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Efficient Entanglement of Spin Qubits Mediated by a Hot Mechanical Oscillator
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Localized electronic and nuclear spin qubits in the solid state constitute a promising platform for storage
and manipulation of quantum information, even at room temperature. However, the development of
scalable systems requires the ability to entangle distant spins, which remains a challenge today. We propose
and analyze an efficient, heralded scheme that employs a parity measurement in a decoherence free
subspace to enable fast and robust entanglement generation between distant spin qubits mediated by a hot
mechanical oscillator. We find that high-fidelity entanglement at cryogenic and even ambient temperatures
is feasible with realistic parameters and show that the entangled pair can be subsequently leveraged for
deterministic controlled-NOT operations between nuclear spins. Our results open the door for novel
quantum processing architectures for a wide variety of solid-state spin qubits.
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Introduction.—Electronic and nuclear spin qubits in the
solid state are encouraging candidates for the realization of
quantum information systems. Over the past decade, long-
lived quantum memories and few-qubit registers have been
demonstrated in several different platforms, including
under ambient conditions. The key outstanding challenge
is engineering fast, programmable interactions between
spin qubits separated by micrometer-scale distances. For
example, color centers such as the nitrogen vacancy (NV)
center in diamond are promising contenders as robust
qubits, owing to their long coherence times at room
temperature [1], well-developed microwave control, and
optical initialization and readout. However, generating
entanglement on demand between spins remains a chal-
lenge: the short-range dipole-dipole interaction limits con-
nectivity [2], while optical entanglement schemes are
inefficient [3-5], require cryogenic temperatures, and
decohere nuclear memories [6,7].

In a complementary approach, Rabl ef al. [8] suggested
transducing interactions via magnetically functionalized
oscillators, leveraging recent advances in the control of
micromechanical resonators [9,10], which enables quan-
tum control of solid-state electron spins [11-15].
Robustness against thermal noise is desirable for such
applications at elevated temperatures to avoid phonon-
induced gate errors [16]. Previous approaches for such
“hot” gates require large qubit-resonator cooperativities
C>1 for low error rates [17] with error scaling as
£ x 1/4/C (C = 2?/Tkny, compares the coherent coupling
rate 4 to the dissipation rates of the spin and resonator, I"
and kny,, respectively). These regimes are experimentally
challenging to achieve, such that a demonstration of
mechanically mediated entanglement remains elusive.
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In this Letter, we propose and analyze a fast and robust
entanglement protocol for two spins (with eigenstates |0)
and |1)), linearly coupled to a common mode of a high-
temperature mechanical resonator [Fig 1(a)] via parity
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FIG. 1. Entanglement protocol. (a) Two qubits are coupled with

equal strength 1 to a high Q resonator that is independently
measured and has the thermal occupation ng > 1. (b) Spin-
dependent resonator potential. Spin states |01), |10) are de-
coupled, whereas |00), |11) shift the potential, such that toggling
between them every half period drives the resonator. (c) The spins
are initialized in | + +), and the resonator states before (M) and
after (M,) applying the spin pulse sequence (black) for duration
t;, are compared. Absence of displacement indicates spins are in
the entangled antiparallel states. (d) Proposed implementation. A
diamond with NV centers is placed near a microresonator (gray)
functionalized with nanomagnets (black), which is measured
interferometrically. The entangled NV spin state is used to
teleport gates between proximal '*C or N nuclear spins.
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measurements in a decoherence-free subspace (DFS)
[18-21]. The Bell states |[¥*)  |01) % [10) decouple from
the resonator, forming a DFS insensitive to its thermal
fluctuations. In contrast, the aligned states |00) and |11)
exert a force on the oscillator, resulting in a large,
observable displacement [Fig 1(b)]. We can thus herald
the entangled |W*) state by monitoring the absence of an
excess force on the mechanical oscillator, constituting a
(half) parity measurement in a measurement-free subspace
[19,20,22] analogous to previous proposals considering
atoms in optical cavities [18]. By design, this protocol is
robust to thermal noise and does not require strong
coupling or cooling to the mechanical ground state. We
show that entanglement can be generated at high success
rates with relaxed cooperativity requirements, C 2 1, and
with error scaling approaching &£ « In(C)/C at large
cooperativities. We specifically analyze an experimental
realization involving NV centers in diamond coupled to
magnetically functionalized mechanical nanobeam resona-
tors [12,13,15,23], but note that our protocol can equally be
applied to other qubit species coupled to bosonic modes at
high temperatures [24—34], even when high-fidelity readout
is not available by other means [11,35-37].

The entangled pair of electronic spins can be sub-
sequently leveraged to herald two-qubit gates between
nearby, coherently coupled nuclear spin memories in the
solid state [Fig 1(d)]. Assuming state-of-the-art quality (Q)
factors, spin-mechanics coupling strength, and spin coher-
ence times [9,38-41], we expect that our entangling gate
can achieve error rates below 1% at cryogenic tempera-
tures. With modest improvements in the coupling strength,
similarly low error rates can be achieved at room
temperature.

Entanglement protocol.—The key idea of our approach
can be understood by considering two spin qubits, char-
acterized by the Pauli operators oy, (i = 1, 2), that are
linearly coupled with equal strength A to a micromechanical
oscillator [Fig. 1(a); see the Supplemental Material (SM)
[42], which contains Refs. [43-53], for inhomogeneous 4).

If the qubit frequencies w§i> (i =1, 2) strongly exceed that

of the resonator w, <« wgi), the transverse coupling terms

can be ignored, and the system Hamiltonian is

(1) (2)
Ws ' (1) , Ws
2 %t

H/h = o) + wata+iS.(a+a’). (1)

where §, = agl) + 0" and a (a") are the bosonic annihi-

lation (creation) operators of the resonator mode. For the
two states |01) and |10), the qubits are decoupled from the
resonator: the S, =0 states comprise a DFS, i.e., their
phase is independent of the mechanical state. The other two
states exert a force ~ + 2724/z,, on the resonator, where z,,
is the mechanical zero point fluctuation.

(2)

7
z

In our entanglement protocol [Fig. 1(c)], (i), the state of
the resonator is first measured, while the two spins are
initialized in the separable state |+) ® |+) o« V2[¥*)+
[11) +100), with |+) = (|1) +1]0))/+/2. Then, (ii) the
spins interact with the resonator for a time #; while being
subjected to a special resonant decoupling sequence such
that the spin states [11) and |00) displace the resonator
state. Finally, (iii) the resonator displacement is measured.
If it is below a threshold, the spins are projected into the
Bell state |¥*), indicating successful entanglement gen-
eration. The protocol can be made deterministic by repeat-
ing steps (i)—(iii) until success (~2-3 repetitions in the
regime of interest).

To estimate its practical performance, we assume the
mechanical system can be described by a master equation
and is weakly coupled (Q > 1) to a hot thermal bath at rate
k = w,/Q and temperature T > hw,/kz. We also assume
each qubit is dispersively coupled to an independent
reservoir with dephasing rate I'. The Gaussian state of
the oscillator can be estimated interferometrically and
independently of the spins. In practice, the effects of the
measurement backaction and duration are negligible in near
term realizations (see the SM). To simplify the derivation,
in the following we assume short backaction evading
measurements of the mechanical quadrature [54], neglect-
ing the measurement duration and avoiding a lower limit on
the measurement uncertainty.

Figure 2 illustrates the key ingredients of the scheme. In
step (i), we perform an initial linear measurement M; on the
momentum quadrature p = i(a’ — a)/+/2, with measure-
ment uncertainty Am [Fig. 2(a)]. In step (ii), the spins are
resonantly coupled to the oscillator by a series of 7 pulses
(here assumed to be ideal), with a pulse separation
27 = n/w,. This simultaneously maximizes the conditional
mechanical displacement and the spin coherence by
dynamically decoupling from their bath [Figs. 1(b) and
1(c)]. Throughout this pulse sequence, the force acting on
the resonator is a square wave with amplitude ~ — 745, /z,
[Fig. 1(c)] and frequency w,. In the high Q limit, higher
harmonics of the force can be neglected, resulting in the
effective interaction Hamiltonian in the rotating and tog-
gling frame under a rotating wave approximation [42]:

2
Hin/h =S (" + a), @

leading to a momentum shift of the resonator u(S., ;) =
—4v/228,(1 — e~*1/?) [k = —2+/2AS.t;/ 7 in natural units
for xt; < 1. As the conditional equations of motion are
linear, the motional states after step (ii) remain Gaussian
with an uncertainty Ad(t;) ~ \/kngt; + Am?> [dashed
circles in Fig. 2(b)] and a spin-dependent expectation value
of the momentum quadrature of M,e™"/2 + u(S,, ;).
Then, (iii) a second measurement M, localizes the reso-
nator with uncertainty Am, projecting the spin population
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FIG. 2. Mechanical phase space picture. (a) The thermal
resonator (pg,) is localized by measurement M; (uncertainty
Am, purple) at time ¢ = 0 [55-58]. (b) After interaction time #;,
the spin-conditional resonator states (dashed circles, S, = 2 pink,
S, =0 blue, S, =—-2 green) separate, and the resonator is
measured again (M,, purple). (c) The conditional distribution
of measured displacement (dashed circles) and (d) its projection
onto the momentum basis used to define a threshold a|u|/2 (black
dashed line for a = 0.6). If a specific measurement (purple dot)
lies within this threshold, (S_) = 0 is assigned and entanglement
is heralded.

to (S.) € {0, +2, -2} if the distributions are separable. If
this is achieved within the coherence time 1/I" of the spins,
an (S,) = 0 measurement projects the two spins into the
entangled state |¥").

A simple estimate shows the minimum requirements for
this protocol. For negligible measurement uncertainties
Am? < knyt; and an interaction time comparable to the
spin coherence time f; ~ 1/I" yet shorter than the mechani-
cal lifetime 7; << 1/x, the distributions become separable if
the displacement |u(2,1/T)|/2 exceeds the uncertainty
Ad(1/T), ie., 22/Tkng, = C 2 1.

To obtain an estimate of the fidelity, we compute the
(Gaussian) probability density function P ,(AM) of the
momentum difference AM = M, — e~*/2M, conditional
on the spin state S., which has expectation value u(S., #;)
and variance

oty = Am2(1 + &) + n(1— ™) (3)

corresponding to the contributions by the measurement
uncertainties and diffusion during the interaction. The state
is assumed to have S, = 0 if

AM] < au(2.17)/2. (4)

where the threshold a € (0,1] can be tuned to trade
between a high acceptance rate (@ — 1) and low false
positive acceptance (a — 0). The probability of an

accepted event being a true positive is Sla, g(t;)]~
1/[1 + 20’ — O(a?), given by the integrals of Py 4,
within the thresholds and weighted by the initial spin
populations [42], where we define the normalized displace-
ment ¢(t;) = pu(2,t;)/20(t;). The error in entanglement
fidelity F = (W*[p|P*) is the result of two independent
error sources, namely spin dephasing and false positive
(S,) = 0 assignments, yielding

1 1+ %

1+e—2rz,
- E 1+ 6—29(’1)2 B

F = 5 Sla, g(1;)] O@@®). (5)

It follows directly that entanglement can be generated
(F > 1/2) for g(t;)*> >Tt;.. We note that this simple
estimate for ¢ — 0 is a good approximation for general
F 142].

Analysis of the Bell state preparation.—In the following,
we consider the experimentally relevant regime

Am? < kngyty, i.e., the linearized diffusion term dominates
the variance of AM and that xt; < 1. In these limits,

g(11)* = (8/7%)CTyy (6)

such that F can be described only in terms of @, C, and I't;
[Fig. 3(a)]. The fidelity exceeds 1/2 for C > 7%/8 ~ 1.2
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FIG. 3. Performance. (a) Fidelity F as a function of I't; under

Eq. (6). Thresholds « are color coded and cooperativities C have
the associated line styles. Analytic form in Eq. (5), corresponding
to a < 1, blue curves. (b) Optimal pulse sequence duration (solid
lines) and its analytic approximation [Eq. (7)] (dashed line).
(c) Infidelity £ of the Bell state preparation (solid lines) and
analytic approximation [Eq. (8)] for @ < 1 (blue dashed line).
The black dotted line represents the optimal infidelity of a
deterministic hot gate [17], and the dashed-dotted black line is
the asymptotic 72 In C/16C scaling. (d) Normalized rate of true
positive entanglement heralding events r,,/T". The fast repetition
rate allows multiple protocol attempts within the spin coherence
time for large C.
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and exceeds 96% for C ~ 100, demonstrating that our
protocol can be applied with relatively low C. The optimal
interaction time I'#* is determined numerically for each C
[Fig. 3(b), dashed lines] and can be analytically approxi-
mated as

¥ ”2 2

It ~16C1n(16C/7r 1) (7)
for C > 7?/8 and Am, a — 0 [42], showing that the
entanglement protocol is fast compared to the spin coher-
ence time. We note that, in the regime of interest (C = 8,
t; < 1/I'), decreasing the threshold «a, e.g., from 1 to 0.5,
reduces the optimal interaction time [Fig. 3(b)]. At high C,
this can compensate the reduced acceptance rate for small &
and increase the absolute rate of true positive entanglement
heralding events given by r, = [/ Py(p)dp/2t* for
threshold 6 = au(+2,¢*)/2 [Fig. 3(d)] [42]. Inserting
Eq. (7) into Eq. (5), we find a lower bound to the fidelity

2 -7*/8C
f211+(16C/ﬂ 1) _/ ®)
2 1+ (16C/x* = 1)7!

again for C > 7°/8 and Am, a — 0. The error £ = 1 — F
is shown in Fig. 3(c). Remarkably, the cooperativity
required to achieve an error £ < 10~ is more than 2
orders of magnitude lower than for previous mechanically
mediated gates [8,17]. For large C, £ ~ (z?/16)In(C)/C.
Potential applications.—The entanglement protocol pre-
sented here is inherently probabilistic, approaching a
heralding probability of 1/2 for @ — 1. However, it can
be extended to yield deterministic controlled-NOT gates, as
required for quantum information processing, between
associated qubit registers by feedback, assuming a simple
repeat-until-success scheme [4,18]. In the following, we
consider two electronic spins, such as NV centers (using
|my) = | 4 1) as qubit states for maximal displacements),
interacting with the mechanical resonator and coupled to
nearby '*C (or '®N) nuclear spins in the diamond host
[Fig. 1(d)]. The entangled N'V spin state is used to teleport a
gate between the nuclear spins [59]. Contributions to the
gate error &7 include infidelities related to the ideal
entanglement protocol &, control (€.), initialization
(Eini)» and readout (Egg) of the NV spins, and the
electron-nuclear CNOT gate (Ecnot)- Nuclear qubit errors
arise from coupling to a bath (€,,.) at rate T'yy/y,, where
v~ (7.) s the nuclear (electron) gyromagnetic ratio, as well
as dephasing due to electron spin control errors in failed
entanglement attempts. As the latter depends on the
heralding probability and the hyperfine coupling, we
attribute it to £ with a factor », which is below 1 in the
regime of interest [42]. Combining state-of-the-art spin
control [60,61] with robust decoupling sequences [62], ¢
can be neglected. However, if left unaddressed without
optimal spin control, £, can limit the fidelity [7]. As the

repetition rate is high [Figs. 3(b) and 3(d)], we further
neglect the small probability of failure after a large number
of repetitions in a synchronous circuit [4]. In this case,
the total error of the deterministic nuclear gate
is & = E+2[(1 +n)Ec + Einic + Ero + Ecnor + Enucl-

Experimental implementation.—In NV-based operations
on nearby nuclear spins, optical excitation of the NV
induces decoherence on the nuclear spins through the
hyperfine coupling [6,7,63,64], which can limit £; due
to repeated spin initialization and readout unless compen-
sated by a DFS of nuclear spins [65]. In our system, the
mechanical oscillator can also be used for single-shot
readout and initialization [11], eliminating the need for
optical illumination of the color center [66].

While state-of-the-art continuous interferometric meas-
urement schemes are sufficient for initial experiments
[38,40], their performance could be optimized using a
Kalman filter [see, e.g., Fig. 2] [55-58,67] to account for
mechanical spectator modes and other technical noise
sources [42]. For further improvement, the estimation of
the spin-induced displacement can be achieved with a
multiple model adaptive estimation [68,69], while perform-
ing steps (ii) and (iii) simultaneously, as well as feedback
on the spin state with additional global spin rotations during
the pulse sequence, further increasing the entanglement
fidelity and rate [21]. Finally, errors arising from small
inhomogeneities in the coupling strength can be suppressed
with additional electron spin control [42].

Figure 4 shows the controlled-NOT gate error £; as a
function of C. For realistic parameters described in [42], at
very high C, the total error £; is limited by the electron-
nuclear two qubit gate fidelity, while at more modest
cooperativity, the error scales favorably compared to the
existing state of the art [17]. Note that an experimental
demonstration of our protocol (with £ ~ 107!) may be
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FIG. 4. Error &7 for teleported CNOT gate between two '3C (or
5N) nuclear spins as a function of C for thresholds a and under
Eqg. (6). A mechanical NV spin readout using an interaction time
of 20¢* is assumed. The CNOT gate error between the NV and
nuclear spin spin is set to 10~ (dashed gray line) [73,74] and is
also included in the representation of state-of-the-art hot gates
[17]. Gate errors are numerically calculated (solid lines) and
analytically approximated as &€ [Eq. (8), neglecting nuclear spin
decoherence, dashed line]. For details, see text.
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possible at room temperature and C ~ 8, corresponding to
state-of-the-art spin-mechanical systems (1/I"~ 10 ms
[70]); Q ~10° [9,71]; A/2x~0.9 kHz [41]; Am? ~27
[40]). These parameters are within reach for a soft-clamped,
silicon nitride nanobeam resonator, functionalized with a
nanomagnet at the antinode of motion and placed adjacent
to diamond hosting NV centers [Fig. 1(d)] [70,71]. A
modest further improvement in the spin-mechanical
coupling strength (4 ~ 2 kHz) enables high-fidelity gates
(7 < 107%). Conversely, at cryogenic temperatures
(T ~4 K, coherence time 1/I'~1s [70,72]) the
same system can achieve this fidelity already with A/2z ~
100 Hz [42]. Such parameters yield a high probability of
success (approaching 50% per run) and an average
gate duration approaching 10 ms, faster or comparable
to deterministic protocols with the reported coupling
strengths [17].

Conclusion.—We proposed and analyzed a half-parity
measurement protocol in a decoherence free subspace for
entangling two qubits through a hot resonator, with error
scaling that nears € o In(C)/C. Our protocol is fast and
robust to thermalization errors, and it does not require
ground state cooling. A teleported controlled-NOT gate
employing the generated Bell pair is feasible with mag-
netically functionalized resonators and solid-state elec-
tronic spins featuring long coherence times [70,71].
While we analyzed an implementation involving NV
centers, the protocol can also be applied to other promising
paramagnetic defects, such as spins in silicon [75], as
readout and initialization can be realized mechanically [11].
Further directions for analysis include leveraging continu-
ous feedback to increase the entanglement rate [21,22,76]
and the application of our protocol to generate multipartite
entangled states. Finally, for further improvements, nano-
beam resonators can be electrostatically coupled [8] using
hybridized mechanical modes to selectively couple spins
adjacent to distinct resonators, enabling multiqubit con-
nectivity far beyond the reach of the magnetic dipole-dipole
interactions. While our work leverages decades of develop-
ment of micromechanical devices and solid-state qubits, it
simultaneously eliminates the need for high-fidelity single
qubit optical or electronic addressing. With substantial
technical improvement beyond the current state of the art,
in the long term this approach could pave the way for
realization of solid-state, room-temperature quantum infor-
mation systems.
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