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ABSTRACT: This article primarily discusses the utility of vibrational perturbation
theory for the prediction of X−H stretching vibrations with particular focus on the
specific variant, second-order vibrational perturbation theory with resonances
(VPT2+K). It is written as a tutorial, reprinting most important formulas and
providing numerous simple examples. It discusses the philosophy and practical
considerations behind vibrational simulations with VPT2+K, including but not
limited to computational method selection, cost-saving approximations, approaches
to evaluating intensity, resonance identification, and effective Hamiltonian structure.
Particular attention is given to resonance treatments, beginning with simple Fermi
dyads and gradually progressing to arbitrarily large polyads that describe both Fermi
and Darling−Dennison resonances. VPT2+K combined with large effective
Hamiltonians is shown to be a reliable framework for modeling the complicated
CH stretching spectra of alkenes. An error is also corrected in the published analytic
formula for the VPT2 transition moment between the vibrational ground state and
triply excited states.

1. INTRODUCTION

1.1. Theoretical Computation of Infrared Spectra.Most
simulations of vibrational spectra begin with determination of
the normal modes of vibration and application of the harmonic
oscillator approximation.1,2 This approximation entails that the
potential energy surface (PES) is a quadratic function of 3N− 6
(or 3N − 5 if linear) uncoupled normal coordinates. A similar
approximation is made to the dipole moment surface (DMS),
which governs the intensity of infrared absorption. It is taken to
be a linear function of the normal coordinates. Together these
assumptions comprise the “double harmonic” approximation.
This approach is most successful for molecules with well-defined
equilibrium structures, lacking low-frequency vibrations, and
having low degrees of vibrational excitation, such that their
vibrational motions do not carry them far from the equilibrium
structure. The necessary terms in the PES and DMS can
respectively be expressed as second derivatives of the electronic
energy and first derivatives of the dipolemoment, with respect to
normal coordinate displacements. Alternatively, first derivatives
of the dipole moment are equivalent to second derivatives of the
electronic energy with respect to both applied electric field and
normal coordinate displacements. A version of the harmonic
analysis is implemented in all major quantum chemistry
programs; however, the electronic structure methods that
support it usually depend on the availability of analytic energy
derivatives.

In order to achieve quantitative accuracy, descriptions of
molecular vibration beyond the harmonic approximation are
necessary. Methods of treating this “anharmonicity”, in a
harmonic oscillator basis, include vibrational perturbation
theory (VPT) and variational approaches, both based on Taylor
series expansions of the potential.3 The vibrational self-
consistent field (VSCF) method4 is an alternative, which
variationally improves the zeroth-order wave functions. Further
corrections are then typically made to the VSCF wave functions,
which are analogous to the MP2, CI, and CC treatments of
electron correlation.

1.2. Challenges Associated with Nonrigid Molecules.
Nonrigidity (or floppiness) is the condition in which a system
may explore large amounts of its nuclear configuration space in
the vibrational ground state. Such a thing is also referred to as
large-amplitude motion (LAM), contrasting with the small-
amplitude motion of (mostly) harmonic oscillators vibrating
about a well-defined equilibrium structure.1 One consequence of
LAM is that it often gives rise to multiple conformers,
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complicating (or perhaps enriching) interpretation of spectral
patterns.
In theoretical chemistry, a small to moderate amount of LAM

leads to increased errors in the harmonic oscillator model and in
anharmonic models that build upon it, such as VPT. Although
much of the error is often found to be isolated in the low-
frequency normal coordinates, predictions of reasonable but
diminished quality may still be made for high-frequency
vibrations, as seen with floppy alkyl radicals.5 The n-propyl
and i-propyl radicals have low barriers to torsional and wagging
motions, respectively, localized on their radical sites. They also
feature one and two methyl tops, respectively, which are
notorious for undergoing weakly hindered rotation. Reduced-
dimensionality schemes (i.e., VPT based on a force field that
neglects low-frequency coordinates) have sometimes been used
in attempts to ameliorate the errors.6,7 In the experience of the
authors, reduced dimensionality schemes seldom lead to higher-
accuracy predictions for the high-frequency vibrations. More
sophisticated ways of correcting for LAM have been described,8

but such methods are not widely implemented and tend to be
greatly more complicated than standard VPT. In the case of
severe LAM, such as in proton-bound dimers,9,10 errors become
catastrophic, and the normal-mode harmonic oscillator starting
point should be abandoned in favor of descriptions based on
curvilinear internal coordinates and more expansive potential
energy surfaces, such as discrete variable representation
approaches11 or extensions of VSCF.12

In certain cases of LAM, a situation arises in which the
electronic PES has multiple minima separated by a sufficiently
shallow barrier, such that the ground state wave function is
highly delocalized, with the largest amplitude above the
barrier.13 Similarly, it can sometimes be shown that correction
for zero-point vibrational energy (ZPVE) merges the shallow
multiple-well features into a single well.14 In these cases,
although the PES holds several wells, these likely do not
correspond to conformers. The equilibrium structures cease to
be meaningful, and although one might be tempted to carry out
an anharmonic analysis at the transition state structure (i.e., at
the top of the barrier), this is not a straightforward procedure for
most methods (e.g., VPT).14

2. METHODS
2.1. Introduction to Vibrational Perturbation Theory.

Second-order vibrational perturbation theory (VPT2) is an old
and widely used method for dealing with anharmonicity in
molecular vibrations.3,15 Anharmonicity is defined as the
deviation of vibrations from the harmonic model. In standard
applications of perturbation theory, theHamiltonian is separated
into a zeroth-order part, the exact eigenfunctions of which are
known, and a perturbation that is assumed to be small. The
common, analytic formulation of VPT is based on the Watson
Hamiltonian; accordingly, it uses a rectilinear normal coordinate
system.16−18 This means that the vibrational displacement
coordinates are linear combinations of Cartesian coordinates,
and atoms move in straight (as opposed to curved) paths. The
implications of this fact are far-reaching; however, that is beyond
the scope of this discussion.19 The zeroth-order part of the
vibrational Hamiltonian corresponds to the harmonic oscillator
Hamiltonian, which is based on a quadratic expansion of the
potential energy surface, and the perturbation is the anharmonic
potential. The effects of vibrational angular momentum are also
normally included, again as a perturbation. Moreover,
computations are typically performed for J = 0, allowing for

the neglect of Watson Hamiltonian terms, which involve powers
of the rotational angular momentum operator. It is common to
subdivide the perturbation into numbered Hamiltonians, and
this will soon make it more clear what kinds of terms can
contribute to each part of the energy expression.20

̂ = ̂ + ̂ ′

= ̂ + ̂ + ̂ + ̂
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H H H
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For convenience, the normal coordinates are additionally
made dimensionless, and most of the involved parameters
(harmonic frequencies, anharmonic force constants, and
rotational constants) are expressed in wavenumbers. The
anharmonic potential energy is represented by a Taylor series
expansion in the normal coordinates,
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where the factors of 1/n! are Taylor series coefficients; r, s, t, u, v
are normal coordinates; q̂r, q̂s, q̂t, q̂u, q̂v are the associated position
operators; and ϕrst is a cubic force constant,
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{
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a third derivative of the electronic energy with respect to
displacement along coordinates r, s, t. Note the summation is
unrestricted, so force constants where r, s, and/or t refer to the
same coordinate will appear. Also, there are six equivalent
permutations of r, s, t; three equivalent permutations of r, s, s; and
only one permutation of r, r, r. This redundancy is accounted for
by introducing degeneracy factors. Analogously, ϕrstu is a quartic
force constant, and ϕrstuv is a quintic force constant. The quartic
force constants (and all higher force constants) have similar
definitions.
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2.2. Harmonic Oscillator Integrals. The harmonic
oscillator Hamiltonian, ĤHO, is of course diagonal in the
harmonic oscillator basis set and its eigenvalues are simply linear
combinations of the 3N− 6 (or 3N− 5) harmonic frequencies of
the system. A great advantage of anharmonic approaches that use
the traditional rectilinear normal coordinate system and
harmonic oscillator basis set is the ease of integral evaluation.
The matrix elements of the normal coordinate position, q̂, and
momentum, p̂, operators, which appear in the anharmonic terms,
have simple analytic formulas, which are published in various
texts.1,2 In order to determine the VPT2 energy, matrix elements
are required in which the exponent of the q̂ operator ranges from
0 to 4. Integrals involving products of position and momentum
operators also appear in the vibrational angular momentum
terms. Many of these are not required in VPT2, as only the
diagonal vibrational angular momentum matrix elements are
included. Furthermore, these integrals can all be rewritten in
terms of position integrals.21 The harmonic oscillator position
integrals up to the fourth power are provided below.
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In these expressions, δ is the Kronecker delta, q̂ is the position
operator associated with a particular normal coordinate, and the
indices n and n′ are the number of quanta of excitation in that
coordinate. The harmonic oscillator integrals are straightfor-
wardly solved for within the raising/lowering operator formalism
where

̂ | ⟩ = + | + ⟩†a n n n1 1 (10)

|̂ ⟩ = | − ⟩a n n n 1 (11)

shows the result of operating on an arbitrary vibrational state, |n⟩,
with the raising and lowering operators, respectively. In this
formalism, the position and momentum operators respectively
adopt the following forms:

̂ = ̂ + †̂q a a
1
2

( )
(12)

̂ = − ̂ − †̂p a a
i
2

( )
(13)

The harmonic oscillator integrals can be solved by successive
application of raising and lowering operators to an arbitrary
vibrational state. Returning to the vibrational Hamiltonian, Ĥ1 is
the cubic potential operator that can be expressed as follows:

∑ ϕ̂ = ̂ ̂ ̂H q q q
1
6 rst

rst r s t1
(14)

Similarly, Ĥ2 contains the quartic potential, the vibrational
angular momentum, and the so-called Watson pseudopotential,
which makes a small mass-dependent contribution.
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The relevant (diagonal) part of the vibrational angular
momentum can be written as
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where τ runs over the inertial axes, ωr represents the harmonic
frequency of normal coordinate r,Be

τ is the equilibrium rotational
constant associated with the τ axis, and ζ is a Coriolis constant.21

Coriolis constants are unitless and are interpreted as follows: ζrs
a

couples normal coordinates r and s via a rotation about the a
inertial axis. The lowest-order pseudopotential term can be
written simply as

∑̂ = −
τ

τU B
1
4 e

(17)

i.e., a sum over the equilibrium rotational constants. The
pseudopotential makes only a constant contribution to the
energy at VPT2, so it may be ignored in determining transition
frequencies.

2.3. Sum-over-States VPT2. The standard expression for
the energy of state a, to second-order in perturbation theory, is
given below.
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This formulation of VPT2 will be referred to as sum-over-states
(SoS) VPT2. The sum runs over all zeroth-order states, of which
there are an infinite number. This can be simplified first by
introducing

ϵ = ⟨ | ̂ | ⟩a H aa HO (19)

∑= ϵ + ⟨ | ̂ ′| ⟩ + ⟨ | ̂ ′| ⟩⟨ | ̂ ′| ⟩
ϵ − ϵ≠

E a H a
a H b b H a

a
b a a b

a
(20)

choosing ϵ instead of ω to represent the energy of any arbitrary
harmonic state. The definition of “orders” of vibrational
perturbation theory is somewhat unconventional. Ordinarily,
only the terms in the perturbation expansion are considered to
have “orders”. From left to right, the terms in the VPT2 energy
expression are zeroth-, first-, and second-order. However, in
VPT, also the orders of the various terms in the Hamiltonian are
considered. The order of each term is given by its total number of
position and momentum operators minus two. Accordingly, Ĥ1,
the first-order Hamiltonian, contains first-order terms, and Ĥ2
contains second-order terms. The overall order of the
Hamiltonian and perturbation theory correction determines
what terms contribute to each order of VPT.20,22 A motivation
for these definitions of perturbation orders is the fact that all odd-
order potential terms could make contributions to the second-
order perturbation theory term; likewise, all even-order potential
terms could contribute to the first-order perturbation theory
term. Note that the pseudopotential is an exception to the rules
for determining order, as when it makes its first contribution to
the second-order Hamiltonian, it contains no position or
momentum operators. Moreover, when determining the orders
of Hamiltonian terms in rovibrational calculations, each instance
of the rotational angularmomentum operator should be counted
as well (e.g., the rigid rotor term is zeroth-order).
The harmonic approximation can be considered VPT0. Only

the zeroth-order term involving the zeroth-order Hamiltonian
operator appears. VPT1 introduces the first-order perturbation
theory term, which is a diagonal correction; however, only first-
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order operators may contribute to this. Upon inspection of the
terms in the first-order Hamiltonian, Ĥ1, three sets of rules
become apparent.

ϕ ϕ̂ = ⟨ | ̂ | ′⟩

Δ = ± ±

q r q r

n

For ,
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rrr r iii r

r

3 3
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For terms ,

1, 1, 1 can be nonzero.
rst r s t rst r s t

r s t

In these cases, Δnr represents the number of quanta that is
allowed to change in normal coordinate r. All of the diagonal
matrix elements of the Ĥ1 operator must be zero; therefore, there
is no first-order contribution to the VPT energy, and VPT1
would be no different from the harmonic approximation. It is
important to note that when a q̂r

n operator is absent from a term
in Ĥ, it corresponds to q̂r

0, which is the overlap integral/
Kronecker delta. This means that the excitation level in other
normal coordinates is not permitted to change.
Moving now to VPT2, the second-order perturbation theory

term is introduced, which involves off-diagonal coupling matrix
elements, but only the first-order Hamiltonian matrix elements
are retained in it. In addition to this, now the second-order
Hamiltonian is allowed to contribute to the first-order energy
correction. The second-order perturbation theory terms
including Ĥ1 involve off-diagonal matrix elements between
arbitrary pairs of vibrational states, and there are many
opportunities for these to be nonzero. For example, the terms
of the formϕrrrq̂r

3 will allow |r⟩ to couple to |r + 1⟩ and |r + 3⟩ but
not to |r + 2⟩. More generally, the matrix elements will permit
coupling between harmonic oscillator states that differ by either
1 or 3 net quanta. Can any of the first-order terms involving Ĥ2
be nonzero? Numerous types of quartic terms are contained in
Ĥ2, and they obey the following five sets of rules.
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The first two types of quartic terms can be nonzero when the
number of quanta does not change. The rotation−vibration
terms are analogous to the second type of quartic potential term,
containing q̂r

2q̂s
2 operators, so they may also contribute to the

VPT2 energy. None of the other quartic termsmay contribute to
the VPT2 energy. This fact is greatly advantageous. Although all

cubic force constants are necessary to evaluate the VPT2 energy,
no quartic force constants with three or four unique indices need
to be known.
Thanks to the restrictive definition of VPT2 and the

properties of the harmonic oscillator integrals, the energy
expression simplifies further.

∑= ϵ + ⟨ | ̂ | ⟩ +
⟨ | ̂ | ⟩⟨ | ̂ | ⟩

ϵ − ϵ≠

E a H a
a H b b H a

a
b a a b

a 2
1 1

(21)

It was previously stated that only vibrational states differing by
one or three net quanta can be coupled by Ĥ1. From this, it is
clear that the sumover states can be truncatedwithout any loss of
accuracy. To determine the VPT2 energy of any vibrational state,
it is sufficient to sum over only those vibrational states that are
singly or triply excited or de-excited with respect to it. (Point
group symmetry can impose further restrictions, as only states of
the same symmetry may couple.) With these considerations,
along with extensive algebra, the sum over vibrational states and
all of the integrals can be eliminated from the VPT2 energy
expression, rendering it down to an algebraic form with finite
sums over the normal coordinates. It can then be arranged into a
familiar, spectroscopic form.

2.4. The VPT2 Equations for Asymmetric Tops. Efficient
VPT2 implementations are based on “anharmonicity constants”.
These are multidimensional analogues of the ωexe term that
appears in the Dunham expansion for the rovibrational energy of
a diatomic molecule.15,23 Given below is the Dunham expansion
truncated at the first three pure vibrational terms.
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The diagonal and off-diagonal anharmonicity constants are
defined as follows.

∑χ ϕ ϕ
ω ω ω ω ω

= −
+

+ −
−

1
16

1
32

1
2

4 1
2rr rrrr

s
rrs

r s s r s

2i
k
jjjjj

y
{
zzzzz
(23)
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The VPT2 energy can be defined in terms of the anharmonicity
constants,

∑ ∑ω χ= + + + + +
≥
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(25)

where vr and vs are the number of quanta in normal coordinates r
and s, respectively. Additionally, the double sum has the
condition that s ≥ r. This results in equivalent anharmonicity
constants χrs and χsr only being counted once. Calculating the
energy of a vibrational state using this summation over
anharmonicity constants is exactly equivalent to (but far more
compact than) performing the sum-over-states with the second-
order perturbation theory expression. Note the term G0, which
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collects all contributions to the energy that do not depend on the
vibrational quantum numbers. Its evaluation is unnecessary
when the goal is determination of transition frequencies;
however, it is important for rigorous determination of the
ZPVE.24 The contribution of G0 will be ignored in the ensuing
discussion.
In principle, VPT2 can be applied to any molecule; however,

linear molecules, symmetric tops, and spherical tops all have
special formulas to correctly handle excitation in degenerate
normal coordinates and the vibrational angular momentum that
results.2,25 While it is not rigorously correct to use the
asymmetric top expressions for these systems of higher
symmetry, other sources of error in the treatment (e.g.,
perturbation theory and quality of the potential surface) will
usually dominate. Some of the structure of degenerate overtone
bands is not recovered unless the proper equations are used, and
this may be of concern to high-resolution spectroscopists. But
because of the relative simplicity and ubiquity of the asymmetric
top expressions, this discussion concerns only them.
Setting all v = 0 and allowing r to run over all 3N − 6 normal

coordinates would give the full anharmonic ZPVE (G0 is
neglected). Instead, ignore the sums over r and compute the
ZPVE associated only with normal coordinate a.
(ia) Vibrational ground state (ZPVE) of normal coordinate a:
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It will be helpful to distinguish terms involving diagonal and
off-diagonal anharmonicity constants. Do this by imposing a
restriction on the sum and withdrawing the term where s = a.
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(ib) First excited state of normal coordinate a:
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(ic) Fundamental frequency of normal coordinate a:
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(iia) Vibrational ground state of normal coordinates b and c:
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Now the outer sum runs over both normal coordinates. The

sums can be restricted such that s≠ b and s≠ c. Note that χcb does

not appear in the original summations; however, the equivalent

constant χbc does.
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(iib) Doubly excited state in normal coordinates b and c (one

quantum in each):
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(iic) Binary combination transition of normal coordinates b
and c:
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This can also be written in terms of one-quantum transitions of
the normal modes:

ν ν ν ν χ+ = + +( )b c b c bc (34)

Likewise, for the first overtone of normal coordinate a. The
frequency is given by

∑ν ω χ χ= + +
≠

2 2 6a a aa
s a

as
(35)

Or expressed in terms of one-quantum transitions:

ν χ= + +v v2 2a a a aa (36)

A simple formula for the VPT2 energy of any arbitrarily
excited vibrational state can be determined in this manner. In the
absence of anharmonic resonances, this is all that is required to
obtain predictions of vibrational frequencies with VPT2.
2.5. Resonances in the Anharmonicity Constants. The

anharmonicity constants contain “resonance denominators”.
These are terms in the summations that have differences of
harmonic frequencies in their denominators. The resonance
denominators shown below are those present in χrr and χrs,
respectively.

ω ω−
1

2 r s (37)

ω ω ω ω ω ω ω ω ω− + + − + + −
1

,
1

,
1

r s t r s t r s t
(38)

For certain cases, it is clear that these terms will “blow up”.
This signifies a breakdown in the perturbation theory
approximation. These terms can be selectively removed from
the anharmonicity constant expressions. This is referred to as
deperturbation. Deperturbation is as simple as subtracting the
offending terms, undoing the damage caused by including them
in the first place. The most commonly encountered cases are the
Fermi resonances types I and II:

ω ω ω ω ω≈ ≈ +Type I: 2 Type II:a b a b c

From this point on, these same indices (a, b, and c) will be
used whenever these resonance cases are referenced by name.
Identification of resonances is somewhat arbitrary in nature, and
many different resonance diagnostics have been used. The more
successful ones typically weigh both the harmonic frequency
difference and the magnitude of the associated cubic force
constant. A Fermi resonance requires that vibrational states are
sufficiently close in energy and are also coupled sufficiently
strongly by the cubic terms in the potential expansion. A simple
yet reliable resonance diagnostic is the eponymous Martin
Test.26 This is the difference between the variational and second-
order perturbation corrections to the energies of a pair of states.
The mathematical expressions are given below (eqs 39−42).
Perturbation Theory Correction (Type I):
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Perturbation Theory Correction (Type II):
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Variational Correction (Type II) (obtained from eigenvalues
of this matrix):
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The difference can be evaluated for every two-state
interaction, and a list of resonances can be populated by
choosing an arbitrary cutoff value. A cutoff of 1 cm−1 is
commonly used. The “harmonic derivatives” are an alternative
resonance diagnostic, proposed by Matthews and Stanton and
implemented in the GUINEA module of CFOUR 2.1.27,28

These correspond to first and second derivatives of the VPT2
correction with respect to the harmonic frequencies.
After resonant terms are removed from an anharmonicity

constant, it is customary to give themodified constant an asterisk
and refer to it as “deperturbed”. Moreover, any vibrational state
calculated with deperturbed anharmonicity constants is also said
to be deperturbed. To deperturb the anharmonicity constants
for a Fermi Type I resonance, remove one term from χbb (eq 43)
and one term from χab (eq 44).

ϕ
ω ω

−
−

1
32 2

abb

a b

2i

k
jjjjjj

y

{
zzzzzz (43)

ϕ
ω ω−

1
8 2

abb

a b

2i

k
jjjjjj

y

{
zzzzzz (44)

To deperturb the anharmonicity constants for a Fermi Type II
resonance, remove one term from both χab and χab (eq 45) and
one term from χbc (eq 46).
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Quitting now and calculating vibrational energies with the
deperturbed constants is sometimes called deperturbed second-
order vibrational perturbation theory (DVPT2).29 It provides an
incomplete solution to the vibrational problem where the
strongest couplings are not treated at all. This is not ideal.
Instead, the strong couplings can be reintroduced within a
variational framework. A small “effective Hamiltonian” matrix
can be constructed of the vibrational states that are in resonance
with each other. The diagonal elements of thematrix are taken to
be the deperturbed VPT2 frequencies of each state. The off-
diagonal elements are (typically) the same as what would be used
for a standard variational calculation. The eigenvalues of such a
matrix are the corrected vibrational energy levels, and the
eigenvectors reflect the character/composition of the new
vibrational states.
It is best to think about anharmonic coupling in terms of

interacting states rather than interacting transitions; however,
because all excited vibrational states share a common ground
state, this choice has no bearing on the predicted transition
frequencies. Choosing the diagonal elements of the matrix to be
the energies of vibrational states and then subtracting from the
ZPVE gives equivalent predictions to using the frequencies of
transitions as the diagonal elements and defining the ZPVE as
zero.
Software is available to perform these kinds of variationally

corrected VPT2 calculations in a more (e.g., SPECTRO30,31 and
Gaussian’s generalized second-order vibrational perturbation
theory (GVPT2)25,32 program) or less (e.g., CFOUR’s
GUINEA27,33 program) automated manner. The applications
discussed in this article focus on less automated approaches for

the selection of resonances and interacting states; however, we
acknowledge the value and appeal of black-box implementations
of VPT.25 At this point, it may also be useful to mention that the
authors of this article are primarily practitioners of ab initio wave
function theory. Much of what is suggested in this review
(especially in section 2.7) comes from this perspective. We
acknowledge several recent reviews of VPT application that
instead describe the use of density functional theory (DFT)
anharmonic force fields, which can also be effective and are
typically obtainable at far lower computational cost.6,34−36

Lastly, we briefly acknowledge an alternative method to
variationally corrected VPT2, known as degeneracy-corrected
VPT2 (DCVPT2) that handles resonance singularities in a
different manner, eliminating the need for a variational step.37 A
method has recently been proposed by Barone and co-workers
that smoothly mixes the DCVPT2 energy with the standard
VPT2 energy, based on the proximity to resonance(s), in order
to correct for the inaccuracy of DCVPT2 in certain cases that are
far from resonance.38

2.6. Anharmonic Intensity. 2.6.1. Overview. In order to
understand transition intensity, it is useful to first introduce the
language of mechanical anharmonicity and electrical anharmo-
nicity.39 Mechanical anharmonicity is sometimes also called
intensity borrowing or intensity stealing. It describes the
deviation from harmonicity (i.e., anharmonicity) of the
vibrational wave functions. In contrast, electrical anharmonicity
describes the deviation of the dipole moment function from
linearity (in the normal coordinates). The approximation that
the dipole moment is a linear function of the normal coordinates
is referred to as the electrical harmonicity approximation. It is a
special case of property anharmonicity, distinct from wave
function anharmonicity. Various ways of evaluating intensity can
be mechanically anharmonic, electrically anharmonic, both, or
neither.40

Infrared intensity is proportional to the square of the
transition dipole moment. It is most commonly expressed in
units of kilometers per mole (km/mol) and less commonly as
absorption cross-section (cm2/molecule) or oscillator strength
(unitless). The conversion factor to km/mol includes the
frequency; the infrared intensity is therefore higher for higher-
frequency transitions.41 In this sense, one of the consequences of
mechanical anharmonicity, which usually lowers frequencies, is a
small reduction to intensities. For many applications, it is
sufficient to determine only transitions from the vibrational
ground state. However, in cases where low-energy states are
thermally populated, transitions from excited states can be
weighted by their Boltzmann populations. This can lead to issues
if using VPT2 transition moments, as the available analytic
expressions describe only transitions from the ground vibrational
state.
After the transition dipole moment is determined, evaluation

of infrared intensity is straightforward for full VPT2. For
variationally corrected VPT2, detailed in section 3.1, the
transition moments must first be transformed into the basis of
the effective Hamiltonian eigenvectors. This allows transitions
that are initially “dark” to obtain intensity via mechanical
anharmonicity. This also means that variationally corrected
VPT2 intensities are always at least partially mechanically
anharmonic. The sum of the final intensities is usually close to,
but not identical to, the intensity of the initial “bright” transition
in the absence of the effective Hamiltonian treatment.
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2.6.2. Evaluation of the Transition Dipole Moment. The
dipole moment function may be expanded in the normal
coordinates analogously to the potential energy (eq 2),

∑ ∑
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(47)

where μeq is the equilibrium dipole moment, μr, μrs, and μrst are
first, second, and third dipole derivatives, respectively, and α
indicates the inertial axis component. In practice, this expansion
is usually also carried out such that the highest-order terms with
no shared indices are neglected. Integrals of the dipole moment
function, in the harmonic oscillator basis, can be evaluated with
eqs 5−9. In this way, truncating eq 47 at the linear terms,
harmonic intensities can easily be determined for transitions
between arbitrary harmonic oscillator states.
It would appear that the most straightforward way to move

beyond harmonic intensity would be to expand the dipole
moment function further. For harmonic oscillators, contribu-
tions to the intensity follow an alternating pattern: one-quantum
transition moments arise from the first, third, fifth, ... derivatives;
two-quanta transition moments from second, fourth, sixth, ...
derivatives; three-quanta transition moments from third, fifth,
seventh, ... derivatives; etc. So, expanding the dipole moment
function to the cubic terms provides the leading terms in the
transition moments of one-, two-, and three-quanta transitions
and the second term for one-quantum transitions. Determining
transition moments using this expansion, in the harmonic
oscillator basis, provides intensities that are electrically
anharmonic but not necessarily mechanically anharmonic.
Such a scheme is quite unusual, as it is uncommon to possess
high-order dipole derivatives but not high-order potential
derivatives, or it is uncommon to possess high-order potential
derivatives and not use them in a treatment of mechanical
anharmonicity. Moreover, the mechanical anharmonicity
contribution to intensities is usually much more substantial
than the electrical anharmonicity contribution.
As stated in section 2.6.1, intensities in variationally corrected

VPT2 incorporate some mechanical anharmonicity effects (the
most important ones, when the simulation is intelligently
designed). For this reason, it is often adequate to use harmonic
oscillator transition moments. These are simple to evaluate,
resonance-free, and only require the first derivatives of the dipole
moment. Yet it is important to appreciate that the basis functions
for an effective Hamiltonian are not harmonic oscillator states;
rather, they are partial VPT2 (or DVPT2) states. Therefore, the
use of harmonic oscillator transition moments is not rigorously
correct.
Transition moments may alternatively be evaluated in the

framework of vibrational perturbation theory.41−43 Transition
moments at this level of approximation are both mechanically
and electrically anharmonic. Transitionmoment integrals can be
determined between any two VPT2 or VPT4 states, using a sum-
over-states expression.27,41,44 Analytic expressions for VPT2
transition moments also exist for one-, two-, and three-quanta
transitions from the vibrational ground state.29,41,43,45 The
VPT2 transition moments for transitions of four quanta or
greater are exactly zero. VPT2 transition moments are the most
rigorous source of intensity for a VPT2 simulation. For
variationally corrected VPT2, even the VPT2 transition
moments are not fully rigorous, and it has been recognized

that they require a form of deperturbation in order to correspond
to the partial VPT2 effective Hamiltonian basis states.46

Formulas for deperturbed transition moments of one- and
two-quanta transitions (from the vibrational ground state) have
been published by Vazquez and Stanton,46 and GUINEA is
capable of computing intensities for variationally corrected
VPT2 for even more general cases.27

2.6.3. Corrected Analytic Expressions for VPT2 Transition
Moments.This section reproduces equations from the literature
for the VPT2 transition moments of one- and two-quantum
transitions from the ground vibrational state. Furthermore, it
corrects an error in the Coriolis contribution to the three-
quantum transition moments that were presented recently.47 It
is self-evident that the Coriolis terms in the published |ijk⟩
formula cannot be correct, as they lack i, j, k permutational
symmetry. The |iij⟩Coriolis terms, as they were specialized from
the |ijk⟩ Coriolis terms, are also incorrect. However, Coriolis
coupling makes no contribution to the transition moment for
second overtones, |iii⟩ The correctness of the new expression for
the Coriolis contribution was confirmed by numerical
comparisons with SoS computations.41,48 They are presented
in the Supporting Information (eqs S1−S5).

2.6.4. Resonances in VPT2 Transition Moments. In addition
to being muchmore complicated than the corresponding energy
expressions, VPT2 transition moments are susceptible to several
kinds of anharmonic resonances.46 The effect of resonances on
transition moments can be profound, and because intensity is
proportional to the square, the errors are magnified. Carefree use
of VPT2 transitionmoments cannot therefore be recommended.
Consider the cases of one-, two-, and three-quanta transitions
from the vibrational ground state. The transition moment for
two-quanta transitions is more compact than for the other two
cases, and it contains only 1:2 resonance denominators (i.e.,
Fermi resonances). Identification of Fermi resonances via the
Martin Test and subsequent deperturbation can be successful;
however, a looseMartin Test threshold (perhaps 0.1 cm−1) often
performs better. The one- and three-quanta transition moments
contain not only 1:2 resonance denominators but 1:1 and 1:3
Darling−Dennison resonances, respectively. While these types
of resonances in transition moments are seldom as severe as
Fermi resonances, they should not be ignored, and they must be
identified using a different type of diagnostic. Similar to the way
Fermi resonances are handled in Darling−Dennison constants
(section 3.2), these 1:1 and 1:3 resonance terms are left
deperturbed.

2.7. Computation of Anharmonic Force Fields.
2.7.1. Overview and Electronic Structure Considerations.
When a vibrational spectrum is simulated via VPT2, the most
time-consuming step is the computation of the anharmonic force
field. This requires many derivatives of the electronic potential
energy with respect to the normal coordinates. Anharmonicity
constants require cubic force constants of the form ϕrrr, ϕrrs, and
ϕrst (i.e., all of them); however, they only require theϕrrr andϕrrss
quartic force constants. Therefore, in order to perform
vibrational perturbation theory to second order, the complete
sets of quadratic and cubic force constants and only a small part
of the quartic force constants are required. The cubic and quartic
force constants are commonly determined by numerically
differentiating lower derivatives calculated at geometries
displaced in the normal coordinates. The displacement
algorithms provide enough derivative information to also
compute the ϕrrrs and ϕrrst quartic force constants. The
computation of quartic force fields truncated in this manner is
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implemented in CFOUR, Gaussian, ORCA, and other pack-
ages.27,32,49,50 It differs from a full quartic force field in that it
lacks force constants with four distinct indices, ϕrstu. These
would require many more displacements and derivative
calculations. In VPT2+K (section 3.2), the lack of ϕrstu force
constants means that certain resonance constants cannot be
determined.
In choosing a level of theory at which to compute force

constants, it is most important to consider the reference wave
function, the basis set, and the level of electron correlation. With
regard to the reference wave function, the first question that
must be answered is whether a single-configurational description
is a reasonable starting point or if the wave function is
intrinsically multiconfigurational in nature. When this is in
doubt, the multiconfigurational character of a system can be
judged by performing complete active space self consistent field
(CASSCF) computations.51,52When affordable, the active space
is chosen as the valence space, but this can be truncated to
remove strongly doubly occupied orbitals or nearly unoccupied
orbitals. At least a polarized double-ζ basis set should be used. If
more than one of the squared CASCI coefficients adopts a large
value, then this is indicative of a multiconfigurational system.
The cutoff value is arbitrary; however, a value of 0.05 or higher
for the second most dominant configuration is considered to be
notable, and a value of 0.10 or higher is considered to be severe.
Single-reference coupled cluster (CC) computations also have
diagnostic value, as the T1 and T2 amplitudes reflect the
importance of mixing with excited configurations. A large T2
amplitude can indicate that the wave function has biradical
character.53 Large T1 amplitudes are more difficult to interpret.
In some open-shell systems, large T1 amplitudes are not a cause
for concern; instead, they are reflective of orbital relaxation
effects.54

Once it is established that a system is single-configurational,
the starting point for describing the electronic wave function is
the Hartree−Fock self-consistent field (HF-SCF) method.
Closed shell systems are described from a restricted Hartree−
Fock (RHF) starting point, which usually does not warrant any
special discussion. Unrestricted Hartree−Fock (UHF) and
restricted open shell Hartree−Fock (ROHF) are the two most
commonly encountered references for open shell systems, and
post-HF electron correlation methods and analytic derivatives
based upon both types are available. The correct choice is not at
all obvious.55,56 A UHF reference is susceptible to a
phenomenon known as spin contamination wherein the wave
function is artificially stabilized by mixing with wave functions of
different multiplicities. As a consequence of this, the UHF wave
function is not an eigenfunction of the total spin squared
operator; however, the true wave function must be. Electron
correlation repairs this; particularly, iterative coupled cluster
methods are very effective at reducing the spin contamination of
the wave function. ROHF does not suffer from spin
contamination, and on this basis it would seem to be the
superior choice to UHF. However, it is interesting to note that
typical electron correlation treatments based on an ROHF
reference can actually introduce small amounts of spin
contamination.57,58

There is a further problem called artifactual symmetry
breaking. This can affect both types of reference; however, it
has been stated that ROHF is more susceptible.55 Artifactual
symmetry-breaking can occur when an alternative, lower-energy
SCF solution exists, which has lower symmetry than the point
group of the system. Such a thing is also not physical, as the wave

function symmetry must match the molecular symmetry. Stated
differently, the molecular orbitals must transform as irreducible
representations of the point group of the molecule. At higher-
symmetry structures, it is sometimes possible to constrain the
wave function to conform to the molecular symmetry. However,
it is much more difficult to prevent the SCF procedure from
converging to a broken symmetry solution at a displaced, lower-
symmetry geometry, where the real and artifactual solutions have
the same symmetry. Numerically differentiating points that have
converged to different SCF solutions will lead to nothing but
garbage. In this way, symmetry-breaking can be a serious
concern whenever numerical differentiation is employed, such as
in the determination of quartic force fields. Symmetry breaking is
not totally unrelated to spin contamination; oftentimes, the
alternative SCF solutions can be identified by their expectation
values of the total spin squared operator. Finally, it is important
to understand that symmetry breaking does not actually require
there to be any symmetry elements. The essence of artifactual
symmetry breaking is the incorrect localization of electron
density; this can happen even in the absence of symmetry, and
spurious SCF solutions will arise.
There is a third, even less obvious source of error that can

affect both UHF and ROHF references. In certain regions of
nuclear displacement space, different SCF solutions may
become exactly degenerate; however, the true wave functions
are unlikely to be. The different SCF solutions may correspond
to real, excited electronic states, or they may be spurious,
localized solutions, like those discussed above. These are
referred to as orbital instabilities.59,60 Properties that depend
upon derivatives of the electronic wave function (e.g., force
constants) will tend toward positive or negative infinity as the
points of degeneracy are approached. Such behavior would be
reasonable if these were the true wave functions of two electronic
states in the vicinity of an intersection. Unfortunately, the
degeneracies between SCF solutions are still meaningful, even in
highly correlated wave functions. When the equilibrium
geometry determined with a correlated level of theory is near
the location of an SCF degeneracy, the accuracy of force
constant predictions is degraded. More complete electron
correlation reduces the size of these problematic “near
instability” regions, in nuclear configuration space, and iterative
methods are more effective. In fact, perturbative methods can
actually worsen the problem.59 Orbital instabilities are only
completely eliminated in the full CI limit. It is effectively amatter
of luck as to what extent vibrational frequencies are affected by
near-instabilities. A useful diagnostic for this problem is the
“stability analysis” implemented in most software packages,
which evaluates the second derivatives of the HF-SCF energy
with respect to rotations (i.e., optimizations) of the orbitals.
Small second derivatives (either positive or negative valued)may
be a cause for concern.61

It is for these reasons that it is advisible to perform
computations on open-shell systemswith both types of reference
and to compare the frequencies. If they match closely, it is
unlikely that any of these reference problems are an issue. If they
disagree, thenmore detailed investigations should be carried out,
potentially involving EOM-CC, Brückner CC, or multireference
methods.62−64 Higher-order coupled cluster methods can offer
more of a brute force solution, particularly the iterative methods
such as CCSDT, which are more robust in the vicinity of wave
function instabilities.
The most affordable treatment of dynamical electron

correlation is by Møller−Plesset second-order perturbation
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theory (MP2), and it is fairly accurate for making force constant
predictions. In order to achieve a description of harmonic
frequencies superior to that of MP2, CCSD(T) should typically
be chosen next. Frequencies from CCSD are often worse than
MP2, except in cases where the electronic structure is
particularly challenging or pathological.65 Other electronic
structure methods, such as EOM-CC, are normally reserved
for troublesome systems. EOM-CC can also be an excellent
choice for describing open-shell singlets or excited states, rivaling
or surpassingmultireference perturbation theory.When extreme
accuracy is the goal, it may be desirable to extend electron
correlation to CCSDT(Q) for a well-behaved system. Usually,
this should also be balanced with various auxiliary corrections
such as core-correlation, scalar relativity, the diagonal Born−
Oppenheimer correction, and spin−orbit coupling, as in various
high-accuracy thermochemistry methodologies.66,67 These
methodologies often utilize explicit correlation or extrapolation
techniques to approach a complete basis set (CBS) limit quality
description.68−70

Refocusing the discussion away from composite model
chemistries and back to single “levels of theory”, the basis sets
of choice for computing vibrational frequencies of small organic
molecules are often derived from the atomic natural orbital
(ANO) basis set of Almlöf and Taylor.71 Two benchmarking
studies have found that the ANO basis sets generally perform
well for harmonic frequencies, and they often perform better
than the similar sized Dunning basis sets.72,73 Their superior
performance is more pronounced for smaller basis sets (double
and triple-ζ) quality. The full ANO basis set is quadruple-ζ,
denoted ANO2, and its triple and double-ζ truncations are
denoted ANO1 and ANO0, respectively. Section 2.7.2 delves
into more detail about effective use of these basis sets.
A final consideration in choosing an electronic structure

method is the availability of analytic energy derivatives. Analytic
formulations of third and fourth derivatives are only available for
Hartree−Fock74−76 and DFT77 and are not commonly
implemented in quantum chemistry software packages. A
quartic force field contains up to fourth geometrical derivatives
of the electronic energy; thus, quartic force fields are usually
determined numerically. Differentiation of lower analytic
derivatives (i.e., first or second) helps to reduce the number of
normal coordinate displacements and reduce the numerical
differentiation error. Electronic structure methods with at least
analytic first derivatives available are very desirable for
computation of quartic force fields. The CFOUR package has
analytic derivatives implemented for numerous ab initio
methods.33 A few important methods are listed below.
Hartree−Fock (RHF, UHF, and ROHF) has up to second
derivatives. Most correlated methods based on ROHF [MP2,
CCSD, CCSD(T)] have first derivatives, and most correlated
methods based on RHF and UHF [MP2, CCSD, CCSD(T)]
have up to second derivatives.78,79 For higher-level methods,
CCSDT, CCSDT(Q), and CCSDTQ first derivatives are
available with RHF.33,80 First derivatives are also available with
various EOM-CC models. Access to analytic second derivatives
for higher-order standard coupled cluster methods is possible
with the MRCC program.81,82

2.7.2. Hybrid Force Field Approximations. The motivation
behind making a “hybrid approximation” to a quartic force field
will be introduced first, and then it will actually be explainedwhat
is meant by the term. The use of hybrid approximations is
motivated by three points. First, harmonic frequencies are more
sensitive to the level of theory than higher-order force constants.

A primary reason for this is the increased importance of the
nuclear repulsion energy for higher-order derivatives, which is
always treated exactly.83,84 Second, it is intuitively obvious that it
requires less computational expense to compute harmonic
frequencies than to compute an entire quartic force field at the
same level of theory. Third, anharmonic predictions are more
sensitive to the quality of the harmonic frequencies, as these
constitute the zeroth-order picture, than they are to the quality of
the higher-order force constants.
A hybrid approximation entails the combination of force

constants from different levels of theory, ideally forming a force
field that is both accurate and economical. For the work
discussed herein, harmonic (i.e., quadratic) force constants are
evaluated at a “higher-level” of theory, and the cubic/quartic
force constants are evaluated at a “lower-level” of theory. There
are several approaches to combining force constants. The
approaches can be classified on the basis of whether they make
the following two assumptions: (i) The anharmonic coupling is
well described at the lower-level of theory. (ii) The normal
coordinates are the same at both levels of theory. Both
assumptions are generally valid, if very high levels of theory
can be applied to both the harmonic and anharmonic parts of the
force field. If this is the case, then details of how the hybrid
approximation is applied are unimportant. In the unsaturated
hydrocarbon examples of sections 3.1.1 and 3.8.2, the higher and
lower levels of theory are CCSD(T)/ANO1 and CCSD(T)/
ANO0, respectively, and the combination of both into a hybrid
force field will be indicated as CCSD(T)/ANO[1,0]. The
effectiveness of hybrid approximations has been evaluated by
Polik and co-workers in a recent review of VPT2+K
application.85

The first approach, denoted “additive”, makes both
assumptions. The VPT2 equations are solved with the
nonhybrid (i.e., pure), lower-level quartic force field, and
additive anharmonic corrections are determined. These are
simply the difference between the VPT2 frequency and the
harmonic frequency. The corrections are then applied to the
higher-level harmonic frequencies. The earliest application of
the additive hybrid approximation appears to have beenmade by
Handy and co-workers in a 1989 study on hydrogen peroxide.86

This approach is not generally recommended, as the first
assumption is particularly poor when dealing with CH stretches.
In this spectral region, the most important couplings occur
between singly excited CH stretches and doubly excited HCH
bends; however, the basis set requirements are much greater for
CH stretches than for HCH bends. If the Fermi coupling
problem is solved in a small one-electron basis set (e.g., using
CCSD(T)/ANO0), the CH stretching harmonic frequencies
will be systematically too high (10−20 cm−1 or more), but the
HCH bending harmonic frequencies will be fairly well
converged. The stretch−bend coupling will not be accurately
described; its strength is typically underestimated. A further
concern arises with additive anharmonicity corrections derived
from effective Hamiltonian treatments. Since the final states can
be of significantly mixed character, but the corrections are
applied to pure, harmonic states, the additive approach can be
unsatisfying.
The second approach is denoted “substituted”, and it makes

only the second assumption.87 The lower-level harmonic force
constants are first replaced with their higher-level analogues, in
the quartic force field. Then the VPT2 equations are solved with
the modified force field. This approach is generally recom-
mended, as it has no additional cost, and the two problems
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discussed with the additive approach are completely overcome.
The substituted approach allows for more natural effective
Hamiltonian treatments. However, the second assumption may
still cause problems for larger, lower-symmetry systems, where
the localized vs delocalized nature of the normal coordinates
becomes more sensitive to the level of theory.
The third approach, denoted “transformed”, discards the

second assumption, eliminating error due to differences in the
normal coordinates.88,89 A type of transformed hybrid
approximation used recently by the authors transforms lower-
level cubic/quartic force constants into higher-level normal
coordinates (corresponding to the quadratic force constants).88

This implies that the harmonic force constants have also been
substituted as in the second approach. The disadvantage of the
transformed approach is that it requires a full quartic force field,
which includes the seldom-computed force constants with four
distinct indices. The computation of a full quartic force field can
be several times more expensive; however, it can still be less
expensive than using the higher level of theory for all force
constants. Full quartic force fields are, however, highly desirable
for simulations ofmultiple isotopologues, as the force field of one
isotopologue may be freely transformed into the normal
coordinates of any other isotopologue (even those of lower
point group symmetry).
A fourth approach has been applied to acetonitrile and other

systems by Pouchan and co-workers.90−92 This entails first the
determination of CCSD(T) harmonic frequencies and normal
coordinates and then the direct evaluation of cubic and quartic
force constants, in those normal coordinates, at a lower level of
theory. In their work, their lower level of theory involves DFT. In
their applications, DFT exhibits satisfactory accuracy for cubic
and quartic force constants. This direct approach does not
require a full quartic force field; however, it introduces errors
because the DFT force constants are evaluated at a nonsta-
tionary geometry (i.e., the first derivatives of the potential energy
are not zero). Solutions to this problem have been discussed in
great detail; however, the magnitude of the errors has not been
well studied.83,84

3. RESULTS AND DISCUSSION
3.1. Illustrative Examples. This section introduces the first

two example systems, using them to illustrate some of the
considerations involved in performing VPT simulations. This
sets a precedent for the structure of the remainder of this article;
further aspects of VPT2 simulations are discussed with reference
to these examples and others. For instance, the formaldehyde
example in section 3.1.2 motivates the introduction of the
Darling−Dennison resonance constants in section 3.2, seeing
VPT2 extended fully to VPT2+K.
3.1.1. Simulation of the CH Stretches of Cyclopentadiene.

Cyclopentadiene is an 11-atom system (3N − 6 = 27 normal
modes) with C2v symmetry. In a semirigid system like this, the
CH stretch transitions are often the most anharmonic and
therefore the most interesting to model. Vibrational states with
one quantum of CH stretch excitation frequently fall close in
energy to states with two quanta of CH bending and/or CC
stretching excitation. When those stretching and bending
normal modes primarily involve motion of the same atoms,
the force constants can also be quite large. The procedure for
predicting the infrared spectrum is divided into six steps.
Step 1: Compute the anharmonic force field. This example

uses a hybrid quartic force field. In this force field, the quadratic
force constants are computed at the CCSD(T)/ANO1 level of

theory, and the cubic and quartic force constants are computed
at theCCSD(T)/ANO0 level of theory (a smaller basis set). The
substituted hybrid scheme is employed. This force field contains
990 unique cubic force constants and 2548 unique quartic force
constants (of which 368 are sufficient for VPT2). The C2v
symmetry of the system is taken into account during the
calculation, somany force constants are rigorously zero. This has
significantly reduced the size of the force field.
Step 2: Calculate the anharmonicity constants. The full VPT2

spectrum of the CH stretching fundamentals is shown in Figure
1. Harmonic oscillator intensity is used, on the basis of a linear

expansion of the transition dipole moment. This choice is likely
not the most accurate option, but it avoids overcomplicating the
discussion. Something is so wrong that an axis break is necessary.
Frequency predictions that are hundreds or thousands of
wavenumbers outside of the normal range, such as the 4700
cm−1 CH stretching fundamental here, usually indicate an
untreated Fermi resonance. Now it should be considered
whether Fermi resonances are active.
Step 3: Establish a list of resonances. This should reveal why

there is a CH stretch fundamental at 4700 cm−1. Using the
Martin Test with a 1 cm−1 threshold, which is typical, four Fermi
resonances are identified: three Type I and one Type II (Table
1). Refer to the list of normal coordinates to decide which
resonances are relevant for the CH stretching region (Table 2).
Four are linear combinations of the CH stretches on the ring,
and the other two correspond to the symmetric and
antisymmetric stretches of the CH2 group. Inspecting the
resonance list, note that the first two do not affect the CH
stretches. They manifest in anharmonicity constants that are not

Figure 1. Full VPT2 simulation of the CH stretching fundamentals of
cyclopentadiene. The quartic force field was determined using the
CCSD(T)/ANO[1,0] hybrid model.

Table 1. Fermi Resonances in Cyclopentadienea

resonance Γ
energy

separation
cubic force
constant

variational −
perturbational

ω8 ≈ 2ω14 A1 10.9 −31.6 1.6
ω6 ≈ 2ω13 A1 2.4 −11.2 1.4
ω20 ≈ ω4 + ω22 B2 64.6 −89.7 2.6
ω1 ≈ 2ω22 A1 0.3 88.1 1567.2

aAll quantities are given in wavenumbers. Resonances were identified
with a 1 cm−1 threshold Martin Test, shown in the last column.
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present in the energy expressions for the CH stretch
fundamentals. As long as only CH stretch transitions are desired,
these resonances can be ignored. The last two resonances
directly involve CH stretches. The highest-frequency CH stretch
states are strongly coupled to doubly excited CC stretching
states. The first resonance occurs between B2 states and the
second between A1 states.
Step 4: Deperturb the anharmonicity constants accordingly.

The consequences of deperturbing the anharmonicity constants
for the B2 resonance are shown below.

χ χ

χ χ

χ χ

= → * = −

= → * =

= − → * = −

15.3 0.3,

15.6 0.0,

32.2 16.7

4,20 4,20

20,22 20,22

4,22 4,22

Deperturbing the anharmonicity constants for the A1 resonance
has the following effects.

χ χ

χ χ

= − → * = −

= → * = −

798.3 3.7,

3177.1 1.1

22,22 22,22

1,22 1,22

Step 5: Treat the resonances. This anharmonic coupling
problem is quite simple, and it requires only two 2 × 2 effective
Hamiltonians. The solutions of matrix eigenvalue problems will
be presented in a form that simplifies their interpretation. The
rows of the eigensolution represent the “unmixed”DVPT2 basis
functions, in the same order as theywere arranged in the effective
Hamiltonian. Each column corresponds to a final vibrational
state, headed by its eigenvalue. The numbers within the matrix
are the squared eigenvector coefficients. They are interpreted as
the fraction of each original DVPT2 vibrational state that is
present in the final states. Variational treatment of the B2
symmetry resonance is detailed below (eqs 48−50).
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As a result of the B2 resonance, the fundamental is pushed up,
and the combination is pushed down in frequency by 21
wavenumbers (eq 50). The states mix considerably, but the
transition at 3116.3 cm−1 is best described as a CH stretch
fundamental, and the transition at 3047.2 cm−1 is primarily the
symmetric + antisymmetric CC stretch combination. Treat-
ment of the A1 resonance proceeds similarly (eqs 51−53).
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The overtone is pushed up, and the fundamental is pushed
down in frequency by 9 cm−1. Theymix more weakly than the B2
states, so the transitions are still well described as a CH stretch
fundamental at 3097.2 cm−1 and the first overtone of the
antisymmetric CC stretch at 3160.8 cm−1.
These results illustrate that the variational − perturbational

difference from the Martin Test is not always reflective of how
strong the mixing will be, as it is based upon a two-state
interaction of zeroth-order harmonic oscillator states, whereas
the final mixing occurs after the diagonal elements have been
“dressed” to account for weak interactions with other states.
Note also that the A1 resonance is predicted to be so strong
because the zeroth-order states are less than 1 cm−1 apart. The
harmonic frequencies of these states are not fully converged, and
theymight change by 10 cm−1 or more if they are computed with
more complete basis sets. Small changes could lead to a much
smaller value of the resonance diagnostic.
Step 6: Simulate the spectrum. As with the full VPT2

spectrum, harmonic intensity is used. In the case of resonant
interactions, the harmonic intensity can be distributed propor-
tional to the state mixing. For example, the B2 effective
Hamiltonian gives transitions at 3047.2 and 3116.3 cm−1. The
lower-frequency transition, v4 + v22, steals 30% of the intensity
from v20, which is left with 70%. In this model, mixing is
necessary to confer intensity to combinations and overtones.
Figure 2 shows the variationally corrected simulation. This

type of simulation has occasionally been called VPT2+F, where
the F indicates some explicit treatment of Fermi coupling.87 It

Table 2. Normal Coordinates of Cyclopentadienea

no. Γ description no. Γ description no. Γ description

1 A1 vs
in(CH) 10 A1 δs(ring) 19 B1 ring puckering

2 A1 vas
in(CH) 11 A2 τ(CH2) 20 B2 vs

out(CH)
3 A1 vs(CH2) 12 A2 ρw,as

out (CH) 21 B2 vas
out(CH)

4 A1 vs(CC) 13 A2 ρw,s
out(CH) 22 B2 vas(CC)

5 A1 δas
in(CH) 14 A2 τ(ring) 23 B2 δas

out(CH)
6 A1 δ(CH2) 15 B1 vas(CH2) 24 B2 ρw(CH2)
7 A1 δs

in(CH) 16 B1 ρw,as
in (CH) 25 B2 δs

out(CH)
8 A1 v(CC) 17 B1 ρr(CH2) 26 B2 vas(CCC)
9 A1 vs(CCC) 18 B1 ρw,s

in (CH) 27 B2 δas(ring)
aModes are ordered in the standard spectroscopic convention. Symmetries and qualitative descriptions are given.
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would be interesting to see how this simulation compares to a
scaled harmonic spectrum, which is a far simpler and cheaper
alternative. The scaling factor for the harmonic spectrum is
chosen to best reproduce the experimental band origins of the
two nonresonant fundamentals centered around 2900 cm−1.
Additionally, a DVPT2 simulation in included in the comparison
(Figure 2).
The structures of the harmonic and DVPT2 spectra are very

similar. They each have only six transitions because we have
provided no mechanism for dark states to borrow intensity. The
effective Hamiltonian procedure from VPT2+F simultaneously
corrects the frequencies of the fundamentals and the strongly
coupled two-quanta states and also lights up the dark two-quanta
transitions, giving intensity predictions that are usually
qualitatively correct. Observe that the combination transition
at 3047 cm−1 is actually more intense than some of the
fundamentals.
The theoretical transitions are now compared to experimental

values. The experimental frequencies come from a series of gas-
and liquid-phase studies conducted at room temperature. Band
origins derived from these measurements are not highly accurate
(∼10 cm−1 uncertainty). For some transitions, their symmetries
could be experimentally deduced on the basis of Raman
depolarization ratios and gas-phase rotational contours. This is
especially useful for assigning the transitions above 3000 cm−1,
which are somewhat dense but can be distinguished as being
either A1 or B2 symmetry.
The lowest-frequency transitions are the A1 and B1 symmetry

CH2 stretches. They have been observed as two medium-
strength bands at 2886 and 2900 cm−1, respectively. Nothing
else is observed in the vicinity of these. The simulation places
these in the correct order, at 2905 and 2914 cm−1. In this spectral
region, VPT2+F offers no advantage over VPT2, and even an
assignment based upon harmonic frequencies will be successful.
On the high-frequency side, the first overtone of the
antisymmetric CC stretch was assigned as a weak feature at
3161 cm−1. The VPT2+F simulation also places it at 3161 cm−1.
Two medium-strength A1 transitions were observed at 3091 and
3075 cm−1 and were assigned to the fundamentals. The lower
transition from the A1 effective Hamiltonian is predicted at 3097
cm−1. This is a good candidate for the higher-frequency
transition. The 3075 cm−1 transition probably corresponds to

the in-phase antisymmetric CH stretch fundamental, predicted
at 3084 cm−1.
One medium-strength B2 band was observed at 3105 cm−1

and assigned to the symmetric out-of-phase CH stretch. This
same transition is predicted at 3116 cm−1 from diagonalization
of the effective Hamiltonian. The other transition that is
predicted from the B2 effective Hamiltonian is the combination
band at 3047 cm−1. This matches well with another medium-
strength experimental band found at 3043 cm−1. This feature
was previously assigned to the other B2 fundamental; however,
assignment to the combination band is also consistent with the
symmetry. Of the methods compared, only VPT2+F predicts
intense transitions in the vicinity of both experimental bands. It
is plausible that the remaining B2 fundamental was too weak to
observe and/or obscured by other spectral features. VPT2
predicts that it occurs at 3079 cm−1 and that it is the least intense
of all the fundamentals.
Several more transitions have been observed in this spectral

region. For example, the first overtone of the symmetric CC
stretch was assigned as a weak feature at 2994 cm−1. Since no
resonances are associated with it, full VPT2 should provide a
reasonable description. It places it at 2996 cm−1, showing
excellent agreement. In the remainder of this article, further
example problems are discussed for several small molecules
(ethylene, formaldehyde, and water). These systems exhibit
more complicated resonance interactions.

3.1.2. Out-of-Phase Symmetric CH2 Stretch of Ethylene.
The anharmonic coupling in ethylene was the subject of a 1995
paper by J. M. L. Martin et al.26 This was the same study that
proposed the Martin Test for Fermi resonances. In their work,
they discuss a resonance triad involving v11, v2 + v12, and 2v10 +
v12. These states are the out-of-phase symmetric CH2 stretch
fundamental, [CC stretch + out-of-phase CH2 scissor], and
[2(in-phase CH2 rock) + out-of-phase CH2 scissor], respec-
tively. The smallest effective Hamiltonian that can describe their
interactionwill be a 3× 3.Whenmore than two vibrational states
are mutually coupled in an effective Hamiltonian, this is referred
to as a resonance polyad. Ethylene will be described using a
CCSD(T)/cc-pVTZ force field, the same level of theory used by
Martin. This quartic force field contains only 60 unique cubic
and 115 unique quartic force constants. This time, the procedure
will begin with computation of the Martin Diagnostics for all
two-state interactions (Table 3).

With a cutoff value of 1 cm−1, two resonances are identified.
These are the same resonances that give rise to the polyad
discussed byMartin. It may not be immediately obvious why this
is the case. The first resonance directly involves the CH stretch
fundamental. In isolation, it could be treated by diagonalizing the
2 × 2 matrix of v11* and (v2 + v12)*. However, the anharmonicity
constants will have been deperturbed for the second resonance
as well. This deperturbs v2 + v12 for an additional interaction:
with 2v10 + v12. This state also must be included in the effective

Figure 2. Various anharmonic simulations of the cyclopentadiene CH
stretching region.

Table 3. Fermi Resonances in Ethylenea

resonance Γ
energy

separation
cubic force
constant

variational −
perturbational

ω11 ≈ ω2 + ω12 B3u 11.7 125.7 130.2
ω2 ≈ 2ω10 B3u 25.7 −53.0 1.2

aAll quantities are given in wavenumbers. Resonances were identified
with a 1 cm−1 threshold Martin Test, shown in the last column.
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Hamiltonian in order for the treatment of the coupling to be
complete.
To understand the origin of the three-quanta state above, it

may also be helpful to recall that, in VPT2, the vibrational
energies of multiply excited states can be expressed as a sum of
energies of singly excited states and certain anharmonicity
constants. When v2 is deperturbed for its interaction with 2v12,
the analogous interaction between v2 + v12 and 2v10 + v12 is also
deperturbed, or more generally all interactions between the
states: v2 + vn and 2v10 + vn. When multiple resonances are
connected to each other in this way, the complexity of the
effective Hamiltonian can increase significantly. This phenom-
enon of “connected” resonances is discussed further in section
3.7. Now calculate the anharmonicity constants and deperturb
for these two resonances. The effect of the ω11 ≈ ω2 + ω12
resonance is shown below.

χ χ

χ χ

χ χ

= − → * = −

= − → * = −

= → * = −

177.4 8.2,

182.3 13.1,

166.1 3.0

2,11 2,11

11,12 11,12

2,12 2,12

The effect of the ω2 ≈ 2ω10 resonance is shown below.

χ χ χ χ= → * = = → * = −1.2 4.6, 5.9 7.82,2 2,2 2,10 2,10

Resonance treatment is shown below (eqs 54−56). This
resonance polyad might be described as v2 + v12 simultaneously
participating in a Fermi Type II interaction with v11 and a Fermi
Type I interaction with 2v10 + v12. State mixing is extensive;
however, the transition at 2978.4 cm−1 arguably remains pure
enough to be called the CH stretch fundamental (eq 56).
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This spectral region has been measured with high resolution,
in the gas phase. Bands having rotational structure consistent
with a B3u symmetry vibration have been observed at 2988.6,
3078.5, and 3104.3 cm−1. This agreement is quite good.
VPT2+F predicts all three transitions to within about 10 cm−1.
This simulation can be taken a bit farther by populating the zero
matrix elements of the effective Hamiltonian.
3.2. Darling−Dennison ResonanceConstants.Consider

the vibrational states v11 and 2v10 + v12. Their net difference in
vibrational quanta is 2. More specifically, when the normal
coordinates are considered separately, the number of quanta in
q12 changes by ±1, the number of quanta in q10 changes by ±2,

the number of quanta in q11 changes by ∓1, and the number of
quanta in all other normal coordinates changes by 0. In order for
a force constant to couple these states, it must contain an odd
number of 11 and 12 indices, an even number (at least two) of
q10 indices, and an even number (or zero) of other indices. Only
one force constant in the anharmonic force field satisfies these
criteria, the quartic constant, ϕ10,10,11,12, of the form ϕrrst.
In VPT2, these states do not interact, as all coupling between

different vibrational states is through cubic terms in the
potential. These can connect states differing by 1 and 3 net
quanta only. States differing by an even number of net quanta
(and zero net quanta) do not interact until VPT4, when quartic
couplings between different vibrational states first arise.
In the VPT2+F effective Hamiltonian, these states still do not

directly interact; however, they interact indirectly through their
mutual coupling to v2 + v12. Thematrix element directly coupling
these states has been approximated as zero. Since the force field
contains some information about higher-order coupling that is
not currently being taken advantage of, it may be desirable to
introduce some of this coupling into the model. A simple
solution would be to populate this matrix element with

ϕ1
4 2 10,10,11,12, where the numerical factor is the usual product

of the harmonic oscillatormatrix elements, 1
2 2

, the Taylor series

coefficient, 1/24, and the degeneracy of the force constant, 12.
A more rigorous approach is to use one of the Darling−

Dennison resonance constants, Krstu.
93−96 There are eight types

of these. The leading term of each is a quartic force constant
(multiplied by the Taylor series coefficient and its degeneracy
factor). The remaining terms involve cubic force constants,
Coriolis constants, and resonance denominators. These addi-
tional terms are derived from perturbation theory (hence the
resonance denominators). Their inclusion incorporates more of
the correlation effects from VPT4 and is thus more balanced
than simply using the quartic force constant (i.e., the cubic and
quartic contributions arise at the same order in perturbation
theory).
In the ethylene situation, the 1:3 resonance constant,

K11;10,10,12, is appropriate. Its leading term is ϕ1
2 10,10,11,12, the

quartic force constant that couples these vibrational states
(without the harmonic oscillator matrix element factor). Before
this can be used, it needs to be deperturbed. To do this, search it
for resonant terms and zero them out. It is reasonable to use the
same diagnostic that is used to deperturb the anharmonicity
constants. Resonance constants are kept deperturbed. There is
no follow-up matrix-diagonalization step. This particular
resonance constant takes the following form (eq 57).
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The Kr;sst resonance constant connects vibrational states that
differ by the annihilation of one quantum in one mode, the
creation of one quantum in a different mode, and the creation of
two quanta in a third mode. The final matrix element will be the
product of this resonance constant and the harmonic oscillator
matrix elements.
The expressions for all of the resonance constants and general

formulas for all Darling−Dennisonmatrix elements can be found
in the 2014 paper by Rosnik and Polik (Tables 3 and 2 in their
article, respectively).93 Two of the resonance constants in their
paper, Kkl;mn and Kk;lmn, have typographical errors. As with the
transition moment error addressed in section 2.6.3, these errors
are also apparent because these constants do not have the proper
permutational symmetry. The value of Kkl;mn ought to be
invariant to permutation of k and l and permutation of m and n.
Likewise, Kk;lmn should be invariant to all permutations of l, m,
and n. In Kkl;mn, permutational symmetry can be achieved by
changing the fourth resonance denominator associated with
ϕkmrϕlmr fromD[−l,−n, r] toD[−l, n, r]. InKk;lmn, permutational
symmetry can be achieved by changing the last Coriolis constant
from ζml

α to ζlm
α (equivalent to changing its sign).

Returning to ethylene, the improved effective Hamiltonian
and resonance treatment are given below (eqs 58−60).
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The result does not appear to be worth the extra effort. The
highest-frequency transition now agrees a bit better, the middle
transition agrees a bit worse, and the lowest-frequency transition
is almost unchanged. Approximating thismatrix element as 0was
fine in this situation. The simulation can now be called
VPT2+K.93 It is differentiated from VPT2+F in that its effective
Hamiltonians contain not only the standard Fermi-type matrix
elements composed of cubic force constants but also Darling−
Dennison matrix elements with leading quartic force constants.
It provides one of the best and most affordable descriptions of
anharmonic coupling possible with a quartic expansion of the
potential.
3.3. Antisymmetric CH2 Stretch of Formaldehyde. The

anharmonic coupling in formaldehyde is well-understood,
thanks to the efforts of Polik and co-workers.46,97 It is now
accepted that the antisymmetric CH2 stretch, v5, is involved in a
resonance triad with two combination states: v2 + v6 and v3 + v6.
These are [CO stretch + CH2 wag] and [CH2 scissor + CH2
wag], respectively. As with ethylene, this interaction will require

at least a 3 × 3 effective Hamiltonian for a proper description. It
will be describedwith aCCSD(T)/ANO2 force field, containing
22 unique cubic and 45 unique quartic force constants. Begin
with the Martin Test (Table 4).

With a cutoff value of 1 cm−1, the two resonances identified are
precisely the same ones discussed in the literature. Calculate the
anharmonicity constants and deperturb for these two
resonances. Notice that both resonances necessitate removal
of terms from χ5,6. The effect of the ω5 ≈ ω2 + ω6 resonance on
the constants is given below.

χ χ

χ χ

χ χ

= → * = −

= − → * = −

= − → * = −

64.2 6.8,

72.2 1.1,

80.2 9.1

2,6 2,6

2,5 2,5

5,6 5,6

The effect of the ω5 ≈ ω3 + ω6 resonance on the constants is
given below.

χ χ

χ χ

χ χ

= − → * =

= − → * = −

= − → * = −

19.4 1.9,

12.8 34.0,

80.2 101.5

3,6 3,6

3,5 3,5

5,6 5,6

And the net effect of both resonances on the χ5,6 constant is
shown below.

χ χ= − → * = −80.2 30.45,6 5,6

The structure of this effective Hamiltonian is analogous to the
B2 example from cyclopentadiene. Here, the singly excited
vibrational state directly interacts with two doubly excited states
via matrix elements containing cubic force constants. This
VPT2+F simulation gives very good agreement with experiment
(eqs 61−63). The stretch fundamental is observed at 2843 cm−1,
and the two combination bands are observed at 3000 and 2719
cm−1. Filling in the 0s of this effective Hamiltonian will be
somewhat more involved than in the previous example.98
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Table 4. Fermi Resonances in Formaldehydea

resonance Γ
energy

separation
cubic force
constant

variational −
perturbational

ω5 ≈ ω2 + ω6 B2 37.8 −146.7 34.8
ω5 ≈ ω3 + ω6 B2 202.9 185.8 1.9

aAll quantities are given in wavenumbers. Resonances were identified
with a 1 cm−1 threshold Martin Test, shown in the last column.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Review Article

https://dx.doi.org/10.1021/acs.jpca.0c09526
J. Phys. Chem. A 2021, 125, 1301−1324

1315

pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c09526?ref=pdf


| ⟩

| + ⟩

| + ⟩

v

v v

v v

3004.3 2851.5 2711.5

0.10 0.63 0.27

0.90 0.09 0.01

0.01 0.28 0.72

5

2 6

3 6

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (63)

3.4. Derivation of a Darling−Dennison Matrix Ele-
ment.Consider the doubly excited vibrational states v2 + v6 and
v3 + v6. Their net difference in quanta is 0. More specifically,
when the normal coordinates are considered separately, the
number of quanta in q2 changes by ±1, the number of quanta in
q3 changes by ∓1, and the number of quanta in q6 (and all other
normal coordinates) changes by 0. Force constants capable of
coupling these states will contain an odd number of 2 and 3
indices and an even number (or zero) of all other indices.
In contrast to the 1:3 resonance example in ethylene, there are

nowmultiple quartic force constants that can couple these states.
Every constant of the form ϕ2,n,3,n can contribute to this matrix
element. This matrix element will be a sum of 3N− 6 resonance
constants. It will be simpler to evaluate the harmonic oscillator
matrix element “q-factors” separately for each resonance
constant that appears. It is important to be aware that, in force
constants, the order of the indices does not matter. For
resonance constants, the order of the indices (i.e., which side of
the semicolon they appear on) does matter. Four possible cases
are shown below.
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The final matrix element is defined with all numerical factors
absorbed into it.
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(64)

The first two terms in eq 64 are instances of the Krs;ss resonance
constant, whereas the third term and the summation use Krt;st
constants. The equation differs from eq 20 in ref 98, which was
printed incorrectly. This matrix element is similar to the matrix
element for resonance between singly excited states; the extra
excitation in q6 simply leads to a higher weight for the K2,6;3,6
resonance constant. There is no generally accepted notation for
these matrix elements; here they will be denoted by D, for
Darling−Dennison. Since formaldehyde is small, the fully
expanded matrix element is shown (eq 65).
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The VPT2+K effective Hamiltonian and resonance treatment
are shown below (eqs 66−68). Including theDarling−Dennison
matrix element changes almost nothing. It is desirable to now
discuss an example where higher-order effects are important
(section 3.5).
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3.5. Doubly and Triply Excited Stretching Levels of
Water.This example is borrowed fromMatthews, Vazquez, and
Stanton.20 A CCSD(T)/ANO1 quartic force field is used,
identical to theirs. Note that because water has fewer than four
vibrational degrees of freedom, the incomplete quartic force
fields computed by most software packages are identical to a full
quartic force field. It contains 6 unique cubic and 9 unique
quartic force constants. In accordance with the spectroscopic
convention, the symmetric stretch will be referred to as v1, and
the antisymmetric stretch will be called v3.
Begin by computing the Martin diagnostics. Nothing is

flagged with a cutoff value of 1 cm−1. If the threshold is loosened
to 0.5 cm−1, the symmetric stretch and the bend overtone show
up as a resonance. However, an effective Hamiltonian treatment
of this interaction will not be necessary. Indeed, if this
“resonance” were to be treated, the fundamental would remain
97% pure. The discussion will proceed without any Fermi
resonances. Calculate the anharmonicity constants. Contrary to
the Fermi resonances encountered earlier, the Darling−
Dennison resonances important in this system do not lead to
near-zero denominators in the anharmonicity constants. There
is nothing that needs to be deperturbed.
The doubly excited stretching levels are well-separated in

energy from all triply excited levels. On the basis of their energy
differences, it will be a good approximation to separate excited
stretching levels into polyads by their net excitation level.
Accordingly, the first effective Hamiltonian will contain 2v1, v1 +
v3, and 2v3. Symmetry makes this problem rather easy. Only the
matrix element connecting the two A1 states can be nonzero.
This matrix element uses the Krr;ss resonance constant because
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these states are connected by the annihilation of two quanta in

one mode and the creation of two quanta in a different mode.
Resonance treatment is shown below (eqs 69−71). To

understand the effect of treating the Darling−Dennison
resonance, the VPT2+K eigenvalues can be directly compared

to the diagonal values (which correspond to the full VPT2

prediction). The Darling−Dennison interaction causes the first

overtones to repel each other by 30 cm−1. This pushes them into

excellent agreement with the experimental values of 7202 and

7445 cm−1. The uncoupled B2 combination also matches

experiment (7251 cm−1).
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Resonance treatment for the v = 3 polyad is detailed below

(eqs 72−74). Again, symmetry helps here. This problem can be

block-diagonalized into one 2 × 2 block of each symmetry type

(A1 and B2). Notice that these matrix elements involve the very

same resonance constant from the v = 2 polyad, as the coupled

states still differ by creation/annihilation of two quanta in two

modes. However, the harmonic oscillator integral factors are

larger as a consequence of the greater excitation.
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The B2 states mix modestly with each other and are corrected
by 52 cm−1. However, the uncoupled A1 states were much closer
to each other, so they receive corrections of 129 cm−1 and mix
thoroughly. The B2 transitions have been observed at 10 613 and
11 032 cm−1, and A1 transitions have been identified at 10 600
and 10 869 cm−1. The agreement is less good, but VPT2+K is
still capable of predicting these transitions to within 10 cm−1.
By v = 3, it is clear that unacceptable error is introduced by

neglecting the Darling−Dennison interaction. And as the
excitation level increases, both the density of states and the
magnitude of the Darling−Dennison matrix elements increase.
With increasing energy and excitation, all simulations based
upon VPT2 will eventually break down; however, VPT2+K
remains useful for longer.

3.6. A Simpler Procedure for Deperturbation. For
systems that involve many resonances, the standard deperturba-
tion procedure entails manymanipulations to the anharmonicity
constants and becomes cumbersome and error-prone. There is a
much more straightforward alternative to deperturbing the
anharmonicity constants. All it requires is that VPT2 be
understood in both its sum-over-states formulation and in its
anharmonicity constant based formulation. First, the structure of
the effective Hamiltonianmatricesmust be deduced from the list
of defined Fermi resonances. Then, the fully perturbed diagonal
elements are evaluated with the anharmonicity constant based
expression, as this is much faster than performing the sum-over-
states. Now, the diagonal elements themselves can simply be
adjusted by subtracting the SoS VPT2 correction (eq 75) for
their interaction with all other states, c, involved in the effective
Hamiltonian.

∑ |⟨ | ̂ | ⟩|
ϵ − ϵ≠

a H c

c a a c

1
2

(75)

Now it is not necessary to even use the term “deperturb”. It is
also appealing that every interaction takes the same form, as
opposed to applying tailored corrections for Type I and Type II
Fermi resonances to different numbers of anharmonicity
constants as is done in the standard procedure. Another
advantage of this approach is that it allows for easiermodification
of the list of resonances and the effective Hamiltonians. One
might consider this approach to prioritize the solution of the
reduced dimensional coupling problem(s) over all else. As a
takeaway message, it is often useful to consider the sensitivity of
anharmonic predictions to the choice of resonances and to the
extent of effective Hamiltonian treatment. The resonance
treatment should be understood as an additional source of
uncertainty when critically evaluating VPT predictions.

3.7. Systems of Interacting Resonances. The purpose of
this section is to further discuss the relationships between Fermi
resonances and to illustrate a few more complicated resonance
situations. It is useful to consider the structure of effective
Hamiltonian matrices that are implied by certain definitions of
resonances. As was seen in the various examples above, when
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several Fermi resonances are active in a system, and these
resonances involve some of the same normal coordinates,
complicated resonance polyads may result. We might say that
the resonances are “connected” to each other through their
shared normal coordinates. The ethylene example illustrates a
“vertical” connected resonance, necessitating an effective
Hamiltonian that couples a one-quantum state to a two-quanta
state to a three-quanta state. In contrast, the formaldehyde
example shows a “horizontal” connected resonance, implying an
effective Hamiltonian treatment of a one-quantum state coupled
to two different two-quanta states. These cases can be combined
and/or extended to include several different tiers of coupling.
For example, consider the following case of a two-level vertical
resonance system, having the following active Fermi resonances.

ω ω ω ω≈ ≈2 and 2a b b c

In complicated situations such as the above, it is most useful to
think about the list of resonances as a list of replacement rules.
Iterate through the states in the effective Hamiltonian, replacing
indices with resonant indices to generate new states, until all
possible resonant states are present. An effective Hamiltonian
that simultaneously couples all of these states will provide a
theoretically “complete” treatment of the resonance system.
Equations 76 and 77 show how predictions for various states
might be made, in the presence of this resonance system.
Treatment of vertical resonances demands the coupling of states
with successively higher levels of excitation. Discussion of the
treatment of complicated resonance polyads is scarce in the
literature; however, examples can be found in ref 99 and in the
Supporting Information of ref 87.
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In some automated implementations of variationally
corrected VPT2, such as GVPT2, the couplings to excited states
of three quanta and greater are not treated in a variational
framework; rather, the two-quantum states are left partially
deperturbed.32 While it is more appealing to treat the couplings,
it is doubtful that very high levels of excitation (e.g., couplings
with six-quanta states and higher) will lead to higher-accuracy
predictions, as the description of increasingly higher excited
states, based merely upon a quartic expansion of the potential,
becomes increasingly poor. Sometimes itmay bewise to truncate
the list of resonances in order to prevent the effective
Hamiltonian from becoming too large. Complicated resonance
treatments should not always be avoided; however, they should
be taken with a grain of salt. If a system is subjected to various
reasonable resonance treatments, and a particular transition

frequency shows high sensitivity, then that prediction should be
taken to be less certain.
Finally, it is an interesting fact that certain systems of

resonances are impossible to treat in a complete and satisfying
manner. Consider below the case of the cyclic resonance.

ω ω ω ω ω ω ω ω ω≈ + ≈ + ≈ +a b c b a c c a b

Attempting to build an effective Hamiltonian to treat this
system of resonances leads to an infinite number of substitutions
and inclusion of states that are infinitely excited. There are no
real systems where a cyclic resonance would be a reasonable
model of the anharmonic coupling. However, the Martin Test
has a tendency to identify these cyclic resonances in systemswith
low-frequency modes (e.g., alkyl radicals). By combining the
Martin Test with an energy window test (often with a 200 cm−1

threshold), cyclic resonances are effectively eliminated.32,98,100

3.8. Large Effective Hamiltonian Simulations. 3.8.1. De-
scription. This section discusses a philosophy and standard
procedure for predicting the CH stretching (∼2700−3150
cm−1) spectra of hydrocarbons, which employs VPT2+K with
large effective Hamiltonians. This is a particularly robust and
accurate approach for small alkenes, where it allows for excellent
quality intensity predictions, even when using harmonic
oscillator transition moments. An application to isoprene is
made in section 3.8.2. Variations of this approach are also
applied in several manuscripts.5,13,88,101−103

The use of large VPT2+K effective Hamiltonians was inspired
by work in the Sibert group104 on modeling CH stretch Fermi
coupling with local mode models.5 The most significant
anharmonic interactions involving CH stretch fundamentals
are assumed to be their couplings with doubly excited HCH
bending states (sometimes called scissors). Themost basic local-
mode model of Sibert and co-workers, referred to as the “simple
model”, will be the subject of all further discussion of local mode
models.104 In this model, a methyl group contributes three
scissor coordinates, a methylene group (either bridging or
terminal radical) contributes one scissor coordinate, and other
functional groups do not contribute. From the pool of X
scissoring coordinates generated, all possible doubly excited
scissoring states are generated, totaling (1/2)X(X + 1) states,
where X states are overtones, and the remainder are
combinations. These are mutually coupled together and with
the CH stretch fundamentals in an effective Hamiltonian.
When this large effective Hamiltonian treatment of

anharmonic coupling is adapted for VPT2+K in normal
coordinates, the resulting model is more flexible; however, it
produces more complicated effective Hamiltonians. The
increased flexibility is a consequence of its ab initio nature,
contrasting with the local-modemodel. This allows for couplings
to other kinds of coordinates to be treated straightforwardly
without requiring parametrization. For instance, coupling to
[HCH scissor + CC stretch] states proves to be quite
important in alkenes (section 3.8.2), and it can be accounted for
by simply expanding the pool of coordinates to include the C
C stretch.101,103 The option to include Darling−Dennison
coupling also increases the model’s flexibility; however, the
significance of these couplings in the CH stretching region is
generally minor.5 In VPT2+K, more complicated effective
Hamiltonians often arise due to the explicit consideration of
Fermi resonances other than those between CH stretches and
HCH bends. As described in section 3.7, connected Fermi
resonances necessitate the consideration of additional coor-
dinates and the explicit coupling of multiply excited states. For
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comparison, the local mode model will always have the
advantage of not requiring the evaluation of expensive
anharmonic force fields. Moreover, the interpretation of
couplings is simplified in comparison to the localized nature of
the coordinate system. The local mode model is valuable not
only as an effective standalone simulation of Fermi coupling but
optionally as a companion to ab initio VPT2+K.
The recent work of Lee and co-workers on infrared

spectroscopy of polycyclic aromatic hydrocarbons (PAH) is
deserving of mention.105−108 To describe the CH stretching
spectra of these molecules, a similar variationally corrected
VPT2 model was used, also leading to large polyads. Some
important differences include that their work was based on DFT
force fields (necessitated by the large size of the PAH
molecules), resonance identification was based on separate
force constant and energy different thresholds, and the effects of
connected resonances were not considered. The quality of their
CH stretching predictions was generally quite good and allowed
for confident assignments of the majority of the transitions.
3.8.2. Application to trans-Isoprene. A final example is

presented in this section. A comparison is made between VPT2
simulations of the CH stretching region of isoprene with varying
extents of effectiveHamiltonian resonance treatment. In order to
make this comparison as fair as possible, VPT2-quality transition
moments are used in all simulations (except the last) for one-
and two-quanta transitions. This entails that the intensities of all
“resonant” transitions are obtained from diagonalized-projected
DVPT2 transition moments,46 and “nonresonant” transition
intensities are obtained directly from VPT2 transition moments.
A CCSD(T)/ANO[1,0] quartic force field is used with the
substituted hybrid scheme. Dipole derivatives are determined at
the CCSD(T)/ANO0 level of theory. Small amounts of gauche-
isoprene are present in the experimental spectrum, but no
attempt is made here to account for its absorptions. Transitions
of gauche-isoprene are identified in three regions of the spectrum
and are indicated with arrows. From left to right, the arrows
designate: (i) The small peak with low signal-to-noise. (ii) Either
the weaker, sharper peak or the red shoulder on the stronger
peak. (iii) Both the weak peak and the blue shoulder on the
strong peak. A more detailed treatment of the two conformers,
including assignments, magnified spectral regions, and VPT2+K
predictions for gauche-isoprene has been published elsewhere.103

To start, it is desirable to show a simulation that is
representative of the minimalist treatment of anharmonic
resonances that prevails in the literature. In order to do this, a
more primitive resonance diagnostic is used for Fermi
resonances. The zeroth-order states are considered to be in
resonance if two conditions are met: (i) They are separated in
energy by less than 50 wavenumbers. (ii) The cubic force
constant that couples them has a magnitude of greater than 50
wavenumbers. This diagnostic identifies three Fermi resonances;
five vibrational states receive effective Hamiltonian treatment.
Below, the corresponding VPT2+F simulation is compared to an
experimental spectrum (Figure 3, trace a).
This simulation fails to capture the spectral complexity

especially in the regions centered around 2900 and 3050 cm−1.
These regions are predicted to have single, strong transitions;
however, the experiment contains many weaker transitions
instead. The two strong, high-frequency features correspond to
the antisymmetric CH2 stretches, and these are predicted
accurately. Also, the strong experimental transition at 2958 cm−1

corresponds to the strong theoretical prediction at 2950 cm−1.
This is the sole CH stretching fundamental of a″ symmetry and

does not participate in extensive resonances. A detailed
discussion of assignments has been published.103 The remaining
discussion in this section will evaluate how well VPT2 models
the spectral patterns, with only little regard for what the
underlying transitions are assigned to.
It is reasonable to think that a better description might be

achieved by using the Martin Test to identify the Fermi
resonances (vide supra). With the standard 1 cm−1 threshold, a
total of 17 resonances are identified, which are relevant to the
CH stretching region. An effective Hamiltonian treatment of
these resonances involves the coupling of 20 vibrational states. A
comparison ismade between a VPT2+F simulation based on this
list of resonances (Figure 3, trace b) and the previous VPT2+F
simulation. The simulation changes dramatically for the better.
The 3050 cm−1 region is now well-populated by weak
transitions; these generally agree well with experiment. Similar
changes are observed in the 2900 cm−1 region; however, the
agreement is less good. Lastly, the patterns also change on both
sides of the spectral valley at 2970 cm−1.
Next, the large effective Hamiltonian model is applied,

combined with the 1 cm−1 Martin Test to identify connected
resonances (Figure 3, trace c). In this model, the effective
Hamiltonian mutually couples 8 one-quantum states, 45 two-
quanta states, 60 three-quanta states, and 20 four-quanta states,
for a total of 133 vibrational states. The features from 2970 to
3030 cm−1 are much better described with the larger
Hamiltonian. Moreover, inspection of the effective Hamiltonian
eigenvectors suggests that these features are highly anharmonic,
involving complicated mixtures of four of the zeroth-order CH

Figure 3. Infrared spectrum of isoprene compared to various VPT2
simulations. The most rigorous simulation is shown in blue. (a)
VPT2+F based on individual energy difference and force constant
magnitude tests. (b) VPT2+F based onMartin test. (c) VPT2+F based
on the “large effective Hamiltonian” model. (d) VPT2+K based on the
“large effective Hamiltonian” model. (e) VPT2+K based on the “large
effective Hamiltonian” model and assuming electrical harmonicity.
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stretches. The mixing of the CH stretches is achievable entirely
through indirect coupling, as the 1:1 Darling−Dennison matrix
elements have not yet been included.
The lone fundamental of a″ symmetry now agrees better with

experiment. The low-frequency region is also improved; roughly
the correct number of intense transitions are now predicted in
this region. This comparison is somewhat qualitative, of course,
as the low-frequency experimental transitions are weak and
difficult to identify. Also note the large effective Hamiltonian
model predicts the doublet feature centered around 2870 cm−1,
whereas theMartin Test simulation predicts only a single, strong
transition.
Darling−Dennison couplings are then introduced into the

large effective Hamiltonian, upgrading VPT2+F to VPT2+K
(Figure 3, trace d). Only the frequency predictions of the 3020
cm−1 feature prove sensitive to the inclusion of Darling−
Dennison coupling. This feature arises from several partially
overlapping transitions. Because of the variable broadening in
the experimental spectrum, it is difficult to judge which of the
two simulations is more accurate here. The relative intensities of
the two predicted transitions around 2980 cm−1 also switch. This
is a result of the coupling between two close-lying states being
slightly adjusted by small Darling−Dennison terms. Intensity
predictions are often sensitive in regions where the density of
vibrational states is high.
Clearly, the VPT2 simulations for isoprene, based on large

effective Hamiltonians, are far superior to those that opt to treat
only the most severe Fermi resonances. Specifically, large
effective Hamiltonian VPT2 simulations provide much more
accurate intensity predictions than standard VPT2, even when
the intensities are determined fromVPT2 transitionmoments. It
is interesting to compare the current “best” large effective
Hamiltonian VPT2+K simulation to a simulation in which the
intensity is derived from only linear harmonic oscillator
transitionmoments (Figure 3, trace e). A qualitative comparison
of the two simulations reveals that the VPT2 transitionmoments
are indeed better, except perhaps for the two transitions
predicted around 3060 cm−1, where harmonic intensity provides
a closer match to experiment. However, the intensity predictions
are not sufficiently better with VPT2 transition moments such
that it changes the interpretation of the spectrum (i.e., the
assignments of the experimental bands). The far simpler
harmonic intensity is arguably “good enough” for the purposes
of assigning the spectrum. Considering that VPT2 transition
moments are highly resonance-prone, this can make them
difficult to trust. This is especially true for larger molecular
systems with high densities of states. Although it is possible to
eliminate resonance denominators from VPT2 transition
moments with carefully chosen numerical thresholds, the
harmonic intensity is appealing for its simplicity. The use of
harmonic oscillator transition moments combined with large
effective Hamiltonians is thus generally recommended for the
prediction of CH stretches. VPT2 transition moments are
recommended if very high accuracy is desired.
Similar to VPT2 transition moments, the inclusion of

Darling−Dennison couplings in the CH stretching region may
also be considered optional. The expressions for the Darling−
Dennison resonance constants are algebraically complicated and
require deperturbation; however, they are all simpler in both
respects than the one- and three-quanta VPT2 transition
moments. The accuracy of VPT2+F is not greatly inferior to
VPT2+K in the CH stretching fundamental region.

4. CONCLUSIONS

Theoretical background, equations, and recommendations have
been given for the use of the second-order vibrational
perturbation theory with resonances (VPT2+K) anharmonic
model.93 Many examples were given of its successful application
to molecules with varying severity of anharmonic resonance.
Particular attentionwas paid to setting up effectiveHamiltonians
for systems withmultiple, interacting Fermi resonances. Analytic
expressions for VPT2 transition moments between the ground
state and three-quanta states were reported together, in their
correct form, for the first time. The one-quantum and two-
quanta formulas were reproduced alongside them.
In modeling the CH stretch regions of hydrocarbons with

large effective Hamiltonian simulations, the significance of
Darling−Dennison couplings could be explored. Their con-
tribution was found to be minimal in the CH stretching region.
Although a detailed benchmarking study has not been
performed, it is expected that theoretical models that neglect
Darling−Dennison coupling will still be very successful here.
The intensities in these hydrocarbon systems were derived from
both linear harmonic oscillator transition moments and VPT2
transition moments. The agreement with experiment is
sufficiently good to facilitate spectral assignment with the
simpler harmonic oscillator transition moments. The far more
complicated deperturbed VPT2 transition moments do not
appear to be necessary for simulations of CH stretches.46 It may
even be the case that large effective Hamiltonian simulations
using harmonic oscillator transition moments provide superior
predictions to small effective Hamiltonian simulations based on
more rigorous transitionmoments, which appears to be themore
prevalent choice in the literature. Similar ideas about the
adequacy of electrical harmonicity have been expressed by Lee,
Tielens, and co-workers.108

In small alkenes, strong Fermi couplings occur between the
highest-frequency CH stretches and combinations involving
both CC stretching and CH2 bending.

101 In isoprene, this is
found to be the dominant type of anharmonic coupling in the
region above 3050 cm−1. In propene, a Fermi resonance of this
type also causes the antisymmetric CH2 stretch fundamental to
split into two strong features.101 This likely generalizes to larger
alkenes. In both systems, VPT2+K also predicts that there is a
moderate tendency for the CH stretches to mix among
themselves. Most of this mixing is due to indirect coupling
rather than to direct Darling−Dennison coupling. Such a thing is
permitted by large effective Hamiltonians but is missed entirely
in simulations that attempt to distill the anharmonic coupling
problem down to a series of simple two- or three-state
interactions.
Some of the topics discussed in this article would benefit from

dedicated theoretical study and benchmarking efforts. It would
be particularly valuable to establish the errors associated with
different types of hybrid force field approximations and also to
findmore effective combinations of high and low levels of theory.
The viability of large effective Hamiltonian simulations for other
kinds of molecules would also be worthwhile to investigate;
preliminary work suggests that the approach is somewhat less
successful for alkanes. Variationally corrected VPT4 is currently
being considered. A similarmodel to VPT2+F is readily obtained
from VPT4; however, a partial incorporation of VPT6
correlation (a method analogous to VPT2+K) has not yet
been realized. Expressions for transition moments and some
rovibrational constants are not currently known for VPT4. For
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use with VPT4, efficient and accurate implementations of sextic
force field computations are also lacking.
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(71) Almlöf, J.; Taylor, P. R. General Contraction of Gaussian-Basis
Sets.I. Atomic Natural Orbitals for 1st-Row and 2nd-Row Atoms. J.
Chem. Phys. 1987, 86, 4070−4077.
(72) Martin, J. M. L.; Taylor, P. R.; Lee, T. J. The Harmonic
Frequencies of Benzene. A Case for Atomic Natural Orbital Basis Sets.
Chem. Phys. Lett. 1997, 275, 414−422.
(73) McCaslin, L.; Stanton, J. Calculation of Fundamental
Frequencies for Small Polyatomic Molecules: A Comparison Between
Correlation Consistent and Atomic Natural Orbital Basis Sets. Mol.
Phys. 2013, 111, 1492−1496.
(74) Gaw, J. F.; Yamaguchi, Y.; Schaefer, H. F.; Handy, N. C.
Generalization of Analytic Energy 3rd Derivatives for the RHF Closed-
Shell Wave-Function - Derivative Energy and Integral Formalisms and
the Prediction of Vibration-Rotation Interaction Constants. J. Chem.
Phys. 1986, 85, 5132−5142.
(75) Colwell, S. M.; Jayatilaka, D.; Maslen, P. E.; Amos, R. D.; Handy,
N. C. Higher Analytic Derivatives 0.1. A New Implementation for the
3rdDerivative of the SCFEnergy. Int. J. QuantumChem. 1991, 40, 179−
199.
(76) Maslen, P. E.; Jayatilaka, D.; Colwell, S. M.; Amos, R. D.; Handy,
N. C. Higher Analytic Derivatives 0.2. The 4th Derivative of Self-
Consistent-Field Energy. J. Chem. Phys. 1991, 95, 7409−7417.
(77) Ringholm, M.; Jonsson, D.; Bast, R.; Gao, B.; Thorvaldsen, A. J.;
Ekstrom, U.; Helgaker, T.; Ruud, K. Analytic Cubic and Quartic Force
Fields Using Density-Functional Theory. J. Chem. Phys. 2014, 140,
034103.
(78) Breidung, J.; Thiel,W.; Gauss, J.; Stanton, J. F. Anharmonic Force
Fields from Analytic CCSD(T) Second Derivatives: HOF and F2O. J.
Chem. Phys. 1999, 110, 3687−3696.
(79) Gauss, J.; Stanton, J. F. Analytic CCSD(T) Second Derivatives.
Chem. Phys. Lett. 1997, 276, 70−77.
(80) Matthews, D. A. Accelerating the Convergence of Higher-Order
Coupled-Cluster Methods II: Coupled-Cluster Λ Equations and
Dynamic Damping. Mol. Phys. 2020, 118, e1757774.
(81) M., Ka  llay; Rolik, Z.; Csontos, J.; Nagy, P.; Samu, G.; Mester, D.;
Ladja  nszki, I.; Szegedy, L.; Ladóczki, B.; Petrov, K.; et al. MRCC, a
quantum chemical program suite. Rolik, Z.; Szegedy, L.; Ladja  nszki, I.;
Ladóczki, B.; Ka  llay, M. J. Chem. Phys. 2013, 139, 094105. See
also:www.mrcc.hu.
(82) Kallay, M.; Nagy, P. R.; Mester, D.; Rolik, Z.; Samu, G.; Csontos,
J.; Csoka, J.; Szabo, P. B.; Gyevi-Nagy, L.; Hegely, B.; et al. The MRCC
Program System: Accurate Quantum Chemistry from Water to
Proteins. J. Chem. Phys. 2020, 152, 074107.
(83) Allen, W. D.; Csaszar, A. G. On the Ab Initio Determination of
Higher-Order Force-Constants at Nonstationary Reference Geo-
metries. J. Chem. Phys. 1993, 98, 2983−3015.
(84) Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J. E.; Vargha, A.
Combination of Theoretical Ab Initio and Experimental Information to
Obtain Reliable Harmonic Force-Constants - Scaled Quantum-
Mechanical (SQM) Force-Fields for Glyoxal, Acrolein, Butadiene,
Formaldehyde, and Ethylene. J. Am. Chem. Soc. 1983, 105, 7037−7047.
(85) Davisson, J. L.; Brinkmann, N. R.; Polik, W. F. Accurate and
Efficient Calculation of Excited Vibrational States from Quartic
Potential Energy Surfaces. Mol. Phys. 2012, 110, 2587−2598.
(86) Willetts, A.; Gaw, J. F.; Handy, N. C.; Carter, S. A Study of the
Ground Electronic State of Hydrogen Peroxide. J. Mol. Spectrosc. 1989,
135, 370−388.
(87) Schneider, H.; Vogelhuber, K. M.; Schinle, F.; Stanton, J. F.;
Weber, J. M. Vibrational Spectroscopy of Nitroalkane Chains Using
Electron Autodetachment and Ar Predissociation. J. Phys. Chem. A
2008, 112, 7498−7506.
(88) Franke, P. R.; Brice, J. T.; Moradi, C. P.; Schaefer, H. F.;
Douberly, G. E. Ethyl + O2 in Helium Nanodroplets: Infrared
Spectroscopy of the Ethylperoxy Radical. J. Phys. Chem. A 2019, 123,
3558−3568.
(89) Klatt, G.; Willets, A.; Handy, N. C. Anharmonic Effects in the
Infrared Spectrum of SiH3Br  An Ab Initio Study. Chem. Phys. Lett.
1996, 249, 272−278.

(90) Begue, D.; Carbonniere, P.; Pouchan, C. Calculations of
Vibrational Energy Levels by Using a Hybrid Ab Initio and DFT
Quartic Force Field: Application to Acetonitrile. J. Phys. Chem. A 2005,
109, 4611−4616.
(91) Dargelos, A.; Karamanis, P.; Pouchan, C. Theoretical
Investigation of the Infrared Spectrum of 5-Bromo-2,4-Pentadiyne
Nitrile from a CCSD(T)/B3LYP Anharmonic Potential. ChemPhy-
sChem 2018, 19, 822−826.
(92) Begue, D.; Benidar, A.; Pouchan, C. The Vibrational Spectra of
Vinylphosphine Revisited: Infrared and Theoretical Studies from
CCSD(T) and DFT Anharmonic Potential. Chem. Phys. Lett. 2006,
430, 215−220.
(93) Rosnik, A. M.; Polik, W. F. VPT2+K Spectroscopic Constants
and Matrix Elements of the Transformed Vibrational Hamiltonian of a
Polyatomic Molecule with Resonances Using Van Vleck Perturbation
Theory. Mol. Phys. 2014, 112, 261−300.
(94) Lehmann, K. K. Beyond the χ-K Relations - Calculations of 1−1
and 2−2 Resonance Constants with Application to HCN and DCN.
Mol. Phys. 1989, 66, 1129−1137.
(95)Darling, B. T.; Dennison, D.M. TheWater VaporMolecule. Phys.
Rev. 1940, 57, 128−139.
(96) Martin, J. M. L.; Taylor, P. R. Accurate Ab Initio Quartic Force
Field for trans-HNNH and Treatment of Resonance Polyads.
Spectrochim. Acta, Part A 1997, 53, 1039−1050.
(97) Bouwens, R. J.; Hammerschmidt, J. A.; Grzeskowiak, M. M.;
Stegink, T. A.; Yorba, P. M.; Polik, W. F. Pure Vibrational Spectroscopy
of S0 Formaldehyde by Dispersed Fluorescence. J. Chem. Phys. 1996,
104, 460−479.
(98)Morgan,W. J.;Matthews, D. A.; Ringholm,M.; Agarwal, J.; Gong,
J. Z.; Ruud, K.; Allen, W. D.; Stanton, J. F.; Schaefer, H. F. Geometric
Energy Derivatives at the Complete Basis Set Limit: Application to the
Equilibrium Structure and Molecular Force Field of Formaldehyde. J.
Chem. Theory Comput. 2018, 14, 1333−1350.
(99) Amos, R. D.; Handy, N. C.; Green, W. H.; Jayatilaka, D.; Willetts,
A.; Palmieri, P. Anharmonic Vibrational Properties of CH2F2: A
Comparison of Theory and Experiment. J. Chem. Phys. 1991, 95, 8323−
8336.
(100) Misiewicz, J. P.; Moore, K. B.; Franke, P. R.; Morgan, W. J.;
Turney, J. M.; Douberly, G. E.; Schaefer, H. F. Sulfurous and Sulfonic
Acids: Predicting the Infrared Spectrum and Setting the Surface
Straight. J. Chem. Phys. 2020, 152, 024302.
(101) Pullen, G. T.; Franke, P. R.; Lee, Y. P.; Douberly, G. E. Infrared
Spectroscopy of Propene in Solid para-Hydrogen andHeliumDroplets:
The Role of Matrix Shifts in the Analysis of Anharmonic Resonances. J.
Mol. Spectrosc. 2018, 354, 7−14.
(102) Brown, A. R.; Brice, J. T.; Franke, P. R.; Douberly, G. E. Infrared
Spectrum of Fulvenallene and Fulvenallenyl inHeliumDroplets. J. Phys.
Chem. A 2019, 123, 3782−3792.
(103) Franke, P. R.; Douberly, G. E. Rotamers of Isoprene: Infrared
Spectroscopy in Helium Droplets and Ab Initio Thermochemistry. J.
Phys. Chem. A 2018, 122, 148−158.
(104) Tabor, D. P.; Hewett, D. M.; Bocklitz, S.; Korn, J. A.; Tomaine,
A. J.; Ghosh, A. K.; Zwier, T. S.; Sibert, E. L. Anharmonic Modeling of
the Conformation-Specific IR Spectra of Ethyl, n-Propyl, and n-
Butylbenzene. J. Chem. Phys. 2016, 144, 224310.
(105) Mackie, C. J.; Candian, A.; Huang, X. C.; Maltseva, E.;
Petrignani, A.; Oomens, J.; Buma, W. J.; Lee, T. J.; Tielens, A. G. G. M.
The AnharmonicQuartic Force Field Infrared Spectra of Hydrogenated
and Methylated PAHs. Phys. Chem. Chem. Phys. 2018, 20, 1189−1197.
(106) Mackie, C. J.; Candian, A.; Huang, X. C.; Maltseva, E.;
Petrignani, A.; Oomens, J.; Mattioda, A. L.; Buma, W. J.; Lee, T. J.;
Tielens, A. G. G. M. The Anharmonic Quartic Force Field Infrared
Spectra of Five Non-Linear Polycyclic Aromatic Hydrocarbons:
Benz[a]anthracene, Chrysene, Phenanthrene, Pyrene, and Tripheny-
lene. J. Chem. Phys. 2016, 145, 084313.
(107) Maltseva, E.; Petrignani, A.; Candian, A.; Mackie, C. J.; Huang,
X. C.; Lee, T. J.; Tielens, A.; Oomens, J.; Buma, W. J. High-Resolution
IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons:
The Realm of Anharmonicity. Astrophys. J. 2015, 814, 23.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Review Article

https://dx.doi.org/10.1021/acs.jpca.0c09526
J. Phys. Chem. A 2021, 125, 1301−1324

1323

https://dx.doi.org/10.1063/1.451917
https://dx.doi.org/10.1063/1.451917
https://dx.doi.org/10.1016/S0009-2614(97)00735-5
https://dx.doi.org/10.1016/S0009-2614(97)00735-5
https://dx.doi.org/10.1080/00268976.2013.811303
https://dx.doi.org/10.1080/00268976.2013.811303
https://dx.doi.org/10.1080/00268976.2013.811303
https://dx.doi.org/10.1063/1.451707
https://dx.doi.org/10.1063/1.451707
https://dx.doi.org/10.1063/1.451707
https://dx.doi.org/10.1002/qua.560400203
https://dx.doi.org/10.1002/qua.560400203
https://dx.doi.org/10.1063/1.461367
https://dx.doi.org/10.1063/1.461367
https://dx.doi.org/10.1063/1.4861003
https://dx.doi.org/10.1063/1.4861003
https://dx.doi.org/10.1063/1.478258
https://dx.doi.org/10.1063/1.478258
https://dx.doi.org/10.1016/S0009-2614(97)88036-0
https://dx.doi.org/10.1080/00268976.2020.1757774
https://dx.doi.org/10.1080/00268976.2020.1757774
https://dx.doi.org/10.1080/00268976.2020.1757774
http://www.mrcc.hu
https://dx.doi.org/10.1063/1.5142048
https://dx.doi.org/10.1063/1.5142048
https://dx.doi.org/10.1063/1.5142048
https://dx.doi.org/10.1063/1.464127
https://dx.doi.org/10.1063/1.464127
https://dx.doi.org/10.1063/1.464127
https://dx.doi.org/10.1021/ja00362a005
https://dx.doi.org/10.1021/ja00362a005
https://dx.doi.org/10.1021/ja00362a005
https://dx.doi.org/10.1021/ja00362a005
https://dx.doi.org/10.1080/00268976.2012.724183
https://dx.doi.org/10.1080/00268976.2012.724183
https://dx.doi.org/10.1080/00268976.2012.724183
https://dx.doi.org/10.1016/0022-2852(89)90163-X
https://dx.doi.org/10.1016/0022-2852(89)90163-X
https://dx.doi.org/10.1021/jp800124s
https://dx.doi.org/10.1021/jp800124s
https://dx.doi.org/10.1021/acs.jpca.9b01867
https://dx.doi.org/10.1021/acs.jpca.9b01867
https://dx.doi.org/10.1016/0009-2614(95)01402-0
https://dx.doi.org/10.1016/0009-2614(95)01402-0
https://dx.doi.org/10.1021/jp0406114
https://dx.doi.org/10.1021/jp0406114
https://dx.doi.org/10.1021/jp0406114
https://dx.doi.org/10.1002/cphc.201701322
https://dx.doi.org/10.1002/cphc.201701322
https://dx.doi.org/10.1002/cphc.201701322
https://dx.doi.org/10.1016/j.cplett.2006.08.129
https://dx.doi.org/10.1016/j.cplett.2006.08.129
https://dx.doi.org/10.1016/j.cplett.2006.08.129
https://dx.doi.org/10.1080/00268976.2013.808386
https://dx.doi.org/10.1080/00268976.2013.808386
https://dx.doi.org/10.1080/00268976.2013.808386
https://dx.doi.org/10.1080/00268976.2013.808386
https://dx.doi.org/10.1080/00268978900100751
https://dx.doi.org/10.1080/00268978900100751
https://dx.doi.org/10.1103/PhysRev.57.128
https://dx.doi.org/10.1016/S1386-1425(96)01869-0
https://dx.doi.org/10.1016/S1386-1425(96)01869-0
https://dx.doi.org/10.1063/1.470844
https://dx.doi.org/10.1063/1.470844
https://dx.doi.org/10.1021/acs.jctc.7b01138
https://dx.doi.org/10.1021/acs.jctc.7b01138
https://dx.doi.org/10.1021/acs.jctc.7b01138
https://dx.doi.org/10.1063/1.461259
https://dx.doi.org/10.1063/1.461259
https://dx.doi.org/10.1063/1.5133954
https://dx.doi.org/10.1063/1.5133954
https://dx.doi.org/10.1063/1.5133954
https://dx.doi.org/10.1016/j.jms.2018.09.007
https://dx.doi.org/10.1016/j.jms.2018.09.007
https://dx.doi.org/10.1016/j.jms.2018.09.007
https://dx.doi.org/10.1021/acs.jpca.9b01661
https://dx.doi.org/10.1021/acs.jpca.9b01661
https://dx.doi.org/10.1021/acs.jpca.7b10260
https://dx.doi.org/10.1021/acs.jpca.7b10260
https://dx.doi.org/10.1063/1.4953181
https://dx.doi.org/10.1063/1.4953181
https://dx.doi.org/10.1063/1.4953181
https://dx.doi.org/10.1039/C7CP06546A
https://dx.doi.org/10.1039/C7CP06546A
https://dx.doi.org/10.1063/1.4961438
https://dx.doi.org/10.1063/1.4961438
https://dx.doi.org/10.1063/1.4961438
https://dx.doi.org/10.1063/1.4961438
https://dx.doi.org/10.1088/0004-637X/814/1/23
https://dx.doi.org/10.1088/0004-637X/814/1/23
https://dx.doi.org/10.1088/0004-637X/814/1/23
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c09526?ref=pdf


(108) Mackie, C. J.; Candian, A.; Huang, X. C.; Maltseva, E.;
Petrignani, A.; Oomens, J.; Buma, W. J.; Lee, T. J.; Tielens, A. G. G. M.
The Anharmonic Quartic Force Field Infrared Spectra of Three
Polycyclic Aromatic Hydrocarbons: Naphthalene, Anthracene, and
Tetracene. J. Chem. Phys. 2015, 143, 224314.

■ NOTE ADDED AFTER ASAP PUBLICATION
Due to a production error, this paper was published on the Web
January 28, 2021, with an error in equation 76, and equations
48−77 incorrectly labeled as 49−78. The corrected version was
reposted on January 29, 2021.
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