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Abstract
A high-order accurate quadrature rule for the discretization of boundary integral
equations (BIEs) on closed smooth contours in the plane is introduced. This quadra-
ture can be viewed as a hybrid of the spectral quadrature of Kress (Math. Comput.
Model. 15(3-5), 229–243 1991) and the locally corrected trapezoidal quadrature
of Kapur and Rokhlin (SIAM J. Numer. Anal. 34(4), 1331–1356, 1997). The new
technique combines the strengths of both methods, and attains high-order conver-
gence, numerical stability, ease of implementation, and compatibility with the “fast”
algorithms (such as the Fast Multipole Method or Fast Direct Solvers). Important
connections between the punctured trapezoidal rule and the Riemann zeta function
are introduced, which enable a complete convergence analysis and lead to remark-
ably simple procedures for constructing the quadrature corrections. The paper reports
a detailed comparison between the new method and the methods of Kress, of Kapur
and Rokhlin, and of Alpert (SIAM J. Sci. Comput. 20(5), 1551–1584, 1999).
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1 Introduction

This paper describes techniques for discretizing boundary integral equations (BIEs)
of the form

τ(x) +
∫

Γ

G(x, y) τ (y) ds(y) = f (x), x ∈ Γ, (1)

where Γ is a smooth closed contour in the plane and ds the arc length measure on Γ ,
where f is a given smooth function, and where G is a given kernel with a logarithmic
singularity as |x−y| → 0. Equations such as (1) commonly arise as reformulations of
boundary value problems from potential theory, acoustic and electromagnetic wave
propagation, fluid dynamics, and many other standard problems in engineering and
science. When a PDE can be reformulated as an integral equation that is defined on
the boundary of the domain, there are several advantages to doing so, in particular
when the BIE is a Fredholm equation of the second kind.

A key challenge to using (1) for numerical work is that upon discretization, it leads
to a system of linear equations with a dense coefficient matrix. Unless the problem is
relatively small, it then becomes essential to deploy fast algorithms such as the fast
multipole method (FMM) [8] or fast direct solvers (FDS) [16]. A second challenge is
that the singularity in the kernel function G means that if a standard quadrature rule
is used when discretizing the integral, then only very slow convergence is attained as
the number of degrees of freedom is increased.

This paper introduces a new family of quadrature rules for discretizing (1) that are
numerically stable even at high orders. For instance, a rule of order 42 is included in
the numerical experiments. It is perfectly stable and capable of computing solutions
to 14 correct digits with as few degrees of freedom as spectrally convergent quadra-
tures such as the method of Kress [13]. Moreover, unlike the Kress quadrature, it can
easily be used in conjunction with fast solvers such as the FMM or FDS.

1.1 Nyström discretization and corrected trapezoidal rules

Upon parameterizing the domain Γ over an interval [0, T ], a BIE such as (1) can be
viewed as a one-dimensional integral equation of the form

τ(x) +
∫ T

0
K(x, y)τ (y) dy = f (x), x ∈ [0, T ]. (2)

In (2), the new kernel K encodes both the parameterization and the original kernel
G. Observe that all functions in (2) are T -periodic, that τ and f are smooth, and that
K is smooth except for a logarithmic singularity as |x − y| → 0.

To discretize (2) using the Nyström method [14, §12.2], we consider the N-point
periodic trapezoidal rule (PTR)

∫ T

0
g(x) dx ≈

N∑
n=1

g(xn)h (3)

where h = T/N and xn = nh. When g is smooth and periodic, the PTR converges
super-algebraically as N → ∞ [22]. The Nyström method first collocates (2) to the
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quadrature nodes {xn} of the PTR, and then approximates the integral by a quadrature
supported on the same nodes with unknowns τn ≈ τ(xn), yielding a linear system

τm +
N∑

n=1

K(m, n) τn = f (xm), m = 1, . . . , N . (4)

The coefficient matrix K should be formed so that the approximation

N∑
n=1

K(m, n) τ(xn) ≈
∫ T

0
K(xm y)τ(y) dy, m = 1, . . . , N, (5)

holds to high accuracy. If K were to be smooth, this task would be easy, since we
could then use the PTR (3) without modifications and simply set

K(m, n) = K(xm, xn)h. (6)

In this unusual case, the solution {τn} of (4) will converge super-algebraically to
{τ(xn)} as N → ∞.

In the more typical case where K(x, y) is logarithmically singular at y = x, some
additional work is required to attain high-order convergence in (5). Let us start by
describing two existing methods that resolve this problem—the Kress quadrature and
the Kapur-Rokhlin quadrature—that are closely related to the new quadrature that we
will describe.

Kress [13] introduced a quadrature that is spectrally accurate for any periodic
function g of the form

g(x) = ϕ(x) log
(
4 sin2

πx

T

)
+ ψ(x) (7)

where ϕ and ψ are smooth functions with known formulae. Kress integrates the first
term of (7) by Fourier analysis and the second term using the PTR, resulting in a
corrected trapezoidal quadrature where all the PTR weights are modified. It is not
obvious how a BIE scheme based on the Kress quadrature can be accelerated by the
existing fast algorithms. We will use a “localized” analog of the analytic split (7) to
develop our quadrature.

Kapur and Rokhlin [11], on the other hand, constructed a family of quadratures
for a variety of singular functions by correcting the trapezoidal rule locally near the
singularity. These quadratures have correction weights that are essentially indepen-
dent of the grid spacing h and possess an essential benefit in that nearly all entries
of the coefficient matrix are given by the simple formula (6); only a small number of
entries near the diagonal are modified. This local nature of Kapur-Rokhlin quadra-
ture makes it very easy to combine it with the FMM and other fast algorithms. For the
logarithmic singularity, two different quadratures are developed. The first quadrature
is for functions of the “nonseparable” form

g(x) = ϕ(x) log |x| + ψ(x) (8)

where the formulae of the smooth functions ϕ and ψ can be unknown. This
“noneparable” quadrature ignores the data at x = 0 completely and modifies a few
trapezoidal weights on both sides of the singular point. The magnitude of the correc-
tion weights (tabulated in [11, Table 6]) grow rapidly with the order of the correction,
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and moreover, some of the weights are negative. These properties mean that Kapur
Rokhlin quadrature becomes less useful at higher orders (say order higher than 6),
since the resulting coefficient matrix can be far worse conditioned than the underly-
ing BIE [9, Sec. 7.3]. The second Kapur-Rokhlin quadrature is for functions of the
“separable” form

g(x) = ϕ(x) log |x|. (9)

Unlike the first rule, this “separable” quadrature also uses the data ϕ(0) at the singular
point for its correction; the correction weights (tabulated in [11, Table 7]) are uni-
formly bounded regardless of the correction order, and decay rapidly away from the
singular point. Despite the excellent stability properties of the second Kapur-Rokhlin
rule, it has received little attention due to the simple fact that the kernels arising from
BIEs typically are of the nonseparable type (8). (In fact, the first rule is often referred
to as “the Kapur-Rokhlin” rule.)

To avoid the issue of large correction weights, Alpert [3] developed a hybrid
Gauss-trapezoidal quadrature that uses an optimized set of correction points that are
off the uniform trapezoidal grid, whose weights are very well-behaved. For additional
details on high-order accurate techniques for discretizing (2), as well as a discussion
of their relative advantages, we refer to the survey [9].

1.2 Contributions

This paper describes a quadrature rule that is closely related to the neglected second
Kapur-Rokhlin rule for separable functions. The new rule works almost exactly the
same in practice in that it involves a small correction stencil that includes a correc-
tion weight at the origin. Both rules display excellent numerical stability and lead
to discretized systems that are as well conditioned as the original equation. The key
innovation is that the new rule that we present is applicable to functions of the form

g(x) = ϕ(x) log |r(x)| + ψ(x) (10)

where r(x) is a smooth parametric curve in Rn, and the smooth function ϕ is known.
Therefore, we have generalized the second Kapur-Rokhlin rule (which only works
for the integrand (9) on R) to new rules that can handle logarithmic kernels on curves
in higher dimensions, making them applicable to a wide range of BIEs.

Our local kernel split (10) is analogous to Kress’ analytic split (7); the main dif-
ference is that Kress has split down to the parameter level (with periodization) for
the logarithmic component, while we only split locally down to the geometry level.
We analyze the error of applying the punctured trapezoidal rule to the singular com-
ponent of (10) based on the lattice sum theory (see, e.g., [4, 23]). This results in an
error expansion with coefficients that are explicitly computable using the Riemann
zeta function, a fact we called the “zeta connections.” From these error coefficients,
we construct local correction weights in the fashion of Kapur and Rokhlin. As it turns
out, the correction weights constructed this way have a component that is the weights
of the “separable” Kapur-Rokhlin quadrature mentioned above, while the remaining
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component depends on the explicit kernel split (10). (Remarkably, the zeta connec-
tion simplifies the construction of the separable Kapur-Rokhlin correction weights to
the extent that Table 7 of [11] can be computed with three lines of code, as shown in
Fig. 1).

The zeta connection associated with the singular function |x|−z, −1 < z < 1,
was first introduced by Marin et. al. [15]. In this paper, we extend this connection
to a “differential zeta connection” (Theorem 3) associated with the logarithmic sin-
gularity. We would also like to point out that the zeta connection has recently been
generalized to higher dimensions by the authors in [23]. Combining the “differential
zeta connection” in this paper with the higher dimensional zeta connection of [23],
we expect that a rigorous theory can be developed for higher-dimensional logarith-
mic quadratures such as the one developed by Aguilar and Chen [1]. On the other
hand, there is also the connection between the zeta function and the endpoint correc-
tions of the trapezoidal rule for regular functions, which has been established much
earlier, see [3, 17].

We should mention that the zeta connections presented in this paper can be alter-
natively derived from the extended Euler-Maclaurin formulae of Navot [17, 18]. In
particular, the result of [18] had been combined with Richardson extrapolation to
construct high-order quadrature rules by Sidi and Israeli, see [20].

The technique presented in this manuscript for the case of contour integrals in
two dimensions can be extended to higher dimensions as well, as is demonstrated in
[23] for the case of singular integral operators on surfaces in R

3. The role played by
the Riemann zeta function in the present paper must in higher dimensions instead be
carried by the more general Epstein zeta function [7].

1.3 Organization

In Section 2, we introduce the theory for the local correction of the trapezoidal
quadrature and its connection to the zeta function. We extend this connection to con-
struct a quadrature for the logarithmic singularity, which recovers the “separable”
Kapur-Rokhlin quadrature but with much simpler computations. In Section 3, we
generalize this Kapur-Rokhlin rule to logarithmic kernels on planar curves using a
localized version of Kress’ kernel split, developing quadratures for the Laplace and
Helmholtz layer potentials. Finally in Section 4, we present numerical examples of
solving BIEs associated with the Helmholtz and Stokes equations and compare our
quadrature method with existing state-of-the-art methods.

2 Corrected trapezoidal rules and the zeta connections

In this section, we introduce the theory for the local correction of the trapezoidal rule
for singular functions. In particular, we introduce the “zeta connections,” based on
which simple and powerful procedures are presented (see Remark 1) for constructing
quadratures for functions with algebraic or logarithmic branch-point singularities.
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2.1 Singularity correction bymoment fitting

To set up the notation for our discussion, we let I [g] denote the integral of a function
g(x) on the interval [−a, a], where a > 0, and where g may be singular at x = 0.
We denote the punctured trapezoidal rule discretization of I [g] as

T 0
h [g] =

M∑′

n=−M

g(xn)h. (11)

for some integerM > 0, where h = a/(M+ 1
2 ) and xn = nh, and where the prime on

the summation sign indicates that n = 0 is omitted. (Note that by our definition of h,
the endpoints are not included as quadrature nodes, thus the usual 1/2 factor for the
weights at the endpoints is not needed. However, this choice is just for convenience
and using the usual trapezoidal rule does not affect our analysis.)

We are interested in singular integrals of the form

I [s · τ ] =
∫ a

−a

s(x)τ (x) dx (12)

where s(x) has an isolated, integrable singularity at x = 0 and τ(x) is smooth.
We assume that either the integrand s(x)τ (x) is periodic or that τ(x) is compactly
supported in [−a, a] so that the only obstruction to high-order convergence is the
singularity of s(x) at x = 0. In general, boundary corrections to the trapezoidal
rule can be introduced near x = ±a independent of the singularity at 0; see [2], for
example, for more detail.

To analyze the error of the approximation I [s · τ ] ≈ T 0
h [s · τ ], we decompose the

integrand into a regular component and a local component:

s · τ = s · τ · (1 − η) + s · τ · η (13)

where η ∈ C
p
c ([−a, a]) is a smooth and compactly supported function that is at least

p-time continuously differentiable and which satisfies η(0) = 1 and η(x) ≡ η(−x).
For the regular component s · τ · (1 − η), the trapezoidal discretization

I [s · τ · (1 − η)] = T 0
h [s · τ · (1 − η)] + O(hp) (14)

holds for any p > 0 (note that the integrand is 0 at x = 0). Thus, the overall
convergence of T 0

h [s · τ ] is restricted by the error in the local component s · τ · η.
Using the idea of moment fitting [11, 12], this local error can be corrected by

fitting a set of moment equations for monomials τ (k)(x) = xk up to a sufficiently
high degree as follows

hα

K∑ ′′
j=−K

wh
j (jh)k η(jh) = I [s ·τ (k) ·η]−T 0

h [s ·τ (k) ·η], k = 0, 1, . . . , 2K (15)
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where K ≥ 0 is an integer and the factor hα depends explicitly on the singularity at
x = 0, and where the double prime on the summation sign indicates that the j = 0
term is multiplied by 2. (For convenience we let 00 := 1.) There are 2K+1 equations
in (15) for the 2K + 1 unknowns {wh

j }. Then combining (14–15) yields a locally
corrected trapezoidal quadrature

I [s · τ ] ≈ T 0
h [s · τ ] + hα

K∑ ′′
j=−K

wh
j τ(jh) (16)

which is high-order accurate as h → 0+.

2.2 The |x|−z singularity and converged correction weights

The fact that the weights {wh
j } in (16) depend on h is inconvenient in practice.

Fortunately, this can be remedied by what we called the “zeta connection.” When
s(x) = |x|−z, −1 < z < 1, Marin et. al. [15] showed that by letting h → 0 only
in the η(jh) term in the moment 15, the right-hand side of (15) in this limit can be
represented as Riemann zeta function values, and the corresponding limiting weights
{wj } are independent of h; more importantly, they proved that using these converged
weights in the quadrature (14) in place of {wh

j } does not affect the order of accuracy.
We summarize this result of [15] in this section, which will serve as the foundation
for our extensions to other quadratures.

We first introduce the important concept of “converged correction weights.”
Substitute s(x) = |x|−z in (15) and let α = 1 − z, we have

h1−z
K∑ ′′

j=−K

wh
j (jh)k η(jh)

=
∫ a

−a

|x|−zxkη(x) dx −
M∑′

n=−M

|nh|−z(nh)kη(nh) h

= h1−z+k

⎛
⎝

∫ N+ 1
2

−N− 1
2

|x|−zxkη(xh) dx −
M∑′

n=−M

|n|−znkη(nh)

⎞
⎠

= h1−z+k

(∫ ∞

−∞
|x|−zxkη(xh) dx −

∞∑′

n=−∞
|n|−znkη(nh)

)

(17)

where the last equality holds because η is compactly supported. Note that both |x|−z

and η(x) are even, so by requiring that

wh
j ≡ wh−j , j = 0, 1, . . . , K
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both sides of (17) vanish for all k odd. Using this symmetry and eliminating h1−z+k

on both sides yield

K∑
j=0

wh
j j2k η(jh) =

∫ ∞

0
|x|−z+2kη(xh) dx−

∞∑
n=1

|n|−z+2kη(nh), k = 0, 1, . . . , K

(18)
From here, we define the converged correction weights wj , j = 0, 1, . . . , K, to be

wj := lim
h→0+ wh

j , (19)

such that wh
j are the solution of (18). To further simplify the equations, we need the

following theorem.

Theorem 1 (Zeta connection) For all z ∈ C \ {1},

lim
h→0+

( ∞∑
n=1

|n|−zη(nh) −
∫ ∞

0
|x|−zη(xh) dx

)
= ζ(z). (20)

Consequently, the converged weights wj , as defined by (19), are the solution of the
system

K∑
j=0

wj j2k = −ζ(z − 2k), k = 0, 1, . . . , K (21)

Proof The zeta connection (20) is proved in [15, Lemma A2]. Then taking h → 0+
in (18) yields (21). (Note that we used the fact that η(0) = 1.) (Alternatively, (20)
can also be derived from the extended Euler-Maclaurin formula of [17].)

Based on the zeta connection, the next theorem constructs a high-order corrected
trapezoidal rule using converged correction weights.

Theorem 2 For s(x) = |x|−z, one has the locally corrected trapezoidal rule

I [s · τ · η] = T 0
h [s · τ · η] + h1−z

K∑
j=0

wj

(
τ(jh) + τ(−jh)

) + O(h2K+3−z), (22)

where the correction weights {wj } are the solution of (21), and where η ∈
C

p
c ([−a, a]), p > 2K +1, must have at least 2K +1 vanishing derivatives at 0, i.e.,

η(0) = 1, η(k)(0) = 0, k = 1, 2, . . . , 2K + 1. (23)

Proof See Theorem 3.7 and Lemma 3.8 of [15].
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2.3 Logarithmic singularity and the differential zeta connection

One can also construct a quadrature for the logarithmic singularity by extending the
zeta connection (20) based on the following simple observation:

d

dz
|x|−z = −|x|−z log |x|.

This leads to the next two theorems that are completely analogous to Theorems 1 and
2.

Theorem 3 (Differential zeta connection) For all z ∈ C \ {1},

lim
h→0+

( ∞∑
n=1

−|n|−z log |n| η(nh) −
∫ ∞

0
−|x|−z log |x|η(xh) dx

)
= ζ ′(z). (24)

Consequently, if we define the converged weights wj := limh→0+ wh
j , j =

0, 1, . . . , K, such that wh
j are the solution of the system

K∑
j=0

wh
j j2k η(jh) =

∫ ∞

0
−|x|2k log |x| η(xh) dx −

∞∑
n=1

−|n|2k log |n| η(nh) (25)

for k = 0, . . . , K , then {wj } are the solution of the system

K∑
j=0

wj j2k = −ζ ′(−2k), k = 0, 1, . . . , K (26)

Proof Taking the derivative with respect to z under the limit sign on both sides of
(20) yields (24), which is justified since the expression under the limit sign is analytic
in z. Then taking h → 0+ in (25) yields (26). (An alternative proof can be derived
from the second extended Euler-Maclaurin formula of Navot [18].)

Theorem 4 For s(x) = − log |x|, one has the locally corrected trapezoidal rule

I [s ·τ ·η] = T 0
h [s ·τ ·η]−τ(0)h logh+h

K∑
j=0

wj

(
τ(jh)+τ(−jh)

)+O(h2K+2), (27)

where the correction weights {wj } are the solution of (26), and where η ∈
C

p
c ([−a, a]) satisfies the same conditions as in Theorem 2.
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Proof The local error of the punctured trapezoidal rule for s(x) = − log |x| is
I [s · τ · η] − T 0

h [s · τ · η]

=
∫ a

−a

− log |x| τ(x)η(x) dx −
M∑′

n=−M

− log |nh| τ(nh)η(nh) h

=
⎛
⎝

∫ a

−a

− log
∣∣∣x
h

∣∣∣ τ(x)η(x) dx −
M∑′

n=−M

− log |n| τ(nh)η(nh) h

⎞
⎠

− logh

⎛
⎝

∫ a

−a

τ (x)η(x) dx −
M∑′

n=−M

τ(nh)η(nh) h

⎞
⎠

(28)

Notice that in the second parentheses, the integral is smooth so the regular trapezoidal
rule converges super-algebraically, i.e., using the fact that η(0) = 1 we have

logh

⎛
⎝

∫ a

−a

τ (x)η(x) dx−
M∑′

n=−M

τ(nh)η(nh) h

⎞
⎠=(h logh) τ(0)+O(hp) as h → 0+

(29)
holds for any p > 0. On the other hand, using the idea of moment fitting and fol-
lowing a similar derivation as (17–18), the terms in the first parentheses of (28) are
approximated by

h

K∑
j=0

wh
j

(
τ(jh) + τ(−jh)

) + O(h2K+3) (30)

where wh
j are the solution of (25). Then substituting (29–30) into (28) gives

I [s · τ · η] = T 0
h [s · τ · η] − τ(0)h logh + h

K∑
j=0

wh
j

(
τ(jh) + τ(−jh)

) + O(h2K+3).

The above equation implies (27) once it is shown that

|wj − wh
j | = O(h2K+1), j = 0, 1, . . . , K,

which in turn can be proved by showing that the limit (24) converges as O(h2K+1)

uniformly for 0 ≤ z ≤ 2K given the condition of η. This last statement can be
proved following almost verbatim the proofs of Theorem 3.1 and Lemma 3.3 in [15]
by replacing |x|−z with |x|−z log |x| therein, hence we omit the detail here.

The logarithmic quadrature (27) is equivalent to the “separable” Kapur-Rokhlin
quadrature developed in [11, §4.5.1]; hence, the correction weights are identical
(up to a minus sign) to those given in [11, Table 7]; however, the differential zeta
connection has greatly simplified the construction of these weights.
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Fig. 1 MATLAB code that given K (such that the correction order is 2K + 2) constructs the correction
weights for integration against − log |z|, as described in Remark 1 (where δ is chosen to be the machine
precision eps for simplicity). The code generates [11, Table 7] up to a minus sign

Remark 1 In practice, the value ζ ′(z), z ∈ R, can be approximated using “complex
step differentiation” [21] as

ζ ′(z) = Im ζ(z + iδ)

δ
+ O(δ2) (31)

where i = √−1, 0 < δ � 1. This formula is free of cancellation errors that
plagued typical finite difference methods. For instance, using δ ≈ 10−9 will yield an
approximation of full double-precision accuracy.

On the other hand, as mentioned in [11], the Vandermonde system (26) is ill-
conditioned for large K . Thus, when precomputing the weights {wj }, (26) should be
solved symbolically or under extended precision. Simple MATLAB code that com-
putes {wj } for any given K is given in Fig. 1; for implementations in other languages
such as Mathematica and Julia, see [24].

3 Logarithmic kernels on curves

In this section, we extend the “separable” Kapur-Rokhlin rule (27) to construct our
“zeta-corrected quadrature.” We will combine the differential zeta connection with
local kernel splits (that are analogous to Kress’ global analytic split (7)) to construct
quadratures for some important logarithmic kernels on closed curves, including the
Laplace and Helmholtz layer potentials; the quadrature for the Laplace single-layer
potential will also be applied to integrate the Stokes potential in Section 4.

3.1 Laplace kernel

Consider a smooth closed curve Γ parameterized by a 2a-periodic function ρ(x) ∈
R

n. We consider the Laplace single-layer potential (SLP) from Γ to ρ(0) ∈ Γ (for
the general case, one simply replace ρ(0) with any other target point on Γ ),

S[τ ](ρ(0)) :=
∫ a

−a

( − log r(x)
)
τ(x) |ρ′(x)| dx (32)

where r(x) := |ρ(0) − ρ(x)| and τ(x) ≡ τ(ρ(x)). The next theorem extends
Theorem 4 to construct a corrected quadrature for (32).
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Theorem 5 For the Laplace SLP (32), one has the locally corrected trapezoidal rule

S[τ ](ρ(0)) = T 0
h [s · τ̃ ] − τ̃ (0)h log(|ρ′(0)|h)

+ h

K∑
j=0

wj

(
τ̃ (jh) + τ̃ (−jh)

) + O(h2K+2),
(33)

where s(x) = − log r(x) and τ̃ (x) := τ(x)|ρ′(x)| is smooth, and where the
correction weights wj are exactly the same as in Theorem 4.

Note that the only difference of (33) from (27) is that logh is replaced with
log(|ρ′(0)|h) and τ is replaced with τ̃ .

Proof First we analyze the singularity of log r(x). Note that

log r(x) = 1

2
log

(
|ρ′(0)x|2 + (r2(x) − |ρ′(0)x|2)

)

= log(|ρ′(0)x|) + 1

2
log

(
1 + r2(x) − |ρ′(0)x|2

|ρ′(0)x|2
) (34)

which can be rewritten as

1

2
log

(
1 + r2(x) − |ρ′(0)x|2

|ρ′(0)x|2
)

= log
r(x)

|ρ′(0)x| (35)

We will show that (35) is smooth; thus, the only singular term in (34) is log(|ρ′(0)x|).
To this end, first expand ρ(x) as a Taylor-Maclaurin series

ρ(x) = ρ(0) + ρ′(0)x + ρ′′(0)x
2

2
+ O(x3),

then

r2(x) − |ρ′(0)x|2

=
(

ρ′(0)x + ρ′′(0)x
2

2
+ O(x2)

)
·
(

ρ′(0)x + ρ′′(0)x
2

2
+ O(x2)

)
− |ρ′(0)x|2

= (ρ′(0) · ρ′′(0))x3 + O(x4);
therefore,

r2(x) − |ρ′(0)x|2
|ρ′(0)x|2 = ρ′(0) · ρ′′(0)

|ρ′(0)|2 x + O(x2)

is smooth near x = 0, which implies that (35) is indeed smooth. Next, we use the
decomposition

log r(x) = log
r(x)

|ρ′(0)x| + log |ρ′(0)| + log |x|,
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to analyze the error of the punctured trapezoidal rule being applied to s · τ̃ · η, as
follows

I [s · τ̃ · η] − T 0
h [s · τ̃ · η]

=
∫ a

−a

(
− log r(x)

)
τ̃ (x)η(x) dx −

M∑′

n=−M

(
− log |nh|

)
τ̃ (nh)η(nh) h

=
⎧⎨
⎩

∫ a

−a

(
−log

r(x)

|ρ′(0)x|
)

τ̃ (x)η(x) dx−
M∑′

n=−M

(
− log

r(nh)

|ρ′(0)nh|
)

τ̃ (nh)η(nh) h

⎫⎬
⎭

− log |ρ′(0)|
⎧⎨
⎩

∫ a

−a

τ̃ (x)η(x) dx −
M∑′

n=−M

τ̃(nh)η(nh) h

⎫⎬
⎭

+
⎧⎨
⎩

∫ a

−a

− log |x| τ̃ (x)η(x) dx −
M∑′

n=−M

− log |nh| τ̃ (nh)η(nh) h

⎫⎬
⎭

(36)
where, because (35) is smooth, the terms in the first curly brackets of (36) happen
to be the error of the regular trapezoidal rule applied to a smooth function (notice
that the integrand is zero at x = 0), which vanishes super-algebraically; the terms in
the second curly brackets, analogous to (29), converge to −(h log |ρ′(0)|)τ̃ (0) super-
algebraically; finally for the terms in the last curly brackets, one simply applies the
quadrature (27) of Theorem 4, with τ replaced by τ̃ . Combining all these estimates,
as well as (14), one concludes that (36) implies (33).

3.2 Helmholtz kernels

We now apply Theorem 5 to construct formulae for the Helmholtz layer potentials.
Consider the Helmholtz SLP Sκ on a smooth closed curve ρ(x) evaluated at ρ(0),

Sκ [τ ](ρ(0)) :=
∫ a

−a

sκ(r)τ (x) |ρ′(x)| dx (37)

where r ≡ r(x) = |ρ(0)−ρ(x)| and κ ∈ C is the wavenumber, and where the kernel
sκ has the form [6, §3.5]

sκ(r) := i

4
H0(κr) = − 1

2π
log(r)J0(κr) + cγ

2π
+ φ(r2) (38)

whereH0 and J0 are, respectively, the Hankel and Bessel functions of the first kind of
order 0, where φ(r2) ≡ φ(r(x)2) is some smooth function of x such that φ(0) = 0,
and where cγ := πi

2 − (log κ
2 + γ ) such that γ = 0.5772 . . . is Euler’s constant.

Analogous to Kress’ analytic split (7), we introduce the kernel split

sκ(r) = s(r)J0(κr)/(2π) + s(1)
κ (r)
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where s(r) = − log r , such that the component s
(1)
κ (r) := sκ(r) − s(r)J0(κr)/(2π)

is smooth. Therefore we can split (37) as

Sκ [τ ](ρ(0)) ≡ I [sκ · τ̃ ] = I [s · τ̃ S
κ ] + I [s(1)

κ · τ̃ ] (39)

where τ̃ := τ · |ρ′| and
τ̃ S
κ (x) := J0(κ r(x)) τ (x) |ρ′(x)|/(2π) (40)

are smooth function. Notice that the singular integral I [s · τ̃ S
κ ] can be approximated

by (33) with τ̃ replaced by τ̃ S
κ , giving

I [s · τ̃ S
κ ] = T 0

h [s · τ̃ S
κ ] − h

2π
log(|ρ′(0)|h)τ̃ (0) + h

K∑
j=0

wj

(
τ̃ S
κ (jh)

+τ̃ S
κ (−jh)

) + O(h2K+2) (41)

where we have used the fact that J0(0) = 1. Then combining (41) with the PTR (3)
for I [s(1)

κ · τ̃ ] (which converges super-algebraically), we finally have

Sκ [τ ](ρ(0)) = T 0
h [sκ · τ̃ ] + h

2π

(
cγ − log(|ρ′(0)|h)

)
τ̃ (0)

+ h

K∑
j=0

wj

(
τ̃ S
κ (jh) + τ̃ S

κ (−jh)
) + O(h2K+2)

(42)

where, again, τ̃ S
κ is given by (40).

Finally, we can also obtain the formulae for the Helmholtz double-layer potential
(DLP), Dκ , and the normal derivative of the SLP, D∗

κ , using similar derivations. We
will just state the formulae and omit the derivations. Using similar notations as (37),
these layer potentials are given by

Dκ [τ ](ρ(0)) := ∫ a

−a
dκ(r)τ (x) |ρ ′(x)| dx, (43)

D∗
κ [τ ](ρ(0)) := ∫ a

−a
d∗
κ (r)τ (x) |ρ′(x)| dx, (44)

where dκ(r) := n · ∇ρsκ(r) with n ≡ n(x) being the unit outward normal at ρ(x),
and where d∗

κ = n0 · ∇ρ0
sκ with n0 := n(0) and ρ0 := ρ(0). The corresponding

corrected trapezoidal rules for Dκ and D∗
κ are, respectively,

Dκ [τ ](ρ(0)) = T 0
h [dκ · τ̃ ] + h c0τ̃ (0) + h

K∑
j=1

wj

(
τ̃D
κ (jh) + τ̃D

κ (−jh)
)

+O(h2K+2) (45)

D∗
κ [τ ](ρ(0)) = T 0

h [d∗
κ · τ̃ ] + h c0τ̃ (0) + h

K∑
j=1

wj

(
τ̃D∗
κ (jh) + τ̃D∗

κ (−jh)
)

+O(h2K+2) (46)
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where τ̃ ≡ τ · |ρ′|, c0 := ρ ′′(0)·n(0)
4π |ρ ′(0)|2 is the curvature at ρ0 scaled by − 1

4π , and where

τ̃D
κ (x) := κ J1(κ r(x))

r(x) · n(x)

2π r(x)
τ̃ (x),

τ̃D∗
κ (x) := −κ J1(κ r(x))

r(x) · n0
2π r(x)

τ̃ (x),

with J1 being the Bessel function of the first kind of order 1.

4 Numerical experiments

In this section, we present numerical examples of solving BIEs associated with the
Stokes and Helmholtz equations. In each case, we obtain a linear system of the form
(4), where the matrixK is filled using a particular quadrature. Then the linear system
is solved either directly by inverting the matrix or iteratively by GMRES.

We compare our quadrature method with the three singular quadratures mentioned
in the introduction: Kapur and Rokhlin’s locally corrected trapezoidal quadrature
[11], Alpert’s hybrid Gauss-trapezoidal quadrature [3], and Kress’s spectral quadra-
ture [6, §3.6]. The correction weights for our quadrature are precomputed by solving
the 26 and using the techniques described in Remark 1. When implementing the
Kapur-Rokhlin, Kress, and Alpert quadratures, we followed the survey [9].

Stokes problem As shown in Fig. 2a, consider a viscous shear flow u∞(x1, x2) =
(5x2, 0) around an island whose boundary is a smooth closed curve Γ , with no-slip
boundary conditions on Γ . Let u be the true velocity field and p its associated pres-
sure field, then (u, p) is described by the exterior Dirichlet problem for the Stokes
equation [10, §2.3.2]

−Δu + ∇p = 0 and ∇ · u = 0 in Ω, u = 0 on Γ, u → u∞ as |x| → ∞

-0.2

-0.1

0

0.1

-10

-5

0

5

10-4

(a) (b) (c)

Fig. 2 Problem setup for the tests in Figs. 3 and 4. The Stokes problem (47) and the Helmholtz problem
(48). In all cases, the star-shaped geometry is parameterized by the polar function p(θ) = 1+0.3 cos(5θ),
while the diamonds represent testing locations. a Streamlines of a shear flow u∞(x1, x2) = (5x2, 0)
around an island with no-slip boundary condition. b Real part of a wave field generated at the source
locations indicated by the dots. The wavenumber is κ = 12.5. c Same as in (b), except that the wavenumber
is now κ = 12.5 + 10i, so the wave decays exponentially
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The integral equation formulation for this problem is obtained using the mixed poten-
tial representation u(x) = u∞(x) + (S+D)[τ ](x), x ∈ Ω for the velocity [19, §4.7],
where the integral operators

S[τ ](x) := 1

4π

∫
Γ

(
− log r I + r ⊗ r

r2

)
τ (ρ) ds(ρ),

D[τ ](x) := 1

π

∫
Γ

(
r · n(ρ)

r2

r ⊗ r
r2

)
τ (ρ) ds(ρ)

are the Stokes SLP and DLP in 2D, where r = x − ρ, r = |r| and n(ρ) is the
unit outward normal to Γ at ρ, and where ⊗ denotes the tensor product. Then the
vector-valued unknown density function τ is the solution of the following BIE

(
S + D + 1

2

)
[τ ](x) = −u∞(x), x ∈ Γ . (47)

As ρ → x ∈ Γ , the only singular component in the linear operator is the log r term
in S, which can be efficiently handled by the corrected trapezoidal rule (33).

Figure 3 compares the convergence results of solving the Stokes problem using
different quadrature methods. We see that all the quadratures have the expected con-
vergence rates, with the Kapur-Rokhlin quadrature yielding higher absolute errors
due to its larger correction weights. The Kress quadrature is the most accurate at
virtually any given N , but the new quadrature of order 16 is remarkably close.

102 103
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

2nd K-R
6th K-R
10th K-R
2nd Alpert
6th Alpert
10th Alpert
16th Alpert
2nd Zeta
6th Zeta
10th Zeta
16th Zeta
Kress

Fig. 3 Comparison of singular quadratures for solving the Stokes problem (47) using the setup in Fig. 2a.
The reference solution is obtained using the Kress quadrature with N = 2000 points on Γ
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Helmholtz problem. As shown in Fig. 2b or c, consider the Helmholtz Dirichlet prob-
lem exterior to the curve Γ , with boundary data f and u satisfying the Sommerfeld
radiation condition,

−Δu − κ2u = 0 in Ω, u = f on Γ, lim|x|→∞ |x|1/2
(

∂u

∂|x| − i κu

)
= 0

where κ ∈ C is the wavenumber. For integral equation reformulation, consider the
mixed potential assumption u(x) = (Dκ − i κSκ)[τ ](x), x ∈ Ω (see [6, §3],[5]),
where Sκ and Dκ are the Helmholtz SLP and DLP as defined in the previous section,
then the unknown density function τ is the solution of the BIE(

1

2
+ Dκ − i κSκ

)
[τ ](x) = f (x), x ∈ Γ (48)

The integral operators in this system can be discretized using the quadratures (42)
and (45).

Figure 4 compares the convergence results of solving this Helmholtz problem
using different quadrature methods. We look at the results for different values of κ

that corresponds to 5 or 50 wavelengths across the geometry’s diameter. We observe
the following:

– Accuracy comparison. For a given number of unknowns, the Alpert quadra-
ture achieves slightly higher accuracy than our quadrature of the same order of
correction, and the difference is larger for a larger κ (higher frequency). The
Kapur-Rokhlin quadrature has a harder time to converge to a given accuracy
as the frequency becomes higher. The Kress quadrature consistently yields best
accuracy for any real κ . The saturation error of the Alpert quadrature is higher
than the other quadratures due to interpolation.

– Work comparison. For a given order, the Alpert correction requires more work
than the other locally corrected quadratures because it requires interpolation for
each nonuniform grid point from the nearby uniform grid, leading to modifi-
cation of a larger bandwidth of the K matrix (6). Consequently, the bandwidth
modified by the 16th order Alpert quadrature, for example, is almost as large
as what is modified by our 42nd order quadrature. So with the same amount
of work, our quadrature is able to obtain a higher accuracy. The Kapur-Rokhlin
correction always costs the least amount of work for a given order, since it is
an on-grid correction whose weights are independent of the specific form of the
kernel.

– Effect of fast decaying waves. When Im κ > 0 which corresponds to exponen-
tially decaying waves, the convergence of the Kress quadrature stagnates at a
lower accuracy (see Fig. 4c). This behavior can be explained as follows. In the
Kress kernel split

πi H0(κ r(x)) = −J0(κ r(x)) log
(
4 sin2

x

2

)
+ ψ(x),

when r(x) becomes bigger, the left-hand side decays exponentially while the
Bessel function J0 on the right-hand side grows exponentially, leading to errors
due to numerical cancellation. Our local correction method, on the other hand,
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(b)
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(c)

102 10310-15
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Fig. 4 Comparison of singular quadratures for solving the Helmholtz problem (48). Horizontal axes are N

(number of points), vertical axes are relative errors. Tests in (a) and (c) correspond to the problem setups
in Fig. 2b and c, respectively. (a) 5λ(κ = 12.5), (b) 50λ(κ = 125), (c) 5λ exp. decay (κ = 12.5 + 10i)
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Table 1 Condition numbers of the matrix relsulting from discretizing (48) with different quadratures and
the numbers of GMRES iterations to reach the residual error 10−14

Scheme 6th 10th 6th 10th 16th 6th 10th 16th 42th Kress

K-R K-R Alpert Alpert Alpert Zeta Zeta Zeta Zeta

(Im κ = 0)

cond. nr. 30.5 182 5.32 5.38 5.34 5.32 5.32 5.32 5.32 5.32

nr. iters 139 525 34 34 34 34 34 34 34 34

(Im κ = 10)

cond. nr. 9.69 94.0 1.80 1.82 1.81 1.80 1.80 1.80 1.80 106

nr. iters 60 470 18 18 18 18 18 18 18 45

The top data correspond to κ = 12.5 (Fig. 4a) and the bottom data to κ = 12.5 + 10i (Fig. 4c)

is immune to such effect since locally r(x) never grown big. In Fig. 4c, we let
Im κ = 10 to produce a more dramatic stagnation, but it starts to manifest when
Im κ = 5.

Finally, Table 1 compares the condition numbers of the matrices resulting from
discretizing (48) using different quadratures. It is gratifying to see that the condition
numbers of the matrices are almost invariant to the choice of quadrature rule; this
substantiates the claim that a high-quality quadrature rule leads to a matrix whose
condition number reflects the conditioning of the underlying continuum integral
operator. Analogously, the number of steps it takes for GMRES to reach a residual of
10−14 is also basically invariant. An important outlier is the Kapur-Rokhlin quadra-
ture which gives rise to far more poorly conditioned matrices, presumably due to the
large magnitude of the correction weights, cf. [9, Sec. 7.3]. We may also note that
while Kress quadrature typically results in very well conditioned matrices, it can lead
to poor results in the case of fast decaying waves due to the loss of accurate digits
that we mentioned earlier.

5 Conclusion

In this paper, we described a technique for modifying the trapezoidal quadrature
rule to attain high-order convergence for integral operators with weakly singular ker-
nels. The new “zeta-corrected” quadrature rule builds correction weights by fitting
the error moments on a local sub-grid near the singular point. In the case that the
singularity is an algebraic or logarithmic branch point, we have shown that the cor-
responding error expansion has coefficients expressible as Riemann zeta function
values or their derivatives, hence the name “zeta correction.” Since the correction is
local, our quadrature can be combined with boundary error corrections to also handle
nonperiodic intervals and open curves.

The zeta correction technique can naturally be generalized to higher dimensions.
For instance, using the Epstein zeta function [7] (a generalization of the Riemann
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zeta function), correction weights for the discretization of a BIE on a surface in three
dimensions are derived in [23].

BIE solvers based on the zeta-corrected quadrature are fast, accurate, stable, and
easy to implement. The code accompanying this manuscript is published on GitHub
which can be accessed at the following link address.

https://github.com/bobbielf2/ZetaTrap2D
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