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Abstract

We develop computable metrics to assign priorities for information collec-
tion on binary systems composed of binary components. Components are
worth inspecting because their condition states are uncertain, and system
functioning depends on them. The Value of Information (Vol) enables as-
sessment of the impact of information in decision making under uncertainty,
including the component’s reliability and role in the system, the precision
of the observation, the available maintenance actions and the expected eco-
nomic loss. We introduce the Vol-based metrics for system-level (“global”)
and component-level (“local”) maintenance actions, analyze the properties
of these metrics, and apply them to series and parallel systems. We discuss
their computational complexity in applications to general network systems
and, to tame the complexity for the local metric assessment, we present a
heuristic and assess its performance on some case studies.
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1. Introduction

Many civil infrastructures (e.g. transportation and gas pipeline networks)
consist of multiple binary components, arranged in a system to fulfill various
functions [21] [23] [28]. The binary states of the components, either intact or
damaged, determine the system condition. The belief of the agent controlling
the maintenance process can be described by a probabilistic distribution on
the possible states of the components. Maintenance actions are selected to
trade the risk of system malfunctioning for the cost of maintenance (includ-
ing repair and retrofitting actions). Observations of the components’ states
can improve decision making and reduce the uncertainty and the mainte-
nance cost. However, because of budget constraints, it is often impossible
to inspect all components in a system. Therefore it is important to assign
inspection priorities for the components. Intuitively, many factors can af-
fect the inspection preferences, such as the probabilities of failure events,
the maintenance costs and the role of each component in the system. These
factors can be integrated in an Importance Measure (IM) for inspections, i.e.
a value assigned to each component to summarize the benefit of observing
the state of a component.

To introduce the problem, consider a binary system composed of N com-
ponents: {c1,co, -+ ,cn}. Let s = [s1, 8, -, sn] € S denote the states of the
components, with s; = 1 indicating that component ¢; is working, and s; = 0
that it fails, where S = BY and B = {0,1}. The system state u = ¢(s) is
also a binary variable, where ¢ : S — B is the component-to-system function.

State s is unknown to the agent who manages the system. Instead, the agent
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optimizes the measurement and maintenance plans on the basis of her belief
of s. The prior probability distribution of s is denoted as p; : S — [0, 1],
and p; = P[s; = 0] indicates the prior marginal failure probability of ¢;. The
failure probability of the system is p, = P[u = 0], and we use p, and p,g for
the prior value of p, and its posterior value given event F, respectively.

In this paper, we develop metrics to assess the importance of inspecting
any component. We assume that the outcome of the inspection is also binary.
If component ¢; is inspected, y; = 0 indicates an “alarm”, i.e. a symptom
that ¢; is not working, whereas y; = 1 indicates that ¢; seems to work, and we
define this outcome as a “silence”. If the inspection is perfect, then y; = s;.

On the basis of the measurement outcome, we can update the prior dis-
tribution of random variables s to posterior distribution p,,, and, the system
level failure probability to p,,. When the components are interdependent,
the measurement of one component may also affect the failure probability of
other components.

Birnbaum was first to introduce Importance Measures (IMs) [4] to eval-
uate the contribution of each component to a system’s performance, such
as the system connectivity. Birnbaum’s Measure (BM) [4] evaluates the im-
portance of a component by the difference in the posterior system failure
probability when it is damaged or intact (i.e., in our framework, when the

inspection outcome is alarm or silence):

BM(Z) = Puly;=0 — Puwly;=1 (1)

Other IMs are discussed in Appendix B. Most of them focus on the marginal
or conditional probability of the failure events, and they do not explicitly

include any evaluation of the maintenance cost and risk. In maintenance

3
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problems, a component need high attention because of its topological func-
tion in the system and because of its high probabilities of failure. To assess
this need of attention, Wu and Coolen [29] extended the BM to a cost-based
IM. Zio and Podofillini [30] presented an approach for optimizing multiple
objectives (such as system risk and maintenance costs), and they developed
generic algorithms to reduce the computation time. Der Kiureghian et al.
(6] modeled the component failures as independent Poisson events and devel-
oped IMs for long-term maintenance of series, parallel and general systems
based on the system unavailability, mean rate of failure and mean duration
of downtime.

To compare and rank the impact of inspections, one can assess their
Value of Information (Vol). Vol assessment is based on Bayesian pre-posterior
analysis, as introduced by [10], who integrated the probabilistic knowledge
about the system with the economic factors related to the available actions.
In the maintenance process of infrastructure systems, the economic costs are
related to the system malfunctioning, the execution of inspections, and repair
or replacement actions.

Vol has been studied intensively in the area of Structural Health Moni-
toring (SHM). Straub and Faber [26] integrated Vol for risk-based inspection
scheduling and maintenance planning of structural systems. Pozzi and Der
Kiureghian [18] provided a framework for assessing Vol for the long-term
SHM, and proposed a Monte Carlo approach to reduce the computation com-
plexity. They also investigated how the imperfect measurements affected the
posterior decisions. Straub et al. [25] illustrated how to model the stochastic

dependencies of component deterioration, the failure consequences and the
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inspection cost. The Vol has also been applied to long-term decision making
problems. Miller [17] extended Vol analysis to optimize not only static one-
shot inspection, but also to optimize sequentially dependent observations.
Srinivasan and Parlikad [24], Memarzadeh and Pozzi [16] and Andriotis et al.
[1] applied the component-wise Vol metric to sequential decision making in
the management of infrastructure systems, modeled by Partially Observable
Markov Decision Process (POMDP). Thons [27] used decision trees to assess
long-term Vol. Bensi et al. [3] developed Bayesian Networks and Influence
Diagrams to evaluate post-event inspections, and they proposed Vol-based
heuristic for optimal inspection sequences. Sensitivity analysis of the process
parameters with respect to the optimal maintenance actions was presented by
[31] and [5]. The complexity of computing Vol can grow exponentially with
the number of components in a system [14]. Even worse, the Vol generally
lacks the property of submodularity [15], so that the application of greedy ap-
proaches does not provide certain guarantees of near-optimal solutions [20].
Effective strategies have been proposed for efficient Vol computation in some
special cases [12].

In this paper, we investigate Vol-based metrics related to system-level
(“global”) and component-level (“local”) decision making after component
inspections, for systems with various topologies, and compare these results
with traditional IMs. A recent paper [8] also focuses on inspections for net-
worked systems, developing an approach to identify the components most in
need of inspection, similar to what we define as the local metric. We also
derive simple optimal rules for series and parallel systems. For general sys-

tems, we discuss the computational complexity of the problem and provide
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a heuristic approach. In Section 2, we introduce the global and local metrics
for evaluating the components’ Vol. Section 3 describes rules for optimiz-
ing these metrics to typical systems such as series and parallel systems. In
Section 4, we propose approximated approaches to simplify the optimization
complexity, and in Section 5 we examine different applications of global, local

and heuristic approaches to some system examples.

2. Global and local Vol metrics

2.1. Principles of Vol

Fig 1a illustrates the decision graph for the process of inspecting and
maintaining the system. Continuous arrows from one set of nodes to one node
indicate that the probability of latter variable is defined conditional to the
former ones. Double arrows indicate deterministic relations. Dashed arrows
from random variables to decision variables indicate that the former ones are
observed before the latter is selected. Let A denote the set of all possible
maintenance plans, that we simply call “actions”. Action A € A transforms
current components’ state s € S into state s’ € S, via transition distribution
Pjs,a 2 S x Ax S — [0,1]. Loss function £(s', A) = Li(¢(s")) + Lu(A) :
S x A — R summarizes the overall cost: Li(¢(s")) = Cp(1 —u') adds failure
costs CF if the system is not functioning, depending on system state u’ after
taking action A, which is associated with implementing cost Ly(A).

The prior loss L, is the minimum expected cost among all possible ac-

tions, before any inspection:

L, = H}gn EEysaL(s', A) = mjn EgjaL(s', A) (2)
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Figure 1: Decision graph for the general problem (a), and for the global metric (b).

where Eya[-] = EsEy s 4[] denotes the statistical expectation depending on
distributions pys 4 and p.

Inspecting component ¢;, the agent collects observation y; distributed
according to function p,, : B — [0, 1], and the belief of the components’ state
s is updated to posterior distribution p,, : S x B — [0,1]. These functions

are obtained by Bayes’ rule:

Py, = Zpyi\sps Psly; = % (3)

where py, s : B xS — [0,1] is the likelihood function related to observation

Yi-
The corresponding expected posterior loss is:
L,(1) =E,, min EgjyaL(s', A) (4)
where Es/\yi,A['} = Es,yiEsqs,A[-] is the posterior expectation, related to distri-

bution py|y,, and E,, [-] is related to distribution p,,.

The Vol for inspecting ¢; is the expected loss reduction due to the in-
spection, i.e. the difference between the prior and posterior loss functions
[10]:

Vol(i) = L, — L,(i) (5)

7
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Loss function £ does not include the cost of monitoring, and the Vol is
always not negative. However, if such cost is uniform among components, the
Vol is a rational IM that assesses the relevance of inspections. The optimal
component to inspect, ¢, is the argument that maximizes Eq.(5):

i* = arg max Vol(i) (6)

7

The Vol depends on the specific number N of components, the action
domain A, the loss function £ (in turn defined by the component-to-system
function ¢, the failure cost Cr, and the implementing cost Ly), the prior
probability p,, the transition probability pg(, 4 and the likelihood function
Py|s adopted, as apparent in Fig la. In the following Sections, we describe
a form of the likelihood function for binary components, and then we focus
on two classes of losses and transitions, related to global and local decision

making.

2.2. Modeling imperfect inspections

The Vol analysis also depends on the specific assumed likelihood function.
If the binary outcome y;, of inspecting component ¢;, depends only on the
state s; of that component, likelihood function p,, |, in Eq.(3) is reduced to a
4-entry emission table p,, (s, : B x B — [0, 1], shown in Table 1.

Observations of components’ states are prone to error, and the inaccuracy
can be formulated by two parameters epa = Ply; = 0Ols; = 1] and eps =
Ply; = 1|s; = 0], which are the probability of type I error: having an “alarm”
when the component is undamaged, and of type II error, a silence when

the component is damaged. Although these probabilities can depend on
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Observation
Silence y; =1 Alarm y; = 0

Actual state

Undamaged s; = 1 1 —epa €FA

Damaged s; = 0 €FS L' —€rs

Table 1: Emission probability table for observation y; given state s;.

the specific component, in the following discussion, we assume that all the
components have identical epg and epy.

Inspection outcomes probability function p, : B — [0, 1], is related to a
single value: the probability h; = P[y; = 0] of receiving an alarm on ¢;, which
is:

hi = (1 — ers)p; + epa(l — pi) = epa + Kp; (7)
where constant K = 1 — epp — €pg is strictly positive, because we assume that

both epy and epg are less than 1/2.

2.5. Global metric

We define the global metric assuming that action A affects the system
state u. In this setting, for any of the two values of the binary variable u, an
expected loss value can be assigned to any action A, regardless of the details
of components’ conditions (e.g., the damage location) described by variable
s. Fig 1b shows the corresponding decision graph, in which the loss is a
function of system state u’ after the taken action: [(u', A) = L(s', A), with
u' = ¢(s"). Transition function pys 4 is now converted into function pyy 4 :

Bx AxB — [0,1], in turn defined by a pair of values: p&lA’u:O and piAA’u:l,



173

174

175

177

178

179

180

181

182

184

185

186

Ipt

EL

— ]

'!,L 0

Layp

lap
'!4”.IJ

A\ 4

Du Pu
(a) (b)

Figure 2: Expected loss function (a) and corresponding regret (b) for a global problem

with 4 possible actions.

which are the probabilities that ' = 0 given action A and given u = 0 or
u = 1, respectively. Then, l4o = p;‘A,u:()OF‘i'CA and 4 = p;\A,u:1CF+CA>
with C'a = L11(A), represent the expected losses when u is zero and one (i.e.
when the system is not working and is working), respectively, for action A.
For each pair of losses l40 and l4;, with 0 < l49 — 141 < Cp, one can
find a pair of values Cy = l4; and piAA’u:O = (lap —la1)/CF, to represent
the target losses, assuming that no maintenance action makes the system
degrade, so pfdl Aumy = 0. In this interpretation C}y is the cost for repairing,
and p/, A u=0 is the probability that the repair is ineffective. The agent has
to find an optimal trade-off between implementing more expensive actions
related to a low risk, and less expensive actions related to a higher risk.

The corresponding expected loss under action A is a linear function of

the system failure probability p,:
lA(pu) - Eu]Eu’hL,Al(u/; A) - pulo,A + (1 - pu)ll,A (8)
By taking the minimum among available actions in domain A, we define

10
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the optimal loss by concave function [*(p,) = ming l4(p,). Thus, the prior
expected loss of Eq.(2) for the global metric is LY = I*(p,) and, following
Eq.(2), the posterior loss inspecting ¢; is:

Lg (i) = hil* (pujyi=0) + (1 = he) " (puojy,=1) 9)

and the Vol, following Eq.(5), is Volg(i) = LY — LS ().

As a function of p,, the expected loss with perfect information of u is the
linear function lpr(p,) = pulf + (1 — py)l5, with I§ = minglo 4 = 1*(1) and
Iy = mingl; 4 = [*(0), and the “regret” is the concave function rg(p,) =
I*(pu) — lp1(pu), with rg(0) = rg(1) = 0. The corresponding prior regret is
RG, = rg(p.). Because function lp; is linear, the expected posterior loss with
perfect information is Lp; = lp1(p,), and expected posterior regret inspecting
c; is RG, (i) = LE(i) — Lp; = —Volg(i) + LS — Lp;. Hence, component c¢;-,
that maximizes the Vol identified in Eq.(6), also minimizes the expected

posterior regret:

i* = arg min RG, (i) (10)

)

The global metric depends on the set of pairs of expected losses for all actions
{0,405 10,49, lo,ays L ays o+ Lag s L4y )5 Where |A] is the cardinality of set A,
or, equivalently, on the concave function [*. Fig 2 shows an example with
|A| = 4 actions available. The binary case is when only |A| = 2 actions are
available: doing-nothing, accepting the risk of paying cost C'r if the system is
not working, with A = 0, or repairing the system at cost C'r, with A = 1. As
shown in Fig 3a, this setting is defined by {19 = 0,lp1 = Cr,lo1 = 11 = Chk,
and the corresponding normalized regret function rg/C is bi-linear, with

peak (1 —p) at p, =p = Cr/CF.

11
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Figure 3: Expected loss (a) and corresponding regret (b) for the binary actions case.

2.4. Local metric

The local metric refers to actions at component level, whose effects de-
pend on components’ state s. For this approach, we define each action A
as a vector {ay,as, -+ ,ay} of N binary entries, where a; = 1 if the agent
repairs ¢;, and a; = 0 otherwise. Hence the cardinality of the action set is
|A| = 2V, We assume that the components’ repairs are perfect so that tran-
sition function pys 4 is defined as follows: in the vector s’ = [s7,s5,- -+, s'y]
of states after maintenance, s, = 1 if q; = 1, and s, = s; if a; = 0. Func-
tion Ly(¢(s')) is defined as in Section 2.1, while Ly(A) = C} - A, where
Cr = [Cr1,CRra, -+ ,Crn]' is the repair cost vector and Cg; is the cost
of repairing ¢;. This model assumes that the accumulated cost is the sum
of repair costs for the individual components. Other cost models, assum-
ing a more complex cost interaction among component’ costs, can also be
implemented.

After the inspection, the agent selects the optimal subset of components

to repair. When the inspection outcome is y; = ¢, the corresponding posterior

12



25 expected loss is:

wlyi=c

Lk = Eyjy,=c mlgn Egs4L(s", A) (11)
»s Following Eq.(4), the corresponding expected posterior loss is:
L) = (1= o) LYy + hiLE (12)

L
wlyi wly;=0

»7 and the Vol according to the local metric is Voly,(i) = Lt — LE(i), where

»s prior loss LT is computed as in Eq.(2).

20 3. Metric properties and inspection priorities on typical systems

20 3.1. Nested posterior intervals for global metric

-
- .
-

-
-
-
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————

I
I
I
I
1
I
I
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1
I
1

() Poly=1 " Puly;=1 Pr Puoly=0 Puly=0

Pu

Figure 4: Example of expected loss for the global metric, with nested posterior intervals.

231 As we discussed in Section 2.3, the global metric adopts a univariate
232 concave function [*, or rg, of p,. An example of such a function is shown in

23 Fig 4, which can also be interpreted as regret, because it is zero at the limits
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of the probability domain. Inspecting every component c;, the posterior
system failure probability after an alarm is higher than the priori, which is
in turn higher than the posterior system failure probability after a silence:
Polyi=1 < Pr < Puly;=0-

Now consider two components ¢; and ¢;. Suppose that a silence on ¢; is
more reassuring than a silence on ¢; and an alarm from ¢; is more worrying
than an alarm from ¢;, L.e. pyjy=1 < Pujy;=1 and pyjy,=o0 = Pu|y;=o- Then, for
any concave function [* (or rg), the posterior loss of inspecting ¢; is lower
than the loss of inspecting c¢; and the Vol of inspecting ¢; is higher than that
of inspecting ¢; i.e. LE(i) < LE(j) and Volg(i) > Volg(j). The proof of
this implication is intuitive by examining Fig 4, and it is given formally in
Appendix C.

We can also reformulate the implication in terms of “posterior intervals”.
Let us define the posterior interval for ¢; as I; = [pujy,—1, Puwjy,;—0). If that
posterior interval contains the corresponding interval for c;, ie. if [; 2
I;, then Volg(i) > Volg(j). Hence, the importance ranking is invariant
with respect to the choice of [*, and all possible global metrics prioritize the
component with larger interval to inspect, consistently with BM defined in
Eq.(1), i.e. I; O I; = BM(i) > BM(j). However, the reverse implication is
not guaranteed, and Birnbaum’s measure is not necessarily consistent with
the global metric.

Moreover, if the posterior intervals are not nested, one can always find
a pair of loss functions {I},l3}, so that ¢; has a higher Vol than ¢; under
[, but a lower VoI under [3. For proof, refer to the bi-linear loss function

plotted in Fig 3. If probability p is not in posterior interval I; (i.e., I; is on

14
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one side of p), then the corresponding Vol, Volg(7), is zero, because the loss
function is linear in that range. If intervals /; and I; are not nested, we can
find two disjoint intervals: interval I, ; belongs to I; but not to /;, interval
I belongs to I; but not to [;. If p is in [\, then Volg (i) > Volg(j) =0,
while if p is in I, ;, then Volg(j) > Volg (i) = 0. This argument shows that,
for not nested posterior intervals, the priority order depends on the adopted

loss function.

3.2. Global metric for parallel systems

A parallel system will function if at least one of its components is intact.
For such systems, the global metric will always give the highest priority to
the most reliable component (i.e., to the one with the lowest marginal failure
probability), independent of the specific loss function [* adopted, when the
inspection quality is the same for all components. The proof is simple for the
special case of perfect sensors, i.e. when epp and epg are zero. In that case,
if a silence is detected for any component, then the posterior system failure
probability is zero. Because the failure of the system implies the failure of
all components, after an alarm on component ¢;, p, becomes py|s;,—=0 = P /i
Hence, if p; < p;, then /; O I, and, according to the rule illustrated in Section
3.1, we conclude that Volg(i) > Volg(j).

When sensors are imperfect, the proof is still based on Bayes’ formula
(i.e., on the ratio between joint and marginal probabilities). After a silence

on ¢;, p, becomes:

DPr€rs o DPr€rs

= 13
]_—hl' ]-_EFA_Kpi ( )

Puly;=1 =
where the second identity follows from Eq.(7), and we note again that K is

15
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strictly positive. The corresponding probability after an alarm is:

» _ Pr(1 — €ps) _ Pr(1 — €pg)
=0 h era + Kp;

(14)

The denominator of Eq.(13) decreases monotonically with p;, and the de-
nominator of Eq.(14) increases monotonically with p;. Hence, as in the case
of perfect sensors, if p; < p;, then I; O I; and, Volg(i) > Volg (7).

In summary, the ranking of importance measures follows the opposite of
the marginal failure probability of the components (i.e., the ranking follows
component reliability). Hence, in a parallel system, the component, c¢;«,
with highest Vol is the most reliable component. This result holds for any
interdependence between components’ states, that is for any distribution py,
when the inspection quality, defined by parameters epp and epg, is the same

for all components.

3.3. Global metric for series systems

A series system works only if all components function properly. In that
case, the global metric always prioritizes the most vulnerable component, i.e.
the component with the highest prior failure probability, regardless of the
adopted function [* or the interdependence among components. The proof
is similar to that related to parallel systems. Let us start with the case of
perfect sensors. The posterior system failure probability will become 1 after
an alarm on any component, and will become py,s;_, =1 — (1 —px)/(1 —p;)
after a silence on component ¢;, which monotonically increases with marginal
component failure probability p;. Hence the most vulnerable component

should be inspected.

16
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For imperfect sensors, after a silence on ¢;, p, is (again using Eq.(7)):

(1 —px)(1 — €rn) (1 = pr) (L — €ra)

g =1 — -1 15
Pulyi=1 1-h, 1— epa — K, (15)
After an alarm, that probability is:
(1 — pr)era (1 — pr)era
=0 =1 = —————=1—-"—"—"— 16
Puly=0 h; era + Kp; (16)

The denominator of the fraction in Eq.(15) monotonically decreases with
pi, and the denominator of Eq.(16) monotonically increases with p;. Hence,
if p; > p;, then I; O I; and Volg(i) > Volg(j), as in the case of perfect
sensors. S0, in a series system, regardless of the interdependence between
components, the inspection ranking follows the marginal component failure
probability, and ¢;« is the most vulnerable component.

In other words, the most vulnerable component, ¢;+, is the one to inspect
because detecting a silence on that component (i.e. y+ = 1) induces the
highest reduction of p,, and an alarm (i.e. y+ = 0) induces the highest
increment in that probability. Although the former property is almost trivial,
the latter may be less intuitive. After all, ¢;« was (relatively) likely to be
damaged; thus, why does an alarm on that component produce the more
“surprising” result on the system reliability (compared with alarms on less
vulnerable components)? For imperfect inspections, two factors affect the
posterior probability. On one hand, after detecting an alarm on ¢;«, the
system can still count on the other components, which are more reliable than
¢+ (instead, after an alarm on a safer component, the system can only count
on more vulnerable components). Hence, this factor suggests that an alarm
of ¢;« is less worrying that an alarm on others. Conversely, following Bayes’

rule, an alarm on ¢;« produces a relatively high posterior failure probability
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Figure 5: Block diagrams for series-parallel (a) and parallel-series (b) 3-component system.

(at component and at system level), because of the high prior probability that
¢;+ is damaged. For safer components, the impact of the alarm is diluted by
the more optimistic prior information, and the posterior failure probability
after an alarm is lower at component level (obviously) and at system level, as
formally proved by Eq.(16). Hence, this latter factor dominates the former
factor, and ¢;+ has the highest Vol. This result depends on the assumption
that the sensor accuracy is uniform among components. If the accuracy was
higher for a specific component, that component could have the highest Vol,

even if it was not the most vulnerable component.

3.4. Global metric for general systems

If the posterior probability interval related to one component nests all
the others, then the rule of Section 3.1 identifies the optimal component
to inspect. For general systems, the global metric does not always select
the most vulnerable or the most reliable component, because the posterior
intervals may not be nested, and the rule does not apply.

We illustrate this by discussing two simple examples of 3-component sys-
tems, with perfect sensors as shown in Fig 5. The system functions if there
is an intact path from origin node o to destination node d. Fig 5a shows a

system in which component ¢; is in series with a parallel subsystem composed
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of components ¢y and c3. Intuitively, component c¢; should be inspected, be-
cause it is a “bottleneck” of the system; thus, it seems topologically more
important. Detecting that ¢; is not working takes p, from one, i.e., to a
higher value related to an alarm on ¢y or on c3. A silence detected on ¢y
takes p, to the joint failure probability, p,s,—1, which is determined by com-
ponents co and c3, and is (pgps) if they are independent. Instead, a silence
detected on ¢y (or on c3) takes p, to pyjs,=1 = p1. Hence, posterior interval
I, contains the other two if p,,,—1 is less than p;. Conversely, if p; is less
than p,s,—1, the posterior intervals are not nested, and the priority depends
on the selected loss function [*. This result confirms the intuition that if ¢;
is much safer than the other components, it may not be the most important
component to inspect (trivially, if p; is zero while p, and ps are positive, then
¢1 has the lowest priority).

In the example of Fig bb, component ¢, is parallel with a series subsystem
composed of components ¢, and c3. Again, ¢; seems topologically more
important. After a silence on ¢, p, is zero, a value lower than the value
related to silence on ¢y or on c3. An alarm on ¢; takes p, to 1 — 753, where
T9,3 is the joint survival probability of the other two components, that is
(1 — po)(1 — p3) for independent components, whereas an alarm on ¢, (or on
c3) takes p, to p;. Hence, posterior interval I; contains the others if p; is less
than 1 —ry 3 i.e., for independent components, if p; is less than ps +ps — paps.
Approximating this latter value with ps + p3, we conclude that the global
metric gives higher priority to ¢; when p; is less than (ps + p3). If py is
higher than (py + p3), priority depends on the selected loss function [*. This

conclusion confirms the intuition that, if ¢; is much more vulnerable than the
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other components, it is better to inspect others (in the limit case where p, is
one, Volg(1) is zero). These two examples illustrate how the topological role
of a component matters, but also its failure probability: in some schemes a
high failure probability guarantees a high priority.

We discuss now a more general example, focusing on two components, c¢;
and cy. The components’ roles are described completely by the system fail-
ure probability for each of the 22 joint conditions of the pair of components,
that we assume as Dyjs;=1,5,=1 = 0.5%, Dujsi=1,5020 = Pusfsi=0,0=1 = 2.5%,
Dusfsi=0,5=0 = 90% (so the roles played by the two components are the
same). We also assume that p; = 1% and po = 20% (so that the ¢; is
significantly more reliable than ¢,), the states of all components are inde-
pendent, and inspections are perfect (i.e., y;=s;). Fig 6 shows the diagram
of a system consistent with these values. The interval of posterior proba-
bilities I; is [0.90%,20.0%] for i = 1 and [0.52%), 3.38%] for i = 2, whereas
pr 18 1.09% (these results are directly related to the assumed values, e.g.
Doslya=1 = Dasfs1=0,55=101 + Dusjs;~1.5o=1(1 — p1)). The intervals are not nested;
hence, the rule in Section 3.1 does not apply, and the Vol depends on the
specific function [*. Fig 7 refers to the bi-linear regret function for binary
actions plotted in Fig 3, and mentioned in Section 2.2, with peak at p. The
figure shows how the Vol related to each component, normalized by prior
regret RG, varies as a function of p. When p is below pyjy,—1 = 0.52% (i.e.,
when C’ is below 0.52% of Cr), the VoI of each component is nil, because the
posterior decision is always to repair. Then, Volg(2) increases up to about
42% of RG, when p = p, (i.e., for that condition observing y, is worth 42%

of the value of observing u), then it decreases to zero at p = py|y,—o = 3.38%.
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Figure 6: Block diagram for a system where posterior probability intervals for components

c1 and ¢ are not nested

For p higher than p,,,—o, the posterior decision is always to accept the risk.
The behavior of Volg(1) is similar; it is zero outside 1, and it peaks at p,
where it is about 17% of RG,. Clearly, the optimal inspection decision de-
pends on p, i.e. on the decision-making problem shaping function [*. This
conclusion is apparent in Fig 7, if the repair cost is cheaper than 2.5% of the
cost of failure, it is more convenient to inspect the more reliable ¢y, whereas

it is better to inspect the less reliable ¢; for a higher repair cost.
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Figure 7: Normalized Vol depending on peak probability p.
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3.5. Local metric on parallel systems

The local metric, as defined in Section 2.4, will select the most reliable
component in a parallel system, consistently with the global metric. This
selection behavior is because, in a parallel system, repairing one component
guarantees the functioning of the system. Hence, the agent faces a binary
decision: do nothing or repair the less expensive component, at cost min; Cr ;.
This problem setting is equivalent to that of the global metric, with the bi-
linear function [* of Fig 3a. Therefore, the local and global metrics have

identical conclusions about the optimal inspection.

3.6. Local metric on series systems

With the local metric, the optimal component to inspect in a series system
is not always the most vulnerable component, i.e. the component identified
by the global metric. We start discussing the case of a system with two
components, ¢; and ¢y, with identical repair costs, Cr, = Cg, = Cg, and
equipped with perfect sensors. Let us also assume that Cr < Cpg/2, so
that the cost for repairing both components is less than the failure cost.
Hence, if any component, ¢; is detected as damaged, it is necessary to repair it
(A; = 1), to avoid paying the failure cost. After the repair, the system failure
probability is the posterior failure probability of the uninspected component.
That uninspected component should be also repaired if the corresponding risk
is above the repair cost, so that the posterior expected maintenance cost for
that component is R(i,x) = min{Cg, pu|s,=2,4,=1-2CF }, with z = 0. Instead,
if the inspected component works, it has not to be repaired, and the state of
the uninspected component is decided by comparing repair cost and system

failure risk, so that the expected posterior cost is R(7, 1). Hence, the expected

22



427

428

429

431

432

433

434

435

436

438

439

440

441

442

443

444

445

446

447

448

449

450

posterior loss is LX(i) = p;Cg + p;R(i,0) + (1 — p;)R(i,1). In the special
case of independent components, for any outcome x, probability p.js,—s is
identical to the prior failure probability p; of the uninspected component
¢j, so that R(:,0) = R(i,1), and LE(i) = p;Cr + min{Cr,p;Cr}. If we
refer to bi-linear regret function rg of Fig 5b, we conclude that, for each
component ¢;, Vol (i) = RG,(7); thus, we should inspect the component
with the higher value of RG,, (7). If both prior failure probabilities are below
p = Cr/Cp, the local metric will prioritize the more vulnerable component.
However, if the failure probability of a component is above p, then the higher
that probability, the lower the corresponding Vol. Fig 8 shows the optimal
inspection policies for p = 0.2, p; > po, and different correlation coefficient p
between variables s; and s,. The joint probability can be defined given the
correlation coefficient p and the marginal probability p; and p,. For example,

the joint probability of both components work is:

Pls; = 1,82 = 1] = py/pi(L = pi)pa(l — po) + (1 — p1)(1 — po) (17)

We have discussed the case when p is zero. When it is positive, the domain
of feasible pairs (p;,p2) shrinks but, inside the feasible domain, the region ex-
pands where it is more convenient to inspect the more vulnerable component.
When the correlation is negative, for any feasible pair {p;, p2}, the Vol is the
same for both components. We can provide a simple approximation for se-
ries system if their states are independent and the failure probabilities are
relatively low. In that case, the risk E[£;] can be approximated as that of
a “cumulative system”[13]. In a cumulative system, individual costs are as-
sociated with the failure of each component, and the costs are accumulated

to obtain the system-level cost (hence, no component-to-system function ¢
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Figure 8: Optimal inspection ¢* when two components are dependent, depending on cor-

relation p.

is defined for these systems). To illustrate this approach, we recall that, for
a series system with independent components, the risk is:

Eeer [L1] = Cr[1 - H(l _pi>1_Ai] (18)

1

For a cumulative system with component failure cost Cp, it is:

Ecum. [ﬁﬂ =CFr Z(l - Ai)pi (19)

i

By linearizing the former expression (neglecting higher order terms), the
two risks become identical. For a cumulative system, it is straightforward
to evaluate the benefit of inspecting component ¢; which is related to the
selection of action A;, and when sensors are perfect, it is Vol (i) = RG, (i)
(for imperfect sensors, one has to subtract the posterior regret). These results

are also consistent with the case in which N = 2.
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3.7. Connections and differences between local and global metrics

Whereas the local metric follows the traditional Bayesian pre-posterior
analysis for a selected class of actions and losses, the global metric takes
inspiration from the BM, and it focuses on the impact of information on
the system failure probability, neglecting the impact on damage localization.
This latter approach allows for a simpler optimization and Vol analysis, and
the intuition supporting it is that a component should receive a high priority
if its inspection outcome is highly informative on the system state.

The two metrics refer to different problem classes, which are not nested
one into another (given the restrictive rules we impose to the local met-
ric). On the one hand, information in the local metric keeps referring to
local quantities, i.e. the damage condition of individual components, and
therefore is key to supporting local repairing, i.e. the repairing of those com-
ponents. In the global metric approach, local information is neglected, and
the optimal posterior action is only a function of the posterior system failure
probability. This indicates that the local metric cannot be generally reduced
to an equivalent global one. On the other hand, the global metric cannot be
generally reduced to the local one either. This is because, for example, in
the local metric we assume that each action identifies whether to repair or
not for each component; hence, for a system with N components, there are
2V available actions in local metric, whereas the global metric can define an
arbitrary number of actions (each associated with different repair cost Cx
and posterior probability pid| A,u:o)' Also, the assumptions of perfect repairs
and of additive repair costs impose constraints to the available actions in the

local metric, while the global metric is not subject to these limitations.
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We note that for both metrics, following Section 2.1, one can define a
concave function [* on the belief p, of the joint condition state s of all com-
ponents, i.e. on a N dimensional domain (with the linear constraint that
>_;ps(j) = 1). However, this function can be transformed into a univariate
function of the system failure probability p,, as illustrated in Section 2.3,
only in the the global metric.

These major difference between the local and global metrics can be high-
lighted on a paradigmatic case. Consider a two-component series sub-system
in a larger system, where one of the two components is working and the other
is not, and the working component is one (or the other), with probability 1/2.
Hence, the states of the two components are perfectly negatively correlated.
The perfect inspection of one component enables the agent to identify the
malfunctioning component (it is the inspected one, if the outcome is “alarm”,
or the other, if the outcome is “silence” ). From the local metric perspective,
this information is relevant because it enables repairing the malfunctioning
component with perfect information. However, from the perspective of the
global metric, the Vol of inspecting any of the two components is nil, because
the posterior system failure probabilities are identical to the prior one. From
this latter perspective information has value only if the inspection outcome
has an impact on the system failure probability: a component is important
if silence is good news and alarm bad news for system reliability. The exam-
ple shows how information can have value for supporting local maintenance,

regardless of its impact on system reliability.
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4. Computational complexity and Heuristic

4.1. Complexity of Vol computation

The computational complexity of solving Eq.(6) varies with different met-
rics, but is generally intimidating for large systems. The core step of the com-
putational process is solving the reliability problem, identifying the system
failure probability p,, depending on actions and observations. This analysis
is nested into the optimization of the maintenance actions.

The general network reliability problem is NP-hard [2] [19], but numerous
approximations and bounds have been proposed. To compute the risk E[L;],
one has to assess the system connectivity for each of the 2V system states. A
matrix-based method was proposed to compute system reliability based on
a components’ condition matrix with each row representing one state, and
a binary condition vector with each entry representing whether the system
is functioning at that specific components’ state [21]. The general computa-
tion complexity of the method is O(N x 2V). When the joint distribution
of the components’ states is known, with the components’ condition matrix
and the binary system condition vector previously computed, the computa-
tional complexity of system reliability is linear with respect to the system
states. An approximate estimation can also be achieved based on Monte
Carlo simulations [11].

For the global metric, E[Ly] can be determined in O(1) time once we
compute the posterior system failure probabilities. Therefore, to select the
component with highest Vol among N components will cost O(N x 2V).

For the local metric, there is an additional computation step before as-

sessing the Vol. E[L£] is optimized among 2 combinations of maintenance
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actions. Suppose that, on the basis of different inspection outcomes, the
agent can select an arbitrary subset of the components to repair; then, the

computation complexity is generally O(N x 2V x 2V) = O(N x 22V).

4.2. Approzimation for local metric

In this section, we propose a simple heuristic approach for approximat-
ing the local metric, to reduce the computational complexity related to the
optimization of maintenance actions depending on the inspection outcome.

Let us define A; = {ar1,ar2, -+ ,ar N} as the prior maintenance plan,
A, ={awi,au2, - ,a, N} as the posterior one, and L, is the prior optimal
loss related to A, as defined in Section 2.1. We assume that A, and L, have
been identified. Consider inspecting component ¢;. The proposed heuristic
assumes that the agent confirms all actions for uninspected components (i.e.,
Vj #i,a,; = ar;). Only the posterior action on the inspected component,
a,;, depends on the inspection’s outcome, y;. If the prior action for ¢; is to
do-nothing (i.e., if ar; = 0) and the inspection’s outcome is silence (i.e., if
y; = 1), or if the prior action is to repair (i.e., if a,; = 1) and the inspection
produces an alarm (i.e., if y; = 0), then the agent will confirm the prior
action also for the inspected component (i.e., if y; # a,;, then A, = A;).
Instead, if an alarm is detected on a previously unrepaired component, or if
a silence is detected on a previously repaired component (i.e., if y; = ax;),
then the agent considers the two alternatives: repair or not repair ¢;. One
of the two alternatives is, again, to completely confirm the prior plan (i.e.
A, = Ay); thus, the prior loss L, associated with this option is already
known. The agent computes the expected cost of the alternative plan (in

which only action a,; is reversed), and executes the best option, i.e. the
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option related to the minimum expected cost. The computational saving is
related to the avoidance of searching for optimal posterior action in the full
set A.

One argument supporting the choice of this heuristic is the consistency
with the optimal behavior in some special cases,for example, when the high
penalty of a system collapse forces the agent to be conservative. To model this
scenario, suppose that (i) the prior decision is to do-nothing (i.e., Vi, a,; = 0),
that (ii) a detected silence cannot increase the system failure probability (i.e.
Vi, Pujyi=1 < Dx), that (iii) the do-nothing option is still optimal when the
probability of failure decreases and that (iv) a component sending an alarm
must be repaired, because its posterior failure probability is too high to
be tolerated. Condition (iii) is not obviously satisfied even if the first two
conditions are satisfied, because the prior decision might also be doing noth-
ing for another reason, i.e., the agent is pessimistic about the components’
conditions. For such a pessimistic agent, it is not worth repairing any set
of components; repairing few components may be ineffective, and repairing
many components may be too expensive. However, detecting a functioning
component may improve the expectation of the system and persuade the
pessimistic agent to invest in repairing other components. Condition (iii)
forbids the occurrence of this process, by assuming the agent’s optimism
about the system condition. To prove that the heuristic is optimal under
conditions (i-iv), we must show that the optimal response to an alarm on
component ¢; cannot be to repair any other component. Because of (iv), C;

must be repaired. Now suppose that component ¢; is also to be repaired.
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This condition implies the following inequality:
CRri+ Crj + Crpuyi=0,ai=1,a;=1 < CRri + CrPuly;=0,a,~1 (20)

If, as assumed before, repairs are perfect and components’ states are indepen-
dent, then Puly;=0,a;=1 = Puwl|s;=1 = Pwly;=1> and Puly;=0,a;=1,a;=1 = Puw|s;=1,s;=1 =
Pulyi=1,0;=1, 50 the inequality Eq.(20) can be re-written, subtracting Cr; from
both terms as:

Crj + Crpuly=1,0;=1 < Crpujy,=1 (21)

This equation indicates that repairing c; should be the optimal response
to a silence on ¢;, but this response violates conditions (i-iii), which show
that only ¢; should be repaired after receiving an alarm on it. Of course, if
conditions (i-iv) are not satisfied, there is no guarantee that the heuristic is
truly optimal.

The Vol defined by the heuristic is certainly non-negative, as the prior
maintenance plan can be confirmed, if the collected observations do not sug-
gest any improvement. Moreover, given that the heuristic limits the domain
of the posterior actions, the corresponding Vol cannot be higher than the

Vol assessed by the local metric.

5. Examples of System Analysis

We analyze three examples of systems. The first example is the 6-
component system in Fig 9, in which the failure probability of each compo-
nent is listed inside the corresponding node. We start by considering perfect
inspections and independent components. The corresponding values of the

BMs are shown in Fig 10a, and ¢, has the highest importance in BM.
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Figure 9: Block diagram for the counter-intuitive example 1
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Figure 10: BM for the system in Fig 9 (a), and corresponding posterior intervals (b).
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Fig 10b shows the posterior probabilities intervals I; for all components.
All intervals are nested in I,. Thus, component ¢, has the highest Vol,
according to the global metric, regardless of the loss function we adopt (and
so it has also the highest BM, as noted above). We divide the Vol of each
component by the maximum Vol of all the components under the same metric
obtain a normalized Vol. The normalized Vol under the global metric, for
loss function I*(p,,) = pu(1 —py), is shown in Fig 11. For the local metric, we
assume that Cp/Cgr; = 10, for every component ¢;, i.c. the cost of system
failure is ten times the cost of repairing one component. The optimal prior
maintenance action is to repair component cy. As shown in Fig 11a, the local
metric and the heuristic both identify ¢y as the component with the highest
Vol.

However, if the maintenance cost for ¢y increases to Cr/Cr2 = 5 while
the cost for the others remains the same, the optimal prior action becomes
repairing c¢4. Table 2 reports the optimal posterior actions depending on
the inspection outcome, for this new assumption on the costs. As shown in
Fig 11b, the local metric still gives the highest inspection priority to ¢y (as
the global metric does), but the heuristic selects ¢; instead. The difference
between the local metric and heuristic approach is because the posterior
optimal action may not include repairing ¢, (e.g. after a silence on ¢,), or it
may include repairing uninspected components (e.g. after an alarm on ¢y, c3
is to be repaired). Though the Vol calculated from the heuristic approach is
no higher than that from the true optimal solution, the heuristic approach
overestimates the priority of inspecting ¢4 over ¢y, which is inconsistent with

the local metric.
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Inspection outcome
Silence (y; =1) Alarm (y; = 0)
Inspected component

¢ {cs} {es, ca}

Ca 0 {03, 04}
c3 {ca} {es,ca}
Cy4 0 {64}

Cs {ce} {ea}
Cé {0} {ce}

Table 2: Posterior subset of components to be repaired for the system in Fig 9.

1.0 B V  Global 1.0 4 XX V  Global
A Lowl A Local
Heristic A Heuristic
0.8 4 0.8 4 A
2 A
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v sV
v v
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1 2 3 i [ 1 2 3 i [
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(a) (b)

Figure 11: Normalized Vol for the system in Fig 9, with Cr/Cg, = 10 (a), and with
Cr/Cr, =5,Cp/Cg, =10,Yi # 2 (b).
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Figure 12: Normalized Vol for the system in Fig 9, with epsq = epg = 0.01 (a), and
EFpA = 0.017 EFpS = 0.40 (b)

Error rates in imperfect inspections also affect the optimal decision. We
now assume, again, that Cr/Cgr,; = 10 for every component ¢;, but inspec-
tions are imperfect; when ep4 = ¢pg = 0.01, the corresponding Vol, shown
in Fig 12a, is similar to the perfect inspection case shown in Fig 11a, and
¢o has the highest Vol. But when the type II error rate epg is increased to
0.40, the Vol changes to Fig 12b, and component ¢; gains the highest priority
according to the local metric and heuristic approach.

The second example is a 16-component system represented in Fig 13. The
components have different topological importance: components ¢;, ¢4 and cg,
and the ones symmetric to them, can be considered as “bottlenecks”, with
respect to other components.

We assume that the marginal probability of failure is p; = 0.01 for every
component ¢;. For the global metric, we use I*(p,) = pu.(l — p,) as a loss
function, and the corresponding Vol is shown in Fig 14a. For the local metric,

we assume the cost ratio between system failure penalty and component

34



643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

Figure 13: Block diagram of 16 component system

maintenance is Cp/Cgr; = 10 for every component ¢;, so that the resulting
optimal prior maintenance action is to repair no component. Under the local
metric, cg and ¢y have the highest Vol, followed by ¢y, ¢4 and c¢;. The
heuristic approach gives the same result as the local metric and the global
metric.

However, if Cr/Cg; increases to 10% for every component c;, the new
optimal prior maintenance action becomes repair the symmetric bottlenecks
cg and c¢16. The Vol for the global and local metrics and the heuristic with
this new assumption on costs is illustrated is Fig 14b. The local Vol of
inspecting cs, ¢g and the components symmetric to them is now nil, because
the cost for system failure is so (relatively) high, that the agent will not alter
the prior action even if a silence is received on these components.

Depending on the setting, the bottleneck components may not always
have the highest Vol. If p;; = 0.5, p12 = 0.4, p13 = 0.3, p; = 0.01,¢ # 11,12, 13
and Cp/Cp,; = 1000 for every component ¢;, the Vol is that shown in Fig 15.
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Figure 14: Normalized Vol for the system in Fig 13 with different maintenance cost, with

and Cp/Cr; = 10% (a) and Cp/Cg,; = 10* (b)

Now the optimal prior action is to repair c¢i5. The global metric prioritizes ¢y,
¢4 and ¢y for inspection, but the local metric prioritizes c¢;3, even though it is
not the most vulnerable component (which is ¢11). After ¢;3, the components
with high Vol under local metric will be ¢ and ¢;;. Instead, the heuristic
approach assigns the highest Vol to c;2. This assignment occurs because,
when the inspection of ¢17 or ¢35 receives silence, the optimal action is to do
nothing, but the heuristic approach forces the agent to at least execute the
prior plan.

The third example is taken from [21] and it represents a two-line electrical
substation with 12 components with 6 different functions as illustrated in Fig
16: DS - Disconnect Switch, CB - Circuit Breaker, PT - Power Transformer,
DB - Drawout Breaker, TB - Tie Breaker, FB - Feeder Breaker. We assume
that the marginal failure probability of the components with function DS,
CB or DB is 9.53 x 1073, and that of components with function FB, PT

and TB is 2.32 x 1073, For every component ¢;, costs are defined by ratio
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Figure 15: Normalized Vol for the system in Fig 13 with p, = 0.01,7 # 11,12,13, p1; =
0.5,])12 = 0.4,]713 = 0.3 and CF/CR,i = 103

Cr/Cgr, = 1000. In this example, we investigate how the correlation between
a component’s state affects the Vol. If all the components are statistically de-
pendent, complexity of computing the system failure probability may become
intractable. Conditional independence between component events given the
outcomes of a few random variables representing the source of common effects
was assumed in [22], and a matrix-based method based on this assumption
was developed to compute the system reliability. Following that work, we
assume interdependence among the components’ states, but only for com-
ponents with the same function. For group k£ of components with the same
function, let z; denote a binary variable which indicates the occurrence of
an external event relevant for the group if xp = 1, and it is z;, = 0 oth-
erwise. The Bernoulli probability of such variable is defined by probability
ay = Pz, = 0]. For any component ¢; within that group, if 2 = 1, then the
component is surely functioning, i.e. P[s; = 1l|zy = 1] = 1; while if z;, = 0
component ¢; fails with conditional probability 5 = P[s; = 0|z, = 0]. Let pg

be the correlation coefficient between the states of any pair of components
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Figure 16: Block diagram of a two-transmission-line substation system

within group k, and p, the marginal failure probability for any component
in the group. The corresponding factors are:

Br = Pk(l _pk) + Dk (22)

ap = Pr/ Bk
The example of Fig 16 is defined by 6 pairs of features {p, p1,... D¢, P6}
corresponding to coefficients {ay, £, ..., ag, s}

When all the components are independent, the prior action is to do noth-
ing, and the optimal posterior action is to repair the inspected component
after an alarm, except for DS3 and TB. Thus, the local metric and heuristic
give identical results. Although CB and DB have relatively higher failure
probability compared with other components, the cost reduction by repair-
ing the damaged components CB or DB is significantly higher than repairing
others. This is why CB and DB components have the highest Vol according
to the local metric and the heuristic, as shown in Fig 17a. For the global
metric, with loss function I*(p,) = pu(1 — py), the posterior system failure
probability given an alarm from components CB or DB is the highest, and the

probability given a silence from those components is the lowest, i.e. poste-
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rior intervals Icg = Ipg contain the corresponding intervals of all the others;
thus, those components have the highest Vol, according to the global metric.

When the correlation among states in DS components grows, while other
groups remain independent (and the marginal probability remains the same),
the Vol favors the group of correlated components. The prior action becomes
repairing DS; or DS, when the correlation coefficient p is above 0.4. The op-
timal action is shown in Table 3. Components DS; or DS, should be kept
functioning, depending on which link set the inspected component is in. One
exception is DS3, which has different Vol for the local metric and the heuris-
tic. As shown in Fig 17b, when the correlation coefficient p for the states
of components DS increases, inspecting one of them reveals additional infor-
mation about the other two, making the Vol of inspecting DS components
higher than the Vol of other components with different functions. When
p is close to one, DS; and DSy act like one bottleneck component, which

dominates the Vol as shown in Fig 17c.

6. Discussion and Conclusions

We have derived metrics based on the Vol to assign priorities among com-
ponent inspections in networked systems. The Vol analysis can be applied
to any setting, but its computational complexity depends on the complexity
of the ingredients that define the problem. We have restricted the attention
to binary components, binary inspection outcomes in a binary system. In
this setting, we have introduced two metrics, local and global, that assume
different sets of available actions and different loss functions. The problems

modeled by the global metric do not form a strict subclass of that mod-
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nsp. outcome
Silence (y; =1) Alarm (y;, = 0)

Component
DS; 0 DS,
DS, 0 DS,
DSs 0 DS
CB; DS, DS,, CB;
CBs DS, DS,, CBy
PT, DS, DSy, PTy
PT, DS, DS,, PTy
DB, DS, DSy, DBy
DB, DS, DS,, DBy
TB DS, DS,
FB; DS, DSy, FB;
FB, DS, DS, FBs

Table 3: Optimal posterior action for the system in Fig 16 when p = 0.4
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Figure 17: Normalized Vol for the system in Fig 16, with correlation among the DS
component of p =0 (a), p=0.4 (b), p=0.9 (c)
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eled by the local metric. We have proven general rules for identifying what
components have higher importance for those metrics in series and parallel
systems. The evaluation of the global metric is generally less complex than
evaluation of the local metric, because of the underlying optimization of the
maintenance actions of different scales. The selection of the appropriate met-
ric should be based on the actual set of actions available. However, when
only limited computational resources are available, a simpler metric such as
the global metric or the heuristic approach may be appropriate.

We have proposed a heuristic approach to approximate the local metric,
by simplifying the corresponding optimization of maintenance actions. We
have illustrated the heuristic’s performance in some examples, but there is
no guarantee that the heuristic captures the exact local metric. The Vol
assessed by the heuristic is surely non-negative, and no higher than the Vol
of the original local metric; however, the ranking can be arbitrarily different.

The distinction between local and global metrics can be extended to the
case of multiple values (more than binary) for the state of the components
and of the system, and for inspection outcomes. However, some concepts
are defined only for the binary case, e.g. the posterior intervals in the global
metric are defined only for binary inspection outcomes in a binary system (if
the system state dimension is higher than the component state dimension,
then the posterior interval can be generalized into the concept of “posterior
polyhedron”).

We have limited the analysis to the “static” optimization of the inspection
of one component. Several more complex problems can be built on this

optimization. One complex problem is the off-line or on-line optimization of
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multiple inspections for a system with static condition states [13], that can
be based on a greedy sequential approximation. The same global and local
approaches can be adopted in the greedy approach. Among these two options,
the on-line setting is generally simpler; the off-line option is generally more
expensive because M binary inspections produce 2¥ joint outcomes that
must be analyzed in an exhaustive pre-posterior analysis. Another extension
is related to temporal problems, in which the components’ condition degrades
in time, and they can be periodically and sequentially inspected and repaired
[15, 16]. Given the complex interplay between present and future decisions
and costs, we cannot predict the effectiveness of the metrics proposed when

applied to those dynamic settings.
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Appendix A. Notation table

Notation Meaning

N Number of components
c,t=1,--- N Component index

s; €B,e=1,--- , N | Binary component state
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s = [s1,82,"+,Sn] | System state vector

u€eB=¢(s) Binary system state

Ds Probability distribution of s

pi,i=1,--- N Marginal failure probability of component ¢;

Du Failure probability of the system

y; € B,i=1,---, N | Inspection outcome on component c;

Dy, Prior probability of receiving y;

Dsly; Posterior probability distribution of s given y;

Dusly, Posterior system failure probability given y;

A Maintenance action that changes the state s

Dy'|s,A Posterior probability distribution of s’ given s and A
L(s', A) Expected loss given action A and posterior state s’
Ly(s") Expected system failure penalty

Li(A) Expected action cost

L, Minimum expected cost before inspection

L, (i) Minimum expected cost after inspecting ¢;

Vol (1) Value of Information for inspecting ¢;

€FS, €EFA False silence and alarm inspection error rate

h; Probability of receiving alarm on ¢;

lau Cost given prior state u and action A

Qu,A System failure probability given prior state v and action A
p;| A Posterior probability of system failure given prior state u and action A
Ca Action cost

Cr System failure cost
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La(pu) Expected loss when taking action A given prior belief p,
LE(3) Vol of inspecting ¢; under global metric

LE(4) Vol of inspecting ¢; under local metric

lpr(pu) Value of Perfect Information (VoPI) given prior belief p,
rg(pu) Difference between the Vol and VoPI

Table A.4: Major notations

Appendix B. Importance Measures

Similar to the Birnbaum’s measure, the Criticality IM [7], evaluates the
importance of ¢; with the approximated conditional component failure prob-

ability given that the system has failed:

CRT(i) = (Pujyimo — p)jj—  BM(i) - p; (B.1)

Some [IMs emphasize on the topology structure of the system. Based on
the cut sets, [9] evaluates the importance of ¢; by the number of cut sets it
belongs to and the accumulated appearance probability of such cut sets.

To use IMs as utility-based applications, the risk achievement worth
(RAW) and the risk reduction worth (RRW) are developed. RAW evalu-
ates the component with the contributions of maintaining a certain level of
reliability of the component to the system reliability, i.e. for component c;,
its importance can be measured as:

11— Puly;=1

RAW() = —

(B.2)

So, between two components ¢; and ¢;, RAW(i) > RAW(j) & pyp=1 <

Puly;=1- RRW evaluates a component by the decrease of system failure risk
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given that the component is intact:

: Dr
wlyi=

So RRW (i) > RRW(j) < Pujyi=0 = Puly;=o-
Appendix C. Nested posterior intervals in the global metric

To prove the lemma in Section 3.1, we now write p.y,—y as x4 for simplic-
ity. We assume that [; O I;, we have that 0 < z;; < ;; < x;0 < 2;0 < 1.

Because of the law of expectation, we have:
pr =171 + (1 = p1)wip = paxjn + (1 — pa)wjo (C.1)
We prove that:

LS(1) = prl(zin) + (1 —p)l(zio) < pol(win) + (1 —p2)l(zj0) = LS (2) (C.2)

L5,0—T5,1 T
P 4,09
T4,0—T4,1

_ Zi,0—%j5,1 Lj1—%i,1 _ Zi,0—%5,0
Because o=y Til + e Lio A d o R +

and [ is a concave function, we have:

Tio — Tj1 Tj1 — Til
I 1 — o) (2 0) Sp, 220 “5Lp 00 L v
pal(z1) + (1 — p2)l(zj0) _Pz[%o i (wi1) + pap— (wi0)]
Tio — 4,0 Ljo0 — Tj,1
+ (1 = po)[——Uwiy) + ——(z;,
(1= P [E 200 ) 4 T )

=pil(zi1) + (1 — p1)l(zio)
(C.3)
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