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Higher-order Laguerre-Gauss (LG) modes have previously been investigated as a candidate for reducing
test-mass thermal noise in ground-based gravitational-wave detectors like Advanced LIGO. It has been
shown however that LG modes’ fragility against mirror surface figure imperfections limits their
compatibility with the current state-of-the-art test masses. In this paper we explore the alternative of
using higher-order Hermite-Gauss (HG) modes for thermal noise reduction, and show that with the
deliberate addition of astigmatism they are orders of magnitude more robust against mirror surface
distortions than LG modes of equivalent order. We present simulations of Advanced LIGO-like arm cavities
with realistic mirror figures which can support HG3; modes with average arm losses and contrast defects in
a Fabry-Perot Michelson interferometer configuration which are well below the typical measured values in
Advanced LIGO. This demonstrates that the mirror surface flatness errors will not be a limiting factor for

the use of these modes in future gravitational-wave detectors.
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I. INTRODUCTION

The sensitivity of all leading gravitational wave detectors
is limited at signal frequencies around 100 Hz by the
thermal noise of the test masses [1,2]. A major goal of
the gravitational-wave community is therefore to reduce the
effect of this noise. It has been proposed to use laser beams
with a more uniform intensity distribution than the funda-
mental Gaussian beam in order to better “average out” the
effects of this thermal noise [3,4]. In particular, research
into the potential of the Laguerre-Gauss (LG) mode LGs;
has been carried out using numerical simulations and
tabletop experiments [5,6]. However, it has been shown
that the surface distortions present even in state-of-the-art
mirrors will cause significant impurity and losses for the
LGs; mode in realistic, high finesse cavities [7-9]. While at
first glance the thermal noise benefit afforded by higher-
order Hermite-Gauss (HG) modes is more modest than that
of LG modes, they have other properties that may make them
more suitable for use in laser interferometers. It is the aim of
this paper to investigate the robustness of higher-order HG
modes and LG modes of the same order against mirror
surface deformations by numerical simulations performed
using FINESSE [10,11]. In particular, we investigate the
performance of the HG33 and LG,, modes in aLIGO-like
linear cavities and in a Fabry-Perot Michelson interferometer.
We also discuss the possibility of using odd-indexed HG
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modes with segmented mirrors, given their property of
having intensity nulls along the principal axes.

The paper is structured as follows: we give a short
introduction about higher-order Hermite-Gauss modes and
their thermal noise benefits in Sec. II. Section III then
describes the interferometer model that is used to perform
the simulations reported in this paper. In Sec. IV we report
the results of simulations for the HGs3;, LGy, and HG,
modes in terms of the relevant figures of merit: arm cavity
loss, arm mode purity and contrast defect. In Sec. V,
we demonstrate that HGs; performance can be slightly
improved by rotating the mirrors such as to minimize
oblique astigmatism. In Sec. VI, we show how deliberately
increasing the vertical astigmatism in mirrors causes a
dramatic improvement in the HG3; performance in terms of
mode loss, purity and contrast defect reduction. We report
our conclusions and discuss prospects for further study in
Sec. VII. The Appendix includes a description of the
process of creating the random realistic test mass surface
figures which are used in the simulations.

II. HERMITE-GAUSS MODES

For any paraxial beam propagating along the z axis,
the spatial profile in the transverse orthogonal x and y
directions can be expanded in the Hermite-Gauss mode
basis. The HG modes are a complete and orthonormal set of
functions defined by mode indices n and m. The spatial
order of the mode is defined as the sum n + m. The general
expression for the spatial distribution of the mode HG,,
can be given as [12]
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where H,(x) is the Hermite polynomial of order n, k is the
wave number, and w(z), Rc(z) and W(z) are the beam
radius, wave front radius of curvature and Gouy phase
respectively, as commonly defined for the fundamental
Gaussian beam.

Higher-order Hermite-Gauss modes are good candidates
for thermal noise reduction. The thermal noise performance
for higher-order HG modes was calculated for fixed beam
size w by Vinet [13]. Here we focus on the coating Brownian
noise, because this is the dominant test mass thermal noise
source in gravitational wave detectors. The coating Brownian
noise power spectral density improvement factors @SB for
HG,,,, modes over the HGy, mode are shown in Table I,
where for each mode the beam size is scaled to maintain
1 ppm clipping loss on a fixed-radius circular mirror.

The observable volume of space, and therefore the rate of
detection of homogeneously distributed gravitational wave
sources, is roughly proportional to the inverse cube of the
detector noise amplitude spectral density. In particular, the
detection rate improvement factor for HG3; mode over
HG(, mode, Rs; is therefore

Ry = (O5P)%/2 = 1.443/2 = 1.73, (3)

if we assume the detector is only limited by thermal noise. In
this paper we will focus on the HG3; mode as a higher-order
HG mode example. HG modes of higher order do have some
additional thermal noise benefit, but the benefits diminish
quickly beyond the HG;; mode, as shown in Table I
The conclusions drawn about the HG;3 mode performance
are not limited to the HG33 mode in particular, but can
reasonably be extrapolated to other HG modes as well.

TABLE 1. Improvement in coating Brownian noise power
spectral density, ®SB for HG,,,, modes compared to the HGy,
mode. All modes are scaled to give 1 ppm clipping loss on a fixed
sized circular mirror.

n\m 0 1 2 3 4 5

0 1 110 111 108 105  1.02
1 110 129 133 140 130 127
2 110 133 140 141 141 139
3 108 132 141 144 145 145
4 105 130 141 145 147 147
5 102 127 139 145 147 148

v2.d

FIG. 1. Illustration of a HGz; mode incident on a circular
segmented mirror. Assuming the same clipping loss, the beam

size increases by a factor of /2.

Future interferometers are likely to use silicon test
masses, have longer arms, and require larger and more
massive mirrors [14,15]. Currently we are up against the
industry technology limitation for the diameter of circular
“boules” of high purity silicon [14]. We can however
imagine fabricating larger mirrors from multiple substrates,
and utilizing high-order Hermite-Gauss modes for the
readout beam because they can be arranged to have
intensity nulls at the bonding lines (where the thermal
noise is likely to be high and optical quality may be low).

Figure 1 shows an example implementation. The seg-
mented mirror is formed by combining four quadrants. The
bonding lines are arranged such that they are lined up with
the intensity nulls of the HG3; mode. The radius of the

compound mirror is v/2 larger than the original mirror,
which allows further reduction of thermal noises by
supporting larger beam sizes. The coating thermal noise
power spectral density, for example, is inversely propor-
tional to the square of the beam size at the mirror.

The larger segmented mirror therefore provides an
additional improvement factor of 2 in addition to the factor
1.44 shown in Table I for the HGs3 mode, which leads to an
increased detection rate:

R3S = (1.44 x 2)%/2 = 4.89, (4)

Quantum radiation pressure noise is expected to be another
limiting noise source at lower frequencies in future detec-
tors. As a force noise its impact on the strain sensitivity of
detectors scales inversely with the mass of the mirrors,
which itself scales with the square of the mirror diameter
(or even the cube if we maintain fixed relative dimensions).
The compatibility of the HGs;; mode with segmented
mirrors can also therefore lead to a reduction in this limiting
noise source.

III. THE MODEL

The optical model for our study is an al.IGO-like
Fabry-Perot Michelson interferometer, as shown in
Fig. 2. Four different “maps,” describing mirror surface
figure imperfections, are applied to each of the test masses.
Using this model we look at three figures of merit: the
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FIG. 2. The optical model. The interferometer under test is a
Fabry-Perot Michelson interferometer, with different realistic
mirror surface figures applied to each of the four cavity mirrors.

individual loss and mode impurity in each arm, and the
contrast defect of the Fabry-Perot Michelson.' Although
the true alLIGO configuration also includes a power
recycling mirror and resonant sideband extraction mirror,
these are not expected to significantly impact the results for
the aforementioned figures of merit.

The higher-order HG and LG mode performances are
calculated numerically using the interferometer simulation
tool FINESSE [10,11] with its Python wrapper PYKAT
[16,17], which is a commonly used simulation software
in the gravitational-wave instrument science community.
For this study we compare the HG33 mode with the LG,,
mode. This choice was made because both modes have the
same order (LG, mode order is given as 2p + 1), and equal
indices. Furthermore, the HG33 mode has intensity nulls on
the principal axes, making it suitable for use with seg-
mented mirrors. We also compare against the currently used
HG,;, mode for reference, and typical aLIGO measured
values where available.

The parameters in the optical layout are similar to the
aLLIGO design [1], with the exception of the test mass radii
of curvature. These are instead symmetric, for simplicity,
and are carefully chosen such that the clipping loss is
always 1 ppm for all mode cases. The radii of curvature for
each mode used are listed in Table II.

Our goal is to assess the performance of the HG and LG
modes in an interferometer with realistic mirror surface

"The optical layout depicted in Fig. 2 involves two cavities
already so we will get two data points for the loss and impurity for
each contrast defect data point.

TABLE II. Radii of curvature for the arm cavity initial test
mass (ITM) and end test mass (ETM) when using different input
spatial modes.

HG, HGs;; LGy,
ITM R, [m] —2091.67 —2679.93 —2789.58
ETM R, [m] 2091.67 2679.93 2789.58

figures. There are however only a limited number of
alLIGO measured test mass surface figures, or maps, avail-
able. We therefore created our own randomized mirror maps
in order to generate the large number (~4000) of alLIGO-
representative maps that were needed to build statistics when
analyzing the performance of the different laser modes. Each
randomized mirror map is constructed in such a way as to
have a spatial frequency spectrum which is similar to a
measured aLIGO “base” map. For a more detailed discussion
of the randomized map generation process, see the Appendix.

Applying mirror surface figures to the test masses in the
simulation can lead to a detuning of the length degrees of
freedom from the optimal case (resonant cavities and dark
Michelson fringe). In a realistic interferometer however,
these detunings would be eliminated by the length control
feedback loops. We therefore implemented a realistic rf
modulation/demodulation scheme in our model using an
electro-optic modulator (EOM) as shown in Fig. 2 at
frequency of 60 MHz to sense the three pertinent length
degrees of freedom: common arm length (CARM), differ-
ential arm length (DARM) and Michelson tuning (MICH).
CARM is defined as the summation of the two arm cavity
lengths and is used to keep the arms on resonance. DARM
is defined as the difference of the two arm cavity lengths
and is used to get the best interference between the two
arms at the dark port. MICH is defined as the difference of
the two short arm lengths (between the ITMs and beam
splitter) and it keeps the output port on a dark fringe. Mirror
tunings were then adjusted in each simulation trial in order
to keep the two arms resonant, and the Michelson on a dark
fringe. We also use a very small modulation depth (0.0001)
so sideband leakage to the dark port has insignificant
contribution to contrast defect.

IV. SPATIAL MODE PERFORMANCE
A. Mode loss and impurity

The mode loss with a pure HG,,,, mode or LG,,,, mode as
the cavity input beam is defined as

Enmr{alp 2
A=1- () )

nm

where Enn’ and Enp, ™" are the field amplitude of the HG,,,,
or LG,,, modes with and without maps applied respec-
tively, as shown in Fig. 2.
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The mode impurity with pure mode as input is defined as

Bl

=1 ,
Py

(6)

where P, is the total power inside the cavity, as shown in
Fig. 2 as well.

In order to calculate the purity for LG,, mode, it was
necessary to calculate the LG,, content. However, FINESSE
internally calculates transverse field profiles in the HG
basis only, and thus postprocessing was necessary to
convert back to the LG basis to calculate the LG,, content.
This was achieved by combining the amplitudes of all HG
modes of order 6 (HG¢y, HGs;, HGy,, ..., HGyg) with the
appropriate coefficients given by the expression [12]

NE

(=DP(F D) (/1] + p. p. k)uySy 1 (x.y.2),

()

where N =2p +|l|, £+ is negative for positive 1 and
positive for negative 1 and with real coefficients

bnm )= e @)1=y (14 ),y (8)

The mode loss and mode impurity for HG(,, HG33 and
LG,, modes with aforementioned al.IGO-like random
maps applied were calculated in 1968 trials. Figures 3(a)
and 3(b) show the results for the loss and purity respec-
tively. The averages and standard deviations are listed in
Table III. It shows that the HG;; mode has marginally
smaller average impurity and mode loss than the LGy,
mode from their average values. Comparing to the funda-
mental HG,, case, however, we see that the loss and
impurity for HGs3 and LG,, are several orders of magni-
tude larger.

G (x.y.2) =
k

i
=}

B. Contrast defect

We calculated the contrast defect that results from
applying four random maps to the four mirrors, for the
three spatial modes under test. The contrast defect, C was
calculated as

_ P

C_ )
Py

©)

where P, and P, are the total power measured at the dark
port and bright port respectively, as shown in Fig. 2.
Contrast defects were calculated in this way for HG,
HGs;; and LG,, modes for 984 trials. The result for the
average and standard deviation are listed in Table IV; full
results for HGs3 and LG,, are also plotted in Fig. 3(c).
Similar to the loss and impurity cases (see Table III), on
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FIG. 3. Histograms showing the mode loss, impurity and
contrast defect for 984 full interferometer simulations. Three
HGgs; cases are shown: with the original maps, with maps rotated
to minimize oblique astigmatism, and with 10% astigmatism and
subsequent rotation. The HGy, case is shown for reference, along
with typical aLIGO measured values where available.
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TABLE III. Averages and standard deviations of loss and
impurity for HGyy, HG3; and LG,, (1968 trials).
HGyy  HG33 LGy,
Loss Average [ppm] 68.7 109739 182219
Standard deviation [ppm] 18.8 11829.9 13862.6
Impurity Average [ppm] 1.1 5484.5 9058.4
Standard deviation [ppm] 0.5 5982.6  7010.9

TABLE IV. Averages and standard deviations of the contrast
defect for HGyy, HG33 and LGy, (984 trials).

HGyy, HGg; LG,,
Contrast Average [ppm] 1.7 11795.8 20026.7
defect Standard deviation [ppm] 0.9 13584.5 16666.7

average the contrast defect for the HG33 mode is several
orders of magnitude larger than the currently used HG
mode in aLIGO, though it does have slightly smaller values
compared to LG,, mode.

V. ROTATING MAPS TO REDUCE
HG MODE LOSS

A. Individual Zernike contributions

To gain a deeper understanding of the specific mirror
surface features that contribute most to the mode loss and
mode impurity of HG3; and LG,, modes, we simulated a
cavity with mirror surfaces described by individual Zernike
polynomial terms of 1 nm amplitude.

Figure 4 shows the mode loss and impurity, per Zernike
term with 1 nm amplitude, for the HGs; and LG,
modes. We see that the plots for mode loss and impurity
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FIG. 4. The mode loss and impurity of the HG33 and LG,,
modes for each individual Zernike term with amplitude 1 nm.

are qualitatively almost identical, indicating that scattering
of the HG;; and LG,, modes into pseudo-degenerate
modes of the same order is the primary source of loss in
these cases. Figure 4 also shows that the HG3; mode is
relatively impervious to the Z% (vertical astigmatism) and
73 (vertical secondary astigmatism) terms when compared
with the LG,, mode. This suggests that the mirror may be
rotated to minimize the more problematic oblique astig-
matism terms Z52 and Z;”.

B. The effect of rotating maps

The Z5? term is identical to a Z3 term rotated by 45°. It
therefore follows that we can rotate maps about their center
such that the coefficient A2 in the new map is minimized,
thus reducing the loss for the HG3; mode.

The functional forms of the vertical and oblique astig-
matism terms (Z3 and Z5? respectively) are

Z3 = V6p? cos 20 (10)
Z5% = V6p?sin 20, (11)

where p is the radial coordinate and € is the azimuthal
angle.

An arbitrary weighted combination of these two can then
be rewritten as

S = A3p* cos 20 + A32p? sin 20. (12)

Since the Zernike polynomials are defined over a unit disk,
we can equivalently write

S = Ap? cos2(0 + a), (13)

where Ao = \/(A3)* + (A5%)? is the Z3 coefficient after
the rotation, and a = arctan(A;?/A3)/2 is the rotation
angle needed to minimize A5>.

The effects of map rotation on the performance of the
HGs;; modes in the simulated interferometer are shown in
yellow in Fig. 3. For each random map, the rotation angle
was calculated using Eq. (18). As can be seen in the figure,
the loss, impurity, and contrast defect are marginally
reduced when compared to the original HGs; case (red).
The average for HGs; loss, impurity, contrast defect after
rotating the map is around 2 times smaller than the case
before rotation (see Table V).

VI. IMPROVEMENT BY
ADDING ASTIGMATISM

Equation (1) shows that HG modes are separable in the x
and y axes. As such, HG modes can describe the eigenm-
odes of a cavity with astigmatic mirrors—they simply have
different Gaussian beam parameters in the x and y axes,
and consequently different Gouy phases, ¥,(z) and ¥, (z)
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TABLE V. Averages and standard deviations of the mode loss,
impurity, and contrast defect for the HGs;; mode when using
rotated maps, and when applying 10% extra astigmatism and then

Non-astigmatic Cavity

10% Extra Astigmatism

rotating. (1968 trials; 984 for contrast defect).

HG3;5+
HG3;+  astigmatism+

rotation rotation
Loss Average [ppm] 4803.7 82.9
Standard deviation [ppm] 4132.8 16.4
Impurity  Average [ppm] 2371.1 53
Standard deviation [ppm]  2074.9 6.3
Contrast ~ Average [ppm] 4873.1 10.5
defect  Standard deviation [ppm] 4501.9 12.9

[see Eq. (2)]. For an astigmatic beam, the total phase lag of
a HG mode when compared to a plane wave is then [12]

o= (n —l—%)‘l’x(z) 4 <m %)qu(z).

This is in contrast to the LG modes, which are not separable
in the x and y axes.

Furthermore, the presence of astigmatism in the cavity
eigenmode actually helps to break the degeneracy between
resonances of HG modes of the same order. Consider
the two extreme HG modes of order 6: the HG4, mode has a
phase lag @g of (6+3)¥,(z)+1¥,(z), therefore its
resonance condition is dominated by the mirror curvatures
along the x axis. Meanwhile the HGys mode resonance
condition depends primarily on the curvature along
the y axis since the phase lag ¢y in this case is
1W.(z) + (6 +3)¥,(2). A large difference in x and y axis
curvatures (i.e., astigmatism) therefore separates out the
resonance conditions of these modes of the same order.

In our case, adding sufficient astigmatism to separate out
these resonances leads to a situation where coupling from
the HG33 mode to e.g., the HG,, mode is effectively no
worse for the mode purity, mode loss and contrast defect
than coupling to modes of other orders. We can see the
effects of astigmatism on the pseudo-degenerate high-order
modes in Fig. 5. The left panel of Fig. 5 shows the HG order
6 mode content inside a cavity with a random map applied
to one mirror, as a function of cavity length tuning. The
random map causes some coupling from the HG3; mode
into other HG modes of order 6. Since these modes are co-
resonant, their circulating powers are quite large at the
resonant tuning for the HG3; mode. On the other hand,
when we added 400 nm (~10%) astigmatism to the mirrors,
as shown in the right panel, the resonances of the order 6
modes are separated out due to the unequal round-trip
Gouy phases of the modes. Even though there is still
coupling from the HG33 mode into other order 6 modes,
these modes are now nonresonant at the resonant tuning for

(14)

Power [W]

- '\\
-80 -60 -40 -20 0 20 40 60 80
ETM tuning

1071
-80 -60 —-40 -20 0 20 40 60 80
ETM tuning

FIG. 5. Cavity circulating powers in HG modes of order 6
with map “ETMOS5_S1_Figure” applied to one cavity mirror.
The left plot shows the co-resonance of the sixth order modes
when no additional astigmatism is applied; the right plot has
400 nm astigmatism added to the cavity mirrors. This causes the
resonances of the sixth order modes to separate, leading to higher
purity in the HG3; mode.

the HG33 mode. The curves shown for other HG modes of
order 6 in the right panel of Fig. 5 have two equal maxima:
one at the resonant tuning for that specific mode, and one at
the resonant tuning of the HG;; mode which is the primary
source of light scattered into the other modes of order 6.
The relevant maximum for determining the interferometer
performance is at the HGs; resonant tuning, where the
cavities will operate. In Fig. 5 we can see that these maxima
are orders of magnitude lower in the astigmatic case than
the nonastigmatic case. We therefore expect to see a large
improvement in all figures of merit when increasing the
astigmatism of the mirrors, even approaching the behavior
of the HGy, mode (which is already nondegenerate).

FINESSE automatically calculates astigmatic cavity
eigenmodes based on the radii of curvature Rc, and
Rey, specified for the mirrors in x and y axes respectively.
This is not the case however when astigmatism is specified
for a mirror by inclusion in a mirror map. The advantage in
our case of using the Rc, # Rc, definition of astigmatic
mirrors in FINESSE is that it allows us to automatically mode
match the input beam to the astigmatic eigenmode. As a
result we are able to separate the effects of a changing
cavity eigenmode with a fixed input mode (mode mis-
match), from the more fundamental intracavity mode
coupling effects in which we are primarily interested. To
do this we need to calculate the extra curvature that should
be added to the original mirror in terms of the Zernike
coefficient A3.

The functional form of Z3 with amplitude A3 is

P A3£- inthex axis
735 = A3 —5cos20 = " (15)
R —A3L- intheyaxis

where R,, = 0.15 m is the radius of the mirror.

This describes parabolic curves of opposite signs in the x
and y axes. The equivalent spherical curvature, K at p = 0,
60 =0 is given by

122002-6
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TABLE VI. Zernike coefficients A% and their corresponding
relative changes in radius of curvature (Rc = 2679.93 m).

A3 [nm] (Rey-Rc)/Re (Rcy-Rce)/Re
0 10 0.002388 —0.002388
1 30 0.007199 —0.007199
2 50 0.012056 —0.012056
3 80 0.019430 —0.019430
4 100 0.024406 —0.024406
5 400 0.105337 —0.105337
Z"(p=0

[1+(Z'(p=0))

Substituting the functional form in Eq. (15) into Eq. (16),
we arrive at the equivalent spherical curvatures in the x and
y axes:

in the x axis

(17)

—-2-A%/R2, inthey axis,

{ 2 A3/R,
so the extra curvature is proportional to the Zernike
coefficient, as expected. These curvatures can be added
to the already present curvature (aka defocus) present in the
mirror, and the sum inverted to find the equivalent radii of
curvature. Some examples of conversion from the Zernike
coefficient A3 to the relative change in radius of curvature
are shown in Table VL

The original map file was decomposed into the Zernike
basis according to Eq. (A3) giving a Z3 amplitude,
corresponding to vertical astigmatism, of 0.12 nm. We
gradually increased the astigmatism by 100 nm by adjust-
ing the cavity mirror radii of curvature differentially in the x
and y axes. The mode purity and losses were calculated for
both LG,, and HG3; modes, and the results are shown
in Fig. 6.

Figure 6 shows that as we increase the astigmatism of the
mirrors the HG3; mode loss and impurity decrease, in
contrast to the LG,, mode which shows rapidly increasing
loss and impurity with increasing astigmatism. We can also
see the effect of astigmatism on the HG3; mode perfor-
mance by looking at the mode loss for individual Zernike
terms, but this time with the extra astigmatism applied.
Figure 7 compares losses with individual Zernike terms for
the HG3; mode in the original case, and the case with
~400 nm astigmatism applied by modifying Rc, and Rc,
as previously described.” Here we see that the effects of
different Zernike terms are more similar to each other, and
in general lower, for the astigmatic case than the original
case. This is understood to be because the particularly
problematic Zernike terms in the original case (e.g., Z52

2400 nm astigmatism corresponds to about 10% change of the
radius of curvature—see Table VI.

10°

—— HG33 loss
— LG22 loss

~

Mode Loss

10—2<

—— HG33 impurity
—— LG22 impurity

Mode Impurity

20 40 60 80 100

Z3 coefficient A3[nm]

FIG. 6. Mode purity and losses of the HG33 and LG,, modes
with increasingly astigmatic cavity eigenmodes.

and Z;?) caused strong coupling to other HG modes of
order 6, which were co-resonant with the HG33 mode. In
the astigmatic case these HG modes are no longer co-
resonant, and so the previously problematic Zernike terms
have an impact similar to any other Zernike terms.

We can utilize this result and add 400 nm astigmatism to
the test masses before rotation to further improve the
performance of HG33; mode in the simulated interferometer.
The optimal rotation angles now should be

¢ = arctan(A52 /(A3 + AA))/2, (18)
where AA represents the extra astigmatism added. The
optimal rotation angles of five random maps with 400 nm
of astigmatism added are shown in Table VII—the required

i == HG33 loss
HG33 loss with 10% Astigmaitsm

Mode Loss
=
I3

B O A A B DI P P AP I R A > Y R

Zernike maps with amplitude 1nm

FIG.7. The mode loss and impurity of the HG33 mode for each
individual Zernike term with amplitude 1 nm. The red line shows
the same result in Fig. 4. The yellow dots show the same
configuration but with 400 nm extra astigmatism added.
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TABLE VII. Rotation angles used by five random maps in the
case of no added astigmatism, ¢y, and with 400 nm added
astigmatism, @400 -

TABLE VIII. Radii of curvature of the arm cavity mirrors for
HG3;3 corresponding to 400 nm additional astigmatism plus
additional defocus to keep the clipping loss at 1 ppm.

map ID ¢y [deg] $400 nm [deg] IT™ ETM

0 28.9 1.23 x 1072 R, [m] R,, [m] R, [m] R, [m]
1 2.4 —1.18 x 1073

) 271 117 x 10-2 —2516.89 -3109.47 2516.89 3109.47
3 -30.5 —1.27 x 1072

4 40.1 1.42 x 1072

angles are now much smaller than the nonastigmatic case.
The radii of curvature of the test masses are now different
from Table II since we are implementing astigmatism by
setting different radii of curvature in the x and y axes, as
shown in Table VIII. It was also necessary to add extra
defocus to the mirrors to keep the clipping loss at 1 ppm for
the astigmatic beams. The coating thermal noise calculated
from the fluctuation-dissipation theorem [13] with astig-
matic beam scales as 1/(w, - w,) instead of 1/w? as in the
nonastigmatic case. For the beam sizes considered here the
coating thermal noise power spectral density will increase
by only 1% when the astigmatism is 10%.

The result for the loss and impurity are shown in green in
Figs. 3(a) and 3(b) respectively. The losses and impurity are
significantly reduced from even the rotated case. The
average and standard deviation of the loss for HG33 mode
with the rotated maps after adding 400 nm of astigmatism is
82.9 ppm and 16.4 ppm respectively. For the impurity, the
average and standard deviation are 5.3 ppm and 6.3 ppm
respectively. These figures of merit are now close to the loss
and impurity for HG, case. The loss has been reduced by
more than 2 orders of magnitude by adding 400 nm of
astigmatism and rotating the maps to minimize the Z5? term.
The impurity on the other hand has been reduced by about 3
orders of magnitude. In the astigmatic case the HG3; mode
losses due to surface figure errors are well below the typical
aLLIGO arm cavity losses of 12000 ppm [shown as the
dashed vertical line in Fig. 3(a)], which is equivalent to
85 ppm loss per cavity round-trip. This is an important step
towards showing their compatibility with aLIGO-like inter-
ferometers. It should be noted that in this simulation we
only consider the loss and contrast defect caused by the low
frequency mirror distortions and ignore other known or
unknown factors, such as wide angle scatter from mirror
surface roughness and coating absorption, which also
contribute in real aLIGO experiments. This explains why
the currently used HG,; mode distribution does not center at
the typical alLIGO measured values in Fig. 3.

The contrast defect of HGs; has also been greatly
reduced by adding astigmatism and rotating the mirrors,
as shown in Fig. 3(c). The average and standard deviation
of the contrast defect for HG33 mode with the rotated maps
after adding 400 nm of astigmatism is 10.5 ppm and
12.9 ppm respectively. It is again much closer to the

contrast defect for the HGy, case, and well below the
typical alLIGO measured contrast defect of 400 ppm.
Adding 400 nm of astigmatism and rotating the maps
has reduced the contrast defect by more than 3 orders of
magnitude. Once again this shows that the impact of test
mass surface figure errors on the HG;3 mode performance
can be made negligible by deliberately adding astigmatism
to the surface figures.

VII. CONCLUSIONS

We have investigated the performance of the HGs3 and
LG,, modes against surface deformations representative of
those expected in next-generation alLIGO test mass mirrors.
Simulations were performed to assess the performance of
these modes in aLIGO-like arm cavities and a Fabry-Perot
Michelson interferometer. This investigation has demon-
strated that without mirror modifications, higher-order
Hermite-Gauss modes are only marginally more robust
against figure errors than Laguerre-Gauss modes of the
same order. However with the deliberate addition of vertical
astigmatism to the mirrors, we found that the HG33 mode
performs almost as well as the HG,, mode in terms of
the metrics of arm loss, mode purity and contrast defect
considered here. The loss and contrast defect of the HG3;3
mode, with the addition of astigmatism, were also seen to
be well below the typical aLIGO measured values. This
indicates that the effects of mirror surface flatness errors
will not be a limiting factor for this mode.

There remain some aspects of future gravitational-wave
detector performance with higher-order HG modes that still
require further study however. This includes HG mode
generation at high powers and purities [18], squeezing of
higher-order HG modes [19], alignment and mode match-
ing requirements [20], alignment and mode matching
sensing and control, and susceptibility to parametric
instabilities. Nonetheless, we have demonstrated here that
one of the main problems associated with higher-order LG
modes for future gravitational wave detectors—fragility
against mirror surface figure imperfections—can be effec-
tively sidestepped for HG modes by using astigmatic cavity
mirrors.
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APPENDIX: RANDOM MAP GENERATION

We use the Zernike basis to describe the low spatial
frequency distortion of a mirror surface and map decom-
position and reconstruction. Zernike polynomials are a
complete set of functions which are orthogonal over the
unit disk and defined by radial index, n, and azimuthal
index, m, with m < n. For any index m we have [12]

Z;"(p, #) = cos(m@) Ryt (p)
Zy"(p, ) = sin(mg)Ry; (p)

the even polynomial

the odd polynomial (Al)

with p the normalized radius, ¢ the azimuthal angle and
R (p) the radial function

H(n—m) (=1)"(n—h)! n=2h o o
R?(p)z{ b0 ARG omiseven
0 n-misodd.
(A2)

Generation of the random maps was achieved by first
decomposing a measured aLIGO map into the Zernike
basis and obtaining the Zernike coefficients A’ using the
following formula:

m Zx,yzmap<xv y) : Z:f(x’ y)

A - ’
! Zx,yZ;ln<x’y) 'an(x’y)

(A3)

where Z,,, represents the surface deformations of the
mirror, and Z? is the Zernike polynomial with radial index
n and azimuthal index m.

Since all random maps will have the same spatial
frequency characteristics as the measured map which
was initially decomposed in the Zernike basis, the choice
of this base map was important. The surface figures of
current alLIGO mirrors are understood to deviate from their
intended figures primarily due to nonuniformities in the
applied high-reflective coatings [21]. A procedure involv-
ing careful analysis of coating nonuniformities and pre-
emptive polishing to cancel them out is expected to lead to
the next generation of alLIGO mirrors having coated surface
figures which are roughly equivalent to the uncoated
figures of current alLIGO maps. Looking forward to next
generation of mirrors, we decided therefore to use an
uncoated alLIGO mirror map “ETM_05_S1_Figure” as
the base map for random map generation. Figure 8 shows
the results of the Zernike decomposition of this map,
while the map itself is shown in the leftmost panel of Fig. 9.

After Zernike decomposition we then define the “layer
coefficients” B,, as the quadrature sums of coefficients for
all Zernike terms with the same radial index n:

0.1
€
£ 001
1]
o
o
]
> —0.14
o
0.2
PR P i DD S DA e Dbl a U A v
Zernike mode Z
FIG. 8. Decomposition of mirror surface map ETM_05_S1_-

Figure into the Zernike basis.

B, = /ij(A;")z.

The By, B, layer coefficients (representing piston, pitch and
yaw), and Ag (representing defocus) are set to zero since
these are degrees of freedom which can be controlled
actively in an interferometer. Zernike terms with large n are
expected to cause wide-angle scatter, little of which will be
into pseudo-degenerate modes of order 6. Therefore these
high spatial frequency surface features are expected to
contribute minimally to the pseudo-degeneracy problem
that is the primary focus of the work reported here. Layer
coefficients in the simulation are calculated up to n = 25,
which is several layers beyond the point at which the
simulation results were observed to converge, matching the
expected behavior.

In order to generate random maps with the same layer
coefficients as above, we randomly redistributed the layer
coefficients between the Zernike coefficients within that
layer, and combined all the Zernike coefficients in the
Zernike basis to formulate the random maps. The new
random Zernike coefficients are

(b) (©)

15

1.0

0.5

0.0

-05 3

—10%
w

-15

FIG.9. Example mirror maps: (a) the original “ETM_05_Figure”
map, (b) the ETM_05_Figure map recomposed from Zernike
polynomials up to radial index 25, and (c) a random mirror map,
generated to have a similar spatial frequency spectrum to (b).

(A4)

(a)

e height [nm]
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m
Aq

V(A

A" =B, (AS)

where A}’ are random numbers taken from a uniform
distribution from —0.5 to 0.5, i.e., A ~ U(—0.5,0.5). A"
is normalized in this way such that the layer coefficients
calculated from these new Zernike coefficients A" are the
same as B,, which are the layer coefficients from the
alLIGO-measured map ETM_05_S1_Figure. Then the ran-

dom map Zﬁlﬁ.‘i‘}‘)‘i can be constructed by recombining the

Zernike polynomials Z7' with the new random Zernike
coefficients A’ we obtained earlier:

ZRmd =N ARz
n m

The random maps generated this way will have roughly
the same spatial frequency spectra as the aLIGO measured
map used, as demonstrated in Ref. [12]. Figure 9 shows one
of the example random maps alongside the original aLIGO
base map, as well as the base map recomposed from
Zernike polynomials with radial index up to 25.
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