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Abstract
During coastal storms, forecasters and researchers use numerical models to predict the 
magnitude and extent of coastal flooding. These models must represent the large regions 
that may be affected by a storm, and thus, they can be computationally costly and may 
not use the highest geospatial resolution. However, predicted flood extents can be down-
scaled (by increasing resolution) as a post-processing step. Existing downscaling meth-
ods use either a static extrapolation of the flooding as a flat surface, or rely on subsequent 
simulations with nested, full-physics models at higher resolution. This research explores 
a middle way, in which the downscaling includes simplified physics to improve accuracy. 
Using results from a state-of-the-art model, we downscale its flood predictions with three 
methods: (1) static, in which the water surface elevations are extrapolated horizontally until 
they intersect the ground surface; (2) slopes, in which the gradient of the water surface is 
used; and (3) head loss, which accounts for energy losses due to land cover characteristics. 
The downscaling methods are then evaluated for forecasts and hindcasts of Hurricane Flor-
ence (2018), which caused widespread flooding in North Carolina. The static and slopes 
methods tend to over-estimate the flood extents. However, the head loss method generates 
a downscaled flooding extent that is a close match to the predictions from a higher-reso-
lution, full-physics model. These results are encouraging for the use of these downscaling 
methods to support decision-making during coastal storms.
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1 Introduction

Tropical cyclones can be devastating to coastal communities. Katrina (2005) generated 
more than 10m of combined wave action and surge along the Mississippi coast (Fritz et al. 
2007), caused record-breaking damage and casualties in and near New Orleans, and led 
to major overhauls in hurricane protection planning and storm surge forecasting capabili-
ties (Interagency Performance Evaluation Task Force 2008). Since Katrina, other storms 
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have damaged the U.S. Gulf and Atlantic coasts, with the seven largest storms causing 
more than $326 billion in damages (Smith et al. 2020). It is critical to predict the waves 
and surge associated with such powerful storms to support decision-makers (Cheung et al. 
2003).

Numerical models can provide useful predictions of storm-driven flooding (e.g., Forbes 
et al. 2010; Blanton et al. 2012; Dietrich et al. 2013; Cyriac et al. 2018), typically by gen-
erating a map of the maximum water levels and the horizontal extents of flooding. These 
models must balance between accuracy (related to their temporal and spatial resolution) 
and efficiency (in terms of wall-clock time for the simulation). Accuracy is increased typi-
cally as the model resolution (or number of computational points) is increased, but this 
can also lead to a decrease in efficiency (Kerr et al. 2013). And, because numerical models 
must represent the large coastal regions that might be flooded during storms, they may not 
be able to represent efficiently the waves and surge at smaller scales. Resolution can be 
increased in specific regions of interest, but even state-of-the-art models for storm-driven 
coastal flooding have a typical resolution of 50m or larger in overland regions, and thus 
cannot represent hazards at the scale of individual buildings or roadways. Those infrastruc-
ture components are of critical concern to emergency managers and other stakeholders, so 
there is a continuing need to extend flooding predictions to smaller, local scales, without 
sacrificing efficiency during storms.

Several studies have explored methods to represent flood risk at local scales, especially 
with the widespread availability of Light Detection and Ranging (LiDAR) and other sur-
veys, which lead to high-accuracy Digital Elevation Models (DEMs) for the ground sur-
face, and which typically have finer resolution than numerical models for the same region. 
Flooding predictions from the coarser-resolution numerical model can then be downscaled 
and extrapolated over the finer-resolution ground surface. This process has been imple-
mented with two main approaches: static approaches use the so-called bathtub model 
to extend the flooding predictions as a flat surface over the topography, while dynamic 
approaches adjust the flooding predictions with nested models that enforce the mass and/or 
momentum conservation related to overland flooding.

In a static approach, all DEM cells are flooded where the input water level (say, from 
a predictive, full-physics model) is greater than the elevation of the ground surface in the 
DEM; hydraulic connection may or may not be considered. For studies of flood mapping 
and risk analysis under sea-level-rise scenarios, the system-wide flooding may occur over 
many years or decades, and thus a static approach may be suitable (Brown 2006; Poulter 
and Halpin 2008; Knowles 2010; Lichter and Felsenstein 2012; Heberger et al. 2009). For 
studies of flooding due to storm surge, the static approach may also be sufficient, depend-
ing on the spatial scales of the problem. A storm surge model was used to simulate water 
levels for several synthetic storm events along the coastline of New York City, but did 
not include any land areas; water levels were extrapolated from the coastline into the city 
(Aerts et  al. 2013). However, a static approach can allow instantaneous (and erroneous) 
flooding of entire neighborhoods when, for example, water levels at a point on the bound-
ary become higher than a neighborhood flood protection structure (Gallien et  al. 2011). 
Where hydraulic structures are important, they must be explicitly incorporated into the 
mesh to avoid this problem.

Dynamic approaches have been used in several recent studies of flooding, typically via 
nesting of higher-resolution simulations. For Hurricane Sandy in New York City, a nested-
grid approach was used to simulate high-resolution urban flooding (Blumberg et al. 2015), 
and an ocean-scale model was coupled to a high-resolution urban inundation model to 
hindcast the flooding (Wang et al. 2014). A coupled approach was used with the sub-grid 
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model FloodMap (Yu and Lane 2006), with an emphasis on computational efficiency for 
an end goal of using the coupled model to simulate many synthetic surge events in a prob-
abilistic way (Yin et  al. 2016). A widely used example of the dynamic approach is the 
LISFLOOD-LP model, which includes only the physical processes that are relevant for 
predicting inundation extents for riverine floods (Bates and de Roo 2000). Another model, 
MSN_Flood, has been nested within a storm surge model to provide higher-resolution 
flooding predictions (Hartnett and Nash 2017; Comer et al. 2017; Olbert et al. 2017).

In comparison with aerial observations, the dynamic approach has been found to out-
perform the static approach, for both riverine (Bates and de Roo 2000) and coastal flooding 
applications (Bates et al. 2005; Purvis et al. 2008). It has thus been suggested that static 
models should be avoided when computational speed is not of primary concern (Ramirez 
et al. 2016).

However, the difference in computational effort between these approaches has not been 
quantified, and it is possible that the cost of nested models is prohibitive for forecasting 
purposes on large domains. For applications with time constraints, there is a need to extend 
the static approach by using geospatial techniques to represent the dominant physics, such 
as the use of land cover data to represent friction losses. This hydrologic principle is used 
in state-of-the-art models such as the Hydrologic Engineering Center’s River Analysis 
System (HEC-RAS) (Liu et al. 2018) and the ADvanced CIRCulation (ADCIRC) model 
(Bunya et al. 2010), which use resistance factors associated with the Manning equation and 
based on land cover variations when applied to overland flooding (Kalyanapu et al. 2009). 
There have been efforts to optimize their use for full-physics, coastal flooding models 
(Passeri et al. 2011; Mayo et al. 2014; Medeiros and Hagen 2013), but not for a dynamic 
downscaling.

In this manuscript, we focus on the downscaling of real-time coastal flooding predic-
tions for decision support. It is hypothesized that, by implementing and then extending 
a downscaling method with geospatial techniques to include the dominant physics, the 
accuracy of real-time flood predictions will be increased with minimal cost. We consider 
three methods. In the static method, the water levels at the boundary of the predicted flood 
extent are extrapolated to intersect with the ground-surface contour in a high-resolution 
DEM. Then, this method is extended to consider the slope of the predicted flood extent and 
frictional losses. The methods use an automated, open-source mapping technique that can 
be applied in real-time on a statewide domain and can post-process model output in less 
than 15minutes . Improvements in model accuracy are quantified via comparisons to a full-
physics, numerical model simulation with overland resolution identical to that of the DEM. 
These methods have the potential to improve accuracy for coastal flooding predictions at 
minimal cost.

2  Hurricane Florence (2018) in North Carolina

2.1  Storm history

Hurricane Florence was chosen as the test-case storm because of its widespread flooding 
in coastal North Carolina (NC). Florence reached Category-4 strength on the Saffir–Simp-
son Hurricane Wind Scale as it moved across the Atlantic Ocean, and it made landfall as 
a Category-1 hurricane in southeastern NC (near Wrightsville Beach) with wind speeds 
of 40m∕s at 1115 UTC on September 14. During and after landfall, it was a slow-moving 
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storm with a 9-km∕hr westward motion, and its rainfall totals exceeded 1m in some areas. 
Florence was downgraded to a tropical storm by 0000 UTC on September 15 while the 
storm was located just north of Myrtle Beach, South Carolina. From there, the storm 
moved inland and continued losing energy while traveling north until finally dissipating 
over Massachusetts shortly after 1200 UTC on September 18 (Stewart and Berg 2019).

In addition to its rainfall-driven flooding, Florence also created storm surge and flooding 
in coastal NC (Stewart and Berg 2019). The maximum inundation heights were 2.4 to 3m 
above ground level along the Neuse River and its tributaries, but the inundation was also 
2m above ground level along the Pamlico River and the open coast of Onslow Bay. Farther 
south, the inundation was 1 to 1.5m above ground level in Wrightsville Beach to Cape Fear. 
These highest inundations persisted for a full tidal cycle, as the storm slowed at landfall.

2.2  Carteret county

Carteret County is part of coastal NC, which protrudes into the Atlantic Ocean significantly 
compared to surrounding regions of the US coast. The county is located at the southwest-
ern shore of Pamlico Sound, with the Neuse River estuary to the north and the city of 
Jacksonville and Onslow County to the west (Fig. 1). Carteret County contains the stretch 
of barrier islands from Ocracoke Inlet in the northeast to Bogue Inlet (at White Oak River) 
in the southwest. This includes Cape Lookout, which is the middle of the three capes along 
the coast of NC. It is 1, 369 km2 in land area and is home to about 66,500 permanent resi-
dents as of the 2010 census. The population center of the county is located in the area sur-
rounding Morehead City and Atlantic Beach on Bogue Sound.

Carteret County contains a diverse arrangement of geography and topography. The 
barrier island system includes islands facing in several directions, and thus includes 

Fig. 1  Location of Carteret County, NC. Notable rivers, bays, and sounds are identified. Also shown are 
three USGS sensors and one NOAA station, which collected continuous water levels and other data during 
the storm
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back-barrier sounds with varying fetch. Furthermore, while many of the more populated 
areas along the coast (e.g., Emerald Isle and Morehead City) lie on steeper topography, 
much of the northeastern region of the county close to Pamlico Sound consists of flat farm-
land. There are also several river estuaries in Carteret County, including the White Oak 
River, Newport River, and part of the Neuse River estuary. This physical diversity allows 
for the downscaling method to be evaluated for a variety of potential coastal environments.

Carteret County was affected greatly by Florence. As the storm approached the coast 
from the southeast and then made landfall to the southwest, the onshore winds were blow-
ing directly at and across the county. This resulted in elevated water levels along the barrier 
islands, in the sounds, and in many of the river estuaries in the county and surrounding 
areas. USGS sensors deployed in downtown New Bern on the Neuse River reached 3m 
above NAVD88 (North American Vertical Datum of 1988). A USGS sensor installed in a 
wave-protected area of Emerald Isle on Bogue Sound (also in Carteret County) measured a 
peak water level of 2.4m above NAVD88 (Stewart and Berg 2019). The impact of Florence 
on Carteret County and NC reinforces the need for fast and accurate predictions of coastal 
flooding to aid decision-makers as storms approach the coast.

3  Methods

3.1  Geospatial data and software

3.1.1  DEMs and land cover data

Each downscaling method requires raster data that are appropriate for the given study area. 
Digital Elevation Models (DEMs) are derived from surveys and are available at high reso-
lutions. This research uses a DEM obtained from NC Emergency Management (NCEM) 
that covers 32 NC coastal counties (Fig. 2). It was derived from the Quality Level 2 LiDAR 
survey of NC in 2014 and has a 15m ( 50 ft ) resolution with a total of 430 million raster 
cells (Tull 2018). To facilitate analyses in Carteret County, a smaller DEM was extracted 
with only the extents of the county (Fig. 2), as well as adjacent water sources. This smaller 
DEM was then used to increase resolution in Carteret County in the storm surge models, 
while only the portion within Carteret County (Fig. 2, bottom, outlined in red) was used to 
calculate flooded areas to analyze the performance of the downscaling methods.

The head loss frictional method also requires a raster of land cover classifications that 
can be converted into friction coefficients. The source used in this research is the National 
Land Cover Database (NLCD), which provides nationwide (US) data on land cover at 
30-m resolution and classifies land cover into 16 types (Fig. 3). These data can be down-
loaded for multiple years, with 2016 being the most recent year (Multi-Resolution Land 
Characteristics Consortium 2019). Because these data are given at a lower resolution than 
the DEM, nearest neighbor interpolation is done to increase the raster resolution to match 
the DEM.

3.1.2  GRASS GIS

GRASS (Geographic Resources Analysis Support System) GIS is an open-source software 
(GRASS Development Team 2017). We use GRASS GIS to implement the downscaling, 
because it can be automated using Python scripts and is efficient at processing raster data. 
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GRASS GIS data are organized into “locations,” which are directories containing all pro-
ject data, and “mapsets,” which are subdirectories in the location. All data within one loca-
tion are registered to the same coordinate reference system (projection, datum, units, etc.). 
We use NC state plane coordinate system EPSG 2264 (units of US survey feet, horizontal 
datum of the North American Datum 1983) to perform the distance measurements more 
efficiently than when using the geographic coordinate reference system with latitude and 
longitude in degrees. These methods utilize built-in GRASS GIS functions to extrapolate 
raster data, perform numerical calculations, and convert results to a more user-friendly 
format.

3.2  Models for coastal flooding in NC

Florence’s potential effects on coastal flooding were predicted by researchers using the 
ADvanced CIRCulation (ADCIRC) model (Westerink et  al. 1992, 2008). This study 

Fig. 2  DEMs used in downscaling. The top figure is the DEM obtained from NCEM that represents 32 NC 
coastal counties at 15-m resolution, where the red outline represents the DEM shown in the bottom figure. 
The bottom figure is the portion of the DEM used in downscaling water levels for Carteret County. The red 
outline in the bottom figure shows the extents of the DEM used to create the NC9-Carteret mesh and to cal-
culate for flooded areas
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examines ADCIRC simulations used on two unstructured meshes: one used currently for 
forecasting in NC and one with higher resolution used for validation of the downscaling 
methods discussed in this manuscript.

3.2.1  ADCIRC

ADCIRC is tightly coupled with the Simulating WAves Nearshore (SWAN) model for wave 
and storm surge applications (Booij et al. 1999; Zijlema 2010; Dietrich et al. 2011b) and 
has been validated extensively in studies along the U.S. Gulf and Atlantic coasts (Dietrich 
et al. 2012a; Hope et al. 2013; Sebastian et al. 2014). In hindcasting studies that use highly 
accurate, data-assimilated wind fields, ADCIRC can achieve accuracy for water levels with 
a mean absolute error less than 25 cm (Dietrich et al. 2011a). In this study, the tightly cou-
pled ADCIRC+SWAN was used for forecasts and hindcasts, with SWAN settings similar 
to recent studies (Dietrich et al. 2018). However, because our focus is the downscaling of 
coastal water levels, we refer to ADCIRC for simplicity.

ADCIRC was used for forecasts of 5 days with a time step of 0.5 seconds , and then 
hindcasts of 11.5 days with a time step of 0.25 seconds . Advective transport terms were 
disabled; bottom drag was represented with a depth-dependent quadratic friction law with 
spatially varying Manning’s n values and a lower limit on the bottom drag coefficient of 
Cf = 0.003 for the forecasts and Cf = 0 for the hindcasts; and air-sea momentum transfer 
was represented via the relationship from Garratt (1977) with an upper limit on the sur-
face drag coefficient of CD = 0.0028 for the forecasts and CD = 0.002 for the hindcasts, 
similar to previous studies (Dietrich et al. 2011a, 2012b). Spatially varying horizontal eddy 
viscosity for the momentum equations was set to 10m2∕s in open water and 2m2∕s over 
land. The eddy viscosity for hindcasts was set to 20m2∕s over land within Carteret County 

Fig. 3  Land cover raster. The land cover raster used in this study is shown, which is a portion of the NLCD 
2016 raster, extracted to the extents of the DEM used in downscaling. Each land cover classification has an 
assigned integer value and color
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where resolution has been increased in the NC9-Carteret mesh. Wind fields for predictive 
ADCIRC simulations are generated from a parametric vortex model (Gao 2018), which 
uses parameters given by National Hurricane Center (NHC) forecasts to develop fields for 
surface pressures and wind speeds that are temporally and spatially varying (Dietrich et al. 
2018).

In forecasting applications, ADCIRC is automated via the ADCIRC Prediction System 
(APS), which is a scripting system designed to run ADCIRC simulations and deliver real-
time predictions of storm surge (Fleming et al. 2008; Dresback et al. 2013; Dietrich et al. 
2013). The APS now operates for all tropical cyclones that threaten the US coast. During 
Florence, the APS was run in real-time using the forecast advisories from the NHC; these 
advisories are issued at least every 6 hr and consist of a 5-day forecast of parameters for the 
storm size, intensity, and location. The APS is designed to automatically download storm 
parameters from the NHC guidance and apply them to the operational ADCIRC model. 
Results from these simulations are shared directly with decision-makers, as well as shared 
publicly via web sites such as www.cera.coast alris k.live.

3.2.2  Unstructured meshes

This study will consider ADCIRC results on two unstructured meshes: the existing mesh 
for forecasting in NC (referred as NC9), and a new mesh with higher resolution in Carteret 
County (referred as NC9-Carteret).

ADCIRC represents the complex coastal environment with an unstructured mesh of 
finite elements, which can vary in size to represent geographic features at a variety of spa-
tial scales. The mesh used for real-time storm surge prediction in NC during Florence was 
the NC v9.98 (NC9) mesh (Blanton and Luettich 2008). Coastal flooding predictions with 
this mesh have been well-validated (Blanton and Luettich 2010; Cyriac et al. 2018). The 
mesh consists of 622,946 vertices and 1,230,430 triangular elements that cover the entire 
Western North Atlantic Ocean, Gulf of Mexico, and Caribbean Sea, although most of the 
elements are concentrated in NC (Fig. 4, left column). The mesh resolves inland areas only 
for NC, while other coastlines in the domain are modeled as no-flow boundaries with a 
tangential-slip boundary condition. Bathymetry and topography in the NC9 mesh were 
developed from several DEMs describing the NC coastal regions (Blanton et  al. 2008), 
and the ground elevations are relative to NAVD88. More than 90 percent of elements in 
the NC9 mesh are located in coastal NC. NC9 mesh resolution is sufficient for conveying 
flow along the coast, into estuaries and onto floodplains (Westerink et al. 2008; Dresback 
et al. 2013). Element sizes range from about 10 to 100 km on a side in the deep Atlantic 
Ocean to as small as about 15 to 25m near Oregon Inlet and Cape Fear River, but else-
where the smallest elements are generally on the order of 100 to 200m along barrier islands 
and other inlets. Resolution is relaxed in the Pamlico and Albemarle Sounds, with element 
sizes larger than 1500m in open water.

Because the NC9 mesh must be able to represent flooding anywhere in NC and with 
reasonable simulation times, it does not represent hydrodynamics on smaller, infrastruc-
ture-level scales (about 15m ). To evaluate the performance of the downscaling methods, 
we compare a version of the NC9 mesh with higher resolution in Carteret County (Fig. 4, 
right column). To enable a direct comparison, the NC9 mesh is refined so its overland reso-
lution is equal to the resolution of the DEM ( 15m ). As a result of this one-to-one conver-
sion, NC9-Carteret appears as a structured grid with each square cell bisected diagonally 
to create a large set of identical, isosceles triangular elements, each with two 15-m edges. 

http://www.cera.coastalrisk.live
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This is the case only for the dry-land elements in Carteret. In the surrounding areas, the 
mesh becomes flexible as it transitions to larger elements to match the NC9 mesh. The final 
mesh contains 6,772,170 vertices and 13,528,879 elements—almost 11 times larger than 
NC9. We refer to this refined mesh as NC9-Carteret. Such a mesh is too expensive to use 

Fig. 4  Finite element meshes for coastal North Carolina: (left) NC9, and (right) NC9-Carteret. Panels are a, 
b bathymetry and topography (m relative to NAVD88), c, d vertex spacing (m), and e, f meshes in a zoom 
along the Cape Lookout National Seashore. Note the higher resolution in Carteret County in panel d, and 
the transition to 15-m elements in panel f. 
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operationally, but we can use it for a high-resolution ADCIRC hindcast of Florence. We 
assume these high-resolution model results are “truth,” in that they include a full-physics 
representation of coastal flooding due to the storm.

3.3  Downscaling methods

We consider three methods (Fig. 5) for downscaling the flood extents: (1) “static,” in which 
the water is extrapolated as a flat surface until it intersects with the ground surface; (2) 
“slopes,” in which the extrapolation uses the local water surface slope; and (3) “head loss,” 
in which a land cover dataset is used to represent frictional dissipation of overland flooding.

3.3.1  Static

In the static method, the ADCIRC-predicted flood extents are enhanced by: (1) interpolat-
ing (downscaling) the maximum water levels from the mesh points to a raster at the same 
resolution as the high-resolution DEM, (2) extrapolating this water-level raster as a flat 
surface until it intersects the ground surface of the DEM, and (3) enforcing a hydraulic 
connectivity condition.

The predicted flood extents are represented in the ADCIRC output as the maximum 
water levels during the simulation. For vertices that were flooded, the water level is 
provided; for vertices that remained dry, a “null” value is provided. The water levels 
are first downscaled to a raster with the same resolution as the DEM: 15m for the NC 
DEM used in this study. Then, the raster of maximum water levels is extrapolated to 
intersect with the ground surface in the DEM. This extrapolation is achieved by using 
the GRASS GIS module r.grow (Larson and Clements 2008), which expands an input 
raster into neighboring null regions by a specified number of cells (referred to as the 
radius). The new, “grown” cells are given the value of the closest cell in the original 

Fig. 5  Schematic showing a side view of each downscaling method: (from top to bottom) static, slopes, and 
head loss
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raster (Fig. 6a, b). For this study, the r.grow module was modified to accept both an 
input map (maximum water levels) along with a base map (DEM), and an additional 
criterion was added so the grown cells are retained in the output raster only if the input 
value is greater than the base value at the same location (Fig. 6c). This is a one-to-one 
comparison, as the resolution of the two rasters is identical, and it ensures that flooding 
is extended only to the ground surface. It is noted that the “radius” can be specified by 
the user, and it will vary by application due to variations in mesh resolution and local 
topography. In our analyses below, we use a radius of 30 cells (about 450m ), which is 
representative of typical NC9 element sizes along its wet/dry front.

Then, a hydraulic connectivity condition is enforced. After extrapolation, the new raster 
may contain wet cells that are unconnected to the original raster (Fig. 6c). This can hap-
pen when flood waters are grown past a higher feature (such as a dune) and into a lower 
area (such as a neighborhood), and it is an undesirable result. To fix this, other GRASS 
GIS modules (r.clump, r.reclass, r.mapcalc) are used to identify groups of new, 

Fig. 6  Conceptual illustration of the r.grow module using a radius of two raster cells, and how it was 
modified to incorporate an elevation check. a Raster of water levels (color) at the same resolution as the 
underlying DEM (gray scale). The black line in the following figures indicates the boundary of this original 
raster. b Raster expanded using the original r.grow module in GRASS GIS. c Result of using the modi-
fied r.grow to incorporate an elevation check with the DEM. (d) Final result, where new, “grown” cells 
are retained only if their value is greater than that of the corresponding DEM cell and if it is connected to 
the original raster



 Natural Hazards

1 3

isolated raster cells and then remove them Shapiro and Metz (2008), Westerveldt and Sha-
piro (2008), Shapiro and Clements (1991).

The resulting flooded surface has effectively been extended farther overland to where 
the water elevations intersect with the land elevation. In some locations, this extrapolated 
distance may be as large as 450m (such as in a small-scale coastal river), while in others, it 
is not changed at all (Fig. 6d).

Consider an example for a portion of a barrier island in Carteret County (Fig. 7). The 
difference in resolution is significant between the DEM (Fig.  7a) and the ADCIRC-pre-
dicted water levels (Fig.  7b). Strong winds are blowing from the northwest (upper left), 
causing a surge of more than 2m on the sound side of the island, while the maximum water 
levels are about 1m on the ocean side (lower right). In the southwest (lower left), there is 
predicted overtopping where the island topography is relatively low, while in the northeast 
(upper right), the higher dune is preventing the surge from moving over the island. The 
coarser mesh resolution does not allow the sound-side surge to push over the island and 
against its dune, and it prevents water on the ocean side from approaching the mean shore-
line. When the water levels are downscaled and extrapolated (Fig. 7c), more of the island is 
flooded on both the sound and ocean sides, and only the dune crest is dry.

3.3.2  Slopes

The slopes method is similar to the static method, but it accounts for the slope of the pre-
dicted water surface. By creating a continuous raster surface from the water levels at each 
ADCIRC vertex, slopes can be calculated throughout the raster. These slopes can then be 
used in downscaling to add or subtract from the elevation of the horizontally extrapolated 
water surface.

To compute slopes from the predicted water surface, it is essential to have a continuous 
raster. A regularized spline with tension (Mitas et al.; Mitasova et al. 2005), implemented 
in GRASS GIS as module v.surf.rst, is used to interpolate the ADCIRC output onto 
the high-resolution raster. The water surface is interpolated, but rasters are also created 
with the slopes of the surface in both the x (east–west) and y (north–south) directions.

Then, these rasters are used to extrapolate the water surface. First, the rasters are grown, 
regardless of the ground surface, so that all null cells have values for the nearest water 

Fig. 7  Test case on small section of barrier island in Carteret County, NC. a DEM for Carteret County bar-
rier island, 200 × 200 cells or 3 × 3 km . The dune crest is evident by the lighter shades. b ADCIRC water 
level raster superimposed on DEM. Visible white area represents water not reaching the mean shoreline on 
the ocean side. c ADCIRC raster after running the modified r.grow process, where flooding is extended 
farther over land to where it intersects the DEM
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surface and slopes. Then, new water elevations are determined by a simple function of the 
slope multiplied by the horizontal distance traveled, added to the static value:

where �slopes is the water level at a null cell as computed with the slopes method, �static is the 
water level at the same null cell as computed with the static method, c is a slope exaggera-
tion multiplier (set to 1 for this study), mx and my are the slopes in the x and y directions, 
and �x and �y are the distances in the east–west and north–south directions.

The slopes method is similar to the static method in that both are a series of r.grow 
operations and raster calculations. Because the slopes method must consider horizontal 
distances and slopes in both the x and y directions after computing a continuous raster sur-
face using splines, this method is more computationally intensive than the static method.

3.3.3  Head loss

In the head loss method, the downscaled flood extents are modified due to frictional dissi-
pation as derived from land cover data. Instead of extrapolating the water surface to a DEM 
surface, the head loss method extrapolates to an energy cost surface, which represents the 
total energy required (elevation plus head loss) to reach a flood extent.

In ADCIRC, along with many other hydraulic models, the amount of friction associated 
with land cover is represented using Manning’s n coefficient. These values are assigned 
by using data from the USGS National Land Cover Database (NLCD). Relating these 
land cover classification values to a specific Manning’s n coefficient is a common research 
topic, and there is a range of acceptable n values for each classification (Liu et al. 2018; 
Kalyanapu et al. 2009). These values are then developed into a bottom drag coefficient for 
use in the momentum conservation equations.

In this study, we use a modified form of Manning’s equation, which can be manipulated 
to directly calculate head loss in overland flow (Rubin and Atkinson 2001):

where hL is head loss, L is a lateral distance, n is Manning’s coefficient, U is the flow veloc-
ity, k is a unit conversion (k = 1 for SI units; k = 1.49 for US customary units), and R is the 
hydraulic radius. In overland flow, the hydraulic radius R can be approximated as the depth 
of flow. Using values for the other flow variables, the head loss can be determined over 
each raster cell.

However, there are two issues that arise when applying this method to forecasting: (1) 
water velocities and flow depths are unknown prior to receiving input from ADCIRC; and 
(2) cumulative head loss must be calculated based on an accumulation of frictional losses 
over the flow paths, which are unknown. To overcome these issues, the GRASS GIS mod-
ule r.walk (GRASS Development Team 2002) is used to pre-compute an energy cost 
surface that contains both gains in potential energy due to elevation changes in the DEM 
and head losses due to surface friction associated with land cover classifications.

The r.walk module creates a raster map showing the anisotropic cumulative cost 
of moving between different geographic locations. In this study, cost represents the total 
energy needed to reach a given location based on both elevation changes and head loss 
due to land cover. The r.walk module creates a series of “least cost paths,” over which 

(1)�slopes = �static + cmx�x + cmy�y

(2)hL = L
(

nU

kR2∕3

)2
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accumulation of head loss is calculated until a full raster is created containing the “least 
cost,” in terms of energy head, from MSL to any point throughout the raster. By carefully 
choosing r.walk parameters, each raster cell will be calculated as:

where �z is based on the given DEM, L is built-in to the r.walk calculations, and the full 
second term on the right-hand side of the equation is the cumulative head loss from Eq. 2. 
During the pre-computational phase, U and R are unknown without input water velocities 
and elevations from ADCIRC. Therefore, a constant ratio of U∕R2∕3 is assumed in the pre-
computational process to entrain flow paths based on both elevation and friction losses. 
This leads to a raster only containing the “raw cost” in the form of:

This raw cost raster is the cumulative head loss based on flow paths, and it is pre-com-
puted. Then, during the downscaling process, the total cost raster (Eq. 3) is developed by 
using the raw cost raster, U and R values imported from the ADCIRC predictions, and 
the ground surface from the DEM. The predicted water surface is then extrapolated to the 
energy surface, as represented by the total cost raster.

We note two aspects related to the values of U and R obtained from ADCIRC. First, 
ADCIRC treats the wet/dry front as a no-normal-flow boundary, and thus its computed 
water velocities are negligible at the front. Thus this study assumes a constant value of 
U = 1m∕s . Second, the hydraulic radius R is approximated by the water depth, but 
ADCIRC has already considered losses due to frictional dissipation in its overland flow 
calculations. Thus it is necessary to adjust the total cost raster to account for these energy 
losses. This allows the water levels to be compared in terms of depths above the energy 
cost surface, rather than depths above the topographical surface.

In summary, a version of Manning’s equation (Eq.  2) has been introduced into the 
downscaling method to account for energy head loss due to land cover friction. Rather 
than extrapolating water elevations to a DEM surface, they are extrapolated to an energy 
surface. Flow paths accounting for accumulation of head loss are pre-computed using the 
GRASS GIS module r.walk (Fig.  8a). When maximum water elevation forecasts are 
received from ADCIRC (Fig. 8b), they are used to identify the losses due to frictional dis-
sipation that were considered already in its overland flow calculations (Fig. 8c). When the 
ADCIRC-predicted water surface is extrapolated horizontally to populate the null raster 
cells (Fig. 8d), the cost overcome by ADCIRC within the given extent is also extrapolated 
(Fig. 8f). This allows the water levels to be compared in terms of depths above the energy 
cost surface, rather than depths above the topographical surface. The resulting water sur-
face is downscaled to consider energy head losses due to friction in overland flooding 
(Fig. 8g).

3.3.4  Implementation for real‑time forecasting

Beginning with the 2017 hurricane season, the static method was used in real-time to 
enhance the resolution of flooding predictions for NC. Due to prohibitive run times, it was 
necessary to parallelize the method and run it on a high-performance computing (HPC) 

(3)costtotal = �z +
∑

L
(

nU

kR2∕3
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cluster, using 16 cores (Tull 2018). The parallelized method was tested using the daily 
ADCIRC predictions from the APS, and was subsequently used to post-process APS simu-
lations for each advisory of Hurricanes Harvey, Irma, Jose, and Maria, and Tropical Storm 
Philippe. Although these storms caused minimal to no effects in NC, they were important 
for testing the functionality and robustness of the method. In 2018, the method was used 
to downscale the flooding predictions for Hurricanes Florence and Michael, both of which 
caused flooding in NC. For all storms during these seasons, the ADCIRC-predicted flood 
extents from the ∼ 600,000-vertex NC mesh were downscaled to the ∼ 400,000,000-cell 
DEM. The method required between 11 to 14minutes for simulations with minimal pre-
dicted flooding, and 15 to 20minutes for simulations with extensive predicted flooding.

For the 2019 and ensuing hurricane seasons, the static method was adjusted to elimi-
nate all NC-specific hard-coding and the need for parallelization. It now requires between 
25 to 35minutes to process real-time simulations for Hurricane Dorian. Although the 

Fig. 8  Sequence of raster operations for the head loss method: a pre-computed raw cost raster, with MSL 
denoted by the white regions; b ADCIRC maximum water levels; c energy costs included in the ADCIRC 
flood calculations; d horizontal extrapolation of ADCIRC water levels; e hydraulic depths Ravg ; f horizontal 
extrapolation of energy costs included in the ADCIRC flood calculations; and g the final downscaled water 
surface
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updated method was slower, this timeframe met the needs of emergency managers in NC 
and elsewhere. Downscaled results have been distributed to NC Emergency Management 
in shapefile format, using water surface elevation binning intervals of 0.15m . In 2018 and 
2019, statewide inundation-depth rasters were also produced for both state and federal 
emergency management. ADCIRC forecast guidance will continue to be downscaled and 
shared with stakeholders in upcoming hurricane seasons, including the new capability to 
downscale using the head loss method.

4  Model validation

The ADCIRC predictions were validated for a hindcast of Florence. The atmospheric forc-
ing was based on the generalized asymmetric Holland model (Gao 2018; Dietrich et  al. 
2018), but used best-track information released after the storm (Stewart and Berg 2019). 
Predicted water levels on the NC9 mesh are validated using high-water marks (HWMs) 
throughout coastal NC and hydrographs at four stations near Carteret County (Fig. 9). A 
total of 431 HWMs were collected after the storm (U.S. Geological Survey 2020); of these, 
only 84 HWMs were due to storm surge. A total of 58 points were considered in this study 
because 26 of the previous 84 points lie outside the extents of the NC9 simulation and 
cannot be used as a direct comparison. The ADCIRC predictions are a good match to the 
HWMs, with a correlation coefficient of R2 = 0.897 and 38 points ( 65.5 percent ) within 10 
percent of the observed peak.

Time series of water levels are also represented at four stations, each representing a dif-
ferent geographical dynamic. At the open-water station at Beaufort, the predicted water 
levels are a close match to the timing and magnitude of the elevated water levels. At the 
sound-side stations, the peak magnitude is matched closely at Indian Beach but the pre-
dictions are low by about 0.5m at Emerald Isle. At the riverine station at New Bern, the 
predictions are too high by about 0.5m , likely caused by inaccuracies in the atmospheric 
forcing from the parametric vortex model, which may not represent the storm structure in 
far upland regions. Together, these HWM and hydrograph comparisons show a good match 
to the peak water levels during the storm, which will be the focus on the downscaled flood-
ing extents.

5  Results

We evaluate the performance of the downscaling methods by considering their representa-
tion of coastal flooding due to Florence. First, we evaluate the static method, which has 
been operational since the hurricane season of 2017, by examining its effects on the flood-
ing predictions for coastal NC over several forecast advisories as the storm approached its 
landfall. Then, we evaluate all three methods, by comparing their predictions in a hindcast 
of flooding in Carteret County.

5.1  Performance of static method during Hurricane Florence

Florence made landfall in NC at 1115 UTC on 14 September. By that time, the NHC had 
issued 60 forecast advisories. Using those storm forecasts, the APS issued guidance start-
ing with Advisory 46, when the storm was first predicted to affect NC. For each APS 
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flood forecast, a downscaled guidance product was generated automatically with the static 
method. For this analysis, we consider four forecasts:

Fig. 9  Comparison of observed and predicted water levels. (Top) Observed high water marks are compared 
to peak values from the ADCIRC hindcast on the NC9 mesh. Each point represents a point comparison, 
with lines representing various ratios of observed and predicted water levels. (Bottom) Four hydrographs 
at stations near Carteret County. Observed water levels are shown in black, and water levels predicted by 
ADCIRC at the location are shown in red
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– Advisory 46, issued 2100 UTC on 10 September, about 86 hr before landfall
– Advisory 50, issued 2100 UTC on 11 September, about 62 hr before landfall
– Advisory 54, issued 2100 UTC on 12 September, about 38 hr before landfall
– Advisory 58, issued 2100 UTC on 13 September, about 14 hr before landfall

Because Advisory 46 was issued 86 hr before landfall, when the storm was roughly 
930 km northeast of Puerto Rico and approximately equal in latitude to Miami, Florida, 
there was more uncertainty in the storm track compared to later advisories. It had a 
predicted landfall north of Wilmington but southwest of Carteret County (Fig.  10a-
1). As the storm approached (Fig.  10b-1, c-1, and d-1), the predicted track shifted 
to the southwest, closer to its true landfall. Accordingly, peak coastal surges shifted 
southwest from Carteret County toward Wilmington. The APS predicted the maxi-
mum water levels to increase at the inland (west) end of the Pamlico Sound and up 
the Neuse River estuary to the city of New Bern (Fig. 10b-1 to d-1). New Bern expe-
rienced some of the most extreme storm surge during Florence. There was a decrease 
in the maximum wind speeds over these advisories, but the radius to maximum winds 
was predicted to increase, and thus the storm affected a larger region as it approached. 
For example, the predicted storm surge increased at the Cape Lookout National Sea-
shore (black boxes and zooms in Fig. 10).

From Advisory 46 to 50, the water levels increased on both the sound side near 
Harker’s Island (Back Sound) and the ocean side at Cape Lookout National Seashore. 
The static method extended the predicted flooding (shown in colored contours in 
Fig. 10) beyond the extents from the ADCIRC simulations (shown in a black outline). 
The downscaled flooding was extended slightly farther inland on Harker’s Island and 
significantly farther inland on the uninhabited Brown’s Island just to the north. This 
difference was due to the lower average elevation of Brown’s Island. The same effect 
was visible at the barrier island, where water levels were higher on the ocean side than 
the sound side.

The water levels were predicted to increase in Advisory 54 (Fig. 10c) with complete 
inundation of Brown’s Island. Thus, the downscaling had no effect, as there was no dry 
land across which to extrapolate water levels. Even with higher water levels, there was 
still little difference in flooding extent at Harker’s Island for Advisory 54. On the ocean 
and sound sides of the barrier island, the higher water levels did not lead to much dif-
ference in horizontal flooding extent. By Advisory 58 (Fig.  10d), the storm was less 
than a day from making landfall, and predicted water levels on both sides of Cape 
Lookout were at their highest. Brown’s Island was still predicted to be fully inundated, 
and only minor changes in the flooding extent at Harker’s Island were detectable. The 
barrier island, however, was completely inundated (Fig. 10d-2) due to water elevations 
of more than 3m on the ocean side. As with Brown’s Island, there were no further 
effects of the downscaling at this location.

Differences in total flooded area between the ADCIRC model and the static down-
scaling method for each of these four advisories in Carteret County are shown in 
Table 1. Although there is no comparison to observations or hindcasts here, the differ-
ences in flooded area show how the predictions and effect of downscaling changed as 
the storm approached NC. There was a general increase in flooding from Advisory 46 
to 58, as the downscaled flooded areas increased from 735 to 809 km2 . But the effect 
of the downscaling was reduced, as the additional flooded area decreased from 12.3 
to 6.9% . These flooded areas show the high-level changes in the predictions due to 
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Fig. 10  Daily evolution of Hurricane Florence storm surge predictions from a-1) 10 September (Advisory 
46) to d-1) 13 September (Advisory 58), where the black lines indicate the predicted track for that advisory. 
Panels a-2 through d-2 show the differences between the enhanced resolution flooding (colored polygons) 
and the original ADCIRC flooding boundary (black outline)
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changing forecast information (e.g., storm location, wind speeds, etc.), as well as the 
effect of the downscaling on the predictions.

5.2  Comparison of downscaling methods in hindcast

The three downscaling methods are evaluated for their accuracy in representing the true 
flooding extents during Florence. Using the best-track information, we run simulations 
with ADCIRC on both the NC9 and NC9-Carteret meshes. We assume the NC9-Carteret 
results are the “truth,” in that they include the full physics of overland flooding at the same 
resolution ( 15m ) as the DEM. The NC9 results are then downscaled and compared to the 
true flooding extents.

Although these simulations are run for a hindcasting format in which computational 
time is less important, each downscaling method was created to use in forecasting with 
minimal computational time. ADCIRC simulations on the NC9 mesh typically take 60 to 
90 minutes during forecasting, depending on the computational resources (Tull 2018). The 
static method requires 25-35 minutes to run in serial for the large NC DEM (Fig. 2). Each 
of the three downscaling methods was tested on the smaller Carteret County DEM to com-
pare timing information. The static method was the least computationally costly, requiring 
2.23 minutes to complete. The slopes method was the most costly, requiring 13.28 minutes, 
and the head loss method added minimal cost, requiring 2.76 minutes.

The downscaling methods have a significant effect on the predicted flooding extents. As 
an example, consider the region near the Newport River (Fig. 11), which includes several 
small creeks that can convey flows. The native NC9 results (shown in dark blue) show the 
flooding extends up the river, through a bridge overpass, and over floodplains.

The static method (shown in light blue) tends to over-predict the flood extents (Fig. 11). 
The flooding is pushed farther into the creeks, such as Deep Creek (point A), which has 
a low slope and was likely flooded during the storm. In nearly all locations, the flood-
ing extents from the static method are farther inland than the model predictions with the 
NC9-Carteret mesh. The flooding extents from the slopes method (not shown) are simi-
lar. Because the water surface produced by ADCIRC was relatively flat, downscaling 
using slopes did not differ much compared to the static method. The slopes method can be 
adjusted using the exaggeration term c from Eq. 1, but inclusion of surface slopes in down-
scaling ultimately led to minimal change in accuracy with an increased computational cost.

The head loss method (shown in yellow) is the best qualitative match to the true flood-
ing extents. Because the head loss method operates similarly to the static method but uses 
an energy cost surface (DEM plus head loss) rather than only a DEM, it is impossible 
for flood extents predicted by the head loss method to exceed those of the static method. 
However, there are some areas where the head loss method under-predicts flooding. Areas 
surrounding small rivers were challenging to represent with the head loss method because, 

Table 1  Comparison of predicted 
flooded area in Carteret County, 
NC, for Hurricane Florence 
Advisories 46, 50, 54, and 58, 
as well as differences due to the 
static downscaling

Advisory ADCIRC ( km2) ADCIRC Static 
Downscaled ( km2)

Change (%)

46 655 735 12.3
50 688 763 10.9
54 693 757 9.3
58 756 809 6.9
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Fig. 11  Example of flooding extents along the Newport River from the ADCIRC models and downscal-
ing methods. Several areas are indicated: a represents an area where the head loss method significantly 
improved the results, compared to the static method and b is an area in which the head loss method over-
estimated flood extents. All rasters shown overlay the DEM used for downscaling. The slopes raster is not 
shown because the results did not differ enough from the static method

Fig. 12  Example of over-prediction of flooding extents in a simulation on the NC9 mesh. ADCIRC maxi-
mum water elevation results from simulations with the NC9 (dark blue) and the NC9-Carteret (red) meshes 
are shown throughout a low-lying farmland region in eastern Carteret County. The NC9-Carteret results 
overlay the NC9 results and, for additional context, MSL is shown in white and the DEM is shown in gray 
scale
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during the pre-computational steps where flow paths are traced from MSL, a portion of 
these rivers were not recognized as perennial bodies of water, due to being narrower than 
the resolution of the DEM raster. This led to inaccuracies because higher costs were per-
ceived to be required along the river than would have been realistic if the stream had been 
properly identified. This issue can be fixed by either using a higher-resolution raster or 
manually delineating perennial water sources.

Another area where the methods performed unfavorably was the low-lying farmland 
region in eastern Carteret County (Fig. 12). In this region, the simulation using NC9 pre-
dicts most of this area to be flooded, while the simulation using the NC9-Carteret mesh 
does not. The downscaling methods only change the water levels within the extents of the 
NC9 forecast if the DEM exceeds the forecasted water elevation; otherwise, water levels 
within the extents of the NC9 forecast are considered to be true in downscaling. This leads 
to a major discrepancy in overall flooded areas between the truth and each downscaling 
method and shows that the accuracy of the downscaling methods is dependant upon the 
accuracy of the lower-resolution ADCIRC results. For this reason, the main focus of water 
level comparisons is outside the extents of the NC9 forecast. The head loss method per-
forms best in areas where the perennial body of water can be easily captured by the raster 
resolution and the simulation using NC9 does not over-predict flood extents. The Newport 
River (as shown in Fig.  11) is wide and can be easily delineated automatically without 
increasing the raster resolution. This allows the head loss method to appropriately calculate 
accumulation of head loss along flow paths and develop a more accurate cost surface.

Each method was validated quantitatively by comparing different flood extent metrics. 
The flooding extents from simulations using the NC9 and NC9-Carteret meshes are com-
pared with the downscaled flooding extents from the static, slopes, and head loss meth-
ods. The total flooded area, or area of raster cells occupied by water that have an elevation 
greater than zero (MSL) and are within the study region, is quantified for all five models 
and methods (Table 2). Next, this same metric is used only for areas outside the extent of 
NC9. As discussed previously, this is done to remove errors made within the extents of 
NC9 that are not accounted for in the downscaling methods. The final two metrics compare 
over- and under-predictions, both outside the extents of NC9. Over-predictions are areas 
flooded by a downscaling method but not the NC9-Carteret mesh, while under-predictions 
are areas flooded by the NC9-Carteret mesh but not a downscaling method.

From the flooded areas, it is evident that the performance of each downscal-
ing method is largely dependent upon the performance of the ADCIRC simulation. 

Table 2  Comparisons of flooding extents from simulations (using the NC9 and NC9-Carteret meshes) and 
downscaling methods (static, slopes, and head loss). All values represent flooded areas in km2 for Carteret 
County, NC

Mesh Downscaling Method Flooded Flooded (out-
side NC9)

Over-Prediction 
(outside NC9)

Under-Predic-
tion (outside 
NC9)

NC9 – 636.63 – – –
NC9 Static 731.60 98.36 57.56 0.43
NC9 Slopes 707.73 96.46 55.57 0.34
NC9 Head Loss 657.14 52.18 25.12 14.17
NC9-Cart. – 513.91 41.23 – –
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Due primarily to the topographically low farmland region in eastern Carteret County 
(Fig.  13), the simulation using the NC9 mesh over-predicted the flooded area with a 
predicted 636.63 km2 compared to the NC9-Carteret results of 513.91 km2 . The static 
method performed poorest, producing the most flooded area outside NC9 ( 98.36 km2 ). 
The slopes method performed slightly better with a flooded area of 96.46 km2 outside 
NC9, but at a much higher computational cost than the other methods. The head loss 
method performed best, predicting 52.18 km2 flooded area outside the extents of NC9 
compared to the truth of 41.23 km2.

Four regions were analyzed individually (Fig.  13). Each region has different geo-
graphical features. The White Oak River region contains a large river system with a 
large river width and well-defined tributary streams. The Newport River region is still 
a large river system, but the river is not as wide and its tributary streams are slightly 
smaller. The barrier island region relies on shorter extrapolation distances but contains 
more hard structures that create sea walls, canals, and other barriers. Finally, the eastern 
farmland region has a low topography with a complex system of canals.

The head loss method outperformed the static method in each region (Table 3), with 
close matches to the true flooded areas. However, the head loss method tends to slightly 
under-predict flood extents in riverine environments, such as the White Oak River 
(flooded area outside NC9 of 2.28 km2 , compared to a true flooded area of 4.29 km2 ) 
and the Newport River ( 3.81 km2 , compared to 3.96 km2 ). This may be due to the fact 
that, within smaller tributary stream areas, flood extents generated by ADCIRC extend 
farther away from MSL than they do in other regions. Therefore, the cost accounted 
for by ADCIRC output (Fig.  8, panels c and f) is much higher and can lead to inac-
curacies as these costs are taken into account in downscaling. These under-predictions 
can be managed by either manually delineating perennial water sources to reduce the 
cost accounted for by ADCIRC output or reducing the friction values associated with 

Fig. 13  The four regions used for comparing downscaling method performance are the White Oak River 
region (blue-green), the barrier island region (tan), the Newport River region (orange), and the eastern 
farmland region (green)
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these tributary stream areas. These under-predictions may also be caused by the lack 
of a velocity head in the downscaling method. This would be a way to represent the 
additional momentum in these tributaries, and thus to extend farther the predicted 
inundation.

Table 3  Regional flooded area ( km2 ) comparisons between the NC9-Carteret mesh simulation results and 
the head loss and static downscaling method results

1For the eastern farmland region, the area represented is flooded outside the NC9-Carteret results

Mesh Barrier Island region

Downscaling method Flooded Flooded 
(outside 
NC9)

NC9 Static 9.16 5.05
NC9 Head Loss 6.95 3.13
NC9-Carteret – 6.33 3.02

Mesh Newport river region

Downscaling method Flooded Flooded 
(outside 
NC9)

NC9 Static 22.44 7.08
NC9 Head Loss 19.06 3.81
NC9-Carteret – 18.89 3.96

Mesh White Oak river region

Downscaling method Flooded Flooded 
(outside 
NC9)

NC9 Static 9.83 6.47
NC9 Head Loss 5.56 2.28
NC9-Carteret – 7.51 4.29

Mesh Eastern farmland region

Downscaling method Flooded Flooded 
(outside 
NC9)

NC9 Static 409.44 34.04
NC9 Head Loss 374.65 19.39
NC9-Carteret – 248.01 7.32
NC9 – 376.50 135.81 1
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6  Conclusions

Accurate, timely predictions of storm surge and flooding are critical to managers in the 
event of an approaching storm. Predictive models for storm surge and coastal flooding 
must balance computational time with model resolution. These models are not able to 
simulate flooding at the finest scales of available DEMs, which can resolve small-scale 
infrastructure such as roads, buildings, and neighborhoods of interest to emergency 
managers. This study presents three GIS-based techniques for downscaling (or increas-
ing the resolution of) ADCIRC storm surge predictions in real-time forecasting and vali-
dates the results using an ADCIRC simulation with the higher-resolution NC9-Carteret 
mesh. These techniques can provide emergency managers with accurate forecast results 
at high resolution in a reasonable time for decision-making during an impending storm 
event.

The major conclusions of this research are summarized below: 

1. The static method provides results at low computational cost, but over-predicts water 
level extents. Outside the extents of the NC9 water elevation forecast for Hurricane Flor-
ence (2018), the static method predicted 98.36 km2 to be flooded throughout Carteret 
County, while an ADCIRC simulation on the NC9-Carteret mesh (taken as the truth) 
predicted 41.23 km2 to be flooded. Although the method over-predicts flood extents, it 
can still provide useful information to emergency managers if a conservative estimation 
is desired. With a minimal amount of raster operations, the static method is the least 
costly in computational time.

2. Downscaling using the slopes method did not improve the downscaling simulations. 
The water elevation surface slopes were small, so extrapolating while using these slopes 
did not affect the downscaled water elevations. In relation to the static method, which 
produced a flooded area of 98.36 km2 outside the extents of the NC9 results, the slopes 
method flooded 96.46 km2 . The slopes method also has a significantly higher computa-
tional cost compared to the static method; forecasting over large domains would require 
parallelization. This method is not recommended over either of the other proposed 
methods.

3. The head loss method performed best and allows for the most flexibility. Outside the 
extent of the NC9 model results, the head loss method had a 52.18 km2 flooded area 
while the NC9-Carteret model had 41.23 km2 . The head loss method extrapolates water 
levels to an energy cost surface, consisting of energy head due to changes in elevation, 
added to head loss due to friction from land cover. Most of the computations for creat-
ing the energy cost surface are done prior to receiving input from ADCIRC models, 
so, because time is not a limiting factor in the pre-computational process, the head loss 
method allows for the most flexibility.

Further research may involve running series of storm simulations using high-resolution 
ADCIRC models (or using another source as truth) and tuning parameters to best match 
the desired results. This can be done using ADCIRC results from both historical storms 
and synthetic storms. The downscaling methods may also be improved by the use of a 
velocity head in the head loss method, and thus the inclusion of additional momentum 
as the flooding is extended into tributaries and active waterways. The accuracy of storm 
surge simulations will continue to improve, as flooding predictions will continue to be 
critical to emergency managers for decision-making before, during, and after storms. 
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The methods presented in this research will provide important tools for emergency man-
agers evaluating storm surge predictions at high resolutions.
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