Bioengineering

UC San Diego, La Jolla, CA, USA – Email: bpedroni@eng.ucsd.edu

Abstract—In order for neuromorphic computing to attain full
throughput capacity, its hardware design must mitigate any ineffi-
ciencies that result from limited bandwidth to neural and synap-
tic information. In large-scale neuromorphic systems, synaptic
memory access is typically the defining bottleneck, demanding
that system design closely analyze the interdependence between
the functional blocks to keep the memory as active as possible.
In this paper, we formulate principles in memory organization
of digital spiking neural networks, with a focus on systems with
High Bandwidth Memory (HBM) as their bulk memory element.
We present some of the fundamental steps and considerations
required when designing a highly efficient HBM-centric system,
and describe parallelization and pipelining solutions which serve
as a foundational architecture for streamlined operation in
any multi-port memory system. In our experiments using the
Xilinx VU37P FPGA, we demonstrate random, short burst-length
memory read bandwidths in excess of 400 GBps (95% relative
to sequential-access peak bandwidth), supporting dynamically
reconfigurable sparse synaptic connectivity. Therefore, the com-
bination of our proposed network model with practical results
suggest a promising path towards implementing highly parallel
large-scale neuromorphic systems centered on HBM.

Index Terms—neuromorphic, High Bandwidth Memory, in-
memory computing, non-von Neumann architecture, throughput

I. INTRODUCTION

Besides event-driven transmission and processing of bi-

nary events (spikes), two of the defining characteristics of

neuromorphic systems include parallel processing (neurons)

and in-memory compute (synapses) [1], [2]. There is some

leeway in how a neuromorphic system is designed, particularly

with respect to the analog and/or digital components used

for emulating the neural equations and storing the synaptic

weights; however, the amount of parallelism and the process-

ing bottleneck will be ultimately governed by the memory

throughput (for fetching synaptic data) in the system [3].

In digital neuromorphic systems, synaptic weights are nor-

mally stored in DRAM (for compact solutions) or SRAM

(for power-efficient solutions) memory elements [4]. The

neuron typically presents some reconfigurable parameters

(e.g., threshold, membrane potential time constant, synap-

tic/dendritic equations), requiring a non-negligible amount

of digital logic (in relation to an analog counterpart), and,

thus, a large number of physical instantiations of the neu-

ron is not possible. This leads to solutions in which the

This research was supported by National Science Foundation CISE-
1823366, DARPA HyDDENN, and Western Digital Corporation.

neurons are shared, operating in a time-multiplexed manner.

Analog neuromorphic systems, on the other hand, typically

present physical instantiations of all the neurons, resulting in

a completely non-von Neumann architecture at the processor

level [5]. In terms of synapse representation, however, large-

scale implementations are still not a feasible and reliable

solution, owing greatly to the mismatch effects introduced

through imperfections in the production process. Ultimately,

large-scale versions of these systems rely on digital memory

elements for synaptic connectivity, resulting in mixed-signal

solutions.

Alternatively, a reconfigurable digital system using field-

programmable gate arrays (FPGAs) is interesting as it can

lie anywhere inside the spectrum of physically instantiated

neuron cells – naturally, granted sufficient hardware resources.

Additionally, hardware reconfigurability has the advantage of

tailoring to a wide gamut of use cases and audiences, ranging

from neurosciencientific neuron models consisting of multiple

state variables with thousands of synapses to simple threshold

neurons in machine learning.

To study and define the solutions for mitigating the bot-

tlenecks when designing a large-scale neuromorphic system,

we chose the state-of-the-art in terms of digital memory: High

Bandwidth Memory (HBM). As compared to off-die memory

components, HBM presents lower power consumption, higher

bandwidth, less heating, and overall better performance, ob-

tained using silicon 3D stacking technologies which places

the DRAM in the same package as the processor via a silicon

interposer. In our specific case, the HBM is part of the Xilinx

Virtex UltraScale+ FPGA used in our experiments.

Lastly, an additional advantage of using FPGAs is that there

is basically only a single design focus: optimizing the system

architecture in order to obtain the highest throughput. Since

the physical resources are already there (independently of their

use or not) and power consumption in FPGAs is known to be

in the intermediate part of the scale (when compared to low-

power ASICs and power-hungry CPUs/GPUs), reduced area

and power are not our primary targets. Therefore, in the case

of our proposed architecture, the functional bottleneck should

be memory access, and so our design must work around this

in order to keep the HBM as active as possible.

II. SYSTEM DESIGN

In an ideal neuromorphic system, each neuron would oper-

ate as a dedicated processor, meaning that it would be phys-

90

2020 International Conference on Rebooting Computing (ICRC)

DOI 10.1109/ICRC2020.2020.00013

20
20

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

eb
oo

tin
g

C
om

pu
tin

g
(I

C
R

C
) |

/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
C

20
20

.2
02

0.
00

01
3

/20/$31.00 ©2020 IEEE978-1-6654-1975-8

97
8-

1-
66

54
-1

97
5-

8

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 06,2021 at 10:00:19 UTC from IEEE Xplore. Restrictions apply.

ically instantiated and operate independently of all the other

neurons, having exclusive access to its own local memory.

Seeing as this is not a reality for large systems, how close

can we come to this limit of a completely non-von Neumann

architecture? To answer this question, we must first define

the individual functional components of our system and their

interdependence, to then identify the amount of parallelism

available. In the process, we will also identify the bottleneck

and design the surrounding components in order to minimize

its impact, maximizing the overall system efficiency.

A. Basic components of a neuromorphic system

Motivated by earlier works [4], [6]–[8], we can define the

basic components of a neuromorphic system found inside a so-

called neurosynaptic core. Each core operates in parallel to the

other cores, and presents the following functional blocks (refer

to Fig. 1): (1) a central processor, responsible for organizing

the operation of the other components; (2) presynaptic event

memory, which stores spike information coming into the core;

(3) postsynaptic neuron equations and memory; (4) pointer

memory and FIFO, responsible for decoding spike events into

HBM addresses (pointers) for synaptic connection lookup (and

possibly temporarily storing the pointer in the FIFO); and (5)

synaptic connectivity memory (the bulk of system memory).

Communication of spike events between cores is performed

via a router. Apart from network and core configuration com-

mands (typically only sent prior to actual network execution),

the only information continuously conveyed by the router is

spike information.

Fig. 1: The functional blocks of a neurosynaptic core.

B. An HBM-centric architecture

As compared to off-die memory components, HBM presents

lower power consumption, higher bandwidth, less heating, and

overall better performance. This is possible because HBM

is a non-planar memory (cube or cuboid) that uses silicon

3D stacking technologies to place the FPGA and the DRAM

beside each other in the same package via a silicon inter-

poser. In the Xilinx VU37P FPGA there is a total 8 GB of

memory and 32 HBM ports (blue boxes in Fig. 2), accessed

via the Advanced eXtensible Interface (AXI) protocol, part

of the ARM Advanced Microcontroller Bus Architecture 4

specification [9].

As the prime component in our system, the HBM is respon-

sible for storing the bulk of the system memory: the synaptic

connectivity information. In Figure 2 we have depicted the

HBM in the center of the high-level model representation of

our proposed system, with a neurosynaptic core attached to

each of the 32 individual HBM ports. In this manner, each

core can process and access memory in complete parallel

fashion. This parallelism is one way in which our model

moves away from the traditional von Neumann architecture. In

Section III-C, we will show that inside each core there is yet

another level of parallelism, this time based on the amount

of data obtained from HBM at each clock cycle. Lastly, in

the case of the VU37P, the additional functional blocks of the

neurosynaptic core (incoming spikes, neurons, and pointers)

are stored in SRAM devices (Block RAM and/or UltraRAM).

Fig. 2: The HBM as the central component of our system. Each

neurosynaptic core stores and accesses synaptic connectivity

information via an individual HBM port.

C. System operation

Though our system is comprised of multiple cores operating

in parallel, we must define an algorithmic time step to which

all the cores can synchronize. This is necessary in order to

correctly compute the time-dependent neuron equations and

update the state variables accordingly. Additionally, this gives

the system a window during which all the events and neurons

in a single core are allowed to be processed sequentially,

producing, nonetheless, seemingly parallel computations. The

time step is typically defined in a biological scale, usually in

the order of 1 millisecond.

The proposed system operates in two phases. First, at

the onset of a new time step, the system fetches the active

presynaptic events and pushes their associated (start and

stop) pointers to the pointer FIFO. Next, the pointers of the

active (“spiked”) postsynaptic neurons are also pushed into

the FIFO. The second phase entails popping the FIFO and

using the pointers to access the HBM for synaptic connectivity

91

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 06,2021 at 10:00:19 UTC from IEEE Xplore. Restrictions apply.

information, including weights to on-core neurons and spike

events to off-core destinations (conveyed via the router). In

order to preserve an accurate algorithmic representation, the

two phases (which include spike generation, processing, and

routing) should be concluded inside the time step window.

III. HIGH-THROUGHPUT: KEEPING THE HBM BUSY

In this section we describe the design principles for max-

imizing system throughput by optimizing the surrounding

components of the synaptic memory. Though these principles

are focused on an HBM-centric architecture, they remain valid

for other multi-port memory systems.

A. Presynaptic-driven memory organization

Event-driven processing is the essence of neuromorphic

systems. In physical realizations of these, memory organiza-

tion and its impact on overall system operation are critical.

Therefore, for a neuromorphic system to be truly event-

driven, synaptic connectivity should be organized in a forward

fashion; that is, connections should be stored sequentially from

the perspective of the presynaptic neuron to all its downstream

neurons [10], [11]. With this, synaptic connectivity memory

access must only be done for active presynaptic neurons, with

the added benefit of sequential burst reads – extremely impor-

tant for optimizing HBM throughput. Additionally, memory

access can be completely avoided for inactive presynaptic

neurons; in this case, an entire portion of the memory (corre-

sponding to all of the presynaptic neuron’s connections) can

be skipped.

B. Presynaptic event storage

There are two main ways of buffering incoming presynaptic

events to be used in the next system time step: bitmap and

FIFO. For a core with N inputs, a bitmap representation of

the events consumes N bits (one per input). In the FIFO

representation, for given a core input activity density ρ, a total

of ρN log2 N bits are required for storing all the spikes. Based

on the number of core inputs and the activity density, we

can then compute the bitmap-FIFO equality activity density

as ρeq = 1/ log2 N . The top inset of Fig. 3 shows the curve

of ρeq for a range of N , where storing input events in a bitmap

is more advantageous (in terms of memory cost) for densities

above the curve, while the opposite is true for a FIFO.

Next, we computed the average input activity (i.e. firing

rate of presynaptic neurons), based on the system time step

duration, required to produce the equality activity density.

Using integer n = log2 N ranging from 8 to 20, we can

observe in the bottom inset of Fig. 3 that for a 1-ms time

step the average firing rate which produces equivalent memory

costs between bitmap and FIFO lies between 50 and 125 Hz.

Therefore, if for a given network the expected activity per core

can be estimated, the best input activity storage method can

be chosen accordingly based on this graph.

Nonetheless, it is worth mentioning that, even for a sparsely

active core, using a bitmap has two advantages over a FIFO.

First, a FIFO cannot be allocated dynamically, meaning that it

can overflow depending on an unexpected burst of incoming

events. Second, and most importantly, in a bitmap the events

can be accessed in a consistent order: at the onset of a system

time step we can sequentially read each bitmap position to

determine if the associated input is active. This is a vital detail

for memory throughput optimization given that sequential

read accesses in HBM yield higher throughput than random

accesses.

ms0.8 0.9 1 1.1 1.2

50

100

150
n=8

n=20 Number of neurons: N = 2
n

Time step duration (s)
10-4 10-3 10-2

Av
er

ag
e

fir
in

g
ra

te
 (H

z)
100

101

102

103

104

n=20

n=8

of neurons (N)
102 103 104 105 106Ac

tiv
ity

 d
en

si
ty

0.05

0.1

0.15
Bitmap-FIFO equality

Fig. 3: Presynaptic event storage strategy comparison.

C. Intra-core parallelism and pipelining

The final consideration of an efficient HBM-centric system

regards a second layer of parallelism: inside the postsynaptic

neurons. Since a truly event-driven neuromorphic system must

have synaptic connectivity data organized using a presynaptic

perspective (refer to III-A), consecutive weights in HBM will

belong to different postsynaptic neurons.

In the HBM, at each read response we receive a 256-bit

packet of data (per port), containing multiple synaptic weights.

In order to streamline memory access, we must immediately

apply all 256 bits of weights to their respective postsynaptic

neurons. Therefore, the number of weights that can be read

per clock cycle represents the number of neuron processors

which must be physically instantiated in a core, each with its

own SRAM memory block for parallel state variable access.

In sum, it is the combined multi-port access to HBM and the

multi-weight data packet from each HBM port read response

that defines the amount of parallelism in our system – and

how far we can distance it from the traditional von Neumann

architecture.

Lastly, to reduce the clock frequency required to process

and update neuron state variables, we can use the pipelining

strategy depicted in Fig. 4. In this specific case, by duplicating

the number of neuron groups, we can halve each group’s

operating frequency in order to reduce the possibility that the

combinational logic of the neuron groups be the critical path

of the system. In the figure, each neuron group is comprised

92

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 06,2021 at 10:00:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Pipelining reduces the possibility of the neuron groups being the critical path of the system.

of 8 individual SRAM blocks (columns), and one physical

neuron is instantiated per column. By pipelining two neuron

groups, each group has to operate only half of the time; the

HBM, nonetheless, can remain continuously active.

IV. EXPERIMENTAL RESULTS: HBM THROUGHPUT

In the Virtex UltraScale+ VU37P FPGA by Xilinx, the 32-

port HBM operates at a maximum frequency of 900 MHz

(double data rate). At each rising and falling HBM clock edge,

a port can access 64 bits of data, resulting in a maximum

theoretical bandwidth of 32× (2× 900M)× 64 ≈ 460 GBps.
The HBM can be addressed at a granularity of 256 bits

(32 bytes), meaning that 8 GB of HBM requires 28 bits

per address. Additionally, read and write commands can be

performed in bursts, ranging from 1 to 16 data points.
To verify the actual HBM throughput, representing the

capacity of our proposed system, we designed an HBM tester

block in Verilog (Fig. 5). The tester can perform sequential

and (pseudo-)random memory accesses (read mode), with the

latter being a more faithful representation of actual system

operation. By partitioning the HBM equally among the 32

ports, each port uses a 23-bit address to access its part of

the memory. For generating the pseudo-random addresses, we

created a 23-bit maximal linear-feedback shift register (LFSR).

The tester block outputs the memory read duration and bit-

error count. To analyze the entire HBM, an individual tester

block was instantiated for each of the 32 ports.

Fig. 5: The HBM port tester block design.

A benchmark maximum HBM throughput of ≈ 425 GBps

was obtained by sequentially sweeping the memory using

the maximal burst length, requiring one read command for

every 16 read responses. This represents 92.4% of the theo-

retical maximum throughput. Next, we assigned distinct seeds

(start addr) to each port’s LFSR (addr prng) and swept the

entire memory (all ports simultaneously) in a pseudo-random

fashion for a range of burst lengths. This method of memory

access is a more accurate representation of the random reads

which are performed independently by each HBM port during

actual synaptic connectivity lookup. HBM throughput results

for all 32 ports performing random read accesses in parallel

are presented in Fig. 6. For burst lengths above 3, a throughput

above 350 GBps is already obtained; for burst lengths above

6 the throughput ranges around 390 and 405 GBps, with the

maximum recorded throughput of 406.6 GBps for burst length

15 (95% of the benchmark sequential read throughput value).

Burst length
2 4 6 8 10 12 14 16

150

200

250

300

350

400

450
Total HBM throughput (GBps)

Fig. 6: Total HBM throughput for the 32 ports performing

random read access independently and simultaneously.

V. CONCLUSIONS AND CONSIDERATIONS

Though there are many moving parts when designing a

large-scale neuromorphic system, practically speaking, the ac-

tual parallelism and overall system throughput will be defined

by synaptic connectivity memory throughput. In this paper, we

presented some of the fundamental steps and considerations

required when designing a highly efficient system centered

around High Bandwidth Memory. In order to operate as

93

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 06,2021 at 10:00:19 UTC from IEEE Xplore. Restrictions apply.

close as possible to full throughput capacity, the system

should be designed considering a presynaptic-driven memory

organization, with bitmap representations enabling sequential

memory access, and neuron groups providing additional intra-

core parallelism and pipelining. Experimental results showed

that throughput of over 400 GBps can be obtained even when

performing completely random read access simultaneously

over all 32 HBM ports. Therefore, the combination of our

proposed network model with practical HBM results provide

a promising path towards implementing highly parallel large-

scale digital neuromorphic systems.

REFERENCES

[1] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE,
vol. 78, no. 10, pp. 1629–1636, 1990.

[2] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. Van Schaik,
R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger,
S. Renaud, et al., “Neuromorphic silicon neuron circuits,” Frontiers in
Neuroscience, vol. 5, p. 73, 2011.

[3] I. K. Schuller, R. Stevens, R. Pino, and M. Pechan, “Neuromorphic
computing – from materials research to systems architecture roundtable,”
tech. rep., USDOE Office of Science (SC)(United States), 2015.

[4] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[5] T. Yu, J. Park, S. Joshi, C. Maier, and G. Cauwenberghs, “65k-neuron
integrate-and-fire array transceiver with address-event reconfigurable
synaptic routing,” in 2012 IEEE Biomedical Circuits and Systems
Conference (BioCAS), pp. 21–24, IEEE, 2012.

[6] S. Joshi, B. U. Pedroni, and G. Cauwenberghs, “Neuromorphic event-
driven multi-scale synaptic connectivity and plasticity,” in Signals,
Systems, and Computers, 2017 51st Asilomar Conference on, pp. 1–5,
IEEE, 2017.

[7] G. Detorakis, C. A. Sadique Sheik, S. Paul, B. U. Pedroni, N. Dutt,
J. Krichmar, G. Cauwenberghs, and E. Neftci, “Neural and Synaptic Ar-
ray Transceiver: A Brain-Inspired Computing Framework for Embedded
Learning,” Frontiers in neuroscience, vol. 12, 2018.

[8] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[9] D. Flynn, “AMBA: enabling reusable on-chip designs,” IEEE micro,
vol. 17, no. 4, pp. 20–27, 1997.

[10] B. U. Pedroni, S. Sheik, S. Joshi, G. Detorakis, S. Paul, C. Augustine,
E. Neftci, and G. Cauwenberghs, “Forward table-based presynaptic
event-triggered spike-timing-dependent plasticity,” in Biomedical Cir-
cuits and Systems Conference (BioCAS), pp. 580–583, IEEE, 2016.

[11] B. U. Pedroni, S. Joshi, S. R. Deiss, S. Sheik, G. Detorakis, S. Paul,
C. Augustine, E. O. Neftci, and G. Cauwenberghs, “Memory-efficient
synaptic connectivity for spike-timing-dependent plasticity,” Frontiers in
Neuroscience, vol. 13, p. 357, 2019.

94

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 06,2021 at 10:00:19 UTC from IEEE Xplore. Restrictions apply.

