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ABSTRACT

An ultra-low power integrate-and-fire neuron array transceiver
with a multi-modal neuron architecture is presented. The design
features an array of 16x16 charge-mode mixed-signal neurons that
can be configured to implement a variety of activation functions,
including step, sigmoid and Rectified Linear Unit (ReLU), through re-
configuration of clocking waveforms through partial reset in charge
accumulation and additive stochastic noise by Linear Feedback Shift
Register (LFSR) coupling. The neuron outputs spike-based sparse
synchronous events, which are either binary (event/no event) or
ternary (positive/negative/no events). The reconfigurable energy-
efficient design makes this architecture suitable for deep learning
and neuromorphic applications like Restricted Boltzmann Machines,
Convolutional Neural Networks and general event-driven comput-
ing. The 1.796 mm? chip fabricated in 130nm CMOS technology
consumes 140.6 yW from a 1.8V supply at 92.5 MSpikes/s achieving
an energy efficiency Figure-of-Merit (FoM) of 1.52 pJ/Spike. A CNN
architecture implemented on the chip using sigmoid and ReLU
activation achieves MNIST prediction accuracy of 94.8% and 96.9%.
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1 INTRODUCTION

Deep learning methods have accelerated the adoption of artificial
neural networks (ANN) in many applications, spanning and im-
pacting every field that requires automation. This has resulted in a
tremendous demand for hardware accelerators, primarily graphical
processing units (GPU) and recently field programmable gate array
(FPGA) based systems and custom hardware. There has been an
escalated interest in both industry and academia, in developing
robust, energy efficient and re-configurable hardware.

On the other hand, neuromorphic systems have gained signifi-
cant prominence recently, as it holds promise to extreme energy
efficiency and low latency, which is suitable for edge computing and
Internet-of-Things (IoT) applications [3]. Inspired by biophysical
principles, the neuron design can use noise and mismatch varia-
tions to its advantage, while generating and processing spike-based
events that can be efficiently implemented using switched-capacitor
circuits and techniques for analog implementations [5, 6, 8] and
advanced technology nodes for digital implementations [1, 2, 7].

This paper proposes an architecture consisting of 256 neurons
and supporting peripheral drivers and circuits, that can be pro-
grammed and configured to implement a variety of features tailored
for different ANNSs. A voltage sensing stochastic integrate-and-fire
(I&F) analog neuron forms the core component, which can be reused
for correlated double sampling (CDS), deterministic or stochastic
voltage integration, and binary or ternary level output from com-
parison of integrated input with a threshold window. The neuron
design supports a variety of activation functions, that can cater to
deep learning and neuromorphic applications. At only a fraction of
the energy efficiency compared to the state-of-the-art implementa-
tions, this architecture can be easily adopted and scaled for large
networks [9].

The paper is organized as follows. Section 2 presents an overview
of the chip architecture and its component blocks. The neuron de-
sign stages, including sampling, integrator, comparator, latch and
readout, are described in detail in this section. In Section 3, the dif-
ferent modes of operation of the neuron are elaborated, illustrating
how the same design can be configured to implement various acti-
vation functions. The measurement results of the chip are presented
in Section 4, and Section 5 concludes the paper with a summary of
the design features and possible applications.
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Figure 1: Neuron array transceiver block diagram. 16x16 I&F
neuron core with peripheral drivers, biasing, LFSR and SPI.

Figure 2: Neural array transceiver chip micrograph.

2 SYSTEM-ON-CHIP ARCHITECTURE AND
IMPLEMENTATION

Fig. 1 shows the block diagram of the neuron array transceiver
architecture composed of 16x16 I&F neurons with shared rows
and columns. The peripheral circuitry consists of row and column
drivers and biasing circuits. Linear feedback shift register (LFSR)
chains add stochasticity to input samples in order to shape the neu-
ron activation function. The 256-bit row and column registers along
the periphery provide I/O communication through a serial periph-
eral interface (SPI). Configuring the row/column-select switches
connects the I&F neuron to its respective row and column. The in-
put pulses can be applied at the rows (or columns), and sampled by

Rajkumar Kubendran, Weier Wan, Siddharth Joshi, H.-S. Philip Wong, and Gert Cauwenberghs

the neuron through the column-select (or row-select) switches. The
neuron outputs are written into column (or row) registers through
the column-select (or row-select) switches.

Highly energy-efficient integrated circuits implement the neural
array, each I&F neuron comprising a single high-gain operational
trans-conductance amplifier (OTA), switches and output latch to
reconfigure the amplifier feedback loop and enable multiple modes
of operation. This integrating amplifier doubles as a comparator for
digital output generation through global control over the switching
timing waveforms. Correlated double sampling (CDS) provides
periodic offset cancellation, mitigating systematic variations in the
circuit and also establishes a DC operating point for the capacitively
coupled OTA. A detailed schematic and timing waveform for the
16x16 I&F neuron circuit are given in [9], where the neurons were
configured to implement step and sigmoid activation with binary
output. This work extends the reconfigurability of the neuron, to
implement ReLU and logistic sigmoid activation with binary or
ternary output. This work also presents a system level evaluation of
implementing a CNN, with ReLU and sigmoid activation functions.

The I&F neuron array transceiver was designed and fabricated
in 130-nm CMOS technology. Fig. 2 shows the chip micrograph.
Active area of the chip is approximately 1.796 mm? including input
SPI and peripheral circuitry, with the row/column drivers, registers
and LFSR dominating the area. Individual I&F neuron has an area
of 1200um?. The chip operates at 1.8V supply for both digital and
analog blocks. Measurements show each neuron operation with 63
nW static power drawn from a 1.8 V supply [9]. The total power
(static+dynamic) consumption of the chip (256 I&F neurons, biasing
and peripherals) is 140.6 W for data throughput of 92.5 MSpikes/s.
The chip was configured through a Xilinx FPGA development board
to program bias voltages and currents, send commands to the chip,
and receive the data from the chip. The output data from the chip
were sent through USB to a PC where data analysis and post process-
ing was performed to characterize the neuron activation functions
and conduct the classifier experiments. Measured results from these
experiments are presented next.

3 NEURON ACTIVATION MODES

Fig. 3 show measured waveforms illustrating the wide range of
activation functions for the neuron available by configuring global
control variables of the neuron array transceiver.

3.1 Step activation function: binary or ternary
states

Step activation is realized with a tunable threshold voltage Vrg in
the comparison that sets the stepping threshold for partial reset
of the neural integration variable when the neuron flips from "-1"
(negative) to "0" (no event) state, or from "0" (no event) to "+1"
(positive event) state. If only one threshold voltage is applied for
comparison, the neuron output is binary. If two different threshold
voltages are applied for comparison in two phases, the neuron
output is ternary. Since the CDS phase eliminates any mismatch or
offset in the neurons, the 256 neurons in the chip show minimum
variation in the activation function, as can be seen in Fig. 3 for
binary or ternary levels.
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Figure 3: Implementation of step, sigmoid and rectified
linear-unit (ReLU) activation functions. Dual thresholds are
+0.2V for both step and sigmoid functions. ReLU activations
are shown for different threshold voltage, V7 y. Sigmoid acti-
vations are generated by coupling LFSR noise to the neuron,
for fixed threshold voltage, Vry = 1.3V.

3.2 Sigmoid activation function: binary or
ternary states

The sigmoidal graded activation mode is similar to the step activa-
tion, but in addition to the input pulses, LFSR pulses are applied
to the integrating amplifier input to effect additive noise. Uncor-
related pseudo-random noise is generated through two counter
propagating LFSRs whose outputs are modulated and applied to
the neurons via column lines. The accumulation of multiple noise
pulses smoothens the step transition of the comparator to a sig-
moidal function as measurements show in Fig. 3 (second and third
rows). Similar to the step activation mode, the sigmoidal graded
activation mode can also generate binary/ternary output based on
the comparison phase threshold voltages.

3.3 ReLU activation function

Rectified linear-unit (ReLU) activation implements a one-sided
hinge function. It is based on rate coding of spikes, unlike the
above step and sigmoid modes which are based on individual spike
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Figure 4: Implemented CNN architecture (top) and evalua-
tion results on MNIST in software vs hardware (bottom).

timing. The ReLU activation is generated using the partial reset
mechanism, where the digital output of the neuron is sampled and
fed back to the integrating amplifier input to increment or decre-
ment the neural state variable by a fixed amount. As such, the I&F
neuron in ReLU mode implements a delta-sigma modulator, with
an output mean rate linear in the input, with rectification for in-
puts below zero. Rectification for inputs above the upper rail is
avoided for sufficiently high rail voltage in the upper threshold of
the comparator.

Fig. 3 (bottom left) shows the implementation of the ReLU ac-
tivation for different partial reset threshold voltages. The transfer
curve is the average of the 256 neuron output firing probabilities.
The number of pulses sent as input to the neuron is fixed to 30.
When the input amplitude is negative, the neuron does not fire
at all, hence the output probability is zero. When the input pulse
amplitude increases above zero, the output firing probability of the
neuron increases linearly until it reaches the partial reset threshold
voltage where the probability of neuron firing plateaus close to 1.
Fig. 3 (bottom right) shows that sigmoid activation function can
also be generated by adding LFSR noise to the ReLU neuron.

4 SYSTEM-LEVEL PERFORMANCE

Fig. 4 shows the prediction scores of a CNN implementing MNIST
classification [4] in software vs hardware. A quantization aware
network, with 2 convolutional and max-pooling layers followed by
a fully connected hidden layer and a final output layer for classi-
fication, was trained using Keras and Tensorflow with ReLU and
sigmoid activation functions, to obtain the weights. The activations
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Table 1: Neuron Architecture and Performance Comparison

Parameter ROLLS Processor [8] Braindrop [5] IFAT [6] This Work
Technology 180nm CMOS 28nm CMOS FDSOI | 90nm CMOS 130nm CMOS
Supply Voltage 18V 1V 1.2V 18V
Neuron Count 256 4096 65536 256
Activation Function Step, Sigmoid Step Step Step, Sigmoid, ReLU
Output Levels Binary Binary Binary Binary, Ternary
Power Consumption 4mwW NA 1.572 mW 140.6 yW
FoM NA 381 £J/Syn.Op. 22 pJ/Spike. 1.52 pJ/Spike.
Active Area 51.44 mm? 0.65 mm* 16 mm? 1.796 mm*

at each convolution and dense layer was implemented on hardware
using the proposed reconfigurable neuron.
The performance metrics of the neuron array transceiver are

summarized in Table 1 in comparison with other spike-based transceiver

architectures reported in the literature. Since each architecture has
different number of neurons, that have different complexity of im-
plementation and operating at different supply voltages, power
consumption varies significantly. However, energy efficiency pro-
vides an effective Figure-of-Merit (FoM) for comparison of these
architectures, given by, FOM = Eop / Nop, Where Eop is the energy
consumed for synaptic operations Ny, performed. The presented
architecture achieves 1.52 p]/Spike, where each pre-synaptic in-
put event constitutes one operation. While this level of energy
efficiency compares favorable with most other analog implementa-
tions, e.g. [6, 8], Braindrop [5] offers superior FoOM owing to using
a substantially smaller technology node 28nm in an advanced fully
depleted silicon-on-insulator (FDSOI) process. We project similar
substantial energy savings when porting the current design to
comparable deep-submicron technology nodes that benefit from
reverse body biasing (RBB) to provide significant energy savings
from leakage.

5 CONCLUSION

An ultra-low power neuron array transceiver with a multi-modal
integrate-and-fire neuron architecture was presented. A variety
of activation functions were realized by using additional pseudo-
random noise or partial reset mechanism that makes this chip
versatile to cater to different ANN architectures. The highly recon-
figurable and energy efficient design makes this transceiver suitable
for deep learning applications such as RBMs, CNNs using neurons
with ReLU or sigmoidal activation. Neurons with step or sigmoidal
activation, with binary or ternary output levels, can be used for
both rate coding or spike timing based neuromorphic applications.
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