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The physical realization of Z2 topological order as encountered in the paradigmatic toric code has
proven to be an elusive goal. We predict that this phase of matter can be realized in a two-dimensional array
of Rydberg atoms placed on the ruby lattice, at specific values of the Rydberg blockade radius. First, we
show that the blockade model—also known as a “PXP” model—realizes a monomer-dimer model on the
kagome lattice with a single-site kinetic term. This model can be interpreted as a Z2 gauge theory whose
dynamics is generated by monomer fluctuations. We obtain its phase diagram using the numerical density
matrix renormalization group method and find a topological quantum liquid (TQL) as evidenced by
multiple measures including (i) a continuous transition between two featureless phases, (ii) a topological
entanglement entropy of ln 2 as measured in various geometries, (iii) degenerate topological ground states,
and (iv) the expected modular matrix from ground state overlap. Next, we show that the TQL persists upon
including realistic, algebraically decaying van der Waals interactions VðrÞ ∼ 1=r6 for a choice of lattice
parameters. Moreover, we can directly access topological loop operators, including the Fredenhagen-
Marcu order parameter. We show how these can be measured experimentally using a dynamic protocol,
providing a “smoking gun” experimental signature of the TQL phase. Finally, we show how to trap an
emergent anyon and realize different topological boundary conditions, and we discuss the implications for
exploring fault-tolerant quantum memories.
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I. INTRODUCTION

Nearly five decades ago, Anderson [1] proposed that
quantum fluctuations could lead to a liquid of resonating
valence bonds, stimulating a vast theoretical effort that
continues to this day. Further work related this idea to the
more precise notion of a gapped quantum spin liquid [2], an
exotic state potentially realized in frustrated magnets [3–6].
At the same time, it was understood that such gapped
quantum liquids involve topological order [7–9], the simplest
example being Z2 topological order in two spatial dimen-
sions [3,4].
Phases of matter with topological order exhibit a number

of remarkable properties [10]. First, they imply the emer-
gence of gauge fields, analogous to those describing the
fundamental forces, although the gauge group and other
details differ. Thus, Z2 topological order is associated with
a deconfined Z2 (Ising) gauge group [11,12]. Second,

despite being built from bosonic degrees of freedom, the
excitations of such quantum spin liquids are quasiparticles
with nontrivial quantum statistics [13]. For example, the Z2

spin liquid includes three nontrivial excitations, two of
which, the electric and magnetic particles e and m,
respectively, are bosons, while their combination f ¼ em
is a fermion [14–16]. All three particles acquire a sign
change on circling another anyon; i.e., they have semionic
mutual statistics. These nontrivial statistics immediately
lead to the remarkable property that the ground states of a
topologically ordered system must be degenerate when
realized on certain manifolds, such as a torus [8]. Third,
there is a remarkable link between superconductivity and
Z2 quantum spin liquids [14,15,17–24]—while the fermion
f can be associated with Bogoliubov quasiparticles, the e
and m excitations are related to the superconductor vorti-
ces. This link led to earlier proposals suggesting that Z2

topological order might be key to understanding the
phenomenon of high-temperature superconductivity.
Finally, a key characteristic of topological order—the

long-ranged nature of its entanglement—was pointed out
[25]. On the one hand, this characteristic implies that
topologically ordered states of matter realize an entirely
new form of entangled quantum matter, unlike any other
conventional ground states realized to date [26–28]. On the
other hand, this observation also has profound implications
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in areas such as quantum error correction and fault-tolerant
quantum computation. The Z2 topological order underlies
the “toric code” [25,29] and “surface code” [30] models for
topologically protected quantum memory, which encode
logical quantum bits in degenerate ground states. Since
these degenerate ground states cannot be distinguished by
local measurements, quantum information encoded in them
is naturally protected from decoherence. Such intrinsic
topological fault tolerance is of great consequence in the
quest to build robust quantum information processing
devices [31,32].
Because of these considerations, realizingZ2 topological

order is a major goal of condensed matter research.
Unfortunately, despite several decades of theoretical and
experimental effort [5,29,33–44], no clear-cut realization of
Z2 topological order has been obtained to date. While
topologically ordered states appear in the context of the
fractional quantum Hall effect [45,46], they are realized
under rather special conditions of strong magnetic fields. In
contrast, realizing topological order in a time-reversal-
invariant system remains a major unfulfilled research goal.
Such a realization would avoid the need for applying strong
magnetic fields, which is particularly challenging for
neutral objects. Furthermore, nonchiral topological orders
can be achieved, in which a gap can be maintained even at
the boundaries. In fact, we note that no realization of
topological order in an intrinsically bosonic or spin system
has been conclusively identified to date [47].
Recently, a new approach for exploring quantum many-

body physics has emerged. It is based on neutral atom
arrays trapped in optical tweezer arrays. Tunable atom
interactions can be engineered in such systems using the
Rydberg blockade mechanism [48–51], mediated by laser
excitation of atoms into the Rydberg states [52,53].
Significant progress in realizing two-dimensional quantum
lattice models from the atom arrays was achieved, and a
rich phase diagram of symmetry-breaking orders has been
predicted and observed [54–56]. At the same time, the
special features of the Rydberg atom interactions make
them attractive platforms for realizing emergent lattice
gauge theories and quantum dimer models [57–62]. We
note that a symmetry-protected topological phase has been
realized in one-dimensional Rydberg chains [63]; this
phase is distinct from the intrinsic topological order
considered in this work, which does not require any
symmetries and is characterized by emergent anyons.
Here, we introduce a new approach for realizing a Z2

topologically ordered state as the ground state of a 2D
Rydberg atom array. We show that this approach does not
require careful engineering or fine-tuning of the constraints,
enabling the first realization and direct probing of a time-
reversal- and parity-invariant topological order and of
emergent deconfined gauge fields in a quantum model
on a near-term quantum device.

Our approach for realizing a topological spin liquid is
based on the Rydberg blockade [48–51]: When a neutral
atom is excited into a Rydberg state with a high principal
quantum number, the resonant excitation of the nearby
atoms is suppressed due to strong atom-atom interactions.
A minimal effective Hamiltonian for the Rydberg array—
where the possibility of exciting an atom into a Rydberg
state is described by two-level system—is the so-called
PXP model H ¼ 1

2

P
i ðΩPσxi P − δσzi Þ. Here, P projects

out states that violate the blockade, and Ω is the Rabi
frequency between the two levels, which is driven by a laser
with detuning δ. For a fixed blockade radius, this model,
which depends on a single parameter δ=Ω, has been
explored in great detail in one dimension—both theoreti-
cally and experimentally—where it led to a rich phenom-
enology including quantum scars [64–72] and lattice gauge
theories [73]. Recently, 2D PXP models have also been
studied in the context of quantum scars [74,75]. In this
work, we show that, for a particular choice of two-dimen-
sional atom arrangement, Rydberg blockade radius, and
laser detuning, a Z2 spin liquid is stabilized as the ground
state of this model.
To be specific, we first focus on the PXP model on the

so-called ruby lattice—equivalently, the links of the
kagome lattice—with the blockade radius containing six
nearby sites [see Fig. 1(a)]. By tuning δ, we find a phase
transition from the trivial phase into another featureless
phase of matter. We determine that the latter is a Z2 spin
liquid using a variety of probes, including the topological
entanglement entropy, ground state degeneracies, and
modular transformations. We note that there are previous
works considering spin liquids on the ruby lattice [76–80],
although they are all distinct from the present work; in
particular, they feature fundamentally distinct spin inter-
actions and do not invoke a Rydberg blockade.

(a) (b)

(c)

FIG. 1. Rydberg blockade model and relation to dimer model.
(a) Hard-core bosons on the links of the kagome lattice (forming
the ruby lattice) are strongly repelling, punishing double occu-
pation within the disk r ≤ r3 ¼ 2a. (b) An example of a state
consistent with the Rydberg blockade at maximal filling. (c) Since
the blockade forbids occupation of any two touching bonds, we
can equivalently draw the configuration as a dimer covering on
the kagome lattice.
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These results can be understood by noting that, for the
above lattice and Rydberg blockade radius, the
Hamiltonian becomes equivalent to a dimer-monomer
model on the kagome lattice. While it is known that dimer
models on nonbipartite lattices [3,81] (such as the triangu-
lar [34] and kagome lattice [37]) can realize a Z2 spin
liquid, they are notoriously hard to implement in experi-
ment. Indeed, even to realize the Hilbert space of a dimer
model requires special interactions. Furthermore, one needs
the right Hamiltonian to drive the model into a spin liquid
phase. For instance, Ref. [37] discovers a remarkable
exactly soluble Z2 dimer liquid on the kagome lattice,
which, however, requires 32 distinct dimer resonances. If
one includes only the lowest-order dimer moves, a valence
bond solid is realized [82,83] rather than a spin liquid. The
novel insight in the present work is that, by including
monomers, the effective Hamiltonian needs only a single-
site kinetic term (the creation and destruction of monomers)
to perturbatively generate the multisite dimer resonances
necessary for a spin liquid. While dimer-monomer models
have a rich history [22,84–88], to the best of our knowl-
edge, they have not yet been studied with a minimal kinetic
term generating a rich phenomenology. Dimer-monomer
models of this type could provide a new paradigm for the
physical realization of lattice gauge theories, going well
beyond the example studied in this work.
Furthermore, we show that the above findings are not

fine-tuned to the PXP model. More precisely, we numeri-
cally confirm that the spin liquid can also be found in the
full-fledged Hamiltonian with realistic VðrÞ ∼ 1=r6 van der
Waals interactions between the Rydberg atoms on a
particular instance of the ruby lattice.
In addition to realizing a Z2 spin liquid in an exper-

imentally relevant model, a very useful property of this
model is that it also gives a direct handle on the two
topological string operators. In the language of lattice
gauge theory, these are the Wilson and ’t Hooft lines. In
the context of topological order, these are the strings whose
end points host an e and m anyon, respectively. We
explicitly construct these operators on the lattice and
confirm the expected behavior of loop operators in the
spin liquid, as well as reinterpret the nearby phases as e and
m condensates using the Fredenhagen-Marcu string order
parameter [89–93].
These string operators also serve as very useful probes to

detect the spin liquid in experiments. The possibility of
measuring nonlocal observables is truly a remarkable
advantage of certain cold-atom platforms [63,94–96]. In
more conventional solid state systems, one must rely on
local probes which are suited to identifying local order
parameters but cannot directly detect topological order. In
contrast, Rydberg platforms allow one to take snapshots of
the quantum state with single-site resolution, opening up
the possibility of extracting nonlocal correlation functions.
We describe in detail how this feature can be deployed to

diagnose topological order. While the diagonal string
operator can be readily measured, we further show how
the string operator for the e anyon—which a priori involves
off-diagonal operations which are hard to measure in the
lab—can be converted into a diagonal string operator by
time evolving with a Hamiltonian whose blockade radius
has been quenched. Thus, we show that both string
operators become measurable in the diagonal basis.
Finally, we discuss methods to create and manipulate

quantum information stored in topologically degenerate
ground states, paving the way for potential exploration of
topological quantum memories. Two crucial pieces of the
puzzle we identify are the ability to trap an e anyon and to
create distinct topological boundary conditions—both are
straightforwardly achieved by locally changing the laser
detuning. As we explain, these two ingredients already give
access to topologically degenerate qubits in the plane which
can be initialized and read out.
The remainder of the paper is structured as follows.

Section II concerns the Rydberg blockade model, with
Sec. II A comparing it to and distinguishing it from
conventional dimer models. Its phase diagram is obtained
in Sec. II B, containing a trivial phase, a Z2 spin liquid, and
a valence bond solid. We confirm that the intermediate
phase is indeed a spin liquid in terms of its topological
entanglement entropy (Sec. II C), its topological string
operators (Sec. II D), and its topologically distinct ground
states from which we extract part of the modular matrices
(Sec. II E). Section III focuses on the experimental fea-
sibility, with Sec. III A showing that the spin liquid persists
upon including the VðrÞ ∼ 1=r6 potential and Sec. III B
explaining how the off-diagonal string operator can be
reduced to a diagonal observable. We end with Sec. IV
taking the first steps toward using this novel realization for
creating a fault-tolerant quantum memory by showing how
to trap e anyons (Sec. IVA) and how to realize distinct
boundary conditions (Sec. IV B); Sec. IV C then gives
examples of how this realization can be applied.

II. RYDBERG BLOCKADE PXP MODEL

We consider hard-core bosons on the links of the kagome
lattice with a two-dimensional version of the Fendley-
Sengupta-Sachdev model [97]:

H ¼ Ω
2

X
i

ðbi þ b†i Þ − δ
X
i

ni þ
1

2

X
i;j

Vðji − jjÞninj: ð1Þ

We set [98] Ω > 0. For Rydberg atoms, VðrÞ ∼ 1=r6. We
defer that case to Sec. III. Here, we instead focus on the
simpler model where VðrÞ forms a blockade in a particular
disk:

VðrÞ ¼
�þ∞ if r ≤ 2a;

0 if r > 2a:
ð2Þ
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Here, the lattice spacing a is the shortest distance between
two atoms. As shown in Fig. 1(a), with this interaction range,
a given site is coupled to six other sites, which are ordered in
pairs at distances r1 ¼ a, r2 ¼

ffiffiffi
3

p
a ≈ 1.73a, and r3 ¼ 2a

[the next distance would be r4 ¼
ffiffiffi
7

p
a ≈ 2.65a, denoted by

the dashed circle in Fig. 1(a)]. TheRydberg blockade implies
that any two sites within this distance cannot both be
occupied [Fig. 1(b)], which we can interpret as a dimer state
on the kagome lattice if the system is at maximal filling [see
Fig. 1(c)]. We note that this blockade Hamiltonian is
equivalent to the PXPmodel mentioned in the introduction.

A. Connection to and differences from dimer models

For a dimer state on the kagome lattice, each vertex is
touched by exactly one dimer, such that hni ¼ 1

4
. Our model

can have hni < 1
4
, in which case certain vertices have no

dimers—referred to as a monomer. This difference distin-
guishes our system from a usual dimer model. Let us briefly
discuss the implications of this difference. The reader
interested in the numerical results for our model can skip
ahead to Sec. II B.
The constraint of a dimer model—having exactly one

dimer per vertex—can be interpreted as a Gauss law [99].
More precisely, the presence or absence of a dimer
represents a Z2-valued electric field, with the dimer
constraint enforcing the lattice version of the Gauss law
∇ · E ¼ 1ðmod2Þ. Each vertex thus carries a classical or
static electric charge e. For this reason, a dimer model is
also referred to as an odd Z2 gauge theory [35,100]. The
absence of dynamic matter in a dimer model implies that it
is a pure Z2 gauge theory, which has two possible phases: a
deconfined [101] and a confined phase. The former is our
desired Z2 spin [102] liquid (or, equivalently, a resonating
valence bond state), whereas the latter is a valence bond
solid [103]. Stabilizing the spin liquid requires dimer
resonances in the Hamiltonian, but, due to the local
constraint of a dimer model, these terms typically span
many sites. The smallest resonance acts on the six sites
around a hexagon of the kagome lattice. The solvable dimer
model by Misguich, Serban, and Pasquier [37] requires 32
distinct types of resonances, the largest spanning 12 sites.
While these conditions can be somewhat relaxed [104], the
direct implementation of dimer models, tuned to a regime
of parameter space where a liquid phase is known to
emerge, remains extremely challenging.
In contrast, the Rydberg blockade model (1) is a dimer-

monomer model. In other words, the Gauss law of the
lattice gauge theory is now ∇ · E ¼ ρ, where ρ is a
quantum-mechanical two-level degree of freedom. This
model has two advantages. First, the only explicit dynamics
in our model is a single-site term which creates and
destroys pairs of monomers or charges [the Rabi oscillation
Ω in Eq. (1)]. In the limit of large δ=Ω, the low-energy
theory is projected into the macroscopically degenerate

space of (maximally filled) dimer states. Virtual monomer
excitations induce dimer resonances between these states.
For instance, at leading order in perturbation theory, we

obtain describ-

ing hexagon resonances. Second, since monomers are
now dynamical degrees of freedom, they can be condensed,
driving the system to a translation-symmetric trivial state
[105]. This result gives a clear-cut instance of a continuous
phase transition between two featureless phases of matter
(as opposed to the valence bond solid, which has long-
range order), which does not involve any symmetries.
While there are, thus, clear advantages to not realizing a

strict dimer model but rather a dimer-monomer model, it is
also advantageous to nevertheless be proximate to a dimer
model (i.e., have low monomer density). First, it is a good
place to hunt for a spin liquid, since—as discussed above—
a dimer model on the kagome lattice cannot realize a trivial
phase of matter. Second, one has a direct handle on the
topological string operators associated to the Z2 gauge
theory, with anyons living at their end points. We discuss
this advantage in detail in Sec. II D.

B. Phase diagram

We now study the phase diagram of the model in Eq. (1)
with the blockade in Eq. (2) using the density matrix
renormalization group (DMRG) [106–109]. We can explic-
itly enforce Vðr1Þ ¼ þ∞ by working in the reduced
Hilbert space where each triangle of the kagome lattice
(containing three atoms) has only four states: empty or a
dimer on one of the three legs. We cannot straightforwardly
set Vðr2Þ ¼ Vðr3Þ ¼ þ∞, since the resulting Hilbert space
is no longer a tensor product [110]—indeed, this result is
the magic of dimer models. Hence, we enforce these
constraints energetically by choosing a very large
Vðr2Þ ¼ Vðr3Þ ¼ 50Ω. We confirm that our results do
not depend on the details of this choice. We study the
model on a cylinder geometry of fixed circumference (up to
XC-12) and infinite extent [112]. See the Appendix A for
details about the numerical method.
When δ=Ω is low enough, the system is adiabatically

connected to the empty state and is, thereby, completely
trivial. For very large δ=Ω, we enter the regime that is
perturbatively described by a dimer model, as explained in
Sec. II A. We find that its ground state spontaneously
breaks crystalline symmetries and forms a valence bond
solid (VBS). Remarkably, for intermediate δ=Ω, these two
phases are separated by another featureless phase, as shown
in Fig. 2 by the diverging correlation length ξ and the
entanglement entropy S between two rings of the cylinder.
We argue that this phase is a Z2 spin liquid.
As a first indication that this intermediate phase is still

within the approximate dimer model, we consider the
filling fraction hni, shown by the red curve in Fig. 3(a).
We see that, as δ=Ω → ∞, the filling hni approaches the
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maximal 1=4 consistent with a fully packed dimer picture.
In the intermediate regime (shaded in the plot), we are no
longer in the VBS phase, but hni is still large. It is only
when δ=Ω is decreased further—entering the trivial phase
—that hni sharply drops. This result is in line with the
possible scenario of exiting the spin liquid by condensing
monomers—as explained in Sec. II A—which would
exhibit itself in a rapid drop of filling density.
Moreover, the derivative of hni diverges at the transition

between the trivial phase and the spin liquid, signaling a
continuous transition. Indeed, the theoretical expectation is
that this transition belongs to the 2þ 1D Ising universality
class (with the trivial phase corresponding to the “ordered”
side), but our available system sizes are not big enough to
accurately extract scaling dimensions. Figure 3(a) shows no
such singularity between the spin liquid and VBS phase.
However, it turns out that it is a first-order transition which
is very hard to diagnose this way (due to the small energy
scales associated to the VBS phase). This transition is much
more easily demonstrated by considering the variation of
hni between different sites: Fig. 3(b) shows that this
variation jumps discontinuously.

C. Topological entanglement entropy

One characteristic feature of topological phases of matter
can be found in the scaling of the entanglement entropy.
Gapped phases of matter satisfy an area law: For a region
with perimeter L, we have SðLÞ ¼ αL − γ. The constant
offset γ is a universal property called the topological
entanglement entropy, encoding information about the
quantum dimensions of the anyons of the topological order
[27,28]. For a Z2 spin liquid, γ ¼ ln 2 [26].
The topological entanglement entropy can be efficiently

extracted from a cylinder geometry [114,115]. We take a
point in the middle of the presumed spin liquid in Fig. 2,
δ=Ω ¼ 1.7, and numerically obtain the entanglement
entropy upon bipartitioning the infinitely long cylinder
in two halves. Doing this process for different circum-
ferences [116], we extract γ ≈ ln 2, as shown in Fig. 4(c).
Importantly, it has been observed before that one can obtain
a spurious value of γ for specific cuts in certain lattice
models; i.e., one can be deceived into thinking a trivial
phase is, in fact, topologically ordered [117–120]. For all
such reported cases, the spurious value can be detected by

FIG. 2. Phase diagram of Rydberg blockade model on the links of the kagome lattice. The trivial phase at small δ=Ω is separated from
the valence bond solid (VBS) at large δ=Ω by an intermediate phase which has a large entanglement plateau. We show an exemplary
density plot for each of the three phases, which shows that the intermediate phase is featureless. The VBS phase has a 36-site unit cell
(72 atoms on the links) highlighted by the gray shaded region—this pattern is studied in Refs. [82,83,113] in the context of the spin-1=2
Heisenberg model on the kagome lattice. Numerical results are for a cylinder with XC-8 geometry, as depicted.

(a) (b)

FIG. 3. Detecting phase transitions via filling fraction. These
data are obtained for an infinitely long cylinder with XC-8
geometry. (a) The filling fraction has a singular behavior upon
transitioning from the trivial phase into the spin liquid, after
which the system enters a regime where hni ≈ 0.25, consistent
with it being an approximate dimer state. (b) The spin liquid and
VBS phase are separated by a first-order transition.

(a) (b) (c)

FIG. 4. Topological entanglement entropy. We determine the
offset γ in the area law S ¼ αL − γ [27,28,114,115]. (a) For the
trivial phase, this value is zero. (b) As we increase δ=Ω, we enter
the spin liquid where γ ≈ ln 2. Here, we plot SL¼8 − 2SL¼4, where
SL¼n is the bipartition entanglement entropy for the XC-n
geometry. (c) For an exemplary point in the spin liquid, we
extract γ for two distinct geometries (up to XC-12 and YC-8).
Note that XC-n (YC-n) has circumference Lcirc=a ¼ ffiffiffi

3
p

n (2n).
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comparing the results for different cuts [121]. For this
reason, we extract γ for two distinct geometries: XC (where
the finite periodic direction bisects triangles of the kagome
lattice) and YC (where the circumference runs parallel to
one of the axes of the kagome lattice); for an explanation of
this naming convention, see Appendix A. Both linear fits
give a topological entanglement entropy which is remark-
ably close to ln 2. For comparison, for a point in the trivial
phase (δ=Ω ¼ 1), we obtain γ ¼ 0 [Fig. 4(a)].

To confirm that the above is not a fine-tuned feature of a
particular point in the phase diagram, we extract γ as a
function of δ=Ω. Figure 4(b) indeed shows a plateau where
γ ≈ ln 2, consistent with a Z2 spin liquid. Since this plot
relies on only XC-4 and XC-8 data, there is still some
minor variation within this plateau. Deep in the spin liquid,
δ=Ω ¼ 1.7, we are also able to converge to the ground
state on the bigger cylinder XC-12, confirming γ ≈ ln 2
[Fig. 4(c)]. Note that we do not consider γ in the VBS
phase, since due to the large unit cell (shown in Fig. 2) the
next consistent geometry [122] is XC-16, which is out of
reach with current methods.

D. String operators and anyon condensation

The advantage of measuring topological entanglement
entropy is that it is well defined for any model even in the
absence of microscopic identification of operators corre-
sponding to emergent gauge theory. However, in our
Rydberg blockade model, a more microscopic understand-
ing of the spin liquid is available. Here, we can identify the
topological string operators associated with this Z2 lattice
gauge theory, similar to the toric code model [25]. Such an
explicit representation of a topological quantum liquid has
a variety of uses: in identifying the spin liquid and its
nearby phases (especially in an experimental setup where,
e.g., topological entanglement entropy is not readily
accessible), in creating anyons, in distinguishing topologi-
cal ground states, and also perhaps for quantum informa-
tion applications, such as the initialization and readout of
topological qubits.

A Z2 lattice gauge theory comes with two string
operators determined by the electric field E (defined
modulo 2) and its conjugate variable, the gauge field A.

These strings are the ’t Hooft line eiπ
R

E and the Wilson

line ei
R

A, which anticommute at intersection points. As
already mentioned in Sec. II A, the binary-valued electric
field corresponds to a dimer configuration, with the hard-
core dimer constraint acting as a Gauss law. The string

operator eiπ
R

E, thus, corresponds to the parity of dimers
along a string. To be precise, we define its action on a single
triangle in Fig. 5(a) (orange dashed line); we refer to this
diagonal parity string as P. For an explicit matrix repre-
sentation, see Appendix D. Because of the Gauss law,
evaluating it along any closed loop—which has to run
perpendicular to the bonds of the kagome lattice—mea-
sures the charge inside of it. In the absence of monomers—
i.e., gauge charge excitations—this measurement is simply
ð−1Þ# vertices enclosed for a contractible loop, as expected of an
odd Z2 gauge theory. In contrast, noncontractible loops
distinguish topologically distinct sectors of the dimer
Hilbert space (since this value cannot be changed by any
local operator).
In the dimer basis, the dual string ei

R
A has to be off

diagonal, shuffling the dimers. There is essentially a unique
way of defining such a string that has a well-defined action
on single triangles, as shown in Fig. 5(a) (solid blue line);
we refer to this string as Q. An example is shown in
Fig. 5(b). Note that any closed string that runs parallel to
the bonds of the kagome lattice indeed maps a valid dimer
configuration to another valid dimer configuration, and it is
also easy to see that this string Q anticommutes with P
whenever the strings intersect. To the best of our knowl-
edge, this definition of the Q string is novel; for dimer
models, one often considers the more restrictive strings that
have to pass through an alternating series of empty and
filled bonds. The advantage of this more general definition
is twofold: (i) It is also well defined for states that contain
monomers, and (ii) with the definitions for P and Q in

(a) (b) (c)

FIG. 5. Topological string operators. (a) The two different string operators are defined by their action on a single triangle. We call the
diagonal and off-diagonal string operators P andQ, respectively. (b) An example of the action of the string operators on a classical dimer
state. (c) The definition of the Fredenhagen-Marcu order parameter [89–93] is shown for the diagonal string, hPiFM, which measures the
condensation of the m anyon. The analogous definition for hQiFM (not shown) measures an e condensate.
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Fig. 5(a), there is, in fact, a duality transformation that
interchanges them, as discussed in Sec. III B.
The electric e and magnetic m excitations of this Z2

lattice gauge theory live at the end points of the Q and P
strings, respectively. For instance, Fig. 5(b) shows [123]
how an open Q string indeed creates a monomer at each
end. These e and m excitations are topological, since they
can be created only in pairs. Moreover, while they are
individually bosonic, the anticommuting property of the P
and Q string encodes the fact that e and m have nontrivial
mutual statistics; equivalently, the end point of the product
string PQ carries an emergent fermion f.
The spin liquid is defined by the deconfinement of these

excitations. The nearby phases correspond to condensing
either the e or the m, which, respectively, confines m or e
due to the mutual statistics. Historically, the e condensate is
called the Higgs phase, whereas the m condensate is called
the confined phase (due to the charged e excitations
becoming confined). In an odd gauge theory, with nonzero
background gauge charge at each lattice site, the latter, in
fact, implies spontaneous symmetry breaking (i.e., a
valence bond solid). The reason for this is that the m
anyon carries a projective representation [124] under the
Z × Z translation symmetry.
These condensates can be diagnosed by the open P or Q

strings attaining long-range order. To properly define what
this statement means, it is important to normalize these
string operators. Indeed, generically these strings decay to
zero, since the ground state has virtual e andm fluctuations.
For this reason, Fredenhagen and Marcu [89,90,92] intro-
duce the normalized string operator in Fig. 5(c), which we
refer to as the FM string order parameter. This result was
also more recently imported into the condensed matter
context—where lattice gauge theories are emergent—by
Gregor, Huse, Moessner, and Sondhi [93]. These two string
order parameters are a very useful tool for diagnosing the
different phases of a lattice gauge theory: Although con-
finement in pure gauge theories can be probed by an area
law [11,125], in the presence of dynamic matter (as we
have in our model) loop operators typically scale with a
perimeter law [12,126].
The only remaining technicality to discuss is the phase

factor eiα in the definition of the off-diagonal string Q in
Fig. 5(a). In general, this phase factor cancels out unless the
Q string changes the total number of dimers, such as for the
open string in Fig. 5(b). Hence, the optimal choice of eiα

depends on the phase difference between different branches
of the ground state wave function with distinct particle
numbers. In the present model, one can straightforwardly
argue that if the Rabi frequency Ω < 0, then all amplitudes
of the wave function have the same sign, whereas forΩ > 0
it alternates with the parity of dimers. From now on, we
fix eiα ¼ −ðΩ=jΩjÞ.
We are now in a position to evaluate the open string and

loop operators in the Rydberg blockade model. The results

are shown in Fig. 6. As expected, we see that Q has long-
range order in the trivial phase—corresponding to an e
condensate—whereas P has long-range order in the VBS
phase—corresponding to anm condensate. Note that P also
attains long-range order deep in the trivial phase: This
result is allowed, since the definition of (and distinction
between) e and m anyons is strictly meaningful only in the
deconfined phase [12]. In the intermediate spin liquid, both
FM order parameters decay to zero, consistent with the
claim that this phase is the deconfined phase of the lattice
gauge theory. While Fig. 6 shows the FM string order for
only a particular length of the string (as depicted on both
sides of the panel), a more careful scaling analysis in
Appendix B confirms that, in the spin liquid, these strings
decay to zero exponentially in the length of the string. We
stress that this result is a very nontrivial property that would
be exceedingly difficult [127] to explain without the
presence of topological order. Correspondingly, in this
regime, the loop operators evaluated around the circum-
ference are not suppressed and have an appreciable value
(which albeit decreases with circumference). In fact, the
sign of this nonzero number labels topologically distinct
ground states, as we discuss next.

E. Topological ground state degeneracy
and modular matrices

Another fingerprint of a topological spin liquid is its
topological ground state degeneracy on manifolds which

FIG. 6. Diagnosing phases in terms of topological string
operators. Top: The Fredenhagen-Marcu (FM) string order
parameters show that the trivial phase is an e condensate
(¼ Higgs phase) and the VBS phase is an m condensate
(¼ confined phase). These string order parameters decay to zero
in the spin liquid, confirming that it is the deconfined phase of the
Z2 lattice gauge theory. We sketch the strings used for calculating
the FM order parameter [the transparent strings show the closed
loop used to normalize the string; see Fig. 5(c)]. Bottom: Long-
range order in the FM string for P (Q) suppresses the value of a
closed Q (P) loop around the circumference. In the spin liquid,
both loops are nonzero (we plot the absolute value: Their signs
label degenerate ground states; see Fig. 8). As in Fig. 2, results are
for XC-8 (depicted) with the vertical (horizontal) direction being
periodic (infinite).
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are themselves topologically nontrivial [8,128,129]. For
Abelian topological order on an infinitely long cylinder,
one has a ground state corresponding to each anyon in the
theory. Conceptually, these different states can be related by
starting with one of the ground states, nucleating an anyon
pair, and separating them infinitely far along the infinite
direction of the cylinder [130]. For the present case, we thus
expect four distinct topological ground states, correspond-
ing to 1, e, m, and f lines threaded along the infinite axis.
Because of the mutual statistics, these distinct ground states
can be diagnosed by measuring the P and Q loops around
the circumference.
Numerically, when we repeat DMRG with different

random initializations, we find two (quasi)degenerate
ground states which are distinguished by the sign of
hPiloop around the circumference [133]. It is tempting to
associate these to the trivial anyon and the electric charge, 1
and e.
To make this observation concrete, we use the tech-

nique of Refs. [131,132]: Making the resulting matrix
product states (MPS) periodic along the second direction,
one obtains wave functions on a torus geometry as shown
in Fig. 7, which we denote by j1i and jei. It can be shown
that a π=3 rotation mixes the topological ground states.
Indeed, evaluating the overlap h1jRπ=3j1i using quantum
Monte Carlo calculations [134], we see for the smaller
torus (of 24 sites) in Fig. 7(a) that (i) the ground state of
the trivial phase is completely symmetric, (ii) the ground
state of the symmetry-broken phase gives a vanishing

overlap with the rotated wave function, and (iii) the
ground state in the presumed spin liquid gives a finite
overlap, suggesting that it has overlap with a finite number
of other states. In fact, its value is universal and can be
derived as in Ref. [131]. In particular, the relevant 2 × 2
block of the modular matrix is

� h1jRπ=3j1i h1jRπ=3jei
hejRπ=3j1i hejRπ=3jei

�
¼ 1

2

�
1 1

1 1

�
: ð3Þ

Whereas the value of h1jRπ=3j1i for the smaller torus is
slightly above 1=2 [see Fig. 7(a)], repeating it for a bigger
torus with 96 sites [see Fig. 7(b)], we agree with the
prediction (3). For completeness, we also show h1jei:
While the two MPS are orthogonal on the infinitely long
cylinder, it is a priori not guaranteed that they should
remain orthogonal when making the MPS periodic on the
torus [132]. Hence, the fact that we find a small value
h1jei ≈ 0.03 confirms that the finite-size effects are
rather small.
Another way of confirming that these two ground states

correspond to the 1 and e anyon is by constructing the
fixed-point wave functions, for which we find a large
overlap. More precisely, we define j1ifix as the state on the
cylinder that corresponds to the superposition of all dimer
configurations for which hPiloop ¼ hQiloop ¼ 1 around the
circumference. The other three fixed-point wave functions
jeifix, jmifix, and jfifix are then obtained by applying,
respectively, aQ, P, and PQ string along the infinitely long
axis of the cylinder. We confirm that if we start from the
fixed-point wave functions for j1ifix and jeifix and perform
imaginary time evolution, we converge toward the two
ground states found by DMRG. This process naturally
gives us a way of also obtaining the ground states
corresponding to the vison or magnetic particle m and
the fermion f. We confirm that the finite-size splitting of
these four topological ground states decreases with circum-
ference, plotted in Fig. 8 (for YC-4 and XC-8). Because of
the inefficiency of imaginary time evolution compared to
DMRG, we are not able to prepare converged wave
functions for jmi and jfi on YC-8, so we cannot consider
their overlaps in Fig. 7.
A further characterization beyond topological order

involves the implementation of symmetry, i.e., symmetry
enrichment of topological order [10]. This characterization
can be deduced from the relation to the kagome lattice
dimer model, albeit in the absence of spin rotation
symmetry (since monomers carry no spin). We expect
the relevant projective symmetry group to be that of the
bosonic mean field Q1 ¼ −Q2 state of Ref. [5], which is
related to other mean field representations in Refs. [135–
138]. A caveat is that lattice symmetry enrichment, which
implies a background “e” particle associated to each
kagome site, can modify ground state overlap matrices
for certain system sizes.

(a) (b)

FIG. 7. Ground states and modular transformations. From the
ground states on the infinitely long cylinder, we can obtain
minimally entangled ground states on the torus geometry. For the
smaller geometry, we show that, while the π=3 rotation acts
trivially on the trivial (δ=Ω ¼ 1) or symmetry-breaking
(δ=Ω ¼ 2.5) phases, it leads to a nontrivial overlap in the spin
liquid (δ=Ω ¼ 1.7). We confirm for the larger torus (96 sites) that
the overlaps for distinct ground states agree with the prediction
(3) based on the modular transformation of a Z2 spin liquid. The
overlaps are shown as a function of the Monte Carlo sweeps,
converging toward the value of approximately 0.5.
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III. PROSPECTS FOR REALIZATION
AND DETECTION

In Sec. II, we establish that the Rydberg blockade model
realizes a Z2 spin liquid for a range of parameters. The
purpose of this section is twofold. First, we would like to
show that this result is not limited to the blockade model in
Eq. (2): The spin liquid persists on adopting the realistic
Rydberg potential. Second, we would like to have a way to
diagnose the existence of the spin liquid using probes
available in Rydberg experiments. In light of that, we
discuss how the string operators can be measured in the lab.

A. Quantum liquid for 1=r6

potential and a family of ruby lattices

We now consider the Rydberg Hamiltonian in Eq. (1)
with the algebraically decaying potential VðrÞ ¼
ðΩ=ðr=RbÞ6Þ; Rb is commonly referred to as the
(Rydberg) blockade radius due to sites well within this
distance experiencing a large potential, effectively a block-
ade of the type discussed in Sec. II. Since VðrÞ now
explicitly depends on the distances between the atoms, it is
important to discuss the geometry of the lattice. In the
blockade model, we specify that the atoms live on the links
of the kagome lattice [see Fig. 1(a)]. These atoms form
the vertices of the so-called ruby lattice, demonstrated in
Fig. 9(a). In this particular case, we see that the rectangles
of the ruby lattice have an aspect ratio ρ ¼ ffiffiffi

3
p

. However,
ρ is a free tuning parameter [139]; as long as
ρ > 1=

ffiffiffi
2

p
≈ 0.71, the six sites nearest to a given site are

the same set of points for which we defined the blockade in
Fig. 1(a). If we, thus, choose Rb to be large enough to
enclose these six nearest sites (which are enclosed in a disk
of radius r3=a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p
), the resulting model approx-

imates the blockade model. However, due to the 1=r6

interaction, we have additional longer-range couplings, and
it is nontrivial to know whether or not the spin liquid will be

stable to these perturbations. For this same reason, we want
to take Rb smaller than the next interaction radius, i.e., as a
rough guideline for where to search for the spin liquid:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

q
<

Rb

a
< min

� ffiffiffi
3

p
ρ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
3

p
ρþ ρ2

q �
: ð4Þ

For concreteness, we consider the ruby lattice with
ρ ¼ 3, depicted in Fig. 9(c). The rule of thumb in
Eq. (4) suggests that we should look for the spin liquid
in the range of 3.2 < Rb=a < 3.9. We indeed find a spin
liquid for the choice Rb ¼ 3.8a as shown in Fig. 10 for the
XC-8 geometry. There are at least four independent
indicators of the spin liquid: (i) We observe a phase
transition between two featureless states of matter. We
find that the latter is characterized by a large entanglement
plateau, and its density is close to that of an ideal dimer
state: For instance, at δ ≈ 5.3Ω, where the correlation
length is minimal, we find hni ≈ 0.249. (ii) Similar to
the blockade model, the latter phase has a topological
degeneracy: As shown in Fig. 10, DMRG finds degenerate
ground states with opposite signs for the parity loop around
the circumference. (iii) The FM order parameter for the Q
string decays upon increasing the string length, signaling
that we have exited the trivial (Higgs) phase (whereas the
absence of VBS order shows that we have not entered the

confined phase). More precisely, we show hQiðn×nÞFM , where
n × n counts the number of hexagons enclosed: See Fig. 6
for a sketch of n ¼ 2. (iv) We also obtain j1i and jei ground
states on the YC-8 geometry. By putting these on a torus
(see Sec. II E) and properly orthogonalizing the resulting
wave functions (see Appendix C), we can calculate their
overlaps after a π=3 rotation. As shown in Fig. 11, these
agree with the universal value 1=2 predicted by the S and T
matrices of Z2 topological order.
To numerically simulate the model with long-range

interactions, we truncate VðrÞ ¼ ΩðRb=rÞ6 to zero beyond
a distance r > Rtrunc. The data for the XC-8 cylinder in

(a) (b) (c)

FIG. 9. The ruby lattice. (a) Atoms on the links of the kagome
lattice form the vertices of a ruby lattice where the rectangle has
an aspect ratio ρ ¼ ffiffiffi

3
p

. (b) The ruby lattice with ρ ¼ 1. (c) The
ruby lattice with ρ ¼ 3. The colored disks show seven distinct
interaction distances; the phase diagram in Fig. 10 is obtained by
including VðrÞ ¼ ΩðRb=rÞ6 for 16 distinct distances, coupling
each site to 44 other sites.

FIG. 8. Topological ground state degeneracy. In the topological
phase, we obtain the 1 and e ground states from DMRG with
random initial states. The m and f states are obtained by starting
from fixed-point resonating dimer states and subsequently
applying imaginary time evolution. The energies shown are
for δ=Ω ¼ 1.7. In light gray, we also show the eigenvalues of
the P and Q loop operators around the circumference (for YC-4);
the four ground states are characterized by the signs of these
numbers.

PREDICTION OF TORIC CODE TOPOLOGICAL ORDER FROM … PHYS. REV. X 11, 031005 (2021)

031005-9



Fig. 10 and the YC-8 cylinder in Fig. 11 are obtained for
Rtrunc ¼ 9a, which means that each site is coupled to 44
other sites (see Appendix A for details). Moreover, we
confirm that the results are stable upon changing the
interaction cutoff Rtrunc, which is explicitly checked for
Rtrunc ¼ 8a; 9.5a; 10a. As a note of caution, let us mention
that if Rtrunc is small, the physics can depend on it. For
example, if only neighboring triangles are coupled [for
ρ ¼ 3, this constraint corresponds to Rtrunc ¼ ð3þ ffiffiffi

3
p Þa,

indicated by the dark blue disk in Fig. 9(c)], we indeed find
a spin liquid phase with Rb ¼ 3.8a as above. However,
upon including one further interaction radius, the spin
liquid is destabilized. This result can be understood
intuitively by noting that this additional coupling punishes
hexagon flipping resonances which are essential for a spin
liquid. Including yet more interactions again induces a spin
liquid, eventually in a stable way as mentioned above. Note
that, since an XC-4 cylinder has only a circumference
Lcirc ¼ ð ffiffiffi

3
p þ 3ρÞa ≈ 10.7a, one should not compare

entanglement entropies between XC-8 and XC-4, since
we must always ensure that Rtrunc ≤ Lcirc=2. This constraint

explains why—unlike for the blockade model—we do not
discuss topological entanglement entropy for this long-
range interacting model.
The above establishes our main goal of showing the

presence of a Z2 spin liquid for a model with van der Waals
interactions. Note that the model has multiple tuning
parameters that could further stabilize this topological
phase: the lattice aspect ratio ρ, the Rydberg blockade
radius Rb, and the detuning δ=Ω. It would be interesting to
use this freedom to find the global minimum of the
correlation length in the spin liquid phase. We leave such
an exhaustive search through this three-parameter phase
diagram to future work. For the case of the ruby lattice with
ρ ¼ ffiffiffi

3
p

(corresponding to atoms living on the links of the
kagome lattice), we find a spin liquid for Rb ≈ 2.4a upon
including the first four interaction distances. However, we
see indications that further-range interactions tend to
destabilize the spin liquid at ρ ¼ ffiffiffi

3
p

, unlike in the case
reported with ρ ¼ 3. A detailed examination of the case
ρ ¼ ffiffiffi

3
p

will appear in forthcoming work.
Let us also briefly note that, while our numerical results

are for the cylinder geometry, an experimental realization
would, of course, have open boundary conditions. The
main difference is that then there are no topologically
nontrivial loops (i.e., all loops are contractible), and
correspondingly the ground state is unique. Nevertheless,
a topological ground state degeneracy can be recovered by
either puncturing the system or by considering mixed
boundary conditions. Both mechanisms are explained in
detail in Sec. IV, where we also consider numerical results
for the strip geometry.

B. Measuring an off-diagonal string by transforming it
into a diagonal string

In Sec. II D, we introduce the two topological string
operators associated to the Z2 lattice gauge theory. These
can be very useful for identifying the spin liquid and its

FIG. 10. Spin liquid on ruby lattice (ρ ¼ 3) with VðrÞ ∼ 1=r6. We consider the lattice in Fig. 9(c) for blockade radius Rb ¼ 3.8a,
keeping all interactions within a radius r ≤ 9a. There is a phase transition between two featureless phases, the latter having a large
entanglement plateau. The spin liquid is characterized by the simultaneous vanishing of the off-diagonal string operator (i.e., the trivial
phase is an e condensate) and emergence of a large signal for the parity loop around the circumference. The latter also labels two of the
degenerate ground states, as annotated on the density plot. The fact that this transition approximates a dimer model is evidenced by, e.g.,
hni ≈ 0.249 for δ=Ω ¼ 5.3. To emphasize the connection to a dimer model, we plot the density on the links of the kagome lattice (i.e.,
ρ ¼ ffiffiffi

3
p

). The correlation length is also expressed for this kagome geometry (i.e., the length of a triangle of the kagome lattice is 2a).

FIG. 11. Modular transformations on ruby lattice (ρ ¼ 3) with
VðrÞ ∼ 1=r6. For blockade radius Rb ¼ 3.8a and detuning
δ=Ω ¼ 5.5, we consider two topologically distinct ground states
on the YC-8 torus as shown (see the main text and Appendix C
for details). The overlaps after a π=3 rotation agree with the
universal value predicted for a Z2 spin liquid. [As in Fig. 10, the
simulation faithfully represents VðrÞ within a distance r ≤ 9a.]
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nearby phases (see Fig. 6). Fortunately, the parity string P
can be straightforwardly measured in the lab, since it is
diagonal in the occupation basis and can be read off from
the snapshots of the Rydberg states. The off-diagonal string
Q is more challenging to measure directly. We now show
that, by time evolving with a quenched Rydberg
Hamiltonian, it becomes a diagonal observable, making
it experimentally accessible. Aside from its practical
significance, this result is also conceptually valuable, since
it gives a concrete duality transformation between the two
strings. Because of the local constraint, such a duality is
rather nontrivial.
To implement this rotation, we consider the Rydberg

Hamiltonian at zero detuning with a complex phase factor
in the Rabi oscillation [140]:

H0 ¼ Ω
2

X
i

ðieiαb†i þ H:c:Þ þ 1

2

X
i;j

Vðji − jjÞninj: ð5Þ

The essential idea is to consider the evolution under a
Rydberg blockade localized on individual triangles of the
ruby lattice, i.e., Vðr1Þ ¼ þ∞ and VðrÞ ¼ 0 otherwise [see
Fig. 1(a) for the definition of r1].

Since the blockade now acts only within triangles of the
ruby lattice, time evolving with the above Hamiltonian
amounts to an on-site unitary transformation. It is, thus,
sufficient to consider a single triangle, and, by writing the P
and Q operators defined in Fig. 5(a) as 4 × 4 matrices
acting on the Hilbert space of a single triangle, one
straightforwardly derives (see Appendix D for details)

ð6Þ

Thus, one can effectively measure Q along a string by first
time evolving with H0 and then measuring the P string on
the resulting state.
If the aspect ratio ρ of the ruby lattice is not too close to

unity, one can approximate this nearest-neighbor blockade
Hamiltonian by quenchingRb in between the first two radii,
i.e., 1 < Rb=a < ρ. For instance, we confirm that, for
ρ ¼ 3, a quench from Rb ¼ 3.8a (where we find the spin
liquid in Fig. 10) to Rb ¼ 2a gives virtually indistinguish-
able results from time evolving with the nearest-neighbor
blockade (see Fig. 12). In either case, we confirm that the
value of the diagonal correlator at Ωt ¼ τdual ≔
ð4π=3 ffiffiffi

3
p Þ ≈ 2.42 correctly reproduces the ground state

expectation value for the off-diagonal string operator [141].
In the experimental setup, the blockade radius Rb can be
effectively tuned by changing Ω. In particular, since
VðrÞ ¼ ΩðRb=rÞ6, reducing Rb from 3.8a to 2a (as in
the above example) corresponds to changing Ω by a factor
ð3.8=2Þ6 ≈ 47. While appreciable, this factor is achievable
with current methods.

IV. TOWARD FAULT-TOLERANT QUANTUM
MEMORY

Part of the reason that topologically ordered phases of
matter are of great interest is that they can serve as a means
of potentially creating fault-tolerant quantum memories
based on degenerate topological ground states [25]. We
have already encountered such degeneracies associated to a
Z2 spin liquid in Sec. II E. However, this example utilizes
periodic boundary conditions, which is not natural in an
experimental setting. Fortunately, topologically distinct
ground states can also arise for systems with boundaries.
This result can occur for both systems with punctures or
holes (which one can interpret as a sort of boundary) as well
as systems with mixed boundary conditions. Either of these
options requires the knowledge of how to realize distinct
topological boundary conditions. Another important ingre-
dient is the trapping of anyons whose braiding implements
gates on the quantum bits. We first analyze these two
ingredients, after which we discuss what one can do
with them.

A. Trapping an e anyon

If one wishes to braid with anyons, one has to be able to
localize them to a particular region. Since the e anyon in
this model corresponds to a monomer (e.g., see the
discussion in Sec. II A), a natural way of trapping it is
by forcing a certain vertex to have no dimer touching it.
This localization can be done by either simply removing the
atoms on these bonds or by lowering the detuning δ. We
numerically confirm that this way works: Fig. 13 shows the
result of removing two such vertices on XC-8 for the

(a) (b)

FIG. 12. Measuring the off-diagonal string operator through a
quench protocol. (a) The vertical direction is periodic on the
cylinder. The off-diagonal string Q (blue wiggly line) can be
obtained by measuring the diagonal string P1P2 (orange dashed
lines) after a time evolution with a nearest-neighbor Rydberg
blockade Hamiltonian to time Ωt ¼ 4π=ð3 ffiffiffi

3
p Þ [see Eq. (6)].

(b) Starting from the spin liquid ground state of the Rydberg
Hamiltonian with Rb ¼ 3.8a and δ=Ω ¼ 5.3 on a ruby lattice
with aspect ratio ρ ¼ 3 (see Fig. 10), we measure hP1P2i after
time evolving with either the nearest-neighbor Rydberg blockade
model (solid black line) or the ground state Hamiltonian
quenched to Rb ¼ 2 (red dashed line). The horizontal gray
dashed line denotes the ground state value for hQi.
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blockade model at δ=Ω ¼ 1.7. Since parity loops measure
the charge enclosed in a given loop, the nonzero charge
localized on these defects can be inferred from comparing
the sign of the parity loops along the cylinder. In fact, we
even see that the two e anyons are connected by a gauge
string where the parity loops are negative.
Note that the actual removal of atoms is not required: the

same effect is obtained by locally setting the detuning
δ ≪ −jΩj. By adiabatically changing the detuning, this
anyon can potentially be moved around at will, allowing for
control over an e anyon. Similar approaches can potentially
be explored to trap and control m anyons as well. Even in
the absence of such anm anyon, the e anyon can already be
used for nontrivial braiding, as we discuss in Sec. IV C.

B. Boundary phase diagram

There are two topologically distinct boundary conditions
for a Z2 spin liquid. These are characterized by whether the
e or m anyon condenses at the edge. It is no coincidence
that the trivial and VBS phases are also described as
condensates (see Sec. II D): If one interprets a boundary as
a spatial interface from the topological phase to a non-
topological phase, it is natural that the characterization of
the nearby phases carries over to describe boundary

conditions. Similarly, these e and m condensates along
the boundary can be diagnosed using the string operators
introduced in Sec. II D. More precisely, m boundaries
(e boundaries) have long-range order for the P string
(Q string).
Simply terminating the lattice—keeping all the

Hamiltonian terms that fit on the remaining geometry—
tends to stabilize the m boundary. Indeed, since boundary
dimers experience less repulsion, they prefer to arrange in a
classical pattern with few fluctuations, giving long-range
order to the diagonal string operator P. To stabilize the e-
boundary condition, we need to enhance such boundary
fluctuations. One way of doing so is by changing the
detuning δ along the boundary sites, searching for the sweet
spot where the dimers are suspended between the two
classical (empty or filled) configurations.
We numerically determine the resulting boundary phase

diagram for the blockade model on an infinitely long strip
geometry, where we choose the bulk to be deep in the spin
liquid at δ=Ω ¼ 1.7. The results are shown in Fig. 14. In
line with the above expectation, we see that before we
change the boundary detuning, i.e., δbdy ¼ δ, the strip
realizes an m boundary as evidenced by the large response
for the end-to-end parity string. As we reach δbdy ≈ 0.5δ,
there is a boundary phase transition (where the correlation
length diverges along the infinite direction) after which the
parity string dies out, making way for a strong signal for the
Q string. In this regime, we stabilize the e boundary. As we
further decrease δbdy → 0, we are effectively removing
these links from the model, with the remaining geometry
again spontaneously realizing an m boundary. This picture
is also confirmed by the density plots and the hni curve: It is
only in the intermediate regime—corresponding to the e
boundary—that the edge dimers are fluctuating.

C. Topological degeneracy on the plane

With the knowledge of the above boundary phase
diagram, it is now straightforward to construct a rectangular
geometry with a topological ground state degeneracy. A

FIG. 13. A trapping potential for e anyons. The ground state
(here, on a cylinder) for a lattice where four sites around a vertex
are removed captures an e anyon. This result can be read off from
the expectation value of the parity loops (dashed orange lines)
around the circumference: If two neighboring loops have oppo-
site sign, then a charge is enclosed.

(a) (b) (c) (d)

FIG. 14. Boundary phase diagram of the blockade model. We consider an infinitely long strip of the XC-8 geometry: The bulk is the
spin liquid at δ=Ω ¼ 1.7, but we tune δ on the outermost boundary links. (a) The correlation length diverges at two boundary phase
transitions; in the intermediate shaded regime, the entanglement is increased. (b) The small and large δbdy phases have a classical-like
dimer filling at the boundary, whereas the intermediate regime has a compressible boundary. (c) By calculating the string operators from
boundary to boundary, we diagnose the small and large (intermediate) δbdy phases as having m-condensed (e-condensed) boundaries.
(d) Density plots hni in the three boundary regimes. The strip is infinitely long (finite) in the horizontal (vertical) direction.
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schematic picture is shown in Fig. 15(a): a square slab
where the four boundaries are alternatingly e and m
condensed. One way of understanding this twofold degen-
eracy is as follows: One can imagine extracting a single
e anyon from the top boundary (after all, it is an
e condensate), dragging it through the deconfined bulk,
and depositing it at the bottom boundary. Similarly, one can
do the same for an m anyon from left to right. Because of
the mutual statistics of e and m, these two processes
anticommute, implying a degeneracy.
Let us now address how to physically label this two-level

system or, equivalently, how to read out a given state. If the
spin liquid is in a fixed-point limit—similar to the toric
code [25]—then the topological string operators P and Q
(defined in Sec. II D) are exact symmetries of the model. In
other words, the logical σzlogic (σ

x
logic) operator could then be

identified with any P (Q) string connecting the m-con-
densed (e-condensed) boundaries. However, our system is
not at a fixed-point limit, such that acting with these P and
Q string operators need not stay with this subspace;
relatedly, we cannot label our system in terms of eigenstates
of P or Q. Fortunately, using the idea of the FM order
parameter encountered in Fig. 5, we can define properly
normalized expectation values:

ð7Þ

It is worth pointing out that, unlike the numerators in
Eq. (7), the denominators do not depend on the logical state
of the system [143], and, hence, they need to be determined
only once for any particular architecture.
To illustrate that this procedure is meaningful and well

defined, let us consider a simulated example, as shown in
Fig. 16. The top and bottom boundaries are tuned to be e
condensed using the boundary phase diagram in Fig. 14,
setting δbdy ¼ 0.48δ. First, we observe that hQi ≠ 0when it
connects the top and bottom boundaries; this result is
consistent with these being e condensed. Moreover, we see
that hPi ≈ 0 from left to right. This result suggests that this
state lies entirely along the logical-x axis (in the Bloch
sphere picture). To confirm that hPi ≈ 0 is not due to an
error in the boundary conditions (after all, the same result
would arise for a parity string connecting two e-condensed
boundaries), we confirm that, for two parallel parity strings
connecting the twom-condensed boundaries, we obtain the
nonzero response jhP1P2ij ≈ 0.46. As an additional sanity
check, we confirm that this same double-parity string gives
a zero response when running from top to bottom. Finally,
using the FM prescription in Eq. (7), we obtain that the
logical state indeed lies along the x axis: hσxlogici ≈ 1.

We, thus, have a way of labeling and reading out our
topological quantum state. Let us now consider the ques-
tion of initialization. We work with the logical basis
fj0i; j1ig, defined by hnjσzlogicjni ¼ ð−1Þn. We can create
j0i by starting with a sample which has only an m-
condensed boundary—such that the parity string is a fixed
positive value—and then adiabatically create an e-con-
densed boundary as follows:

(a) (b)

FIG. 15. Topological degeneracy in planar geometry. (a) Alter-
nating e- and m-condensed boundaries imply a twofold degen-
eracy. One way of understanding this implication is in terms of
the Majorana zero modes (red dots) that live at the points where
the boundary condition changes [142]; due to the global emergent
fermion parity having to be unity, these four Majorana modes
give rise to only a twofold degeneracy. If we label states using the
P string connecting the left and right boundaries (see the main
text), then pulling an e anyon out of one e-condensed boundary to
another effectively toggles the states in this two-level system.
(b) An annulus geometry with m-condensed boundaries also has
a twofold degeneracy. Moving the e anyon around the hole
toggles the states. Since e anyons can be created only in pairs,
there is another e anyon which we do not move (not shown).

FIG. 16. Readout of a topological ground state. We consider the
blockade model for δ=Ω ¼ 1.7 on a finite sample with open
boundaries, as shown. Moreover, we change the laser detuning on
the top and bottom boundary to δbdy ¼ 0.48δ. From the boundary
phase diagram in Fig. 14, we know that this change realizes the e-
condensed boundary, whereas the left and right boundaries are m
condensates. For the ground state of this system, we show the
values for the two types of topological string operators which
connect their corresponding condensates. Upon using the FM
normalization [see Eq. (7)], the readout for the logical variables
gives a state that lies along the x axis of the Bloch sphere. Note
that both string operators can be experimentally measured using
the prescription in Sec. III B.
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In the above sequence, we also show the parity string
whose value does not change throughout this process, such
that we arrive at j0i. To initialize into j1i, we can now use
the fact that we know how to pin an e anyon (see Sec. IVA).
We can, thus, dynamically change the detuning to pull an e
anyon out the top e-condensed boundary and move it
into the bottom e-condensed boundary, as sketched in
Fig. 15(a). This change implements the logical σxlogic gate,
mapping j0i → j1i.
One can repeat the above steps for the alternative

architecture of an annulus, shown in Fig. 15(b). In
particular, in this case, the logical state is toggled by
braiding the e anyon around the m-condensed hole. More
generally, one can create multiple e- and m-condensed
holes in a given sample. Braiding these (by dynamically
changing the parameters of the Hamiltonian) potentially
gives another handle on topological processing of quantum
information [144,145].

V. OUTLOOK

We demonstrate that Rydberg blockade on the ruby
lattice can be utilized to stabilize a Z2 spin liquid. The
underlying mechanism is that of a monomer-dimer model
where single-site monomer fluctuations induce the dimer
resonances necessary for a resonating valence bond state.
This same picture also leads to a specific form of the two
topological string operators. The spin liquid—stable to
longer-range VðrÞ ∼ 1=r6 interactions—can be character-
ized by these string observables in experiment, where they
are measurable by appealing to a dynamic protocol.
Moreover, we show that this system could be used to
explore topological quantum memories by localizing any-
ons, realizing conjugate boundary conditions which create
degeneracy on the plane, and reading out quantum states.
We note that, given the detailed differences between our
platform and the exact toric code model, these implemen-
tations require new insights. While the robustness of these
techniques in the presence of realistic imperfections (such
as, e.g., spontaneous emission) needs to be carefully
explored, it is important to emphasize that the atom array
platform offers fundamentally new tools for probing and
manipulating topological quantum matter.
Specifically, the theoretical predictions outlined above

can be probed using programmable quantum simulators
based on neutral atom arrays. In particular, the required
atom arrangements can be realized using demonstrated
atom-sorting techniques, while relevant effective blockade
range can be readily implemented using laser excitation
into Rydberg states with large principle quantum number

60 < n < 100. Note that, in designing the appropriate atom
arrays, a careful choice of atomic separations and Rydberg
states should be made to avoid molecular resonances [146]
that could modify the blockade constraint. The spin liquid
phase can be created via adiabatic sweep of laser detuning,
starting from the disordered phase to a desired value of
positive detuning, as demonstrated previously for one-
dimensional [64,147] and two-dimensional [55,56] sys-
tems. For typical parameters, corresponding to effective
Rabi frequencies in the range of a few megahertz, such
adiabatic sweeps can be carried out with minimal
decoherence in systems potentially exceeding 200 atoms.
We note that the topologically ordered state is separated
from the trivial product state by a single continuous
transition which is favorable for preparation. A number
of tools can be deployed to identify and study the transition
into spin liquid state that lacks a local order parameter.
While the transition point can be identified by measuring
the filling fraction (see Fig. 3), much more detailed
investigations can be carried out by measuring the expect-
ation value of parity operators (Fig. 6) associated with
various loops. Remarkably, both P and Q operators can be
efficiently measured, by either directly analyzing the signal
shot images or carrying out this analysis following qubit
rotation in the dimer basis associated with individual
triangles (as explained in Sec. III B). The latter can be
realized using resonant atomic driving with appropriately
chosen parameters. Moreover, the topological entangle-
ment entropy can be potentially obtained by measuring the
second Rényi entropy [148–152] for different regions, as
described in Refs. [27,28]. Together with control over
boundaries and exploration of samples with nontrivial
topology, these methods constitute a unique opportunity
for detailed explorations of spin liquid states with accuracy
and sophistication not accessible with any other existing
approaches.
Furthermore, this work opens up a number of very

intriguing avenues that can be explored in the framework
introduced here. These range from exploration of non-
equilibrium dynamical properties of spin liquid states in
response to rapid changes of various Hamiltonian param-
eters to experimental realization and detection of anyons
with nontrivial statistics. In particular, anyon braiding can
be explored by using time-varying local potentials (see,
e.g., Sec. IVA). Moreover, approaches to improve the
stability of TQL and realization of more exotic spin liquid
states can potentially be realized by additional engineering
of interaction potentials, using, e.g., long-lived hyperfine
atomic states [153–155]. In particular, approaches involv-
ing optical lattice [153] and Rydberg dressing [156] could
be explored to realize a broader variety of spin liquid states.
Finally, we note that the blockade model is essentially an
Ising model on the ruby lattice. Such models could be
implemented in other ways, e.g., in arrays of superconduct-
ing qubits [157–159], magnets with strongly anisotropic
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exchange [160], or perhaps even in recently developed two-
dimensional materials [161]. Potentially, these systems can
be used for the realization of topologically protected
quantum bits, with an eye toward developing new, robust
approaches to manipulating quantum information.
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Note added.—An independent work also studies the quan-
tum phases of Rydberg atoms but in a different arrangement,
where atoms occupy sites of the kagome lattice [162].

APPENDIX A: NUMERICAL DETAILS

As mentioned in Sec. II, in this work, we consider two
types of cylinders of the kagome lattice, called XC or YC.
This naming convention is introduced by Ref. [41]: If one
considers the kagome lattice as depicted in Fig. 2, then the
XC cylinder has its infinite direction along the x axis,
whereas for the YC cylinder this direction is along the y
axis (and, in both cases, the “C” simply stands for
“cylinder”). As a consequence, we see that the finite
periodic direction of the YC cylinder runs along of the
bonds of the kagome lattice.
The DMRG simulations are performed using the open-

access Tensor Network Python (TeNPy) package devel-
oped by Hauschild and Pollmann [109], version 0.7.2.
Although DMRG is a method for one-dimensional systems,
it can be used for cylinder geometries by snaking through
the system (i.e., giving all sites a one-dimensional labeling)
[108]. The cost one pays for this use is that couplings which
used to be nearby in the two-dimensional geometry
typically become further-range couplings in this effective
one-dimensional labeling. To obtain the ground state, we
start with a low bond dimension, say, χ ¼ 100 or χ ¼ 200,

and repeat DMRG for successively larger values of χ until
physical observables are no longer found to change. For
most plots in this work, χ ¼ 1000 is sufficient, although in
certain cases we go up to χ ¼ 2000. As an additional sanity
check that the bond dimension is chosen large enough to
accurately encode the ground state physics, it is very useful
to consider the density hni on sites which are equivalent on
the cylinder but not equivalent in the effective one-dimen-
sional labeling: If χ is too low, their expectation values
typically do not coincide; it is only when the ground state
correctly converges to a ground state on the two-dimen-
sional cylinder that the densities on such sites coincide.
This check is, thus, a very powerful indicator of
convergence.
For systems on an infinitely long cylinder, we use a

translation-invariant ansatz consisting of a certain number
of rings. If this number is chosen too small to fit a particular
VBS pattern, this issue shows up in an inability of DMRG
to converge to a stable state (and sometimes it leads to a
large norm error due to the tendency to form a cat state). In
such cases, the number of independent rings is increased
until the state converges. This process is how we find the
VBS phase in Fig. 2. Sometimes, this VBS phase can get
stuck in a local minimum: For instance, we also find ground
states where the two pinwheels in Fig. 2 have opposite
orientations. For this reason, we start in a variety of distinct
initial states, and we find that the global minimum occurs
for the VBS pattern shown in Fig. 2. When the phase is
trivial or a spin liquid phase, we find that an ansatz of a
single ring is sufficient to obtain a converged state
(although we confirm that the result is unchanged upon

FIG. 17. Connectivity graph for van der Waals interactions on
the ruby lattice. Black dots denote the ruby lattice with ρ ¼ 3

[also see Fig. 9(c)]. Each line represents a coupling in VðrÞ ¼
ΩðRb=rÞ6 that is included in the numerics for the phase diagram
in Fig. 10. The gray dashed lines denote how this coupling is
wrapped into an XC-8 cylinder; any site of the ruby lattice outside
this region can be identified with a site inside this region. The
cylinder is infinitely long in the horizontal direction.

PREDICTION OF TORIC CODE TOPOLOGICAL ORDER FROM … PHYS. REV. X 11, 031005 (2021)

031005-15



increasing the number of rings), except for the YC-6
geometry (for which the entanglement entropy appears
in Fig. 4), which has a Lieb-Schultz-Mattis anomaly—
there, a two-ring ansatz is necessary, even in the trivial and
spin liquid phases. Let us also mention that the correlation
length ξ is obtained via the standard MPS procedure: One
diagonalizes the transfer matrix—if its largest eigenvalue is
normalized to be unity, then the absolute value of its second
largest eigenvalue is e−1=ξ.
In Sec. III, we consider a model on the ruby lattice with

long-range van der Waals interactions. In particular, for the
ruby lattice with ρ ¼ 3 and blockade radius Rb ¼ 3.8a, the
data in Figs. 10 and 11 are obtained for VðrÞ ¼ ΩðRb=rÞ6
for r ≤ 9a and VðrÞ ¼ 0 for r > 9a. Its connectivity graph
is shown in Fig. 17 for the XC-8 geometry.

APPENDIX B: SCALING OF FREDENHAGEN-
MARCU ORDER PARAMETER

In Fig. 6 of the main text, we show the FM string order
parameters hQiðn×nÞFM and hPiðn×nÞFM for n ¼ 2 (sketches of the

string geometry are also shown in that figure). The plot
suggests that these strings decay to zero in the intermediate
phase, consistent with this phase being the deconfined
phase. To confirm this claim, here we go deep in the spin
liquid, δ=Ω ¼ 1.7, and scale the FM string order param-
eters with their length n. For clarity, we sketch the strings

that define hQiðn×nÞFM in Fig. 18(a) for n ¼ 1, 2, 3. The values
for n ¼ 1, 2, 3, 4, 5 (for both types of strings) are shown in
Fig. 18(b), which is obtained on the XC-12 geometry with
bond dimension χ ¼ 1400: We see that these values decay
to zero exponentially with the length of the string, as
expected in the deconfined phase [91].
For the spin liquid in the model with VðrÞ ∼ 1=r6

interactions (see Sec. III A), we cannot go up to XC-12
cylinders. We are, thus, limited in repeating the same
analysis, but, for completeness, we present the results on
the largest cylinder accessible in this case: YC-8, shown in
Fig. 19(a). Although Fig. 19(b) presents results for only
three distinct FM string sizes, the qualitative behavior is
consistent with that of a spin liquid and is similar to what
we observe in Fig. 18(b). Indeed, both the P and Q-FM

(a) (b)

FIG. 18. The FM string order parameter in the blockade model. (a) The lattice shown is the XC-12 cylinder (periodic along the vertical
direction, infinite along the horizontal direction). The blue lines denote the Q strings defining the FM order parameter hQiðn×nÞFM (n ¼ 1,
2, 3), which is normalized by the square root of the closed string [see Fig. 5(c) for the general definition]. (b) Values for the FM order
parameters in the blockade model on XC-12 deep in the spin liquid, δ=Ω ¼ 1.7. Both strings decay to zero exponentially with the length
of the string, a property that is unique to the deconfined phase.

(a) (b)

FIG. 19. The FM string order parameter in the VðrÞ ∼ 1=r6 model. Similar to Fig. 18, except (a) we work on the YC-8 cylinder and
(b) the DMRG results for the FM order parameters are now for the ruby lattice model discussed in Sec. III A, in particular, the blockade
radius is Rb ¼ 3.8a, the detuning δ=Ω ¼ 5.5, and we faithfully represent VðrÞ ¼ ΩðRb=rÞ6 within a distance r ≤ 9a.
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strings decay as a function of string length, with the former
decaying faster. To give a more quantitative comparison, let
us note that the dashed lines in Fig. 18(b) give expð−a × nÞ
with a ≈ 1.5 for Q and a ≈ 2.9 for P, whereas in Fig. 19(b)
we obtain a ≈ 0.5 for Q and a ≈ 2.5 for P. Hence, the
results for P strings are similar, whereas the decay of the Q
string is 3 times steeper in the blockade model. This result
is consistent with the phase diagrams in Figs. 2 and 10,
where we observe the blockade model is closer to a fixed-
point model (i.e., it has a smaller correlation length).

APPENDIX C: TOPOLOGICAL GROUND STATES
ON THE TORUS

As explained in great detail in Ref. [132], ground states
on a torus geometry can be approximated by first using
DMRG to obtain the ground state on an infinitely long
cylinder and then simply evaluating the resulting matrix
product state wave function on the torus (by identifying the
appropriate virtual indices). In Ref. [132], this approxima-
tion is moreover used to construct minimally entangled
states (MES) on the torus: more precisely, Ref. [114]
clarifies that the topologically distinct ground states found
by DMRG on an infinitely long cylinder are naturally MES,
and, if finite-size effects are small, using the prescription of
Ref. [132], this approximation gives MES on the torus.
However, this result need not be true if finite-size effects

are strong enough to induce virtual anyon loops that wind
around the torus. For concreteness, let us denote the direction
along the circumference of cylinder as “vertical” and the
infinite direction along the cylinder axis as “horizontal.”
Upon putting this wave function on a torus (i.e., the
horizontal direction is made finite and periodic), then virtual
anyonic fluctuations could wind around the horizontal
direction and connect distinct topological sectors, which
means that the resulting state is no longer a MES.
To make this approximation more precise, it is useful to

characterize MES as states which are eigenstates of the
topological line operators along the vertical direction. Let us
denotePver andQver as the loop operators around this vertical
direction; similarly, Phor and Qhor denote loops around the
finite horizontal direction of the torus. We would like to
obtain the MES j1⟫ and je⟫ which are characterized (in the
idealized case) by eigenvalues Qvert ¼ þ1 and Pvert ¼ �1;
this characterization also means that, while they are not
eigenstates of the horizontal loops, they would have a
vanishing expectation value, e.g., ⟪1jQhorj1⟫ ¼ 0 (since
PvertQhor ¼ −QhorPvert). If we denote the states obtained
from placing the cylinder ground states (with the same
vertical loop observables) on the torus geometry as j1i

and jei, then these do not automatically coincide with the
aforementioned j1⟫ and je⟫ states: Finite-size fluctuations
can induce a nonzero value for the horizontal strings, e.g.,
h1jQhorj1i ≠ 0. In the context of the present work, the
dominant fluctuations are in the e anyons [see also
Fig. 18(b)]. Indeed, phenomenologically, we find that
hPhori ≈ 0 for our torus ground states, for both the blockade
and van der Waals models. The fluctuations that induce
hQhori ≠ 0 are closely linked to h1jei ≠ 0: Indeed, the j1i
and jei ground states are related by acting with a Q string
along the horizontal direction.
In the blockade model, we find that h1jei ≈ 0 (see

Fig. 7), such that to a good approximation j1⟫ ≈ j1i and
je⟫ ≈ jei. However, for the models with van der Waals
interactions considered in Sec. III, we find h1jei ≈ 0.4 on
the YC-8 torus of the ruby lattice with ρ ¼ 3, blockade
radius Rb ¼ 3.8a, and detuning δ=Ω ¼ 5.5. In this case, we
thus need to work some more to obtain a good approxi-
mation for j1⟫ and je⟫. Indeed, since Q loops are more
strongly fluctuating, it is better to consider the super-
positions j1i � jei. On the infinitely long cylinder, these
are eigenstates of Qhor and Qver. Since fluctuations in P
loops are found to be negligible, an accurate identification
on the torus is ðj1⟫� je⟫= ffiffiffi

2
p

≈ ðj1i � jei= ffiffiffi
2

p
Z�Þ. There

is a proportionality factor Z�, since j1i � jei= ffiffiffi
2

p
are not

properly normalized: Their norm is ðh1j1i þ hejei=2Þ �
h1jei ≈ 1� h1jei (where we use the realness condition of
the wave function), i.e., Z� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h1jeip
.

In conclusion, we have

j1⟫¼ðαþþα−Þj1iþðαþ−α−Þjei
je⟫¼ðαþ−α−Þj1iþðαþþα−Þjei

with α�¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�h1jeip :

ðC1Þ

It is for these MES that we plot the overlaps after π=3
rotation in Fig. 11, finding excellent agreement with the
prediction for Z2 topological order [131].

APPENDIX D: DUALITY BETWEEN
TOPOLOGICAL STRING OPERATORS

Here, we prove Eq. (6). For this proof, let us first label
the four basis states in a single triangle as follows:

Then, the P and Q string operators [defined in Fig. 5(a)]
can be written as

ðD1Þ
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where we introduce q ¼ e−iα.
The Hamiltonian defined in Eq. (5) does not couple distinct triangles, so it is sufficient to prove the claim for a single

triangle. Then, Eq. (5) becomes

H0 ¼ Ω
2

X
i∈△

Pðiq�b†i − iqbÞP ¼ iΩ
2

0
BBB@

0 −q −q −q
q� 0 0 0

q� 0 0 0

q� 0 0 0

1
CCCA ¼ Ω

2
× VDV†; ðD2Þ

where

D ¼
ffiffiffi
3

p
0
BBB@

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

1
CCCA and V ¼ 1ffiffiffi

6
p

0
BBBBB@

−iq
ffiffiffi
3

p
iq

ffiffiffi
3

p
0 0

1 1 −2 0

1 1 1 −
ffiffiffi
3

p

1 1 1
ffiffiffi
3

p

1
CCCCCA
: ðD3Þ

The time-evolution operator is, thus,

t ¼ 2

Ω
×
2π

3
×

1ffiffiffi
3

p ⇒ e−iH
0t ¼ V

0
BBBBB@

e−2πi=3 0 0 0

0 e2πi=3 0 0

0 0 1 0

0 0 0 1

1
CCCCCA
V† ¼ −

1

2

0
BBBBB@

1 q q q

−q� −1 1 1

−q� 1 −1 1

−q� 1 1 −1

1
CCCCCA
: ðD4Þ

Then,

eiHt

0
BBB@

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

1
CCCAe−iHt ¼

0
BBB@

0 q 0 0

q� 0 0 0

0 0 0 1

0 0 1 0

1
CCCA: ðD5Þ
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