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ABSTRACT
Data sets in the form of binary matrices are ubiquitous across sci-
entific domains, and researchers are often interested in identifying
and quantifying noteworthy structure. One approach is to compare
the observed data to that which might be obtained under a null
model. Here we consider sampling from the space of binary matri-
ces which satisfy a set of marginal row and column sums. Whereas
existing sampling methods have focused on uniform sampling from
this space, we introduce modified versions of two elementwise
swapping algorithms which sample according to a non-uniform
probability distribution defined by a weight matrix, which gives
the relative probability of a one for each entry. We demonstrate
that values of zero in the weight matrix, i.e. structural zeros, are
generally problematic for swapping algorithms, except when they
have special monotonic structure. We explore the properties of our
algorithms through simulation studies, and illustrate the potential
impact of employing a non-uniform null model using a classic bird
habitation dataset.

CCS CONCEPTS
• Mathematics of computing → Markov-chain Monte Carlo
methods; Graph algorithms; • Theory of computation→ Ran-
dom walks and Markov chains.
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1 INTRODUCTION
In 1975, Diamond [7] proposed rules which govern the combination
of several bird communities on islands in New Guinea, such as
“Some pairs of species never coexist, either by themselves or as a
part of a larger combination”. However, Connor & Simberloff [6]
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disputed these rules, suggesting that the combination of species
on the islands was not exceptionally different from random. Aside
from the ensuing feud within the ecological community [1, 8, 11, 12,
19, 24, 25], Connor & Simberloff sparked interest in a novel form of
“null model analysis” [13, 15], a general approach which compares
an observed matrix statistic to the distribution of that statistic under
a null model. The null model of choice in this case was the set of all
random combinations of species on islands satisfying the following
three constraints:

• The number of species on each island matches the number
observed.

• The number of islands inhabited by each species matches
the number observed.

• Each species inhabits islands of comparable size to the islands
on which it is observed.

Connor & Simberloff reason that if the observed species combina-
tion is not substantially different from the random combinations
with respect to some statistic of interest, then it becomes difficult
to argue that the observed pattern is anything noteworthy.

To generate combinations which adhere to the above constraints,
they represent the species/island combinations as a matrix, with
rows representing species and columns representing islands. The
element in a particular row and column is set to 1 if the correspond-
ing species inhabits the corresponding island, and 0 otherwise. In
the matrix representation, the first two constraints imply fixing the
marginal sums of the matrix, while the third constraint limits which
elements are permitted to be 1. Thus, the aim in the “null model”
analysis is to generate a collection of matrices which possess the
desired marginal sums and exclude the prohibited 1’s. Connor &
Simberloff propose two methods, one which begins with a 0-filled
matrix and sequentially fills in each row randomly, being careful
to adhere to the constraints, and another which begins with the
observed matrix, and repeatedly swaps 1’s such that the constraints
are maintained. Subsequent authors have proposed additional meth-
ods for generating the desired matrices, which are generally either
a “fill” [12, 24, 25, 27] or “swap” [1, 19, 23, 25, 28] type method.

Early debates surrounding the use of this particular null model
focused on the appropriateness of imposing Connor & Simberloff’s
constraints, the choice of statistic upon which to base comparison,
and the interpretability of null model tests [8, 23]. However, focus
eventually shifted from whether to use this approach to which
method of producing matrices is best [24]. This accompanied theo-
retical work in binary matrices with fixed marginal sums [2] and
Markov Chain Monte Carlo (MCMC) sampling [1], paving the way
for swap and fill methods with proven statistical properties [4, 18].

Generally speaking, sampling from a null model can be useful for
quantifying the degree of “non-randomness” in an observed matrix
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(although care should be exercised in the selection of a test statistic
and mechanistic interpretation of results). This approach has been
used for testing for significance of species co-occurrence [5], evalu-
ating goodness of fit for the Rasch item-response model [1, 4], and
in the analysis of contingency tables [4].

In this paper, we extend the capability of null model analysis by
allowing for non-uniform sampling. This permits the construction
of more sophisticated “null” models corresponding to non-uniform
probability distributions.

1.1 Review of Sampling Methods
Here we briefly review the variety of existing swap and fill methods
that have been employed for sampling binary matrices with fixed
margins. To highlight the contribution of this work, we point out
that most efforts at sampling these matrices thus far have focused
on uniform sampling, where each matrix has an equal probability
of being included in the sample. Early work gave little attention to
actually proving uniformity and few authors address situations in
which some matrix elements must be 0, so called structural zeros,
with exceptions noted below.

As mentioned, these sampling methods can be categorized into
fill and swap methods. Fill methods are typically faster than swap
methods, but risk hitting “dead ends”, where the process must
restart or backtrack in order to avoid violating row and column
margin constraints. Swap methods, on the other hand, are arguably
simpler to understand and implement, but rely on local changes, so
sampled matrices tend to be highly correlated. For both categories,
initial methods lacked much theoretical treatment, but more recent
work has considered the statistical properties of the algorithms.

1.1.1 Fill Methods. Fill methods begin with a matrix of all 0’s, and
randomly fill in 1’s in such a way that adheres to the margin (row
and column) constraints.

Connor & Simberloff’s [6] first placed the row sums in decreasing
order and column sums in increasing order (“canonical form”), then
proceeded row by row, randomly selecting columns to fill with 1’s,
until the desired row sum is reached. If the column is already 1,
or it has met its column sum, another random selection is made.
If the procedure reaches a point where no 1 can be filled without
violating some constraint (a dead end), the process restarts with an
empty matrix. No mention is made of the probability of generating
a particular matrix. In their “Milne method”, Stone & Roberts [25]
adapt the fill method of Connor & Simberloff to check whether the
proposed fill will lead to a dead end.

Sanderson et al [24] propose a “knight’s tour” algorithm which
randomly samples a row and column index for filling, rather than
filling one row at a time, and backtracks rather than restarts if
the algorithm reaches a dead end. They claim that since row and
columns are sampled randomly, then each valid matrix occurs with
equal probability. However, Gotelli & Entsminger show that the
“knight’s tour” algorithm does not sample uniformly, and propose
a “random knight’s tour” which only samples a subset of available
elements before backtracking, and backtracks randomly rather than
sequentially. They provide no proof of uniform sampling, instead
showing on a small example that a sample generated by the random
knight’s tour does not reject a lack of fit test.

Chen et al [4] propose a sequential importance sampling ap-
proach which randomly fills in each row, according to a conditional
Poisson proposal distribution that depends on the previously filled
rows. The matrices in the sample are then re-weighted to approx-
imate a uniform distribution. This method also approximates the
size of the space of valid matrices.

Taking a different approach, Miller & Harrison [20] devise a
recursive sampling algorithm based on the Gale-Ryser Theorem
to generate matrices from the uniform distribution exactly, and
compute the size of the space exactly. The recursion is over row
and column sums, so this method is limited to matrices of moderate
size.

Finally, Harrison & Miller [14] adopt the sequential importance
sampling approach of Chen et al for non-uniform sampling. This
is, to our knowledge, the only paper dedicated towards deliber-
ate non-uniform sampling. They propose a multiplicative weights
model that forms the basis of our weights model below, and permit
specifying structural zeros by setting a corresponding weight to 0.

1.1.2 Swap Methods. Swap methods have developed in parallel
to fill methods, beginning with the original paper of Connor &
Simberloff [6]. These methods involve identifying “checkerboard”
patterns of 0’s and 1’s in an existing valid matrix, and swapping the
1’s for the 0’s to produce a mew matrix which still adheres to the
constraints (see Figure 1). Repeated swaps result in a Markov chain
Monte Carlo algorithm that produces a dependent sample of valid
matrices. Of particular importance is the method used to identify
potential swaps, and what happens if a proposed swap is invalid,
which have computational as well as theoretical implications. Ini-
tially, there was some question about whether swapping methods
could produce all possible valid matrices by starting at the observed
matrix; in other words, if the space of valid matrices is connected
under checkerboard swaps. However, Brualdi [2] showed this to
be true using elementary circuits. This paved the way for more
development in swap methods [19, 25].

As with fill methods, early swap methods gave no proof that
matrices are sampled uniformly, until Kannan et al [18] proved
this for the following procedure: Select two rows and two columns
uniformly at random. If they form a checkerboard, then perform a
swap, and if not, keep the previous matrix. This result influenced
the development of subsequent swapping algorithms. Gotelli &
Entsminger’s [12] version of the swapping algorithm importantly
picks a swap randomly from the set of eligible swaps with equal
probability, not as prescribed by Kannan et al, and consequently
demonstrate that the resulting distribution which this samples
from is not uniform. This approach is also taken by Zaman & Sim-
berloff [28], who correct for the imbalance by reweighting each
matrix when computing summary statistics. These approaches re-
quire identifying all possible swaps at each step in order to sample
uniformly from them, which is prohibitive for large matrices.

Finally, in the “curveball” algorithm proposed by Strona et al [26]
multiple swaps are performed at once by first selecting two rows
(or columns), and permuting the elements in their symmetric differ-
ence. Following the proof technique of Kannan et al., Carstens [3]
proves that curveball samples uniformly and demonstrate that mul-
tiple swaps can lead to faster mixing compared to Kannan et al’s
algorithm.
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1.2 Non-Uniform Sampling
Most existing null matrix sampling algorithms focus on the uniform
distribution, the goal being to compare the observed matrix to other
matrices with the same marginal properties, without preference
for particular matrices over others. We consider, however, that for
some data analyses we may wish to lend more importance to some
matrices compared to others, when testing for a specific effect. For
instance, Diamond [8] mentions several factors which may give rise
to certain species combinations, such as resource overlap, dispersal
ability, proneness to local extinction, and distributional strategy,
and criticised Connor & Simberloff [6] for not accounting for such
“significant structuring forces”. We argue that it may be possible to
control for such external effects in a modified null model, which
does not give equal probability to all possible matrices.

Here we consider the task of non-uniform sampling of matri-
ces in a general setting. Following the formulation of Harrison &
Miller [14], we assume the existence of a weight matrix indicating
the relative likelihood of a 1 in each element and define the proba-
bility of a matrix as a function of these weights. Careful attention
must be paid to the consequences of weights equal to 0, which
further restrict the set of matrices with positive probability, and
affect the validity of the proposed sampling methods.

In the rest of this paper, we describe a weight-based probability
model, then present a novel MCMC checkerboard swap algorithm
which incorporates the weights and samples according to the given
model. The weights introduce the notion of a structural zero, which
can impact the efficiency and even correctness of sampling. We
then present a novel curveball MCMC algorithm, which in most
circumstances is a faster alternative to the weighted checkerboard
swap algorithm. We investigate the correctness, efficiency under
different weighting and structural zero schemes via simulation. Fi-
nally, we revisit the bird species-island dataset first discussed by
Diamond [7] and Connor & Simberloff [6] and consider incorpo-
rating a weight matrix in the null distribution to show the impact
that non-uniform sampling can have on scientific conclusions.

2 NON-UNIFORM SAMPLING FROM BINARY
MATRICES

2.1 Probability Model
Let A(r, c) be the set of allm × n binary matrices satisfying row
sums r = (r1, r2, . . . , rm ) and column sums c = (c1, c2, . . . , cn ).
Furthermore letW = (wi j ) ∈ [0,∞)m×n be a non-negative weight
matrix representing the relative likelihood of a 1 in element (i, j).
Following Harrison &Miller [14], define the probability of observed
matrix A = (ai j ) ∈ A(r, c) as

P(A) =
1
κ

∏
i j

w
ai j
i j , κ =

∑
A∈A(r,c)

∏
i j

w
ai j
i j . (1)

We call the set of elements {(i, j) : wi j = 0} structural zeros, because
any matrix with positive probability must have ai j = 0 ifwi j = 0.
Let A ′(r, c) = {A ∈ A(r, c) : P(A) > 0} be the set of matrices with
positive probability. We interpret the weights by considering the

j j ′

i 1 0
i ′ 0 1

−→

j j ′

i 0 1
i ′ 1 0

Figure 1: A 2 × 2 submatrix of A from rows i and i ′, and
columns j and j ′, which are not necessarily consecutive.
Swapping the positions of 1’s and 0’s preserves the row and
column sums of A.

relative probability between two matrices A,B ∈ A ′(r, c):

P(A)

P(B)
=

∏
i j :
ai j=1
bi j=0

wi j

∏
i j :bi j=1ai j=0

wi j
, (2)

which is governed by the weights of the elements not shared be-
tween them. Furthermore, we can write the conditional probability:

P(B |{A} ∪ {B}) =

∏
i j :bi j=1ai j=0

wi j

∏
i j :
ai j=1
bi j=0

wi j +
∏

i j :bi j=1ai j=0

wi j
. (3)

This forms the basis for the swapping probability defined in the
next section.

2.2 Weighted Checkerboard Swap Algorithm
We propose a swapping algorithm similar to that of Brualdi [2],
which identifies 2 × 2 submatrices with diagonal 1’s and 0’s, as in
Figure 1, where the rows and columns are not necessarily consecu-
tive. Let (i, j) and (i ′, j ′) be the indices of the 1’s in the submatrix,
so that (i, j ′) and (i ′, j) are 0’s. The positions of the 1’s and 0’s can
be swapped without altering the row or column sums. This swap
operation produces a matrix B ∈ A(r, c) which differs from A (see
Figure 1). In the uniform sampling case, all matrices have equal
probability, so swaps are performed with a fixed probability. In our
version, the swap is performed with probability

P(B |{A} ∪ {B}) =
wi′jwi j′

wi jwi′j′ +wi′jwi j′
:= pi j ;i′j′ . (4)

This modification implies matrices with zero probability will be
visited with probability zero.

In Algorithm 1, we present anMCMCprocedure based onweighted
checkerboard swap. As with any MCMC algorithm, this algorithm
can be modified to incorporate burn-in and thinning to reduce
autocorrelation between saved samples.

If all weights are positive, then we have the following result:

Theorem 1. Given binary matrix A and weight matrixW with
wi j > 0, then Algorithm 1 generates aMarkov chain with stationary
distribution given by (1).

Proof of Theorem 1 is given in Appendix A. If weights are allowed
to equal zero, the Markov chains may mix more slowly and even
become reducible as we demonstrate in the next section.
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Algorithm1: Sampling ViaWeighted Checkerboard Swaps

1 Let A(0) be the observed matrix;
2 for k in 1:N do
3 Set A(k ) = A(k−1);
4 Sample two elements (i, j) and (i ′, j ′) uniformly at

random from the non-zero elements of A(k);
5 if A(k )

i′j = 1 or A(k )
i j′ = 1 then

6 next k (no checkerboard);
7 end
8 Sample s ∼ Bernoulli(pi j ;i′j′);
9 if s = 1 then
10 set A(k)

i j = A
(k )
i j = 0 and A(k )

i′j = A
(k )
i j′ = 1 (perform

swap);
11 end
12 end

2.3 Structural Zeros
As mentioned, structural zeros have received little attention since
originally introduced by Connor & Simberloff [6]. We show here
that structural zeros can be problematic for swapping algorithms,
first addressing sampling efficiency then correctness.

Structural zeros can result in some checkerboard swaps having
zero probability, which removes transitions from the Markov chain.
This can increase the number of swaps necessary to transition
between two states, in turn reducing the sampling efficiency, and
is reflected in a larger diameter of the Markov state space. Here we
show that Brualdi’s [2] upper bound on the diameter of the Markov
space no longer holds with structural zeros.

Given matricesA,B ∈ A(r, c) the upper bound on the maximum
number of swaps required to transition from one matrix to the
other is given by dH (A,B)/2 − k , where dH (A,B) is the Hamming
distance between A and B, and k is the largest number of non-
overlapping “elementary circuits” inA−B, which we briefly explain
here. Consider A − B as a weighted adjacency matrix of a bipartite
graph, where the rows and columns form separate partitions of
a vertex set. Suppose an entry of +1 indicates an edge from the
row vertex to the column vertex, and an element of −1 indicates an
edge from column vertex to the row vertex. An elementary circuit
is then defined as a cycle of edges in this graph.

To show how the bound can be violated, consider the following
matrices, both with unit row and column sums where structural
zeros are represented with grey fill:

A =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

B =

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

The Hamming distance between them is dH (A,B) = 6 and there is
a single elementary circuit, giving a bound of 6

2 − 1 = 2. However,
seven swaps are required to transition from A to B, which can be

described as a sequence of column pairs, since there is only one 1
per column: ((1, 2), (1, 3), (1, 4), (1, 5), (1, 2), (2, 3)).

Additionally, the following example from Rao et al [22] illustrates
how structural zeros can render it impossible to transition between
two matrices via checkerboard swaps:

A =

0 1 0
0 0 1
1 0 0

B =

0 0 1
1 0 0
0 1 0

.

Because no sequence of swaps transforms A into B, the Markov
chain described in Algorithm 1 is reducible and hence there is no
unique stationary distribution.

In many cases, the presence of a few structural zeros will not re-
sult in a reducible chain, but in the general case structural zeros can
be fatal to checkerboard swap based MCMC sampling algorithms.
However, let us consider a special case where they are not prob-
lematic, specifically where structural zeros satisfy the following:

Definition 2.1. The structural zeros of a matrix A are monotonic
if there exists a permutation of the rows and columns of A, such
thatwi j = 0 implieswi′j = wi j′ = 0 for i ′ < i, j ′ < j.

This situation can arise when the rows and columns reflect dif-
ferent moments in time. For example, let A represent a citation
network among academic papers, where a 1 indicates that the row
article cites the column article. Suppose the rows and columns
are arranged chronologically with increasing row/column index.
Clearly, articles cannot cite into the future, so we prohibit some 1’s
using structural zeros. In this example, the upper triangle (including
the diagonal) ofA are structural zeros. Furthermore these structural
zeros are monotonic as A will satisfy the definition if the order of
the columns of A are reversed.

When structural zeros are monotonic, Algorithm 1 produces a
valid sampler:

Theorem 2. Given binary matrix A and weight matrixW where
any structural zeros are monotonic, then Algorithm 1 generates a
Markov chain with stationary distribution given by (1).

The onlymodification of the proof for Theorem 1 needed to prove
Theorem 2 is to show irreducibility of the chain given structural
zeros (see Appendix C).

2.4 Weighted Curveball Algorithm
Strona et al. [26] proposed a faster version of checkerboard swap-
ping called the curveball, which imagines two rows trading their
1’s like baseball cards. Two rows are randomly selected, and the
1’s in their symmetric difference become candidates for the trade,
where several 1’s may move between rows in a trade. In the uniform
setting, the proposed trade is always performed. In the non-uniform
setting, we modify the algorithm in the same way as for weighted
checkerboard swapping, and introduce a probabilistic trade, with
probability dependent on the weights of the elements involved in
the trade. The entire procedure is presented in Algorithm 2.

Carstens [3] proves that the unweighted curveball algorithm
can be used to sample uniformly, and we contribute the following
theorem for the weighted case:
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Algorithm 2: Sampling Via Weighted Curveball

1 Let A(0) be the observed matrix;
2 for k in 1:N do
3 Set A(k ) = A(k−1);
4 Sample two rows i and i ′ (such that i , i ′) uniformly at

random from the non-zero elements of A(k−1) ;
5 Let Ai\i′ = {j : Ai j = 1,Ai′j = 0,wi′j > 0} ;
6 Let Ai′\i = {j : Ai′j = 1,Ai j = 0,wi j > 0} ;
7 if |Ai′\i | = 0 or |Ai\i′ | = 0 then
8 next k (no trade);
9 end

10 Let C be the ordered list resulting from concatenating
Ai\i′ and Ai′\i ;

11 Permute the elements of C uniformly at random ;
12 Let Bi\i′ be the first |Ai\i′ | elements of C , and let Bi′\i

be the last |Ai′\i | elements of C ;
13 Let ji = {j : j < Ai\i′, j ∈ Bi\i′ } (0 to 1 in row i) ;
14 Let ji′ = {j : j < Ai′\i , j ∈ Bi′\i } (0 to 1 in row i ′) ;

15 Compute pii′ =

∏
j ∈ji

wi j
∏
j ∈ji′

wi′j∏
j ∈ji

wi j
∏
j ∈ji′

wi′j +
∏
j ∈ji

wi′j
∏
j ∈ji′

wi j
;

16 Sample s ∼ Bernoulli(pii′);
17 if s = 1 then
18 Set A(k )

i j = 1 and A(k )
i′j = 0 for j ∈ j ;

19 Set A(k )
i j = 0 and A(k )

i′j = 1 for j ∈ j’ ;
20 end
21 end

Theorem 3. Given binary matrix A and weight matrixW where
any structural zeros are monotonic, then Algorithm 2 generates a
Markov chain with stationary distribution given by (1).

In Appendix B, we provide a proof of this theoremwhen there are
no structural zeros, and in Appendix C this is extended to the case
of monotonic structural zeros. R code implementing Algorithms 1
and 2 is provided on Github at (https://github.com/fouticus/nsfbm).

3 SIMULATIONS
Weperformed simulations to investigate the behavior of theweighted
swap and weighted curveball algorithms. In the first simulation, we
verify the weighted checkerboard swap algorithm samples correctly
from a non-uniform distribution for a small example. In the second
simulation, we compare the mixing performance of both algorithms
for different weighting and structural zero schemes. Finally, we in-
vestigate the effect of different weighting schemes on the resultant
sampling distribution of a summary statistic.

For the second and third simulations, we will make use of a
global statistic termed diagonal divergence, which quantifies how
far the 1’s of a square (n × n) matrix A are from its diagonal:

T (A) =
1

|A|n

∑
i j

|i − j |I(Ai j = 1) (5)

A =

1 0 0
0 1 0
0 0 1

B =

0 1 0
1 0 0
0 0 1

C =

1 0 0
0 0 1
0 1 0

D =

0 0 1
0 1 0
1 0 0

E =

0 1 0
0 0 1
1 0 0

F =

0 0 1
1 0 0
0 1 0

Figure 2: All 3× 3matrices with row and column sums equal
to 1.

State Probability Empirical
Probability

A 0.056 0.051 (+/- 0.007)
B 0.222 0.237 (+/- 0.013)
C 0.222 0.217 (+/- 0.013)
D 0.056 0.058 (+/- 0.008)
E 0.222 0.222 (+/- 0.013)
F 0.222 0.215 (+/- 0.014)

Table 1: Theoretical vs. empirical probabilities for matrices
in Figure 2 with binary matrix and weight matrix as defined
in (6). Empirical probabilities also show Tukey-Hanning [9]
MCMC standard errors.

where |A| is the number of 1’s inA and I(·) is the indicator function.

3.1 Small Example
We first consider a small example, such that every Markov state can
be enumerated and exact probabilities can be computed. Consider
the following binary matrix A, and weight matrixW :

A =

1 0 0
0 1 0
0 0 1

W =

1 2 1
2 1 2
1 2 1

. (6)

IncludingA, there are six possible states with row and column sums
equal to 1 (see Figure 2). Under a uniform distribution, all matrices
would have probability 1

6 .W induces a non-uniform probability
distribution among the matrices (see Table 1), where matricesA and
D have lower probability because their non-zero elements corre-
spond to 1’s in the weight matrix. We compare the true distribution
to the distribution of a sample produced by weighted swapping.
To sample, we used a burn-in of 10, 000 swaps before retaining
every 10, 000th matrix, to generate a sample of 1, 000 matrices. Ta-
ble 1 shows agreement between the true and empirical probability
distributions. The KL-Divergence between the empirical and true
distributions is 9.0 × 10−4.

3.2 Mixing Performance
In MCMC sampling, efficient mixing is desirable in order to maxi-
mize inferential capability and minimize computation time. Due to
autocorrelation in sequential observations, the precision of a statis-
tic from MCMC sampling is less than it would be for independent,
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identically distributed (iid) sampling. The difference in precision
can be measured by effective sample size (ESS), which gives the
number of iid samples required to match the precision of theMCMC
sample [16]. We simulated matrices using weighted checkerboard
swapping and weighted curveball under different weight schemes
and structural zero configurations in order to assess their impact
on mixing, as measured by ESS. ESS was computed for the diagonal
divergence statistic using the coda package [21].

To assess the impact of weights, we constructed 20 × 20 weight
matrices by sampling each element independently from one of the
distributions: Exponential(1), Uniform(0,1), and Uniform(0.5, 1), and
also a weight matrix of all 1’s, corresponding to uniform sampling.
After constructing the weight matrices, we introduced structural
zeros with one of two methods. The first method was to randomly
set elements equal to 0 with fixed probability p, where p was either
0.1, 0.25, or 0.5. The resulting matrices will likely correspond with
irreducible Markov chains, given the relatively small probabilities.
The second method was to designate a lower triangular region of
the weight matrix as all zeros, so that they would be monotonic.
Triangles covered either 10%, 25%, or 50% of the weight matrix. We
generated a 20 × 20 binary starting matrix by setting each element
to 1 independently with probability 0.25, resulting in a density of
23.5% before enforcing structural zeros.

For each combination of weights and structural zeros, we ran
each sampling algorithm for 10,000 iterations (with no burn-in or
thinning). Figure 3 shows ESS for the different conditions, where
each line is the average over 10 individual chains with different
random seeds. For illustration, Figure 4 shows ESS for all chains
for the condition in the bottom-right panel of Figure 3.

Comparing the weighted swap algorithm to the weighted curve-
ball algorithm, we see that the curveball algorithm tends to mix
more rapidly. This reflects the fact that weighted curveball can per-
form multiple trades simultaneously, whereas weighted swap only
swaps two 1’s at a time, increasing the autocorrelation between
sequential observations. This difference is less pronounced for the
Exponential(1) and Uniform(0,1) weighting schemes compared to
the Uniform(0.5, 1) and “All 1’s” weighting schemes. This is because
the former weight schemes contain weights near 0, making 1 in the
corresponding position of A possible but unlikely. Since curveball
attempts to make several trades simultaneously, this increases the
chances of attempting to trade a 1 into an unlikely position. This
makes the trade itself unlikely, so fewer trades take place overall,
removing the advantage that weighted curveball has over weighted
swap. The latter two weight schemes do not produce weights near 0
(ignoring structural zeros), so more curveball trades are successful,
restoring the ESS gap between the algorithms. One instance where
weighted swap may have an advantage over weighted curveball is
in sparse matrices with weights near 0. The sparsity would limit
the ability of weighted curveball to perform multiple trades, and
the low weights would favor the “smaller steps” taken by weighted
swap.

Comparing random structural zeros to monotonic structural ze-
ros, we see little difference for the top two weighting schemes. As
mentioned before, these two schemes already tend to produce matri-
ces with weights near 0, so setting some elements equal to zero does
not change the weight matrices much, whether done randomly or
monotonically. However, the bottom two weight schemes produce

Figure 3: Average effective sample size for the simulations
described in Section 3.2, for varying weighting schemes and
percentage of structural zeros, where structural zeros are
either randomly placed (blue), or arranged monotonically
(red). Each line represents the average ESS from 10 separate
chains using the same starting matrix.

weights away from 0, so setting some as structural zeros is a bigger
change. In these cases, mixing is better when structural zeros are
monotonic compared to random, with the difference being more
pronounced when there are more structural zeros. This is unsurpris-
ing given the discussion in Section 2.3 showing that structural zeros
may give rise to reducible chains, whereas for monotonic struc-
tural zeros irreducibility is preserved, and the space has bounded
diameter (see Appendix C).

Finally, we acknowledge that “well mixing” may be a question-
able label for any of the scenarios shown, since ESS is relatively
paltry compared to the number of iterations. In practice, this is
ameliorated by careful algorithm implementation (which we do not
discuss here) and aggressive thinning.

3.3 Effect of Heterogeneous Weights
The matrixW adds flexibility to the sampling algorithms by allow-
ing for non-uniform stationary distributions, however it is unclear
howmuch influenceW has over the resultant sample given the fixed
row and column margins. To investigate this issue, we compare
the sampling distribution for a statistic under different “strength”
weight matrices, which are constructed by taking the elements of a
base weight matrix to a positive or negative power. In this case, we
let A have dimension 50 × 50, and define the base weight matrix as:

Wi j =
100 − |i − j |

100
, (7)

which has value 1 on the diagonal and value near 0.5 in the corners
(see Figure 5). Sampling proceeded with a burn-in period of 5, 000
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Figure 4: Detailed view of effective sample size for the simu-
lations described in Section 3.2, using a weight matrix of all
1’s and with 50% structural zeros. Average ESS is shown in
bold, with each iteration shown partially transparent.

(a) Initial matrix, A (b) Base weight matrix,W

Figure 5: Initial binary matrix A and base weight matrixW
for the simulation described in Section 3.3. Both use a shad-
ing scale where white denotes 0 and black denotes 1. The
minimum value in W is 0.5, achieved in the top-right and
bottom-left most elements. Note the unfavorable state of
A, since it contains 1’s corresponding to lower weighted re-
gions ofW .

Figure 6: Sampling distribution of the diagonal divergence
statistic, under different weightingmatrices, defined by rais-
ing the base weight matrix to the power p.

proposed swaps, before retaining every 1, 000th matrix, to generate
a sample of 5, 000 retained matrices.

Figure 6 shows the approximate sampling distributions of the
diagonal divergence T for selected powers of the weight matrix.
SinceW favors matrices with 1’s near the diagonal, larger powers
ofW favor lower values for T , and negative powers ofW favor
higher values forT . Larger values of |p | emphasize having 1’s close

to the diagonal (p positive) or packed in the corners (p negative),
where there are relatively few distinct matrices, and there is a
corresponding decrease in the variance of the samples in those
cases. This figure illustrates how vast the space A ′(r, c) is as there
is virtually no overlap in the sampling distributions under different
weighting schemes.

4 EXAMPLE: NEW HEBRIDES BIRD SPECIES
We revisit the original Vanuatu (formerly New Hebrides) bird
species data provided by Diamond in 1975 [7], to illustrate the
impact weighting can have on the analysis of real data. Of interest
is whether or not there exists competitive exclusion between differ-
ent bird species, or groups of species, on these islands. That is, do
certain species or groups exclude one another from islands due to
competition over resources? The data are represented in a matrixA,
where rows are species, and columns are islands (see Figure 7a). The
elements of the matrix are 1 if the corresponding species is found
on the corresponding island, and 0 otherwise. If a checkerboard
pattern exists between two species on two islands, this can indicate
competitive exclusion (see [23]). Accordingly, Stone & Roberts [25]
propose the C-score to measure competitive exclusion by counting
how many checkerboards exist between species pairs in the matrix:

C(A) =
2

m(m − 1)

m∑
j=2

∑
i<j

(ri − Si j )(rj − Si j ). (8)

Here, Si j is the number of shared islands between species i and j , ri
is the number of islands inhabited by species i , andm is the number
of species. A high C-score is interpreted as evidence of competitive
exclusion. We will analyze the data using a null model analysis
twice, once with equal weights (as has been done historically), and
once with heterogeneous-weights Though we are using real data,
this is an illustrative example only and we select a weight matrix
to that end.

We define a weight matrixW to encode the hypothesis that is-
land preference by species is higher for certain islands than others
(see Figure 7b). This could result, for example, from several envi-
ronmental and biological factors. We then proceed, as did Connor
& Simberloff [6], to generate a sample of matrices under the null
distribution, assuming equal weights (all 1’s) and then underW .
We generate 5, 000 samples from each weighting regime, after a
burn-in of 1, 000, and thinning of 500, using the weighted curveball
algorithm.

The resulting distributions of C-scores are shown in Figure 8,
along with the empirical upper-tailed p-values of the observed ma-
trix under each model. We see significance at the α = 0.05 level
under uniform sampling, but not after accounting for the weights.
The blocked structure of species-island preferences represented
inW favors more checkerboard structures between species in the
top half and bottom half, such that the observed matrix no longer
appears so exceptional. The lesson here is that by incorporating
more information about the bird species into our null model, the
evidence in favor of competitive exclusion changes, and thus re-
searchers should carefully consider the appropriate weight matrix
when performing such analyses.
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(a) Species-Island occurrence, A

(b) Weight matrix,W

Figure 7: Observed New Hebrides bird species combination
A [7], and non-uniform weight matrixW for the data anal-
ysis described in Section 4. For A, white denotes 0 and grey
denotes 1. ForW , light grey denotes 1 and grey denotes 15.
With higher values indicating species (rows) preference for
certain island (columns) habitats.

5 DISCUSSION
Given the healthy debate surrounding the appropriate use of null
matrix model analysis methods, we recommend that the practi-
tioner weigh this approach against their particular situation and
needs. One advantage of this approach is that by constraining,

Figure 8: Sampling distribution of the C-score statistic, un-
der uniform (red) and non-uniform (blue) weights. The em-
pirical p-value under non-uniform weights is no longer sig-
nificant, demonstrating how incorporating species habitat
preference could impact whether the observed combination
is relatively unlikely.

equivalently conditioning on, the row and column sums of the
matrix, we remove the need to explicitly model them. However,
without an estimation procedure for the weights, these values must
be specified a priori, and reasonable sensitivity analyses are war-
ranted. Fixing row and column sums is only one way to perform
null model analysis, and as Gotelli stated [11]: “There is great value
in exploring the results of several null models that incorporate dif-
ferent degrees of randomness”. These types of null models provide
information about mechanism through the careful consideration
of a summary statistic, but it often can be difficult to argue for the
correspondence between mechanism and statistic directly. There-
fore, if mechanism is of importance, a direct modeling approach
may be more appropriate.

We have introduced weighted versions of the checkerboard swap
and curveball algorithms, which extend binary matrix sampling
to non-uniform probability distributions. Simulations demonstrate
that the choice of weight matrix can impact the efficiency of sam-
pling. In fact, when weights are equal to 0, this can slow the mixing
process of the MCMC chain, or even prohibit sampling from the
desired distribution. However, monotonic structural zeros can arise
in time-evolved networks and are better behaved.

Structural zeros have also received attention from Rao et al [22]
who noted that when structural zeros are on the matrix diagonal,
the Markov space may be disconnected when limited to “alternat-
ing rectangles”(checkerboard swaps). Their solution was to also
consider “alternating hexagons”, which they prove connects the
space. Alternative swapping mechanisms like this can be incorpo-
rated into the non-uniform setting straightforwardly, by defining
the swap probability as a ratio of the relevant weights.

Both the weighted swap and weighted curveball algorithms rely
on local changes to perform an MCMC walk, which has implica-
tions for sampling efficiency (as seen in Figure 3). An unavoidable
consequence is that large numbers of swaps are required to gener-
ate near independent samples. Of course, the computational cost of
each swap is very small, and several chains can be run in parallel
to produce larger samples. In general, the weighted checkerboard
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swaps is preferred when the matrix is very sparse or very dense,
and weighted curveball is preferred when the matrix is closer to
50% dense (which will produce the most trade candidates). The
choice of summary statistic also has implications for mixing. A
single “global” statistic, like the C-score, mixes faster than a local
statistic, like, for example, the marginal probability for an element
of the matrix.

Another possible area of application is directed graphs, which are
naturally represented as square binary adjacency matrices. Fixing
marginal sums of these matrices is equivalent to fixing in-degree
and out-degree for each vertex. Unweighted checkerboard swap-
ping has been used to sample uniformly for vertex-labelled net-
works with self-loops, also known as the Configuration Model [10].
However, we know of no implementation of graph sampling where
edges are weighted, as in this paper.

In this work, we do not address how to select appropriate weights,
as this should be informed by the scientific setting and specific
hypothesis being tested. However, the following observation may
help guide the construction ofW . Consider binary matrices A and
B which differ only by a checkerboard swap in rows i and i ′, and
columns j and j ′:

P(A)

P(B)
=
wi jwi′j′

wi′jwi j′
. (9)

The ratio of weights communicates the relative probability of the
differing elements of two matrices, conditioning on all other ele-
ments. Therefore eliciting or estimating the relative propensity of
matrix elements could inform the weights specification.

Classic (unweighted) checkerboard swapping and curveball trad-
ing, while intuitive and simple to implement, lack the ability to
incorporate heterogeneity of probabilities when sampling, render-
ing them useless in situations where such heterogeneity is known
to exist. With our contribution, these algorithms are now equipped
to incorporate easy to interpret weights, and to consider more plau-
sible null models, which provides a valuable new tool for matrix
analysis.
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A PROOF OF WEIGHTED CHECKERBOARD
ALGORITHM

Here we prove that the weighted checkerboard swap algorithm
samples from P(·) defined in (1) when there are no structural zeros,
by showing that the Markov chain implied by the algorithm is
ergodic (irreducible and aperiodic) with stationary distribution
P(·) [17, 18].

Irreducibility. Since wi j > 0 we have 0 < pi j :i′j′ < 1, so
irreducibility follows directly from the result of Brualdi [2], which
showed that a series of swaps could change any matrix A into any
other matrix B when row and column sums are preserved.

Aperiodicity. Since every checkerboard swap has probability
less than 1, it is possible to remain in the same state after a step.
This is enough to show aperiodicity.

Detailed Balance. Lastly, we show that P(·) is the stationary
distribution by showing that it satisfies the detailed balance equa-
tion:

P(A) pA→B = P(B) pB→A . (10)
for any matrices A,B ∈ A ′(r, c), where pA→B and pB→A are tran-
sition probabilities. If A and B do not differ by a checkerboard
swap, then both transition probabilities are 0, and detailed bal-
ance holds trivially. If A and B differ by a checkerboard swap,
then let u and u ′ be its rows and let v and v ′ be its columns.
Also, let k be the sum of the row counts, and define the set S =
{(u,v), (u ′,v), (u,v ′), (u ′,v ′)}, so that ai j = bi j for (i, j) < S. The
transition probability pA→B is the probability of first selecting the
two 1’s in the checkerboard,

(k
2
)−1

, times the probability of per-
forming the swap puv ;u′v ′ . Starting from the left side of (10),

P(A)pA→B = (11)

=


1
κ

∏
i j

w
ai j
i j


[(
k

2

)−1 wu′vwuv ′

wuvwu′v ′ +wu′vwuv ′

]
(12)

=
1
κ

(
k

2

)−1 [ ∏
i j<S

w
ai j
i j

]
wuvwu′v ′

wu′vwuv ′

wuvwu′v ′ +wu′vwuv ′
(13)

=
1
κ

(
k

2

)−1 [ ∏
i j<S

w
bi j
i j

]
wu′vwuv ′

wuvwu′v ′

wuvwu′v ′ +wu′vwuv ′
(14)

=


1
κ

∏
i j

w
bi j
i j


[(
k

2

)−1 wu′vwuv ′

wuvwu′v ′ +wu′vwuv ′

]
(15)

= P(B)pB→A, (16)

so detailed balance holds.

B PROOF OF WEIGHTED CURVEBALL
ALGORITHM

Here we prove that the weighted curveball algorithm samples from
P(·) defined in (1) when there are no structural zeros.

Irreducibility. Any checkerboard swap can be viewed as a
curveball trade, so the set of all weighted curveball trades con-
tains the set of all weighted checkerboard swaps. Therefore any
state transition in the checkerboard swap Markov chain is also a

state transition in the curveball trade chain, hence irreducibility
holds for curveball as well.

Aperiodicity. Again, since wi j > 0, then 0 < pii′ < 1 for any
proposed trade, so the probability of remaining in the same state is
non-zero, and the chain is aperiodic.

Detailed Balance. For detailed balance, consider matrices A
and B which differ by a curveball trade in rows u and u ′. The
curveball algorithm involves permuting the elements of the trade
candidates in Au\u′ and Au′\u to create a proposed trade, captured
in (Bu\u′,Bu′\u ). The probability of obtaining (Bu\u′,Bu′\u ) is

pc = |Au\u′ |!|Au′\u |!/
(
|Au\u′ | + |Au′\u |

)
! (17)

= |Bu\u′ |!|Bu′\u |!/
(
|Bu\u′ | + |Bu′\u |

)
!, (18)

where | · | is the cardinality operator. Note that pc is the same
for all such partitions, that is, all partitions are equally likely. Let
S = {ij : i ∈ {u,u ′}, j ∈ {ji ∪ ji′}}, and for a generic index t and
index set s, definewts =

∏
j ∈s

wt j . Again starting from the left side

of (10):

P(A)pA→B = P(A)pcpuu′ (19)

=
pc
κ

∏
i j

w
ai j
i j

[
wujiwu′ji′

wujiwu′ji′ +wu′jiwuji′

]
(20)

=
pc
κ


∏
i j<S

w
ai j
i j

 wu′jiwuji′

[
wujiwu′ji′

wujiwu′ji′ +wu′jiwuji′

]
(21)

=
pc
κ


∏
i j<S

w
bi j
i j

 wujiwu′ji′

[
wu′jiwuji′

wujiwu′ji′ +wu′jiwuji′

]
(22)

=
pc
κ

∏
i j

w
bi j
i j

[
wu′jiwuji′

wujiwu′ji′ +wu′jiwuji′

]
(23)

= P(B)pcpu′u (24)
= P(B)pB→A (25)

Hence the detailed balance equation holds, where the stationary
distribution is again given by (1).

C IRREDUCIBILITY WITH MONOTONIC
STRUCTURAL ZEROS

When structural zeros are present, that is, at least one ofwi j = 0,
the Markov chain implied by checkerboard swapping may become
reducible. Here we prove that in the special case of monotonic
structural zeros, irreducibility still holds. Specifically we show that
between any two matrices A and B, there exists a checkerboard
swap which reduces the Hamming distance between them, so that
repeated application of such swaps eventually reduces the distance
to 0.

Finding a Swap. Consider A,B ∈ A ′(r, c), and let dH be the
Hamming distance between them. The structural zeros are mono-
tonic, so assume the rows and columns have been arranged such
that wi j = 0 =⇒ wk j = wil = 0 for k > i, l > j. This places all
the structural zeros in the bottom-right corner (See Figure 9).

Let (i, j) denote the first element where A and B differ, where
“first” means no rows above j contain a difference, and in row j , no
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Figure 9: Illustration of irreducibility proof in Appendix C.
A and B have structural zeros (in black), and agree for ele-
ments in the hashed region. Their partials sums must agree
in the red regions, and their partial sums must agree in the
blue regions as well. Four cases are possible for the orange
element.

column to the right of column i contains a difference. Specifically,
(i, j) satisfies:

(1) ai j , bi j
(2) akl = bkl for k < i and 1 ≤ l ≤ n (A and B agree above row

i)
(3) ail = bil for j < l (A and B agree in row j to the right of

column j)
In Figure 9, we show agreement between A and B with cross hatch-
ing.

Without loss of generality, assume ai j = 0 and bi j = 1. A and B
must have the same sum in row i , but they differ at (i, j), so there
must be some column j ′ such that ai j′ = 1 and bi j′ = 0. We also
know j ′ < j because j is the last column where A and B differ in
row i . Similarly, there must be some row i ′, such that i ′ > i , where
ai′j = 1 and bi′j = 0, since the column sums agree.

Element (i ′, j ′), filled orange in Figure 9, cannot be a structural
zero due to the selection criterion so one of the following is true:

(1) Checkerboard in A and B: ai′j′ = 0 and bi′j′ = 1 so both A
and B contain a checkerboard with the elements in rows
{i, i ′} and columns {j, j ′}. Performing the swap in either A
or B reduces dH by 4.

(2) Checkerboard in A only: ai′j′ = bi′j′ = 0. Performing the
swap in A reduces dH by 2.

(3) Checkerboard in B only: ai′j′ = bi′j′ = 1. Performing the
swap in B reduces dH by 2.

(4) No checkerboard: ai′j′ = 1 and bi′j′ = 0.

Cases (1-3) allow checkerboard swaps which reduce the distance
between A and B by at least 2. Case (4) does not permit a swap, but
if this is the case, a swap can be found as outlined below.

Let c be the last column in row i ′ which is not a structural zero.
Since row i ′ in A and row i ′ in B have the same sum, the partial
sums up to column c are also equal (see region with blue border in
Figure 9).

Note that j, j ′ ≤ c . In row i , A and B agree after column j (due to
the selection procedure), and since j < c , they agree after column c
as well. Therefore the partial sums up to column c must agree in
row i as well (see region with red border in Figure 9).

We will use the agreement of these partial sums to show that
there exists some column j ′′ which permits a checkerboard swap
in either A or B. Consider the difference matrix D = A − B with
elements dkl ∈ {−1, 0, 1}. Because the partial sums described above
agree, we have:

0 =
c∑
l=1

dil =
∑

l ∈{1, ...,c }\{j , j′ }
dil , (26)

since di j = −1, di j′ = 1 (recall we are in Case 4 from above).
Furthermore,

0 =
c∑
l=1

di′l =⇒ −2 =
∑

l ∈{1, ...,c }\{j , j′ }
di′l , (27)

sincedi′j = di′j′ = 1. Therefore theremust be some j ′′ ∈ {1, . . . , c}\
{j, j ′} such that di j′′ > di′j′′ , and one of the following is true:

(1) Checkerboard in B, di j′′ = 1, di′j′′ = 0: ai j′′ = 1, bi j′′ = 0,
and ai′j′′ = bi′j′′ = 1, a checkerboard swap exists in B in
rows {i, i ′} and columns {j, j ′′}.

(2) Checkerboard in A, di j′′ = 1, di′j′′ = 0: ai j′′ = 1, bi j′′ = 0,
and ai′j′′ = bi′j′′ = 0, a checkerboard swap exists in A in
rows {i, i ′} and columns {j, j ′′}.

(3) Checkerboard in A, di j′′ = 0, di′j′′ = −1: ai j′′ = bi j′′ = 1,
and ai′j′′ = 0, bi′j′′ = 1, a checkerboard swap exists in A in
rows {i, i ′} and columns {j, j ′′}.

(4) Checkerboard in B,di j′′ = 0, di′j′′ = −1: ai j′′ = bi j′′ = 0, and
ai′j′′ = 0, bi′j′′ = 1, a checkerboard swap exists in B in rows
{i, i ′} and columns {j, j ′′}.

Thus there exists a checkerboard swap which decreases dH by
2. Weighted curveball trades include checkerboard swaps, so the
proof applies to irreducibility of the weighted curveball algorithm
as well. This also implies that the number of swaps between any two
matrices is bounded by dH

2 , and hence the diameter of the Markov
state space is bounded by half the maximum possible Hamming
distance between two matrices.
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