
D
R

T

Journal Pre-proof

Optimal inspection of binary systems via value of information analysis

Chaochao Lin, Junho Song, Matteo Pozzi

PII: S0951-8320(21)00455-5
OI: https://doi.org/10.1016/j.ress.2021.107944
eference: RESS 107944

o appear in: Reliability Engineering and System Safety

Received date : 24 January 2020
Revised date : 8 August 2020
Accepted date : 26 July 2021

Please cite this article as: C. Lin, J. Song and M. Pozzi, Optimal inspection of binary systems via
value of information analysis. Reliability Engineering and System Safety (2021), doi:
https://doi.org/10.1016/j.ress.2021.107944.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.ress.2021.107944
https://doi.org/10.1016/j.ress.2021.107944


High









Highlights Journal Pre-proof
lights: 

 Importance of inspections in binary systems based on the Value of Information; 

 Two metrics for component-level and for system-level maintenance actions; 

 Inspection priorities for series and parallel systems; 

 A heuristic proposed for reducing the computation complexity in general systems; 
Jo

ur
na

l P
re

-p
ro

of



Manuscript File Click here to view linked ReferencesJournal Pre-proof
Optimal Inspection of Binary Systems via Value of

Information Analysis

Chaochao Lina, Junho Songb, Matteo Pozzia,∗

aDept. of Civ. and Env. Eng., Carnegie Mellon University, Pittsburgh, PA, USA
bDept. of Civ. and Env. Eng., Seoul National University, Seoul, South Korea

Abstract

We develop computable metrics to assign priorities for information collec-

tion on binary systems composed of binary components. Components are

worth inspecting because their condition states are uncertain, and system

functioning depends on them. The Value of Information (VoI) enables as-

sessment of the impact of information in decision making under uncertainty,

including the component’s reliability and role in the system, the precision

of the observation, the available maintenance actions and the expected eco-

nomic loss. We introduce the VoI-based metrics for system-level (“global”)

and component-level (“local”) maintenance actions, analyze the properties

of these metrics, and apply them to series and parallel systems. We discuss

their computational complexity in applications to general network systems

and, to tame the complexity for the local metric assessment, we present a

heuristic and assess its performance on some case studies.
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1. Introduction1

Many civil infrastructures (e.g. transportation and gas pipeline networks)2

consist of multiple binary components, arranged in a system to fulfill various3

functions [21] [23] [28]. The binary states of the components, either intact or4

damaged, determine the system condition. The belief of the agent controlling5

the maintenance process can be described by a probabilistic distribution on6

the possible states of the components. Maintenance actions are selected to7

trade the risk of system malfunctioning for the cost of maintenance (includ-8

ing repair and retrofitting actions). Observations of the components’ states9

can improve decision making and reduce the uncertainty and the mainte-10

nance cost. However, because of budget constraints, it is often impossible11

to inspect all components in a system. Therefore it is important to assign12

inspection priorities for the components. Intuitively, many factors can af-13

fect the inspection preferences, such as the probabilities of failure events,14

the maintenance costs and the role of each component in the system. These15

factors can be integrated in an Importance Measure (IM) for inspections, i.e.16

a value assigned to each component to summarize the benefit of observing17

the state of a component.18

To introduce the problem, consider a binary system composed of N com-19

ponents: {c1, c2, · · · , cN}. Let s = [s1, s2, · · · , sN ] ∈ S denote the states of the20

components, with sj = 1 indicating that component cj is working, and si = 021

that it fails, where S = BN and B = {0, 1}. The system state u = φ(s) is22

also a binary variable, where φ : S → B is the component-to-system function.23

State s is unknown to the agent who manages the system. Instead, the agent24
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optimizes the measurement and maintenance plans on the basis of her belief25

of s . The prior probability distribution of s is denoted as ps : S → [0, 1],26

and pi = P[si = 0] indicates the prior marginal failure probability of ci. The27

failure probability of the system is pu = P[u = 0], and we use pπ and pω|E for28

the prior value of pu and its posterior value given event E, respectively.29

In this paper, we develop metrics to assess the importance of inspecting30

any component. We assume that the outcome of the inspection is also binary.31

If component ci is inspected, yi = 0 indicates an “alarm”, i.e. a symptom32

that ci is not working, whereas yi = 1 indicates that ci seems to work, and we33

define this outcome as a “silence”. If the inspection is perfect, then yi = si.34

On the basis of the measurement outcome, we can update the prior dis-35

tribution of random variables s to posterior distribution ps|yi and, the system36

level failure probability to pω|yi . When the components are interdependent,37

the measurement of one component may also affect the failure probability of38

other components.39

Birnbaum was first to introduce Importance Measures (IMs) [4] to eval-40

uate the contribution of each component to a system’s performance, such41

as the system connectivity. Birnbaum’s Measure (BM) [4] evaluates the im-42

portance of a component by the difference in the posterior system failure43

probability when it is damaged or intact (i.e., in our framework, when the44

inspection outcome is alarm or silence):45

BM(i) = pω|yi=0 − pω|yi=1 (1)

Other IMs are discussed in Appendix B. Most of them focus on the marginal46

or conditional probability of the failure events, and they do not explicitly47

include any evaluation of the maintenance cost and risk. In maintenance48
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problems, a component need high attention because of its topological func-49

tion in the system and because of its high probabilities of failure. To assess50

this need of attention, Wu and Coolen [29] extended the BM to a cost-based51

IM. Zio and Podofillini [30] presented an approach for optimizing multiple52

objectives (such as system risk and maintenance costs), and they developed53

generic algorithms to reduce the computation time. Der Kiureghian et al.54

[6] modeled the component failures as independent Poisson events and devel-55

oped IMs for long-term maintenance of series, parallel and general systems56

based on the system unavailability, mean rate of failure and mean duration57

of downtime.58

To compare and rank the impact of inspections, one can assess their59

Value of Information (VoI). VoI assessment is based on Bayesian pre-posterior60

analysis, as introduced by [10], who integrated the probabilistic knowledge61

about the system with the economic factors related to the available actions.62

In the maintenance process of infrastructure systems, the economic costs are63

related to the system malfunctioning, the execution of inspections, and repair64

or replacement actions.65

VoI has been studied intensively in the area of Structural Health Moni-66

toring (SHM). Straub and Faber [26] integrated VoI for risk-based inspection67

scheduling and maintenance planning of structural systems. Pozzi and Der68

Kiureghian [18] provided a framework for assessing VoI for the long-term69

SHM, and proposed a Monte Carlo approach to reduce the computation com-70

plexity. They also investigated how the imperfect measurements affected the71

posterior decisions. Straub et al. [25] illustrated how to model the stochastic72

dependencies of component deterioration, the failure consequences and the73

4
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inspection cost. The VoI has also been applied to long-term decision making74

problems. Miller [17] extended VoI analysis to optimize not only static one-75

shot inspection, but also to optimize sequentially dependent observations.76

Srinivasan and Parlikad [24], Memarzadeh and Pozzi [16] and Andriotis et al.77

[1] applied the component-wise VoI metric to sequential decision making in78

the management of infrastructure systems, modeled by Partially Observable79

Markov Decision Process (POMDP). Thöns [27] used decision trees to assess80

long-term VoI. Bensi et al. [3] developed Bayesian Networks and Influence81

Diagrams to evaluate post-event inspections, and they proposed VoI-based82

heuristic for optimal inspection sequences. Sensitivity analysis of the process83

parameters with respect to the optimal maintenance actions was presented by84

[31] and [5]. The complexity of computing VoI can grow exponentially with85

the number of components in a system [14]. Even worse, the VoI generally86

lacks the property of submodularity [15], so that the application of greedy ap-87

proaches does not provide certain guarantees of near-optimal solutions [20].88

Effective strategies have been proposed for efficient VoI computation in some89

special cases [12].90

In this paper, we investigate VoI-based metrics related to system-level91

(“global”) and component-level (“local”) decision making after component92

inspections, for systems with various topologies, and compare these results93

with traditional IMs. A recent paper [8] also focuses on inspections for net-94

worked systems, developing an approach to identify the components most in95

need of inspection, similar to what we define as the local metric. We also96

derive simple optimal rules for series and parallel systems. For general sys-97

tems, we discuss the computational complexity of the problem and provide98

5
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a heuristic approach. In Section 2, we introduce the global and local metrics99

for evaluating the components’ VoI. Section 3 describes rules for optimiz-00

ing these metrics to typical systems such as series and parallel systems. In01

Section 4, we propose approximated approaches to simplify the optimization02

complexity, and in Section 5 we examine different applications of global, local03

and heuristic approaches to some system examples.04

2. Global and local VoI metrics05

2.1. Principles of VoI06

Fig 1a illustrates the decision graph for the process of inspecting and07

maintaining the system. Continuous arrows from one set of nodes to one node08

indicate that the probability of latter variable is defined conditional to the09

former ones. Double arrows indicate deterministic relations. Dashed arrows10

from random variables to decision variables indicate that the former ones are11

observed before the latter is selected. Let A denote the set of all possible12

maintenance plans, that we simply call “actions”. Action A ∈ A transforms13

current components’ state s ∈ S into state s ′ ∈ S, via transition distribution14

ps′|s,A : S × A × S → [0, 1]. Loss function L(s ′, A) = LI(φ(s ′)) + LII(A) :15

S ×A → R summarizes the overall cost: LI(φ(s ′)) = CF (1− u′) adds failure16

costs CF if the system is not functioning, depending on system state u′ after17

taking action A, which is associated with implementing cost LII(A).18

The prior loss Lπ is the minimum expected cost among all possible ac-19

tions, before any inspection:20

Lπ = min
A
EsEs′|s,AL(s ′, A) = min

A
Es′|AL(s ′, A) (2)

6
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s s ′

yi A

u′ LI
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(b)

Figure 1: Decision graph for the general problem (a), and for the global metric (b).

where Es′|A[·] = EsEs′|s,A[·] denotes the statistical expectation depending on21

distributions ps′|s,A and ps .22

Inspecting component ci, the agent collects observation yi distributed23

according to function pyi : B→ [0, 1], and the belief of the components’ state24

s is updated to posterior distribution ps|yi : S × B→ [0, 1]. These functions25

are obtained by Bayes’ rule:26

pyi =
∑

s

pyi|sps ps|yi =
pyi|sps
pyi

(3)

where pyi|s : B × S → [0, 1] is the likelihood function related to observation27

yi.28

The corresponding expected posterior loss is:29

Lω(i) = Eyi min
A
Es′|yi,AL(s ′, A) (4)

where Es′|yi,A[·] = Es|yiEs′|s,A[·] is the posterior expectation, related to distri-30

bution ps|yi , and Eyi [·] is related to distribution pyi .31

The VoI for inspecting ci is the expected loss reduction due to the in-32

spection, i.e. the difference between the prior and posterior loss functions33

[10]:34

VoI(i) = Lπ − Lω(i) (5)

7
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Loss function L does not include the cost of monitoring, and the VoI is35

always not negative. However, if such cost is uniform among components, the36

VoI is a rational IM that assesses the relevance of inspections. The optimal37

component to inspect, ci? , is the argument that maximizes Eq.(5):38

i? = arg max
i

VoI(i) (6)

The VoI depends on the specific number N of components, the action39

domain A, the loss function L (in turn defined by the component-to-system40

function φ, the failure cost CF , and the implementing cost LII), the prior41

probability ps , the transition probability ps′|s,A and the likelihood function42

pyi|s adopted, as apparent in Fig 1a. In the following Sections, we describe43

a form of the likelihood function for binary components, and then we focus44

on two classes of losses and transitions, related to global and local decision45

making.46

2.2. Modeling imperfect inspections47

The VoI analysis also depends on the specific assumed likelihood function.48

If the binary outcome yi, of inspecting component ci, depends only on the49

state si of that component, likelihood function pyi|s in Eq.(3) is reduced to a50

4-entry emission table pyi|si : B× B→ [0, 1], shown in Table 1.51

Observations of components’ states are prone to error, and the inaccuracy52

can be formulated by two parameters εFA = P[yj = 0|sj = 1] and εFS =53

P[yi = 1|si = 0], which are the probability of type I error: having an “alarm”54

when the component is undamaged, and of type II error, a silence when55

the component is damaged. Although these probabilities can depend on56

8
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Actual state

Observation
Silence yi = 1 Alarm yi = 0

Undamaged si = 1 1− εFA εFA

Damaged si = 0 εFS 1− εFS

Table 1: Emission probability table for observation yi given state si.

the specific component, in the following discussion, we assume that all the57

components have identical εFS and εFA.58

Inspection outcomes probability function pyi : B → [0, 1], is related to a59

single value: the probability hi = P[yi = 0] of receiving an alarm on ci, which60

is:61

hi = (1− εFS)pi + εFA(1− pi) = εFA +Kpi (7)

where constant K = 1−εFA−εFS is strictly positive, because we assume that62

both εFA and εFS are less than 1/2.63

2.3. Global metric64

We define the global metric assuming that action A affects the system65

state u. In this setting, for any of the two values of the binary variable u, an66

expected loss value can be assigned to any action A, regardless of the details67

of components’ conditions (e.g., the damage location) described by variable68

s . Fig 1b shows the corresponding decision graph, in which the loss is a69

function of system state u′ after the taken action: l(u′, A) = L(s′, A), with70

u′ = φ(s′). Transition function ps′|s,A is now converted into function pu′|u,A :71

B×A×B→ [0, 1], in turn defined by a pair of values: p′ω|A,u=0 and p′ω|A,u=1,72

9
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(a) (b)

Figure 2: Expected loss function (a) and corresponding regret (b) for a global problem

with 4 possible actions.

which are the probabilities that u′ = 0 given action A and given u = 0 or73

u = 1, respectively. Then, lA,0 = p′ω|A,u=0CF +CA and lA,1 = p′ω|A,u=1CF +CA,74

with CA = LII(A), represent the expected losses when u is zero and one (i.e.75

when the system is not working and is working), respectively, for action A.76

For each pair of losses lA,0 and lA,1, with 0 ≤ lA,0 − lA,1 ≤ CF , one can77

find a pair of values CA = lA,1 and p′ω|A,u=0 = (lA,0 − lA,1)/CF , to represent78

the target losses, assuming that no maintenance action makes the system79

degrade, so p′ω|A,u=1 = 0. In this interpretation CA is the cost for repairing,80

and p′ω|A,u=0 is the probability that the repair is ineffective. The agent has81

to find an optimal trade-off between implementing more expensive actions82

related to a low risk, and less expensive actions related to a higher risk.83

The corresponding expected loss under action A is a linear function of84

the system failure probability pu:85

lA(pu) = EuEu′|u,Al(u′, A) = pul0,A + (1− pu)l1,A (8)

By taking the minimum among available actions in domain A, we define86

10
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the optimal loss by concave function l∗(pu) = minA lA(pu). Thus, the prior87

expected loss of Eq.(2) for the global metric is LG
π = l∗(pπ) and, following88

Eq.(2), the posterior loss inspecting ci is:89

LG
ω (i) = hil

∗(pω|yi=0) + (1− hi)l∗(pω|yi=1) (9)

and the VoI, following Eq.(5), is VoIG(i) = LG
π − LG

ω (i).90

As a function of pu, the expected loss with perfect information of u is the91

linear function lPI(pu) = pul
∗
0 + (1 − pu)l∗1, with l∗0 = minA l0,A = l∗(1) and92

l∗1 = minA l1,A = l∗(0), and the “regret” is the concave function rg(pu) =93

l∗(pu) − lPI(pu), with rg(0) = rg(1) = 0. The corresponding prior regret is94

RGπ = rg(pπ). Because function lPI is linear, the expected posterior loss with95

perfect information is LPI = lPI(pπ), and expected posterior regret inspecting96

ci is RGω(i) = LG
ω (i) − LPI = −VoIG(i) + LG

π − LPI. Hence, component ci∗ ,97

that maximizes the VoI identified in Eq.(6), also minimizes the expected98

posterior regret:99

i? = arg min
i

RGω(i) (10)

The global metric depends on the set of pairs of expected losses for all actions00

{l0,A0 , l0,A0 , l0,A1 , l1,A1 , · · · lA0,|A| , l1,A|A|}, where |A| is the cardinality of set A,01

or, equivalently, on the concave function l∗. Fig 2 shows an example with02

|A| = 4 actions available. The binary case is when only |A| = 2 actions are03

available: doing-nothing, accepting the risk of paying cost CF if the system is04

not working, with A = 0, or repairing the system at cost CR, with A = 1. As05

shown in Fig 3a, this setting is defined by l1,0 = 0, l0,1 = CF , l0,1 = l1,1 = CR,06

and the corresponding normalized regret function rg/CR is bi-linear, with07

peak (1− p̃) at pu = p̃ = CR/CF .08

11
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(a) (b)

Figure 3: Expected loss (a) and corresponding regret (b) for the binary actions case.

2.4. Local metric09

The local metric refers to actions at component level, whose effects de-10

pend on components’ state s . For this approach, we define each action A11

as a vector {a1, a2, · · · , aN} of N binary entries, where ai = 1 if the agent12

repairs ci, and ai = 0 otherwise. Hence the cardinality of the action set is13

|A| = 2N . We assume that the components’ repairs are perfect so that tran-14

sition function ps′|s,A is defined as follows: in the vector s′ = [s′1, s
′
2, · · · , s′N ]15

of states after maintenance, s′i = 1 if ai = 1, and s′i = si if ai = 0. Func-16

tion LI(φ(s′)) is defined as in Section 2.1, while LII(A) = C>R · A, where17

CR = [CR,1, CR,2, · · · , CR,N ]> is the repair cost vector and CR,i is the cost18

of repairing ci. This model assumes that the accumulated cost is the sum19

of repair costs for the individual components. Other cost models, assum-20

ing a more complex cost interaction among component’ costs, can also be21

implemented.22

After the inspection, the agent selects the optimal subset of components23

to repair. When the inspection outcome is yi = c, the corresponding posterior24
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expected loss is:25

LL
ω|yi=c = Es|yi=c min

A
Es′|s,AL(s′, A) (11)

Following Eq.(4), the corresponding expected posterior loss is:26

LL
ω(i) = (1− hi)LL

ω|yi=1 + hiL
L
ω|yi=0 (12)

and the VoI according to the local metric is VoIL(i) = LL
π − LL

ω(i), where27

prior loss LL
π is computed as in Eq.(2).28

3. Metric properties and inspection priorities on typical systems29

3.1. Nested posterior intervals for global metric30

Figure 4: Example of expected loss for the global metric, with nested posterior intervals.

As we discussed in Section 2.3, the global metric adopts a univariate31

concave function l∗, or rg, of pu . An example of such a function is shown in32

Fig 4, which can also be interpreted as regret, because it is zero at the limits33

13
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of the probability domain. Inspecting every component ci, the posterior34

system failure probability after an alarm is higher than the priori, which is35

in turn higher than the posterior system failure probability after a silence:36

pω|yi=1 ≤ pπ ≤ pω|yi=0.37

Now consider two components ci and cj. Suppose that a silence on ci is38

more reassuring than a silence on cj and an alarm from ci is more worrying39

than an alarm from cj, i.e. pω|yi=1 ≤ pω|yj=1 and pω|yi=0 ≥ pω|yj=0. Then, for40

any concave function l∗ (or rg), the posterior loss of inspecting ci is lower41

than the loss of inspecting cj and the VoI of inspecting ci is higher than that42

of inspecting cj i.e. LG
ω (i) ≤ LG

ω (j) and VoIG(i) ≥ VoIG(j). The proof of43

this implication is intuitive by examining Fig 4, and it is given formally in44

Appendix C.45

We can also reformulate the implication in terms of “posterior intervals”.46

Let us define the posterior interval for ci as Ii = [pω|yj=1, pω|yj=0]. If that47

posterior interval contains the corresponding interval for cj, i.e. if Ii ⊇48

Ij, then VoIG(i) ≥ VoIG(j). Hence, the importance ranking is invariant49

with respect to the choice of l∗, and all possible global metrics prioritize the50

component with larger interval to inspect, consistently with BM defined in51

Eq.(1), i.e. Ii ⊇ Ij ⇒ BM(i) ≥ BM(j). However, the reverse implication is52

not guaranteed, and Birnbaum’s measure is not necessarily consistent with53

the global metric.54

Moreover, if the posterior intervals are not nested, one can always find55

a pair of loss functions {l∗α, l∗β}, so that ci has a higher VoI than cj under56

l∗α, but a lower VoI under l∗β. For proof, refer to the bi-linear loss function57

plotted in Fig 3. If probability p̃ is not in posterior interval Ii (i.e., Ii is on58
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one side of p̃), then the corresponding VoI, VoIG(i), is zero, because the loss59

function is linear in that range. If intervals Ii and Ij are not nested, we can60

find two disjoint intervals: interval Ii�j belongs to Ii but not to Ij, interval61

Ij�i belongs to Ij but not to Ii. If p̃ is in Ii�j , then VoIG(i) ≥ VoIG(j) = 0,62

while if p̃ is in Ij�i, then VoIG(j) ≥ VoIG(i) = 0. This argument shows that,63

for not nested posterior intervals, the priority order depends on the adopted64

loss function.65

3.2. Global metric for parallel systems66

A parallel system will function if at least one of its components is intact.67

For such systems, the global metric will always give the highest priority to68

the most reliable component (i.e., to the one with the lowest marginal failure69

probability), independent of the specific loss function l∗ adopted, when the70

inspection quality is the same for all components. The proof is simple for the71

special case of perfect sensors, i.e. when εFA and εFS are zero. In that case,72

if a silence is detected for any component, then the posterior system failure73

probability is zero. Because the failure of the system implies the failure of74

all components, after an alarm on component ci, pu becomes pω|sj=0 = pπ/pi.75

Hence, if pi ≤ pj, then Ii ⊇ Ij and, according to the rule illustrated in Section76

3.1, we conclude that VoIG(i) ≥ VoIG(j).77

When sensors are imperfect, the proof is still based on Bayes’ formula78

(i.e., on the ratio between joint and marginal probabilities). After a silence79

on ci, pu becomes:80

pω|yi=1 =
pπεFS
1− hi

=
pπεFS

1− εFA −Kpi
(13)

where the second identity follows from Eq.(7), and we note again that K is81
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strictly positive. The corresponding probability after an alarm is:82

pω|yi=0 =
pπ(1− εFS)

hi
=
pπ(1− εFS)

εFA +Kpi
(14)

The denominator of Eq.(13) decreases monotonically with pi, and the de-83

nominator of Eq.(14) increases monotonically with pi. Hence, as in the case84

of perfect sensors, if pi ≤ pj, then Ii ⊇ Ij and, VoIG(i) ≥ VoIG(j).85

In summary, the ranking of importance measures follows the opposite of86

the marginal failure probability of the components (i.e., the ranking follows87

component reliability). Hence, in a parallel system, the component, ci∗ ,88

with highest VoI is the most reliable component. This result holds for any89

interdependence between components’ states, that is for any distribution ps ,90

when the inspection quality, defined by parameters εFA and εFS, is the same91

for all components.92

3.3. Global metric for series systems93

A series system works only if all components function properly. In that94

case, the global metric always prioritizes the most vulnerable component, i.e.95

the component with the highest prior failure probability, regardless of the96

adopted function l∗ or the interdependence among components. The proof97

is similar to that related to parallel systems. Let us start with the case of98

perfect sensors. The posterior system failure probability will become 1 after99

an alarm on any component, and will become pω|sj=1
= 1− (1− pπ)/(1− pi)00

after a silence on component ci, which monotonically increases with marginal01

component failure probability pi. Hence the most vulnerable component02

should be inspected.03
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For imperfect sensors, after a silence on ci, pu is (again using Eq.(7)):04

pω|yi=1 = 1− (1− pπ)(1− εFA)

1− hi
= 1− (1− pπ)(1− εFA)

1− εFA −Kpi
(15)

After an alarm, that probability is:05

pω|yi=0 = 1− (1− pπ)εFA
hi

= 1− (1− pπ)εFA
εFA +Kpi

(16)

The denominator of the fraction in Eq.(15) monotonically decreases with06

pi, and the denominator of Eq.(16) monotonically increases with pi. Hence,07

if pi ≥ pj, then Ii ⊇ Ij and VoIG(i) ≥ VoIG(j), as in the case of perfect08

sensors. So, in a series system, regardless of the interdependence between09

components, the inspection ranking follows the marginal component failure10

probability, and ci∗ is the most vulnerable component.11

In other words, the most vulnerable component, ci∗ , is the one to inspect12

because detecting a silence on that component (i.e. yi∗ = 1) induces the13

highest reduction of pu, and an alarm (i.e. yi∗ = 0) induces the highest14

increment in that probability. Although the former property is almost trivial,15

the latter may be less intuitive. After all, ci∗ was (relatively) likely to be16

damaged; thus, why does an alarm on that component produce the more17

“surprising” result on the system reliability (compared with alarms on less18

vulnerable components)? For imperfect inspections, two factors affect the19

posterior probability. On one hand, after detecting an alarm on ci∗ , the20

system can still count on the other components, which are more reliable than21

ci∗ (instead, after an alarm on a safer component, the system can only count22

on more vulnerable components). Hence, this factor suggests that an alarm23

of ci∗ is less worrying that an alarm on others. Conversely, following Bayes’24

rule, an alarm on ci∗ produces a relatively high posterior failure probability25
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o c1

c2

c3
d

(a)

o
c2 c3

c1
d

(b)

Figure 5: Block diagrams for series-parallel (a) and parallel-series (b) 3-component system.

(at component and at system level), because of the high prior probability that26

ci∗ is damaged. For safer components, the impact of the alarm is diluted by27

the more optimistic prior information, and the posterior failure probability28

after an alarm is lower at component level (obviously) and at system level, as29

formally proved by Eq.(16). Hence, this latter factor dominates the former30

factor, and ci∗ has the highest VoI. This result depends on the assumption31

that the sensor accuracy is uniform among components. If the accuracy was32

higher for a specific component, that component could have the highest VoI,33

even if it was not the most vulnerable component.34

3.4. Global metric for general systems35

If the posterior probability interval related to one component nests all36

the others, then the rule of Section 3.1 identifies the optimal component37

to inspect. For general systems, the global metric does not always select38

the most vulnerable or the most reliable component, because the posterior39

intervals may not be nested, and the rule does not apply.40

We illustrate this by discussing two simple examples of 3-component sys-41

tems, with perfect sensors as shown in Fig 5. The system functions if there42

is an intact path from origin node o to destination node d. Fig 5a shows a43

system in which component c1 is in series with a parallel subsystem composed44

18

Jo
ur

na
l P

re
-p

ro
of



3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Journal Pre-proof
of components c2 and c3. Intuitively, component c1 should be inspected, be-45

cause it is a “bottleneck” of the system; thus, it seems topologically more46

important. Detecting that c1 is not working takes pu from one, i.e., to a47

higher value related to an alarm on c2 or on c3. A silence detected on c148

takes pu to the joint failure probability, pω|s1=1, which is determined by com-49

ponents c2 and c3, and is (p2p3) if they are independent. Instead, a silence50

detected on c2 (or on c3) takes pu to pω|s2=1 = p1. Hence, posterior interval51

I1 contains the other two if pω|s1=1 is less than p1. Conversely, if p1 is less52

than pω|s1=1, the posterior intervals are not nested, and the priority depends53

on the selected loss function l∗. This result confirms the intuition that if c154

is much safer than the other components, it may not be the most important55

component to inspect (trivially, if p1 is zero while p2 and p3 are positive, then56

c1 has the lowest priority).57

In the example of Fig 5b, component c1 is parallel with a series subsystem58

composed of components c2 and c3. Again, c1 seems topologically more59

important. After a silence on c1, pu is zero, a value lower than the value60

related to silence on c2 or on c3. An alarm on c1 takes pu to 1 − r2,3, where61

r2,3 is the joint survival probability of the other two components, that is62

(1− p2)(1− p3) for independent components, whereas an alarm on c2 (or on63

c3) takes pu to p1. Hence, posterior interval I1 contains the others if p1 is less64

than 1−r2,3 i.e., for independent components, if p1 is less than p2 +p3−p2p3.65

Approximating this latter value with p2 + p3, we conclude that the global66

metric gives higher priority to c1 when p1 is less than (p2 + p3). If p1 is67

higher than (p2 + p3), priority depends on the selected loss function l∗. This68

conclusion confirms the intuition that, if c1 is much more vulnerable than the69
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other components, it is better to inspect others (in the limit case where p1 is70

one, VoIG(1) is zero). These two examples illustrate how the topological role71

of a component matters, but also its failure probability: in some schemes a72

high failure probability guarantees a high priority.73

We discuss now a more general example, focusing on two components, c174

and c2. The components’ roles are described completely by the system fail-75

ure probability for each of the 22 joint conditions of the pair of components,76

that we assume as pω|s1=1,s2=1 = 0.5%, pω|s1=1,s2=0 = pω|s1=0,s2=1 = 2.5%,77

pω|s1=0,s2=0 = 90% (so the roles played by the two components are the78

same). We also assume that p1 = 1% and p2 = 20% (so that the c1 is79

significantly more reliable than c2), the states of all components are inde-80

pendent, and inspections are perfect (i.e., yi=si). Fig 6 shows the diagram81

of a system consistent with these values. The interval of posterior proba-82

bilities Ii is [0.90%, 20.0%] for i = 1 and [0.52%, 3.38%] for i = 2, whereas83

pπ is 1.09% (these results are directly related to the assumed values, e.g.84

pω|y2=1 = pω|s1=0,s2=1p1 + pω|s1=1,s2=1(1 − p1)). The intervals are not nested;85

hence, the rule in Section 3.1 does not apply, and the VoI depends on the86

specific function l∗. Fig 7 refers to the bi-linear regret function for binary87

actions plotted in Fig 3, and mentioned in Section 2.2, with peak at p̃. The88

figure shows how the VoI related to each component, normalized by prior89

regret RGπ, varies as a function of p̃. When p̃ is below pω|y2=1 = 0.52% (i.e.,90

when CR is below 0.52% of CF ), the VoI of each component is nil, because the91

posterior decision is always to repair. Then, VoIG(2) increases up to about92

42% of RGπ when p̃ = pπ (i.e., for that condition observing y2 is worth 42%93

of the value of observing u), then it decreases to zero at p̃ = pω|y2=0 = 3.38%.94
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o

0.5%

2.3%

2.3%

1%

20%

90%

d

c1

c2

Figure 6: Block diagram for a system where posterior probability intervals for components

c1 and c2 are not nested

For p̃ higher than pω|y2=0, the posterior decision is always to accept the risk.95

The behavior of VoIG(1) is similar; it is zero outside I1, and it peaks at pπ,96

where it is about 17% of RGπ. Clearly, the optimal inspection decision de-97

pends on p̃, i.e. on the decision-making problem shaping function l∗. This98

conclusion is apparent in Fig 7, if the repair cost is cheaper than 2.5% of the99

cost of failure, it is more convenient to inspect the more reliable c2, whereas00

it is better to inspect the less reliable c1 for a higher repair cost.01

Figure 7: Normalized VoI depending on peak probability p̃.
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3.5. Local metric on parallel systems02

The local metric, as defined in Section 2.4, will select the most reliable03

component in a parallel system, consistently with the global metric. This04

selection behavior is because, in a parallel system, repairing one component05

guarantees the functioning of the system. Hence, the agent faces a binary06

decision: do nothing or repair the less expensive component, at cost miniCR,i.07

This problem setting is equivalent to that of the global metric, with the bi-08

linear function l∗ of Fig 3a. Therefore, the local and global metrics have09

identical conclusions about the optimal inspection.10

3.6. Local metric on series systems11

With the local metric, the optimal component to inspect in a series system12

is not always the most vulnerable component, i.e. the component identified13

by the global metric. We start discussing the case of a system with two14

components, c1 and c2, with identical repair costs, CR1 = CR2 = CR, and15

equipped with perfect sensors. Let us also assume that CR ≤ CF/2, so16

that the cost for repairing both components is less than the failure cost.17

Hence, if any component ci is detected as damaged, it is necessary to repair it18

(Ai = 1), to avoid paying the failure cost. After the repair, the system failure19

probability is the posterior failure probability of the uninspected component.20

That uninspected component should be also repaired if the corresponding risk21

is above the repair cost, so that the posterior expected maintenance cost for22

that component is R(i, x) = min{CR, pω|si=x,Ai=1−xCF}, with x = 0. Instead,23

if the inspected component works, it has not to be repaired, and the state of24

the uninspected component is decided by comparing repair cost and system25

failure risk, so that the expected posterior cost is R(i, 1). Hence, the expected26
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posterior loss is LL
ω(i) = piCR + piR(i, 0) + (1 − pi)R(i, 1). In the special27

case of independent components, for any outcome x, probability pω|si=x is28

identical to the prior failure probability pj of the uninspected component29

cj, so that R(i, 0) = R(i, 1), and LL
ω(i) = piCR + min{CR, pjCF}. If we30

refer to bi-linear regret function rg of Fig 5b, we conclude that, for each31

component ci, VoIL(i) = RGω(i); thus, we should inspect the component32

with the higher value of RGω(i). If both prior failure probabilities are below33

p̃ = CR/CF , the local metric will prioritize the more vulnerable component.34

However, if the failure probability of a component is above p̃, then the higher35

that probability, the lower the corresponding VoI. Fig 8 shows the optimal36

inspection policies for p̃ = 0.2, p1 ≥ p2, and different correlation coefficient ρ37

between variables s1 and s2. The joint probability can be defined given the38

correlation coefficient ρ and the marginal probability p1 and p2. For example,39

the joint probability of both components work is:40

P[s1 = 1, s2 = 1] = ρ
√
p1(1− p1)p2(1− p2) + (1− p1)(1− p2) (17)

. We have discussed the case when ρ is zero. When it is positive, the domain41

of feasible pairs (p1,p2) shrinks but, inside the feasible domain, the region ex-42

pands where it is more convenient to inspect the more vulnerable component.43

When the correlation is negative, for any feasible pair {p1, p2}, the VoI is the44

same for both components. We can provide a simple approximation for se-45

ries system if their states are independent and the failure probabilities are46

relatively low. In that case, the risk E[LI ] can be approximated as that of47

a “cumulative system”[13]. In a cumulative system, individual costs are as-48

sociated with the failure of each component, and the costs are accumulated49

to obtain the system-level cost (hence, no component-to-system function φ50
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Figure 8: Optimal inspection i∗ when two components are dependent, depending on cor-

relation ρ.

is defined for these systems). To illustrate this approach, we recall that, for51

a series system with independent components, the risk is:52

Eser.[LI ] = CF [1−
∏

i

(1− pi)1−Ai ] (18)

For a cumulative system with component failure cost CF , it is:53

Ecum.[LI ] = CF
∑

i

(1− Ai)pi (19)

By linearizing the former expression (neglecting higher order terms), the54

two risks become identical. For a cumulative system, it is straightforward55

to evaluate the benefit of inspecting component ci which is related to the56

selection of action Ai, and when sensors are perfect, it is VoIL(i) = RGω(i)57

(for imperfect sensors, one has to subtract the posterior regret). These results58

are also consistent with the case in which N = 2.59
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3.7. Connections and differences between local and global metrics60

Whereas the local metric follows the traditional Bayesian pre-posterior61

analysis for a selected class of actions and losses, the global metric takes62

inspiration from the BM, and it focuses on the impact of information on63

the system failure probability, neglecting the impact on damage localization.64

This latter approach allows for a simpler optimization and VoI analysis, and65

the intuition supporting it is that a component should receive a high priority66

if its inspection outcome is highly informative on the system state.67

The two metrics refer to different problem classes, which are not nested68

one into another (given the restrictive rules we impose to the local met-69

ric). On the one hand, information in the local metric keeps referring to70

local quantities, i.e. the damage condition of individual components, and71

therefore is key to supporting local repairing, i.e. the repairing of those com-72

ponents. In the global metric approach, local information is neglected, and73

the optimal posterior action is only a function of the posterior system failure74

probability. This indicates that the local metric cannot be generally reduced75

to an equivalent global one. On the other hand, the global metric cannot be76

generally reduced to the local one either. This is because, for example, in77

the local metric we assume that each action identifies whether to repair or78

not for each component; hence, for a system with N components, there are79

2N available actions in local metric, whereas the global metric can define an80

arbitrary number of actions (each associated with different repair cost CA81

and posterior probability p′ω|A,u=0). Also, the assumptions of perfect repairs82

and of additive repair costs impose constraints to the available actions in the83

local metric, while the global metric is not subject to these limitations.84
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We note that for both metrics, following Section 2.1, one can define a85

concave function l∗ on the belief ps of the joint condition state s of all com-86

ponents, i.e. on a N dimensional domain (with the linear constraint that87

∑
j ps(j) = 1). However, this function can be transformed into a univariate88

function of the system failure probability pu, as illustrated in Section 2.3,89

only in the the global metric.90

These major difference between the local and global metrics can be high-91

lighted on a paradigmatic case. Consider a two-component series sub-system92

in a larger system, where one of the two components is working and the other93

is not, and the working component is one (or the other), with probability 1/2.94

Hence, the states of the two components are perfectly negatively correlated.95

The perfect inspection of one component enables the agent to identify the96

malfunctioning component (it is the inspected one, if the outcome is “alarm”,97

or the other, if the outcome is “silence”). From the local metric perspective,98

this information is relevant because it enables repairing the malfunctioning99

component with perfect information. However, from the perspective of the00

global metric, the VoI of inspecting any of the two components is nil, because01

the posterior system failure probabilities are identical to the prior one. From02

this latter perspective information has value only if the inspection outcome03

has an impact on the system failure probability: a component is important04

if silence is good news and alarm bad news for system reliability. The exam-05

ple shows how information can have value for supporting local maintenance,06

regardless of its impact on system reliability.07
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4. Computational complexity and Heuristic08

4.1. Complexity of VoI computation09

The computational complexity of solving Eq.(6) varies with different met-10

rics, but is generally intimidating for large systems. The core step of the com-11

putational process is solving the reliability problem, identifying the system12

failure probability pu, depending on actions and observations. This analysis13

is nested into the optimization of the maintenance actions.14

The general network reliability problem is NP-hard [2] [19], but numerous15

approximations and bounds have been proposed. To compute the risk E[LI],16

one has to assess the system connectivity for each of the 2N system states. A17

matrix-based method was proposed to compute system reliability based on18

a components’ condition matrix with each row representing one state, and19

a binary condition vector with each entry representing whether the system20

is functioning at that specific components’ state [21]. The general computa-21

tion complexity of the method is O(N × 2N). When the joint distribution22

of the components’ states is known, with the components’ condition matrix23

and the binary system condition vector previously computed, the computa-24

tional complexity of system reliability is linear with respect to the system25

states. An approximate estimation can also be achieved based on Monte26

Carlo simulations [11].27

For the global metric, E[LII] can be determined in O(1) time once we28

compute the posterior system failure probabilities. Therefore, to select the29

component with highest VoI among N components will cost O(N × 2N).30

For the local metric, there is an additional computation step before as-31

sessing the VoI. E[L] is optimized among 2N combinations of maintenance32

27

Jo
ur

na
l P

re
-p

ro
of



5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

Journal Pre-proof
actions. Suppose that, on the basis of different inspection outcomes, the33

agent can select an arbitrary subset of the components to repair; then, the34

computation complexity is generally O(N × 2N × 2N) = O(N × 22N).35

4.2. Approximation for local metric36

In this section, we propose a simple heuristic approach for approximat-37

ing the local metric, to reduce the computational complexity related to the38

optimization of maintenance actions depending on the inspection outcome.39

Let us define Aπ = {aπ,1, aπ,2, · · · , aπ,N} as the prior maintenance plan,40

Aω = {aω,1, aω,2, · · · , aω,N} as the posterior one, and Lπ is the prior optimal41

loss related to Aπ, as defined in Section 2.1. We assume that Aπ and Lπ have42

been identified. Consider inspecting component ci. The proposed heuristic43

assumes that the agent confirms all actions for uninspected components (i.e.,44

∀j 6= i, aω,j = aπ,j). Only the posterior action on the inspected component,45

aω,i, depends on the inspection’s outcome, yi. If the prior action for ci is to46

do-nothing (i.e., if aπ,i = 0) and the inspection’s outcome is silence (i.e., if47

yi = 1), or if the prior action is to repair (i.e., if aπ,i = 1) and the inspection48

produces an alarm (i.e., if yi = 0), then the agent will confirm the prior49

action also for the inspected component (i.e., if yi 6= aπ,i, then Aω = Aπ).50

Instead, if an alarm is detected on a previously unrepaired component, or if51

a silence is detected on a previously repaired component (i.e., if yi = aπ,i),52

then the agent considers the two alternatives: repair or not repair ci. One53

of the two alternatives is, again, to completely confirm the prior plan (i.e.54

Aω = Aπ); thus, the prior loss Lπ associated with this option is already55

known. The agent computes the expected cost of the alternative plan (in56

which only action aω,i is reversed), and executes the best option, i.e. the57
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option related to the minimum expected cost. The computational saving is58

related to the avoidance of searching for optimal posterior action in the full59

set A.60

One argument supporting the choice of this heuristic is the consistency61

with the optimal behavior in some special cases,for example, when the high62

penalty of a system collapse forces the agent to be conservative. To model this63

scenario, suppose that (i) the prior decision is to do-nothing (i.e., ∀i, aπ,i = 0),64

that (ii) a detected silence cannot increase the system failure probability (i.e.65

∀i, pω|yi=1 ≤ pπ), that (iii) the do-nothing option is still optimal when the66

probability of failure decreases and that (iv) a component sending an alarm67

must be repaired, because its posterior failure probability is too high to68

be tolerated. Condition (iii) is not obviously satisfied even if the first two69

conditions are satisfied, because the prior decision might also be doing noth-70

ing for another reason, i.e., the agent is pessimistic about the components’71

conditions. For such a pessimistic agent, it is not worth repairing any set72

of components; repairing few components may be ineffective, and repairing73

many components may be too expensive. However, detecting a functioning74

component may improve the expectation of the system and persuade the75

pessimistic agent to invest in repairing other components. Condition (iii)76

forbids the occurrence of this process, by assuming the agent’s optimism77

about the system condition. To prove that the heuristic is optimal under78

conditions (i-iv), we must show that the optimal response to an alarm on79

component ci cannot be to repair any other component. Because of (iv), ci80

must be repaired. Now suppose that component cj is also to be repaired.81
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This condition implies the following inequality:82

CR,i + CR,j + CFpω|yi=0,ai=1,aj=1 ≤ CR,i + CFpω|yi=0,ai=1 (20)

If, as assumed before, repairs are perfect and components’ states are indepen-83

dent, then pω|yi=0,ai=1 = pω|si=1 = pω|yi=1, and pω|yi=0,ai=1,aj=1 = pω|si=1,sj=1 =84

pω|yi=1,aj=1, so the inequality Eq.(20) can be re-written, subtracting CR,i from85

both terms as:86

CR,j + CFpω|yi=1,aj=1 ≤ CFpω|yi=1 (21)

This equation indicates that repairing cj should be the optimal response87

to a silence on ci, but this response violates conditions (i-iii), which show88

that only ci should be repaired after receiving an alarm on it. Of course, if89

conditions (i-iv) are not satisfied, there is no guarantee that the heuristic is90

truly optimal.91

The VoI defined by the heuristic is certainly non-negative, as the prior92

maintenance plan can be confirmed, if the collected observations do not sug-93

gest any improvement. Moreover, given that the heuristic limits the domain94

of the posterior actions, the corresponding VoI cannot be higher than the95

VoI assessed by the local metric.96

5. Examples of System Analysis97

We analyze three examples of systems. The first example is the 6-98

component system in Fig 9, in which the failure probability of each compo-99

nent is listed inside the corresponding node. We start by considering perfect00

inspections and independent components. The corresponding values of the01

BMs are shown in Fig 10a, and c2 has the highest importance in BM.02
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d

c1 c2

c3 c4

c5 c6

Figure 9: Block diagram for the counter-intuitive example 1

(a) (b)

Figure 10: BM for the system in Fig 9 (a), and corresponding posterior intervals (b).
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Fig 10b shows the posterior probabilities intervals Ii for all components.03

All intervals are nested in I2. Thus, component c2 has the highest VoI,04

according to the global metric, regardless of the loss function we adopt (and05

so it has also the highest BM, as noted above). We divide the VoI of each06

component by the maximum VoI of all the components under the same metric07

obtain a normalized VoI. The normalized VoI under the global metric, for08

loss function l∗(pu) = pu(1−pu), is shown in Fig 11. For the local metric, we09

assume that CF/CR,i = 10, for every component ci, i.e. the cost of system10

failure is ten times the cost of repairing one component. The optimal prior11

maintenance action is to repair component c2. As shown in Fig 11a, the local12

metric and the heuristic both identify c2 as the component with the highest13

VoI.14

However, if the maintenance cost for c2 increases to CF/CR,2 = 5 while15

the cost for the others remains the same, the optimal prior action becomes16

repairing c4. Table 2 reports the optimal posterior actions depending on17

the inspection outcome, for this new assumption on the costs. As shown in18

Fig 11b, the local metric still gives the highest inspection priority to c2 (as19

the global metric does), but the heuristic selects c4 instead. The difference20

between the local metric and heuristic approach is because the posterior21

optimal action may not include repairing c4 (e.g. after a silence on c2), or it22

may include repairing uninspected components (e.g. after an alarm on c1, c323

is to be repaired). Though the VoI calculated from the heuristic approach is24

no higher than that from the true optimal solution, the heuristic approach25

overestimates the priority of inspecting c4 over c2, which is inconsistent with26

the local metric.27
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Inspected component

Inspection outcome
Silence (yi = 1) Alarm (yi = 0)

c1 {c4} {c3, c4}
c2 ∅ {c3, c4}
c3 {c4} {c3, c4}
c4 ∅ {c4}
c5 {c6} {c4}
c6 {∅} {c6}

Table 2: Posterior subset of components to be repaired for the system in Fig 9.

(a) (b)

Figure 11: Normalized VoI for the system in Fig 9, with CF /CRi
= 10 (a), and with

CF /CR2 = 5, CF /CRi = 10, ∀i 6= 2 (b).
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(a) (b)

Figure 12: Normalized VoI for the system in Fig 9, with εFA = εFS = 0.01 (a), and

εFA = 0.01, εFS = 0.40 (b).

Error rates in imperfect inspections also affect the optimal decision. We28

now assume, again, that CF/CR,i = 10 for every component ci, but inspec-29

tions are imperfect; when εFA = εFS = 0.01, the corresponding VoI, shown30

in Fig 12a, is similar to the perfect inspection case shown in Fig 11a, and31

c2 has the highest VoI. But when the type II error rate εFS is increased to32

0.40, the VoI changes to Fig 12b, and component c1 gains the highest priority33

according to the local metric and heuristic approach.34

The second example is a 16-component system represented in Fig 13. The35

components have different topological importance: components c1, c4 and c8,36

and the ones symmetric to them, can be considered as “bottlenecks”, with37

respect to other components.38

We assume that the marginal probability of failure is pi = 0.01 for every39

component ci. For the global metric, we use l∗(pu) = pu(1 − pu) as a loss40

function, and the corresponding VoI is shown in Fig 14a. For the local metric,41

we assume the cost ratio between system failure penalty and component42
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o

c1

c8

c2

c3

c4

c5

c6

c7

d
c9

c10

c12

c11

c13

c14

c15

c16

Figure 13: Block diagram of 16 component system

maintenance is CF/CR,i = 103 for every component ci, so that the resulting43

optimal prior maintenance action is to repair no component. Under the local44

metric, c8 and c16 have the highest VoI, followed by c1, c4 and c7. The45

heuristic approach gives the same result as the local metric and the global46

metric.47

However, if CF/CR,i increases to 104 for every component ci, the new48

optimal prior maintenance action becomes repair the symmetric bottlenecks49

c8 and c16. The VoI for the global and local metrics and the heuristic with50

this new assumption on costs is illustrated is Fig 14b. The local VoI of51

inspecting c2, c9 and the components symmetric to them is now nil, because52

the cost for system failure is so (relatively) high, that the agent will not alter53

the prior action even if a silence is received on these components.54

Depending on the setting, the bottleneck components may not always55

have the highest VoI. If p11 = 0.5, p12 = 0.4, p13 = 0.3, pi = 0.01, i 6= 11, 12, 1356

and CF/CR,i = 1000 for every component ci, the VoI is that shown in Fig 15.57
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(a) (b)

Figure 14: Normalized VoI for the system in Fig 13 with different maintenance cost, with

and CF /CR,i = 103 (a) and CF /CR,i = 104 (b)

Now the optimal prior action is to repair c12. The global metric prioritizes c1,58

c4 and c7 for inspection, but the local metric prioritizes c13, even though it is59

not the most vulnerable component (which is c11). After c13, the components60

with high VoI under local metric will be c12 and c11. Instead, the heuristic61

approach assigns the highest VoI to c12. This assignment occurs because,62

when the inspection of c11 or c13 receives silence, the optimal action is to do63

nothing, but the heuristic approach forces the agent to at least execute the64

prior plan.65

The third example is taken from [21] and it represents a two-line electrical66

substation with 12 components with 6 different functions as illustrated in Fig67

16: DS - Disconnect Switch, CB - Circuit Breaker, PT - Power Transformer,68

DB - Drawout Breaker, TB - Tie Breaker, FB - Feeder Breaker. We assume69

that the marginal failure probability of the components with function DS,70

CB or DB is 9.53 × 10−3, and that of components with function FB, PT71

and TB is 2.32 × 10−3. For every component ci, costs are defined by ratio72
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Figure 15: Normalized VoI for the system in Fig 13 with pi = 0.01, i 6= 11, 12, 13, p11 =

0.5, p12 = 0.4, p13 = 0.3 and CF /CR,i = 103

CF/CRi
= 1000. In this example, we investigate how the correlation between73

a component’s state affects the VoI. If all the components are statistically de-74

pendent, complexity of computing the system failure probability may become75

intractable. Conditional independence between component events given the76

outcomes of a few random variables representing the source of common effects77

was assumed in [22], and a matrix-based method based on this assumption78

was developed to compute the system reliability. Following that work, we79

assume interdependence among the components’ states, but only for com-80

ponents with the same function. For group k of components with the same81

function, let xk denote a binary variable which indicates the occurrence of82

an external event relevant for the group if xk = 1, and it is xk = 0 oth-83

erwise. The Bernoulli probability of such variable is defined by probability84

αk = P[xk = 0]. For any component ci within that group, if xk = 1, then the85

component is surely functioning, i.e. P[si = 1|xk = 1] = 1; while if xk = 086

component ci fails with conditional probability βk = P[si = 0|xk = 0]. Let ρk87

be the correlation coefficient between the states of any pair of components88
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o

DS1

DS2

DS3

CB1

CB2

PT1

PT2

DB1

DB2

FB1

FB2

TB d

Figure 16: Block diagram of a two-transmission-line substation system

within group k, and pk the marginal failure probability for any component89

in the group. The corresponding factors are:90





βk = ρk(1− pk) + pk

αk = pk/βk

(22)

The example of Fig 16 is defined by 6 pairs of features {p1, ρ1, . . . p6, ρ6}91

corresponding to coefficients {α1, β1, . . . , α6, β6}.92

When all the components are independent, the prior action is to do noth-93

ing, and the optimal posterior action is to repair the inspected component94

after an alarm, except for DS3 and TB. Thus, the local metric and heuristic95

give identical results. Although CB and DB have relatively higher failure96

probability compared with other components, the cost reduction by repair-97

ing the damaged components CB or DB is significantly higher than repairing98

others. This is why CB and DB components have the highest VoI according99

to the local metric and the heuristic, as shown in Fig 17a. For the global00

metric, with loss function l∗(pu) = pu(1 − pu), the posterior system failure01

probability given an alarm from components CB or DB is the highest, and the02

probability given a silence from those components is the lowest, i.e. poste-03
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rior intervals ICB = IDB contain the corresponding intervals of all the others;04

thus, those components have the highest VoI, according to the global metric.05

When the correlation among states in DS components grows, while other06

groups remain independent (and the marginal probability remains the same),07

the VoI favors the group of correlated components. The prior action becomes08

repairing DS1 or DS2 when the correlation coefficient ρ is above 0.4. The op-09

timal action is shown in Table 3. Components DS1 or DS2 should be kept10

functioning, depending on which link set the inspected component is in. One11

exception is DS3, which has different VoI for the local metric and the heuris-12

tic. As shown in Fig 17b, when the correlation coefficient ρ for the states13

of components DS increases, inspecting one of them reveals additional infor-14

mation about the other two, making the VoI of inspecting DS components15

higher than the VoI of other components with different functions. When16

ρ is close to one, DS1 and DS2 act like one bottleneck component, which17

dominates the VoI as shown in Fig 17c.18

6. Discussion and Conclusions19

We have derived metrics based on the VoI to assign priorities among com-20

ponent inspections in networked systems. The VoI analysis can be applied21

to any setting, but its computational complexity depends on the complexity22

of the ingredients that define the problem. We have restricted the attention23

to binary components, binary inspection outcomes in a binary system. In24

this setting, we have introduced two metrics, local and global, that assume25

different sets of available actions and different loss functions. The problems26

modeled by the global metric do not form a strict subclass of that mod-27
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Component

Insp. outcome
Silence (yi = 1) Alarm (yi = 0)

DS1 ∅ DS1

DS2 ∅ DS2

DS3 ∅ DS3

CB1 DS1 DS1, CB1

CB2 DS2 DS2, CB2

PT1 DS1 DS1, PT1

PT2 DS2 DS2, PT2

DB1 DS1 DS1, DB1

DB2 DS2 DS2, DB2

TB DS1 DS1

FB1 DS1 DS1, FB1

FB2 DS2 DS2, FB2

Table 3: Optimal posterior action for the system in Fig 16 when ρ = 0.4
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(a) (b)

(c)

Figure 17: Normalized VoI for the system in Fig 16, with correlation among the DS

component of ρ = 0 (a), ρ = 0.4 (b), ρ = 0.9 (c)
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eled by the local metric. We have proven general rules for identifying what28

components have higher importance for those metrics in series and parallel29

systems. The evaluation of the global metric is generally less complex than30

evaluation of the local metric, because of the underlying optimization of the31

maintenance actions of different scales. The selection of the appropriate met-32

ric should be based on the actual set of actions available. However, when33

only limited computational resources are available, a simpler metric such as34

the global metric or the heuristic approach may be appropriate.35

We have proposed a heuristic approach to approximate the local metric,36

by simplifying the corresponding optimization of maintenance actions. We37

have illustrated the heuristic’s performance in some examples, but there is38

no guarantee that the heuristic captures the exact local metric. The VoI39

assessed by the heuristic is surely non-negative, and no higher than the VoI40

of the original local metric; however, the ranking can be arbitrarily different.41

The distinction between local and global metrics can be extended to the42

case of multiple values (more than binary) for the state of the components43

and of the system, and for inspection outcomes. However, some concepts44

are defined only for the binary case, e.g. the posterior intervals in the global45

metric are defined only for binary inspection outcomes in a binary system (if46

the system state dimension is higher than the component state dimension,47

then the posterior interval can be generalized into the concept of “posterior48

polyhedron”).49

We have limited the analysis to the “static” optimization of the inspection50

of one component. Several more complex problems can be built on this51

optimization. One complex problem is the off-line or on-line optimization of52
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multiple inspections for a system with static condition states [13], that can53

be based on a greedy sequential approximation. The same global and local54

approaches can be adopted in the greedy approach. Among these two options,55

the on-line setting is generally simpler; the off-line option is generally more56

expensive because M binary inspections produce 2M joint outcomes that57

must be analyzed in an exhaustive pre-posterior analysis. Another extension58

is related to temporal problems, in which the components’ condition degrades59

in time, and they can be periodically and sequentially inspected and repaired60

[15, 16]. Given the complex interplay between present and future decisions61

and costs, we cannot predict the effectiveness of the metrics proposed when62

applied to those dynamic settings.63
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Appendix A. Notation table71

Notation Meaning

N Number of components

ci, i = 1, · · · , N Component index

si ∈ B, i = 1, · · · , N Binary component state
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s = [s1, s2, · · · , sN ] System state vector

u ∈ B = φ(s) Binary system state

ps Probability distribution of s

pi, i = 1, · · · , N Marginal failure probability of component ci

pu Failure probability of the system

yi ∈ B, i = 1, · · · , N Inspection outcome on component ci

pyi Prior probability of receiving yi

ps|yi Posterior probability distribution of s given yi

pω|yi Posterior system failure probability given yi

A Maintenance action that changes the state s

ps′|s,A Posterior probability distribution of s′ given s and A

L(s′, A) Expected loss given action A and posterior state s′

LI(s
′) Expected system failure penalty

LII(A) Expected action cost

Lπ Minimum expected cost before inspection

Lω(i) Minimum expected cost after inspecting ci

VoI(i) Value of Information for inspecting ci

εFS, εFA False silence and alarm inspection error rate

hi Probability of receiving alarm on ci

lA,u Cost given prior state u and action A

qu,A System failure probability given prior state u and action

p′ω|A,u Posterior probability of system failure given prior state u

CA Action cost

CF System failure cost
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lA(pu) Expected loss when taking action A given prior belief pu

LGω (i) VoI of inspecting ci under global metric

LLω(i) VoI of inspecting ci under local metric

lPI(pu) Value of Perfect Information (VoPI) given prior belief pu

rg(pu) Difference between the VoI and VoPI

Table A.4: Major notations

Appendix B. Importance Measures72

Similar to the Birnbaum’s measure, the Criticality IM [7], evaluates the73

importance of ci with the approximated conditional component failure prob-74

ability given that the system has failed:75

CRT(i) = (pω|yi=0 − pω|yi=1)
pi
pπ
∝ BM(i) · pi (B.1)

Some IMs emphasize on the topology structure of the system. Based on76

the cut sets, [9] evaluates the importance of ci by the number of cut sets it77

belongs to and the accumulated appearance probability of such cut sets.78

To use IMs as utility-based applications, the risk achievement worth79

(RAW) and the risk reduction worth (RRW) are developed. RAW evalu-80

ates the component with the contributions of maintaining a certain level of81

reliability of the component to the system reliability, i.e. for component cj,82

its importance can be measured as:83

RAW(i) =
1− pω|yi=1

pπ
(B.2)

So, between two components ci and cj, RAW(i) ≥ RAW(j) ⇔ pω|yi=1 ≤84

pω|yj=1. RRW evaluates a component by the decrease of system failure risk85
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given that the component is intact:86

RRW(j) =
pπ

1− pω|yi=0

(B.3)

So RRW(i) ≥ RRW(j)⇔ pω|yi=0 ≥ pω|yj=0.87

Appendix C. Nested posterior intervals in the global metric88

To prove the lemma in Section 3.1, we now write pω|ya=b as xa,b for simplic-89

ity. We assume that Ii ⊇ Ij, we have that 0 ≤ xi,1 ≤ xj,1 ≤ xj,0 ≤ xi,0 ≤ 1.90

Because of the law of expectation, we have:91

pπ = p1xi,1 + (1− p1)xi,0 = p2xj,1 + (1− p2)xj,0 (C.1)

We prove that:92

LG
ω (1) = p1l(xi,1) + (1− p1)l(xi,0) ≤ p2l(xj,1) + (1− p2)l(xj,0) = LG

ω (2) (C.2)

Because xj,1 =
xi,0−xj,1
xi,0−xi,1xi,1 +

xj,1−xi,1
xi,0−xi,1xi,0 and xj,0 =

xi,0−xj,0
xi,0−xi,1xi,1 +

xj,0−xj,1
xi,0−xi,1 xi,0,93

and l is a concave function, we have:94

p2l(xj,1) + (1− p2)l(xj,0) ≥p2[
xi,0 − xj,1
xi,0 − xi,1

l(xi,1) +
xj,1 − xi,1
xi,0 − xi,1

l(xi,0)]

+ (1− p2)[
xi,0 − xj,0
xi,0 − xi,1

l(xi,1) +
xj,0 − xj,1
xi,0 − xi,1

l(xi,0)]

=p1l(xi,1) + (1− p1)l(xi,0)
(C.3)
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