

This author accepted manuscript (AAM) is deposited under the Creative Commons Attribution Non-commercial International Licence 4.0 (CC BY-NC 4.0). Any reuse is allowed in accordance with the terms outlined by the licence. To reuse the AAM for commercial purposes, permission should be sought by contacting permissions@emeraldinsight.com.

A review on the interactions of robotic systems and lean principles in offsite construction

Journal:	<i>Engineering, Construction and Architectural Management</i>
DOI	10.1108/ECAM-10-2020-0809
Manuscript Type:	Original Article
Keywords:	Construction, Project Management, Technology, Productivity, Innovation
Suggested Citation:	Gusmao Brissi, S., Wong Chong, O., Debs, L. and Zhang, J. (2021), "A review on the interactions of robotic systems and lean principles in offsite construction", <i>Engineering, Construction and Architectural Management</i> , Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/ECAM-10-2020-0809

SCHOLARONE™
Manuscripts

A review on the interactions of robotic systems and lean principles in offsite construction

Abstract

Purpose – The purpose is two-fold: (1) to explore the interactions of robotic systems and lean construction in the context of offsite construction (OC) that were addressed in the literature published between 2008 and 2019 and (2) to identify the gaps in such interactions while discussing how addressing those gaps can benefit not only OC but the AEC industry as a whole.

Design/methodology/approach – First, a systematic literature review (SLR) identified journal papers addressing the interactions of automation and lean in OC. Then, the researchers focused the analysis on the under-researched subtopic of robotic systems. The focused analysis includes discussing the interactions identified in the SLR through a matrix of interactions and utilizing literature beyond the previously identified articles for future research directions on robotic systems and lean construction in OC.

Findings – The study found 35 journal papers that addressed automation and lean in the context of OC. Most of the identified literature focused on interactions of BIM and lean construction, while only 9 focused on the interactions of robotic systems and lean construction. Identified literature related to robotic systems mainly addressed robots and automated equipment. Additional interactions were identified in the realm of wearable devices, unmanned aerial vehicles/ automated guided vehicles, and digital fabrication/CNC machines.

Originality – This is one of the first studies dedicated to exploring the interactions of robotic systems and lean construction in OC. Also, it proposes a categorization for construction automation and a matrix of interactions between construction automation and lean construction.

Keywords Offsite construction; Construction automation; Lean construction; Robotic systems; Systematic literature review

Paper Type Literature Review

Acknowledgements - The authors would like to thank the National Science Foundation (NSF). This material is based on work supported by the NSF under Grant No. 1827733. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. The second author was also supported by an Education Support Leave from the Technological University of Panama.

1 1. Introduction

2 The architecture, engineering, and construction (AEC) industry has been experiencing low
3 levels of productivity over the years, even with the gradual introduction of several new
4 technologies and processes (McKinsey Global Institute, 2017). Many factors contributed to
5 this situation, especially a historical resistance of the AEC industry to embrace innovation
6 and industrialization into its traditional processes (Linner and Bock, 2012), and the lack of a
7 holistic view to address the problems identified in this fragmented industry (World Economic
8 Forum and The Boston Consulting Group, 2016).

9 At the company level, practices to improve the AEC productivity involve technologies
10 and tools, processes and operations, business models, and human resources and organizations
11 (World Economic Forum and The Boston Consulting Group, 2016). Aligned with these
12 practices, three concepts stand out: offsite construction (OC), construction automation (CA),
13 and lean construction (LC). Technology-driven construction companies such as Katerra,
14 Factory_OS, and Prescient are revolutionizing the AEC industry by providing practical
15 examples of the combined application of OC, CA, and LC (Ponsor and Cohen, 2019).

16 Despite a growing interest from industry, to date there are few holistic academic studies
17 on the interactions of CA and LC within the context of OC. This is an important topic, as this
18 type of analysis can provide a better understanding of the benefits that such interactions can
19 bring to the AEC industry comparing to the studies of CA and LC in isolation. Individually,
20 CA, LC, and OC have attracted the attention of both academia and industry (McGraw Hill
21 Construction, 2013; McKinsey Global Institute, 2017). Significant research has also
22 addressed the interactions between LC and CA (Dave et al., 2016; Hamzeh et al., 2015; Sacks
23 et al., 2010), LC and OC (Nahmens and Ikuma, 2012; Yu et al., 2013), and CA and OC
24 (Jaillon and Poon, 2014; Salama et al., 2017). Research suggests that the strategies involving
25 the integrated adoption of OC, CA, and LC are effective to tackle the factors that are
26 hindering the AEC industry progress than their individual contributions, justifying a deeper
27 investigation on the interactions between them (Altaf et al., 2018; Linner and Bock, 2012;
28 World Economic Forum and The Boston Consulting Group, 2016; Zhong et al., 2017).

29 Through a systematic review of the literature, this article identifies and maps out the
30 reported interactions of CA and LC in the context of OC. As CA is a very comprehensive
31 topic and given the limitations of this paper, the focus of this study is on exploring and
32 improving the understanding of the interactions between lean construction and a specific
33 category of CA, namely robotic systems (RSs), since such interactions have been scarcely
34 explored in the literature so far. In addition, the high similarity between OC processes and
35 manufacturing processes facilitates the implementation of RSs and LC principles to increase
36 efficiency and productivity in offsite construction (Martinez et al., 2008; Martínez et al.,
37 2013). Once the interactions of RSs and LC found in the literature are mapped out and
38 explained, the research gaps are also identified and subsequently discussed, resulting in a
39 roadmap for future research. In addition to the contributions to the academic community, the
40 list of potential benefits resulting from the joint adoption of LC and RSs for both offsite
41 construction and the broader context of the AEC industry constitute an important contribution
42 to the practice.

43 2. Background

44 Automation technologies and lean principles have been widely and successfully applied to
45 many industries such as the automotive and the manufacturing industries (Kolberg and
46 Zühlke, 2015). Expanding on other industries' experiences, the enhancement of the AEC
47 industry involving OC, CA, and LC has the potential to dramatically increase the productivity
48 and efficiency in construction (Jensen et al., 2012; Linner and Bock, 2012; World Economic
49 Forum and The Boston Consulting Group, 2016). Based on the experience from other
50 industries, the integrated adoption of CA, LC, and OC by the AEC industry can improve the
51 construction sector by using: (1) innovative tools and technologies to automate and speed up
52 the production processes, (2) efficient management systems to control the production, and
53 (3) an environment conducive to industrialization of production. Figure 1 illustrates how CA,
54 OC, and LC principles can be applied to the AEC industry.

55 <Insert Figure 1 here>

56 Figure 1. Theoretical Framework

58 2.1. Offsite construction (OC)

59 Offsite construction (OC) refers to the manufacturing and pre-assembling of construction
60 components in a manufacturing site, which are then transported and assembled on the
61 construction-site (Goodier and Gibb, 2007). OC can be categorized according to the type of
62 element and the level of offsite work undertaken on the building (Gibb, 2001).

63 Depending on the level of adoption of offsite construction in a project, different strategies
64 are necessary throughout the construction process, which will have different impacts and will
65 need to be properly analyzed in each phase, from the design to the completion of the building.

66 Currently, OC is again gaining ground in the AEC industry, greatly driven by the rise of
67 lean construction (McGraw Hill Construction, 2013) and Building Information Modeling
68 (BIM) (Teicholz, 2014). In fact, OC has been increasingly recognized as one of the most
69 effective methods to achieve lean construction (Xu et al., 2018). The AEC industry has
70 reported many challenges associated with the adoption of OC, including the need to commit
71 to a well-defined design and engineering work at an early stage of the project and the complex
72 transportation and logistical requirements involved in the process of shipping components to
73 the site (McGraw-Hill Construction, 2011; McKinsey Global Institute, 2017). However,
74 owners, designers, and contractors have also acknowledged productivity improvements such
75 as cost and time reduction and safety improvement (McGraw-Hill Construction, 2011).

76 2.2. Construction automation (CA)

77 Construction automation (CA) is defined as the use of technologies to improve productivity,
78 safety, scheduling, control, or constructability, and serves as a tool to assist in the decision
79 making process of project stakeholders (Castro-Lacouture, 2009). CA can enhance design,

1
2
3
4
5 construction, and operation processes, positively impacting the entire lifecycle of buildings
6 (Eastman et al., 2008).

7 Some challenges to a wider use of CA include cost, regulatory restrictions (Castro-
8 Lacouture, 2009), deficiencies in information usage, investment from companies (Chen et
9 al., 2018), changes in the workforce, cybersecurity awareness (Soto and Skibniewski, 2020),
10 and the interactions of workers and automation technologies (Afsari et al., 2018). Despites
11 these challenges, some technologies related to CA, such as robotics and BIM, are gaining
12 traction (Sawhney et al., 2020). The main motivations to automate include productivity,
13 safety, quality, and economy improvements, which are all linked to lean concepts (Nof,
14 2009).

15 As construction automation covers a wide range of applications and technologies, it is
16 important to define which technologies are grouped under this umbrella. The analysis of
17 relevant and recent literature focused on emerging technologies and trends (Davila Delgado
18 et al., 2019; Gerber et al., 2017; Meng et al., 2020; Nof, 2009; Oesterreich and Teuteberg,
19 2016; Saidi et al., 2016; Sawhney et al., 2020) allowed the authors to categorize construction
21 automation according to the technologies presented in Table I.

22 96 Table I. Construction Automation Technologies

23 97 <Insert Table I here >

24 98 100 The five main technologies encompassed by construction automation, namely (1) Robotic
25 99 Systems, (2) Modeling and Simulation, (3) Digitization and Virtualization, (4) Sensing
26 101 Systems, and (5) Artificial Intelligent and Machine Learning are briefly described below.

27 102 103 1. Robotic systems include advanced construction equipment with capabilities related to
28 104 teleoperation and autonomous task performance (Sawhney et al., 2020). In this study,
29 105 robotic systems comprise robots, automated equipment, digital fabrication machines,
30 106 UAVs and AGS, and wearable devices. The use of robotic systems is ideal for large-
31 107 scale offsite production of prefabricated components using gantry robots, fixed robotic
32 108 arms, collaborative robots, 3D printers, AGVs, and even drones to monitor inventories.
33 109 However, some types of robotic technologies are suitable for tasks on the construction
34 110 site: on-site factories, single task robots, automated equipment (cranes, excavators, etc.),
35 111 monitoring robots and UAVs, and exoskeletons (Davila Delgado et al., 2019).

36 112 2. Modeling involves digital representations of physical and functional characteristics of
37 113 real-world products and processes (Sacks, Koskela, et al., 2010). Technologies under
38 114 this category include BIM models (3D, 4D, and 5D), which contain different levels of
39 115 information needed to complete a construction project and are used throughout the life
40 116 cycle of that project (Eastman et al., 2008; Sacks, Koskela, et al., 2010). VR is also a
41 117 digital representation of the real world, while AR and MR combine digital content on
42 118 the real-world environment. However, MR is more immersive and interactive than AR.
43 119 Simulations are used to analyze the performance of the modeled products and processes.
44 120 Computer simulations in construction are used to predict the potential effects of events

1
2
3
4
5 121 or processes, support decision-making, develop feasibility studies, and model and plan
6 122 production processes (Han et al., 2012).

7 123 3. Digitization and virtualization are processes related to the concept of Industry 4.0 and
8 124 digital transformation which are now being applied in the AEC industry. Digitization is
9 125 a term related to the extensive use of Information and Communications Technology
10 126 (ICT) to create a digital representation, that is, to transform information into a digital
11 127 format (Oesterreich and Teuteberg, 2016). Focusing on digital project data and
12 128 information management, digitization and virtualization include (1) enterprise
13 129 information system (EIS) to integrate information throughout a project, (2) cloud
14 130 computing and digital platforms, (3) Internet of Things (IoT) platforms to digitize
15 131 physical products, and (4) big data to capture, store, analyze, and manage large data sets.

16
17 132 4. Sensing technologies involve the use of sensors. A sensor is “a device that receives a
18 133 stimulus and responds with an electrical signal” (Fraden, 2016). RFID, for example, has
19 134 been used at various stages of construction: from production to logistics and on-site
20 135 operations, consisting of tracking workers, equipment and components, which allows
21 136 the representation of the physical condition of the logistic/ production flow in real-time
22 137 and in an informative way (Altaf et al., 2018; Wang et al., 2017). In addition, sensing
23 138 technologies are useful for automated construction progress monitoring when associated
24 139 with the use of images and videos.

25
26 140 5. Artificial Intelligence (AI) is the study of computational processes to allow perception,
27 141 reasoning, and action (Winston, 1992), while machine learn (ML) enables the computer
28 142 to learn from experience. Recently, there has been growing interest in the application of
29 143 AI and ML in the AEC industry to automate the design process, cost estimation, and
30 144 construction safety monitoring. For instance, genetic algorithms, neural networks, and
31 145 expert systems have been used in preconstruction planning to automatically estimate the
32 146 project duration, generate the work breakdown structure, and optimize resources
33 147 (Faghihi et al., 2015).

38 148 2.3. ***Lean construction (LC)***

39
40 149 Lean production principles were initially applied in the manufacturing industry, but as other
41 150 industries recognized the potential benefits of the lean principles, they started to adapt and
42 151 apply them to improve their processes (Koskela, 2000). In construction, lean “is a way to
43 152 design production systems to minimize waste of materials, time, and effort in order to
44 153 generate the maximum possible amount of value” (Koskela et al., 2002). In lean construction
45 154 (LC), the term construction refers to the entire lifecycle, from conception (design) to
46 155 production (construction), as defined in the transformation-flow-value (TFV) theory
47 156 (Koskela, 2000). LC involves a series of principles to guide the management process. The
48 157 LC principles that support this study are based on the list of lean principles defined by Sacks
49 158 et al. (2010), whose study focused on the interactions of LC and BIM, which are summarized
50 159 in Table II.

160 Table II. Lean Principles
161

<Insert Table II here>

162 The practical application of the LC principles comprehend numerous practices and
163 techniques such as just-in-time, last planner system, six sigma, and pull planning, which are
164 related to (1) design and engineering, (2) planning and control, (3) construction and site
165 management, and (4) health and safety management (Babalola et al., 2019). Research has
166 revealed many benefits associated with the implementation of LC practices, most notably,
167 the reduction of project duration (Erol et al., 2017), cost (Nowotarski et al., 2016), and waste
168 (Tezel and Nielsen, 2013), and the improvement of quality (Sarhan et al., 2017), productivity,
169 work performance (Zhang et al., 2018), and safety (Sarhan et al., 2017). Most of the lean
170 practices implemented in the AEC industry are related to project management, more
171 specifically to the triple constraints (time, cost, and scope), quality, and customer relationship
172 (Babalola et al., 2019).

173 3. Methodology

174 This study uses a systematic review methodology to identify and evaluate current literature
175 relevant to the integrated use of CA and LC in the context of OC, providing an overview of
176 the interactions between the three topics. The systematic literature review constitutes a
177 reliable method to identify and expand the body of knowledge of a specific domain and have
178 been used by many researchers to investigate different topics related to the AEC industry (Jin
179 et al., 2018; Santos et al., 2017; Yin et al., 2019).

180 Considering that the interactions between the three topics of interest need to be
181 investigated timely, the authors investigated the articles published between 2008 and 2019.
182 The reasons for this time range include the increased attention of the investigated topics in
183 recent years in academia and the fact that multiple scholars have adopted a ten year period as
184 a typical timeline in selecting recent publications for literature review (Jin et al., 2018; Santos
185 et al., 2017; Yin et al., 2019). Figure 2 shows the six-steps methodology used in this study.

<Insert Figure 2 here>

186 Figure 2. Methodology

188 3.1. Step 1. Article sources identification

189 An initial pilot search in main databases, including Scopus, Engineering Village, and
190 ProQuest Technology Collections, was conducted and resulted in few articles that addressed
191 the interactions of CA and LC in OC. Therefore, the authors decided to perform searches
192 directly in specific journals' data bases. The journals were selected based on their relevancy
193 in the AEC domain and their measures of scientific influence according to the SCImago
194 Journal Rank (SJR) indicators in 2017. Only journals with an SJR factor greater than 0.55
195 and impact index greater than 1.5 were considered, resulting in 17 selected journals.

196 **3.2. Step 2. Search strategies implementation**

197 Terms associated to OC, CA, and LC were defined and used as keywords in data selection
198 and data analysis. The searches were conducted in the databases of each selected journal,
199 which allowed a thorough search in the full article. Different search strategies such as
200 combining keywords, boolean connectors, truncates, and wildcards were used to improve the
201 retrieval rate of related articles. The three groups of keywords used were: (1) automation,
202 robot, BIM, CNC, laser scan; (2) prefab, modular, offsite; and (3) lean, "just in time". The
203 searches conducted in the journal databases resulted in a collection of 460 articles.

204 **3.3. Step 3. Initial assessment**

205 A text mining analysis on the combined topics of OC, CA, and LC was performed using
206 NVivo software. Then, a manual assessment on the abstracts and conclusions of each article
207 was performed by two of the authors, narrowing down the results to 35 articles that addressed
208 the interactions of CA and LC in OC.

209 **3.4. Step 4. Qualitative analysis**

210 The authors conducted a thematic analysis (Braun and Clarke, 2006) to identify the emerging
211 themes related to the interactions of OC, CA, and LC, which were then mapped in a matrix.
212 Through this process the authors organized the articles according to the interactions
213 addressed in them and identified the most and least researched interactions.

214 **3.5. Step 5. Data synthesis**

215 Following, based on the number of researched interactions, the authors selected the CA
216 category, Robotic Systems, to be further explored. By analyzing the interactions of RSs and
217 LC supported by the investigated literature, the authors synthesized and explained them,
218 exposing the gaps in the existing knowledge and suggesting areas of interactions that need
219 further research in the context of OC.

220 **3.6. Step 6. Inferences' support survey**

221 The authors sought evidence in literature beyond those focused on OC – including the AEC
222 industry in general and even research related to other industries (manufacturing, automotive,
223 etc.) – to support the inferences on the gaps of RSs and LC interaction in the context of OC.
224 Searches for additional supportive literature were carried out broadly, on several platforms,
225 using terms related to LC and RSs, without focus on OC. Based on the literature gathered,
226 the authors were able to provide evidence that justify the need to further research some of
227 those gaps of RSs and LC interaction as a way to improve the overall performance of the
228 AEC industry.

4 229 4. Results and Findings

5 230 Results from our research indicated that Automation in Construction is the journal with the
6 231 highest number of articles addressing the interactions of CA and LC in OC (Table III). And
7 232 considering the number of articles published by year, the findings suggested that the
8 233 interactions of CA and LC in OC have received increasing attention in recent years, as 22 out
9 234 of the 35 articles were published between 2017 and 2019 (Figure 3).

10 235 Table III. Number of Articles by Journal (n=35)

11 236 <Insert Table III here>

12 237 <Insert Figure 3 here>

13 238 Figure 3. Articles Published by Year (n=35)

14 240 4.1. *Interactions between OC, CA and LC*

15 241 The interactions of CA and LC in OC for each article were identified, associated to a number,
16 242 and mapped out in a matrix of interactions (Table IV), which revealed that many interactions,
17 243 though significant, have not been studied. The rows of the matrix represent the CA
18 244 technologies while the columns are the LC principles. Each article can have multiple
19 245 interactions, depending on the topics it addresses. For example, the interactions of CA and
20 246 LC in Chen et al. (2019) – assigned to number 9 – were associated to the CA category
21 247 “UAS/UAV and AGV”. As for LC, the article was associated to two principles, namely
22 248 “Reduction of variability” and “Reduction of cycle times/inventories”. This is because the
23 249 study showed that the use of an AGV-based manufacturing system reduced variability and
24 250 cycle time in the production of modular prefabricated components.

25 251 Table IV. Matrix of Interactions of Lean Construction Principles and Construction Automation
26 252 Technologies (n=35)

27 253 <Insert Table IV here>

28 254 The matrix revealed that the most frequent interactions addressed in the investigated
29 255 literature were focused on modeling and simulation and LC principles. For instance, just for
30 256 the modeling and simulation category, a total of 15 papers concentrated on BIM. While
31 257 Robotic systems (RSs), on the other hand, was the least explored topic in the investigated
32 258 literature, with a total of 9 papers addressing the interactions of RSs with LC. This result was
33 259 unexpected because RSs have been extensively investigated in other industries, such as the
34 260 manufacturing industry, which shares many similarities with OC. In addition, the AEC
35 261 industry has been affected by the labor shortages, which is one of the main drivers for the use
36 262 of RSs. The use of robotics in construction has been explored in applications such as
37 263 bricklaying, construction inspection, and concrete finishing. However, applications of RSs
38 264 along with LC in OC is still limited. Next, the authors discuss the interactions between RS
39 265 and LC found in the investigated literature. In addition, gaps on such interactions are
40 266 identified and described.

4.2. Robotic systems (RSs) and lean principles

The high similarity between production and assembly processes in OC and the manufacturing industry processes allows the implementation of RS and LC principles to increase the efficiency and productivity in construction (Martinez et al., 2008; Martínez et al., 2013). To illustrate this concept, Martinez et al. (2008) presented two assembly systems for modular construction: an offsite assembly system using a robotic assembly tool and an on-site mobile assembly facility, both enabled by concepts of design for manufacturing and assembly. Later, Martínez et al. (2013) refined the onsite mobile robotic system and proposed a flexible field factory for production of modular systems based on lean production principles. They showed through simulations and comparisons with traditional assembly methods that their proposed field factory allowed for greater flexibility in production and savings in assembly and transportation time and costs. Furthermore, Zhang et al (2018) explored the adoption of robotic total station devices, which are BIM enabled to lay out the hangers for prefabricated mechanical, electrical and plumbing (MEP) racks on the slabs during the construction phase. The robotic layout allowed a four-time increase in productivity related hanger installation. Zhang et al (2018)' study mostly focused on the interactions of BIM and lean principles, which not only facilitated the installation of MEP systems in the construction phase, but also reduced waste and increased value throughout the project lifecycle by improving the design coordination and the workflow, allowing for more prefabrication opportunities, reducing construction errors and rework, and increasing the confidence of work teams.

To achieve the full benefits of integrating robotics and lean principles in OC, it is necessary to consider this integration from the initial design stages, through manufacturing to on-site assembly. For this reason, the adoption of BIM technology is fundamental, as suggested by Malik, Ahmad and Al-Hussein (2019) in their proposed framework for the automated generation of tool paths from BIM to an automated cutting machine. Their framework allowed the optimization of material use through waste allocation during the cutting operations of floor components in panelized floor manufacturing. The overarching approach in the use of automated construction processes, including the adoption of robots, automated equipment, and digital fabrication tools presented by Linner and Bock (2012), also highlighted BIM as a pre-condition to higher levels of automation. Based on the Japanese housing industry model, which brought the housing construction industry closer to the manufacturing industry, their study revealed that by using superior technologies and highly efficient production methods, the Japanese housing industry offered high-quality products focused on customer relationship and value, which is one of the most important aspects of the lean philosophy.

Focusing on the use of automated equipment, Azzi et al. (2011) addressed the automation processes in an Italian company that designs, manufactures, and installs unitized curtain walls. Their study revealed the great potential of increasing productivity and production flexibility and reducing variability in the assembly of product families using optimized lean layout of assembly line and automated equipment. Innella et al. (2019) identified through a literature review, the importance of adopting autonomation and autonomous production systems in modular construction to improve the production flow and reduce variability. Similarly, Goh and Goh (2019) showed the benefits of adopting automated gantry cranes in

1
2
3
4
5 310 prefabricated prefinished volumetric construction operations to achieve lean principles. The
6 311 automated gantry cranes were used to pick and place modules without human supervision,
7 312 which increased efficiency, reduced defective work and variability as demonstrated in the
8 313 simulation model developed in their study.

9
10
11
12
13
14
15
16
17
18
19 314 In the context of OC, the manufacturing phase allows the greatest amount of interactions
315 between RSs and LC (Linner and Bock, 2012), ranging from layout planning and installation
316 of equipment at the manufacturing facility to studies on machinery and equipment
317 optimization. Chen et al. (2019) proposed a facility layout planning method based on the use
318 of an algorithm to optimize the storage area of prefabricated components in precast factories.
319 The proposed facility layout was based on the use of automated guided vehicle and concepts
320 from the manufacturing industry, with a special focus on decreasing queues and bottlenecks
321 in the production process while maximizing the workstation utilization and reducing the
322 required storage area (Chen et al., 2019).

20
21
22
23 323 Based on the 9 papers discussed above, which addressed the interactions of RSs and LC
324 in OC, the authors developed a rationale for each identified interaction and related it to the
325 investigated literature (Table V)

24
25
26 326 Table V. Interactions of RSs and LC Principles in OC Supported by the Investigated Literature
27
28
29 327 **<Insert Table V here>**

30 31 328 **4.3. Future directions of research on the interactions of RSs and LC in OC**

32
33
34
35
36
37 329 The analysis of Table V indicates that the examined literature did not address all the potential
330 interactions between RSs and LC in OC, hence, the authors identified research in other areas
331 of construction (not focused on OC) or even related to other industries and domains to
332 provide evidence on the importance that such potential interactions would likely present in
333 the context of OC, justifying the need for further research. The results are presented in Table
334 VI.

38
39
40 335 Table VI. Potential Interactions of RSs and LC Principles Within OC to be Further Investigated
41
42
43 336 **<Insert Table VI here>**

44 45 337 **4.4. Matrix of interactions between RSs and LC in OC**

46
47
48
49
50
51
52
53
54 338 The authors summarized and presented the interactions between RSs and LC principles, as a
339 matrix in Table VII. Each letter in the matrix stands for an interaction and may be applied to
340 more than one RSs and LC principles. The grey cells (A through I) in the matrix refer to the
341 interactions identified in the investigated literature related to OC (see table V). The other
342 cells (J through Z) refer to interactions identified in literature related to construction in
343 general, manufacturing, robotics, and even the military context (see table VI). The cells that
344 do not hold any letters refer to the interactions that the authors considered not significant to
345 be explored.

Table VII. Matrix of Interactions Between RSs and LC Principles

<Insert Table VII here>

The interactions of RSs and lean principles are more noteworthy in the manufacturing and on-site construction phases of OC, but they bring contributions to enhance the design phase, since all RSs can be integrated with BIM tools to provide feedback on problems that need to be solved in the early stages of a project. It is important to note that some of the interactions discussed help to support a more intense use of OC by the AEC industry because (1) they are only possible within the context of OC, as they only apply to the manufacturing phase – see interactions C, N, and P, or (2) they apply to the construction phase, but are much more significant in the manufacturing phase – see interactions L and O.

5. Conclusions

In this study, the authors analyzed the interactions between CA and LC in the context of OC through a systematic literature review. The integration of CA and LC in OC provides means to enhance the AEC industry practice (e.g., increase productivity and reduce waste). This study investigated articles published between 2008 and 2019 focused on the interactions of CA and LC in OC. All the interactions identified were mapped out in a matrix, which allowed to visualize the interactions that have attracted more attention in the literature and the interactions that, although important, need to be further investigated.

The results indicated a lack of research on the interaction of RSs and LC. Hence, the study discussed the potential interactions between RSs and LC in OC and created another matrix to map out them, showing all the interactions identified in the systematic literature review and the interactions that are worth to be further explored. Based on the systematic review, within the context of RSs, the two most explored subcategories in terms of interactions with LC were robots (e.g., industrial arms) and automated equipment. The implementation of these technologies associated with LC principles provides benefits in terms of quality, schedule and cost, including reduction of variability in the manufacturing of the prefabricated components (higher quality), reduction of production cycle durations (reduction of schedule) both in the manufacturing and in the construction phases, and creation of flow and value in the production system, which ultimately contribute to an overall reduction in cost

Finally, the authors explored broader research related to other areas of the AEC industry and/or related to other industries to examine potential interactions that can bridge the gap in the integration of RSs and LC in the OC context. The analysis revealed that digital fabrication, CNC, and CAM, have the potential to boost the productivity of manufacturing processes in the manufacturing phase of OC, especially when associated with LC principles such as continuous improvement, and verification and validation. The implementation of UAVs and AGVS along with the LC principles of continuous improvement and verification and validation provides valuable data that greatly benefits the decision-making process for construction managers, field engineers, and superintendents during the construction phase of OC projects. As for the use of wearable devices, one of the main benefits is the improvement

of health and safety conditions, mainly in the construction phase, which ultimately contributes to a better flow of production and greater productivity. The results also revealed that some interactions are only possible in the manufacturing phase of OC, emphasizing the importance of OC to foster CA and LC interactions in the AEC industry.

The contributions of this study to the AEC body of knowledge include: (1) proposing a categorization for automation concepts applied to construction, (2) presenting a matrix to identify potential interactions of CA and LC in OC, (3) exploring the interactions of RSs and LC in OC covered in literature and identifying gaps, and (4) proposing potential interactions to fill the research gaps between RSs and LC in the context of OC for further research. The study also aids AEC companies in identifying and understanding potential risks and benefits in the use of new technologies for offsite construction.

Limitations are intrinsic to research and the main limitations of this study includes (1) the sources and keywords used to gather the literature and (2) the thematic analysis used to identify the articles themes may be subjected to the subjectivity of the authors. Finally, future work may include interviews with professionals from industry to validate these findings and expand the study to other interactions of CA and LC not covered in this paper, namely (1) modeling and simulation, (2) digitization and virtualization, (3) sensing, and (4) artificial intelligence and machine learning.

6. References

Afsari, K., Gupta, S., Afkhamiaghda, M. and Lu, Z. (2018), "Applications of Collaborative Industrial Robots in Building Construction", *54th ASC Annual International Conference Proceedings*, pp. 472–479.

Altaf, M.S., Bouferguene, A., Liu, H., Al-Hussein, M. and Yu, H. (2018), "Integrated production planning and control system for a panelized home prefabrication facility using simulation and RFID", *Automation in Construction*, Vol. 85, pp. 369–383.

Arashpour, M., Kamat, V., Bai, Y., Wakefield, R. and Abbasi, B. (2018), "Optimization modeling of multi-skilled resources in prefabrication: Theorizing cost analysis of process integration in off-site construction", *Automation in Construction*, Vol. 95, pp. 1–9.

Arashpour, M., Wakefield, R., Abbasi, B., Lee, E.W.M. and Minas, J. (2016), "Off-site construction optimization: Sequencing multiple job classes with time constraints", *Automation in Construction*, Elsevier B.V., Vol. 71, pp. 262–270.

Arashpour, M., Wakefield, R., Blismas, N. and Maqsood, T. (2015), "Autonomous production tracking for augmenting output in off-site construction", *Automation in Construction*, Vol. 53, pp. 13–21.

Arashpour, M., Wakefield, R., Blismas, N. and Minas, J. (2015), "Optimization of process integration and multi-skilled resource utilization in off-site construction", *Automation in Construction*, Elsevier B.V., Vol. 50, pp. 72–80.

Azzi, A., Battini, D., Faccio, M. and Persona, A. (2011), "Variability-oriented assembly

425 system design: A case study in the construction industry”, *Assembly Automation*, Vol.
426 31 No. 4, pp. 348–357.

427 Babalola, O., Ibem, E.O. and Ezema, I.C. (2019), “Implementation of lean practices in the
428 construction industry: A systematic review”, *Building and Environment*, Vol. 148, pp.
429 34–43.

430 Banihashemi, S., Tabadkani, A. and Hosseini, M.R. (2018), “Integration of parametric
431 design into modular coordination: A construction waste reduction workflow”,
432 *Automation in Construction*, Vol. 88, pp. 1–12.

433 Benros, D. and Duarte, J.P. (2009), “An integrated system for providing mass customized
434 housing”, *Automation in Construction*, Vol. 18, pp. 310–320.

435 Braun, V. and Clarke, V. (2006), “Using thematic analysis in psychology”, *Qualitative
436 Research in Psychology*, Vol. 3 No. 2, pp. 77–101.

437 Castro-Lacouture, D. (2009), “Construction automation”, in Nof, S.Y. (Ed.), *Springer
438 Handbook of Automation*, Springer, Berlin, Heidelberg, pp. 1063–1078.

439 Chen, C., Tran Huy, D., Tiong, L.K., Chen, I.M. and Cai, Y. (2019), “Optimal facility
440 layout planning for AGV-based modular prefabricated manufacturing system”,
441 *Automation in Construction*, Vol. 98, pp. 310–321.

442 Chen, Q., García de Soto, B. and Adey, B.T. (2018), “Construction automation: Research
443 areas, industry concerns and suggestions for advancement”, *Automation in
444 Construction*, Elsevier, Vol. 94, pp. 22–38.

445 Dave, B., Kubler, S., Främling, K. and Koskela, L. (2016), “Opportunities for enhanced
446 lean construction management using Internet of Things standards”, *Automation in
447 Construction*, Vol. 61, pp. 86–97.

448 Davila Delgado, J.M., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, O., Bilal, M. and
449 Owolabi, H. (2019), “Robotics and automated systems in construction: understanding
450 industry-specific challenges for adoption”, *Journal of Building Engineering*, Elsevier
451 Ltd, Vol. 26 No. January, p. 100868.

452 Eastman, C., Teicholz, P., Sacks, R. and Liston, K. (2008), *BIM Handbook: A Guide to
453 Building Information Modeling for Owners, Managers, Designers, Engineers, and
454 Contractors*, John Wiley & Sons.

455 Erol, H., Dikmen, I. and Birgonul, M.T. (2017), “Measuring the impact of lean construction
456 practices on project duration and variability: A simulation-based study on residential
457 buildings”, *Journal of Civil Engineering and Management*, Vol. 23 No. 2, pp. 241–
458 251.

459 Faghihi, V., Nejat, A., Reinschmidt, K.F. and Kang, J.H. (2015), “Automation in
460 construction scheduling: a review of the literature”, *International Journal of Advanced
461 Manufacturing Technology*, Vol. 81 No. 9–12, pp. 1845–1856.

462 Fraden, J. (2016), *Handbook of Modern Sensors: Physics, Designs, and Applications*,
463 *Handbook of Modern Sensors*, Fifth Edit., Springer, available

464 at:<https://doi.org/10.1007/978-3-319-19303-8>.

465 Gbadamosi, A.Q., Mahamadu, A.M., Oyedele, L.O., Akinade, O.O., Manu, P., Mahdjoubi,
466 L. and Aigbavboa, C. (2019), "Offsite construction: developing a BIM-based
467 optimizer for assembly", *Journal of Cleaner Production*, Elsevier Ltd, Vol. 215, pp.
468 1180–1190.

469 Gerber, D.J., Pantazis, E. and Wang, A. (2017), "A multi-agent approach for performance
470 based architecture: Design exploring geometry, user, and environmental agencies in
471 façades", *Automation in Construction*, Vol. 76, pp. 45–58.

472 Gibb, A. (2001), "Standardization and pre-assembly - distinguishing myth from reality
473 using case study research", *Construction Management and Economics*, Vol. 19 No. 3,
474 pp. 307–315.

475 Goh, M. and Goh, Y.M. (2019), "Lean production theory-based simulation of modular
476 construction processes", *Automation in Construction*, Vol. 101, pp. 227–244.

477 Goodier, C. and Gibb, A. (2007), "Future opportunities for offsite in the UK", *Construction
478 Management and Economics*, Vol. 25 No. 6, pp. 585–595.

479 Hamzeh, F.R., Saab, I., Tommelein, I.D. and Ballard, G. (2015), "Understanding the role of
480 'tasks anticipated' in lookahead planning through simulation", *Automation in
481 Construction*, Elsevier B.V., Dept. of Civil and Env. Eng., American University of
482 Beirut, LebanonDept. of Civil and Env. Eng., Project Production Systems Laboratory,
483 University of California, Berkeley; CA; 94720-1712, United StatesProject Production
484 Systems Laboratory, 215 McLaughlin, Vol. 49, pp. 18–26.

485 Han, S.H., Al-Hussein, M., Al-Jibouri, S. and Yu, H. (2012), "Automated post-simulation
486 visualization of modular building production assembly line", *Automation in
487 Construction*, Vol. 21, pp. 229–236.

488 Innella, F., Arashpour, M. and Bai, Y. (2019), "Lean methodologies and techniques for
489 modular construction: chronological and critical review", *Journal of Construction
490 Engineering and Management*, Vol. 145 No. 12, available
491 at:[https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0001712](https://doi.org/10.1061/(ASCE)CO.1943-7862.0001712).

492 Jaillon, L. and Poon, C.S. (2014), "Life cycle design and prefabrication in buildings: A
493 review and case studies in Hong Kong", *Automation in Construction*, Elsevier B.V.,
494 Vol. 39, pp. 195–202.

495 Jensen, P., Olofsson, T. and Johnsson, H. (2012), "Configuration through the
496 parameterization of building components", *Automation in Construction*, Elsevier B.V.,
497 Vol. 23, pp. 1–8.

498 Jin, R., Gao, S., Cheshmehzangi, A. and Aboagye-Nimo, E. (2018), "A holistic review of
499 off-site construction literature published between 2008 and 2018", *Journal of Cleaner
500 Production*, Vol. 202, pp. 1202–1219.

501 Ko, C.-H. (2010), "An integrated framework for reducing precast fabrication inventory",
502 *Journal of Civil Engineering and Management*, Vol. 16 No. 3, pp. 418–427.

1
2
3
4 503 Kolberg, D. and Zühlke, D. (2015), "Lean Automation enabled by Industry 4.0
5 504 Technologies", *IFAC-PapersOnLine*, Elsevier, Vol. 48 No. 3, pp. 1870–1875.
6
7 505 Kong, L., Li, H., Luo, H., Lieyun, D., Luo, X. and Skitmore, M. (2017), "Optimal single-
8 506 machine batch scheduling for the manufacture, transportation and JIT assembly of
9 507 precast construction with changeover costs within due dates", *Automation in
10 508 Construction*, Vol. 81, pp. 34–43.
11
12 509 Koskela, L. (2000), "An exploration towards a production theory and its application to
13 510 construction", *VTT Publications*, No. 408, available
14 511 at:<https://doi.org/10.1073/pnas.1107281109/>
15 512 /DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1107281109.
16
17 513 Koskela, L., Ballard, G., Howell, G. and Tommelein, I. (2002), "The foundations of lean
18 514 construction", in Best, R. and Valence, G. de (Eds.), *Design and Construction:
19 515 Building in Value*, Butterworth-Heinemann, Oxford, pp. 211–226.
20
21 516 Li, C.Z., Xue, F., Li, X., Hong, J. and Shen, G.Q. (2018), "An Internet of Things-enabled
22 517 BIM platform for on-site assembly services in prefabricated construction", *Automation
23 518 in Construction*, Vol. 89, pp. 146–161.
24
25 519 Li, X., Shen, G.Q., Wu, P., Fan, H., Wu, H. and Teng, Y. (2018), "RBL-PHP: Simulation
26 520 of Lean Construction and Information Technologies for Prefabrication Housing
27 521 Production", *Journal of Management in Engineering*, Dept. of Build and Real Estate,
28 522 ZN1004, Hong Kong Polytechnic Univ., Hung Hom, Kowloon, 999077, Hong Kong,
29 523 Vol. 34 No. 2, available at:[https://doi.org/10.1061/\(ASCE\)ME.1943-5479.0000577](https://doi.org/10.1061/(ASCE)ME.1943-5479.0000577).
30
31 524 Li, X., Shen, G.Q., Wu, P. and Yue, T. (2019), "Integrating building information modeling
32 525 and prefabrication housing production", *Automation in Construction*, Vol. 100, pp.
33 526 46–60.
34
35 527 Linner, T. and Bock, T. (2012), "Evolution of large-scale industrialisation and service
36 528 innovation in Japanese prefabrication industry", *Construction Innovation*, Vol. 12 No.
37 529 2, pp. 156–178.
38
39 530 Malik, N., Ahmad, R., Chen, Y., Altaf, M.S. and Al-Hussein, M. (2019), "Minimizing joist
40 531 cutting waste through dynamic waste allocation in panelized floor manufacturing",
41 532 *International Journal of Construction Management*, pp. 1–13.
42
43 533 Martinez, S., Jardon, A., Maria, J.M. and Gonzalez, P. (2008), "Building industrialization:
44 534 Robotized assembly of modular products", *Assembly Automation*, Carlos III
45 535 University, Madrid, Spain, Vol. 28 No. 2, pp. 134–142.
46
47 536 Martínez, S., Jardón, A., Víctores, J.G. and Balaguer, C. (2013), "Flexible field factory for
48 537 construction industry", *Assembly Automation*, Department of Systems Engineering and
49 538 Automation, University Carlos III of Madrid, Leganés, Spain, Vol. 33 No. 2, pp. 175–
50 539 183.
51
52 540 McGraw-Hill Construction. (2011), *Prefabrication and Modularization, SmartMarket
53 541 Report*, McGraw Hill Construction, Bedford.
54
55
56
57
58
59
60

1
2
3
4 542 McGraw Hill Construction. (2013), *Lean Construction - Leveraging Collaboration and*
5 543 *Advanced Practices to Increase Project Efficiency, SmartMarketReport*, McGraw Hill
6 544 Construction, Bedford, available at:<https://doi.org/10.1002/9781444341102.ch8>.

7
8 545 McKinsey Global Institute. (2017), *Reinventing Construction: A Route to Higher*
9 546 *Productivity, McKinsey & Company*, McKinsey & Company.

10
11 547 Meng, Q., Zhang, Y., Li, Z., Shi, W., Wang, J., Sun, Y., Xu, L., et al. (2020), "A review of
12 548 integrated applications of BIM and related technologies in whole building life cycle",
13 549 *Engineering, Construction and Architectural Management*, Vol. ahead-of-p No.
14 550 ahead-of-print, available at:<https://doi.org/10.1108/ECAM-09-2019-0511>.

15
16 551 Nahmens, I. and Ikuma, L.H. (2012), "Effects of Lean Construction on Sustainability of
17 552 Modular Homebuilding", *Journal of Architectural Engineering*, Vol. 18 No. 2, pp.
18 553 155–163.

19
20 554 Niu, Y., Lu, W., Liu, D., Chen, K.C., Anumba, C.A. and Huang, G.G. (2017), "An SCO-
21 555 enabled logistics and supply chain-management system in construction", *Journal of*
22 556 *Construction Engineering and Management*, Dept. of Real Estate and Construction,
23 557 Univ. of Hong Kong, 535A, Knowles Bldg., Hong Kong, 999077, Hong Kong, Vol.
24 558 143 No. 3, available at:[https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0001232](https://doi.org/10.1061/(ASCE)CO.1943-7862.0001232).

25
26 559 Nof, S.Y. (Ed.). (2009), *Springer Handbook of Automation, Springer Handbooks*, Springer,
27 560 Berlin, Heidelberg, available at:<https://doi.org/10.5860/choice.47-3832>.

28
29 561 Nowotarski, P., Pasawski, J. and Matyja, J. (2016), "ScienceDirect Improving Construction
30 562 Processes Using Lean Management Methodologies-Cost Case Study", *Procedia*
31 563 *Engineering*, Vol. 161, pp. 1037–1042.

32
33 564 Oesterreich, T.D. and Teuteberg, F. (2016), "Understanding the implications of digitisation
34 565 and automation in the context of Industry 4.0: a triangulation approach and elements
35 566 of a research agenda for the construction industry", *Computers in Industry*, Elsevier
36 567 B.V., Vol. 83, pp. 121–139.

37
38 568 Piroozfar, P., Farr, E.R.P., Hvam, L., Robinson, D. and Shafiee, S. (2019), "Configuration
39 569 platform for customisation of design, manufacturing and assembly processes of
40 570 building façade systems: A building information modelling perspective", *Automation*
41 571 *in Construction*, Vol. 106 No. August 2018, available
42 572 at:<https://doi.org/10.1016/j.autcon.2019.102914>.

43
44 573 Ponsor, A. and Cohen, A. (2019), *Faster, Better, More: Promising Construction and*
45 574 *Technology Approaches for Accelerated and Efficient Affordable Housing*
46 575 *Development, Bridge Housing*.

47
48 576 Rausch, C., Nahangi, M., Haas, C. and Liang, W. (2019), "Monte Carlo simulation for
49 577 tolerance analysis in prefabrication and offsite construction", *Automation in*
50 578 *Construction*, Vol. 103, pp. 300–314.

51
52 579 Sacks, R., Koskela, L., Dave, B.A. and Owen, R. (2010), "Interaction of Lean and Building
53 580 Information Modeling in Construction", *Journal of Construction Engineering and*
54 581 *Management*, Vol. 136 No. 9, pp. 968–980.

55
56
57
58
59
60

1
2
3
4 582 Sacks, R., Radosavljevic, M. and Barak, R. (2010), "Requirements for building information
5 583 modeling based lean production management systems for construction", *Automation in*
6 584 *Construction*, Vol. 19 No. 5, pp. 641–655.
7
8 585 Said, H.M., Chalasani, T. and Logan, S. (2017), "Exterior prefabricated panelized walls
9 586 platform optimization", *Automation in Construction*, Elsevier B.V., Vol. 76, pp. 1–13.
10
11 587 Saidi, K.S., Bock, T. and Georgoulas, C. (2016), "Robotics in construction", in Siciliano,
12 588 B. and Khatib, O. (Eds.), *Springer Handbook of Robotics*, pp. 1493–1519.
13
14 589 Salama, T., Salah, A., Mosehli, O. and Al-Hussein, M. (2017), "Near optimum selection of
15 590 module configuration for efficient modular construction", *Automation in Construction*,
16 591 Vol. 83, pp. 316–329.
17
18 592 Santos, R., Costa, A.A. and Grilo, A. (2017), "Bibliometric analysis and review of Building
19 593 Information Modelling literature published between 2005 and 2015", *Automation in*
20 594 *Construction*.
21
22 595 Sarhan, J.G., Xia, B., Fawzia, S. and Karim, A. (2017), "Lean construction implementation
23 596 in the Saudi Arabian construction industry", *Construction Economics and Building*,
24 597 Vol. 17 No. 1, pp. 46–69.
25
26 598 Sawhney, A., Riley, M. and Irizarry, J. (Eds.). (2020), *Construction 4.0: An Innovation*
27 599 *Platform for the Built Environment*, Routledge, available
28 600 at:<https://doi.org/10.1017/CBO9781107415324.004>.
29
30 601 Shewchuk, J.P. and Guo, C. (2012), "Panel stacking, panel sequencing, and stack locating
31 602 in residential construction: Lean approach", *Journal of Construction Engineering and*
32 603 *Management*, Vol. 138 No. 9, pp. 1006–1016.
33
34 604 Soto, B.G. de and Skibniewski, M.J. (2020), "Future of robotics and automation in
35 605 construction", in Sawhney, A., Riley, M. and Irizarry, J. (Eds.), *Construction 4.0: An*
36 606 *Innovation Platform for the Built Environment*, Routledge, pp. 289–306.
37
38 607 Teicholz, P. (2014), "Labor-Productivity Declines in the Construction Industry : AECbytes
39 608 Viewpoint Labor-Productivity Declines in the Construction Industry : Causes and
40 609 Remedies (Another Look) Labor-Productivity Declines in the Construction Industry :
41 610 AECbytes Viewpoint", Vol. 67, pp. 1–13.
42
43 611 Tezel, A. and Nielsen, Y. (2013), "Lean Construction Conformance among Construction
44 612 Contractors in Turkey", *Journal of Management in Engineering*, Vol. 29 No. 3, pp.
45 613 236–250.
46
47 614 Wang, M., Altaf, M.S., Al-Hussein, M. and Ma, Y. (2018), "Framework for an IoT-based
48 615 shop floor material management system for panelized homebuilding", *International*
49 616 *Journal of Construction Management*, Taylor & Francis, pp. 1–16.
50
51 617 Wang, Z., Hu, H. and Zhou, W. (2017), "RFID Enabled Knowledge-Based Precast
52 618 Construction Supply Chain", *Computer-Aided Civil and Infrastructure Engineering*,
53 619 Vol. 32 No. 6, pp. 499–514.
54
55 620 Winston, P.H. (1992), *Artificial Intelligence*, n-Wesley Publishing Company., United
56
57
58
59
60

621 Kingdom.

622 World Economic Forum and The Boston Consulting Group. (2016), *Shaping the Future of*
623 *Construction - A Breakthrough in Mindset and Technology*, World Economic Forum,
624 Geneva.

625 Xu, G., Li, M., Chen, C.H. and Wei, Y. (2018), "Cloud asset-enabled integrated IoT
626 platform for lean prefabricated construction", *Automation in Construction*, Vol. 93,
627 pp. 123–134.

628 Yang, Z., Ma, Z. and Wu, S. (2016), "Optimized flowshop scheduling of multiple
629 production lines for precast production", *Automation in Construction*, Vol. 72, pp.
630 321–329.

631 Yin, X., Liu, H., Chen, Y. and Al-Hussein, M. (2019), "Building information modelling for
632 off-site construction: Review and future directions", *Automation in Construction*,
633 Elsevier, Vol. 101 No. October 2018, pp. 72–91.

634 Yu, H., Al-Hussein, M., Asce, M., Al-Jibouri, S. and Telyas, A. (2013), "Lean
635 Transformation in a Modular Building Company: A Case for Implementation",
636 *Journal of Management in Engineering*, pp. 103–111.

637 Zhang, X., Azhar, S., Nadeem, A. and Khalfan, M. (2018), "Using building information
638 modelling to achieve lean principles by improving efficiency of work teams",
639 *International Journal of Construction Management*, Taylor & Francis, Vol. 18 No. 4,
640 pp. 293–300.

641 Zhao, J., Seppänen, O., Peltokorpi, A., Badihi, B. and Olivieri, H. (2019), "Real-time
642 resource tracking for analyzing value-adding time in construction", *Automation in*
643 *Construction*, Elsevier, Vol. 104 No. January, pp. 52–65.

644 Zhong, R.Y., Peng, Y., Xue, F., Fang, J., Zou, W., Luo, H., Ng, S.T., et al. (2017),
645 "Prefabricated construction enabled by the Internet-of-Things", *Automation in*
646 *Construction*, Vol. 76, pp. 59–70.

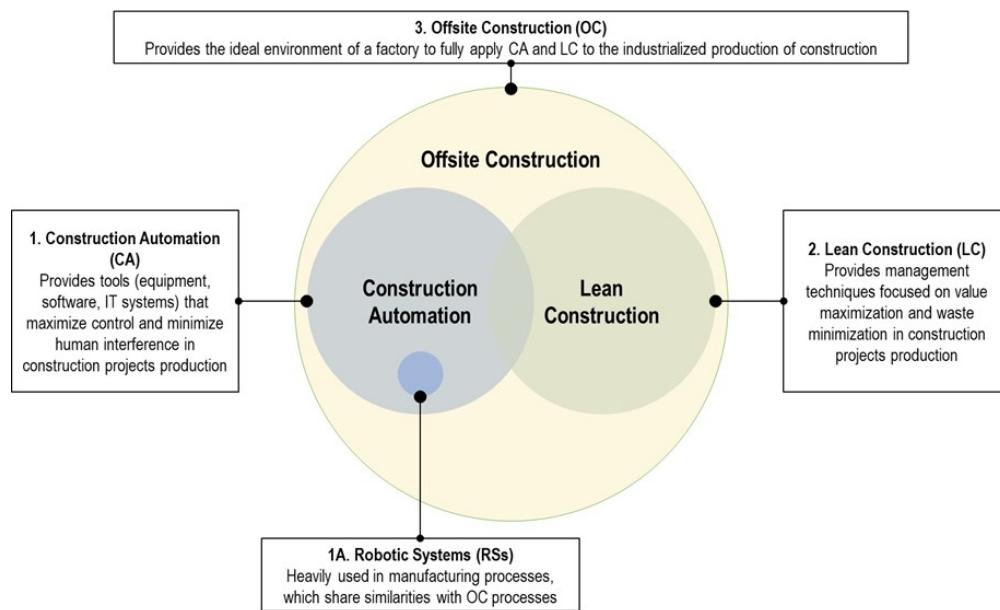


Figure 1. Theoretical Framework

154x93mm (150 x 150 DPI)

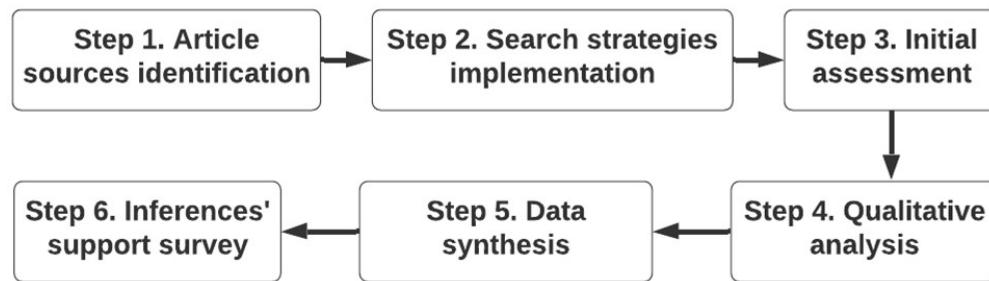


Figure 2. Methodology

152x43mm (160 x 160 DPI)

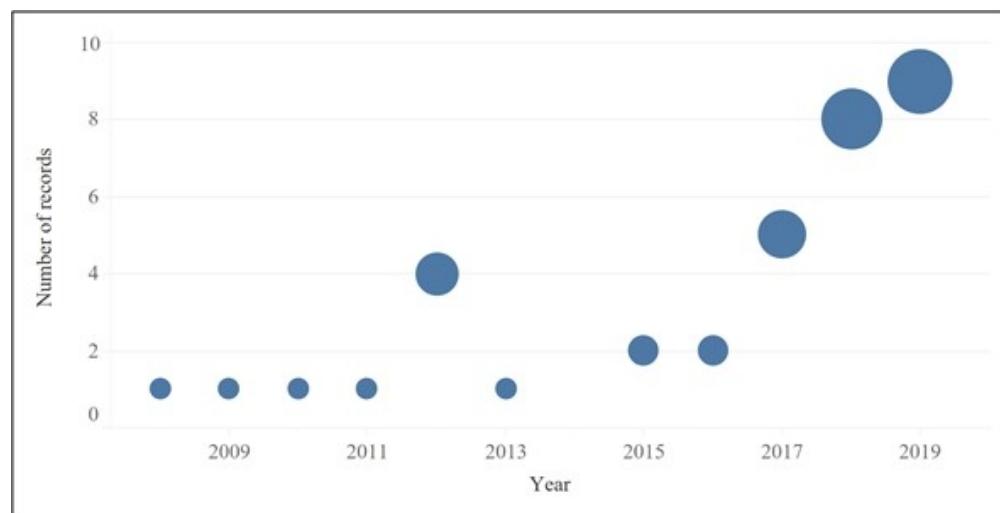


Figure 3. Articles Published by Year (n=35)

156x79mm (96 x 96 DPI)

Table I. Construction Automation Technologies

Category	Technologies
Robotic Systems (RSs)	<p>Robots</p> <p>Wearable devices and exoskeletons</p> <p>Unmanned Vehicle Systems: unmanned aerial vehicles (UAVs) and automated guided vehicles (AGVs)</p> <p>Automated equipment</p> <p>Digital fabrication and CNC machines: additive (3D printing), subtractive (machining) manufacturing, and CAM systems</p>
Modeling and simulation (MS)	<p>BIM tools: 3D, 4D BIM, 5D BIM, and CAD</p> <p>Augmented reality (AR), virtual reality (VR), and mixed reality (MR)</p> <p>Game simulation</p> <p>Computer models and simulations: simulation-based optimization and agent-based modeling</p>
Digitization and Virtualization (DV)	<p>Enterprise information system (EIS): enterprise resource planning (ERP) and electronic document management system (EDMS)</p> <p>Cloud computing and digital platforms</p> <p>Internet of things (IoT)/ internet of services (IoS)</p> <p>Big Data</p>
Sensing Systems	<p>Real-time locating systems (RTLS): radio-frequency identification (RFID), infrared (IR), Wi-Fi, ultra-wideband (UWB), and Bluetooth low energy (BLE)</p> <p>Laser scanning, point cloud, and image sensing (still images, time-lapsed images, videos)</p>
Artificial Intelligence (AI) and Machine Learning (ML)	<p>Evolutionary techniques: algorithms, genetic algorithms, and evolutionary programming</p> <p>Artificial neural network (ANN), support vector machine (SVM), and rule-based systems (RBS)</p> <p>Data analysis: cluster analysis and data mining</p> <p>Knowledge-based system (KBS): ontology languages and semantic reasoners</p> <p>Natural language processing (NLP)</p>

Table II. Lean Principles

Principal Area	Principles
Flow process	<p>Reduction of variability</p> <ul style="list-style-type: none"> Reduction of product variability Reduction of production variability <p>Reduction of cycle times - reduce inventories</p> <ul style="list-style-type: none"> Reduction of production cycle durations Reduction of inventory <p>Reduction of batch sizes</p> <p>Increased flexibility</p> <ul style="list-style-type: none"> Reduction of changeover times Use of multiskilled teams <p>Selection of an appropriate production control approach</p> <ul style="list-style-type: none"> Use of pull systems Production leveling <p>Standardization</p> <p>Continuous improvement</p> <p>Use of visual management</p> <ul style="list-style-type: none"> Visualization of production methods Visualization of production process <p>Design of production system for flow and value</p> <ul style="list-style-type: none"> Simplification Use of parallel processing Use of reliable technology Ensuring the capability of the production system
Value generation process	<p>Ensuring comprehensive requirements capture</p> <p>Focus on concept selection</p> <p>Ensuring requirements flow down</p> <p>Verification and validation</p> <p>Going and seeing for yourself - "going to Gemba"</p> <p>Decision by consensus, consideration of all options</p>
Problem solving	<p>Cultivation of an extended network of partners</p>
Developing partners	<p>Adapted from "Interaction of Lean and Building Information Modeling in Construction", by Sacks, R., Koskela, L., Dave, B. A., & Owen, R., 2010, Journal of Construction Engineering and Management, 136(9), p. 973. With permission from ASCE.</p>

Table III. Number of Articles by Journal (n=35)

Journal	Articles Selected
Automation in Construction	21
Assembly Automation	3
Journal of Construction Engineering and Management	3
International Journal of Construction Management	3
Computer-Aided Civil and Infrastructure Engineering	1
Construction Innovation	1
Journal of Civil Engineering and Management	1
Journal of Cleaner Production	1
Journal of Management in Engineering	1

Table IV. Matrix of Interactions of Lean Construction Principles and Construction Automation Technologies (n=35)

Construction Automation Technologies		Lean Construction Principles															
		Reduction of variability	Reduction of cycle times/inventories	Reduction of batch sizes	Increased flexibility	Selection of an appropriate production control approach	Standardization	Continuous improvement	Use of visual management	Design of production system for flow and value	Ensuring comprehensive requirements capture	Focus on concept selection	Ensuring requirements flow down	Verification and validation	Going and seeing for yourself - "going to Gemba"	Decision by consensus, consideration of all options	Cultivation of an extended network of partners
Robotic Systems	Robots	20, 22, 23	22, 23, 33	-	22, 23	22	22	-	-	22, 23, 33	-	-	-	-	-	-	
	Wearable Devices	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	UAS/ UAV and AGV	9	9	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Automated equipment	11, 13, 20	6, 11, 13	-	6, 20	13, 20	20	-	-	11, 20	-	-	-	-	-	-	
	DF/CNC, CAM	-	-	-	-	-	20	-	-	20, 21	-	-	-	-	-	-	
Modeling and Simulation	BIM, 4D BIM, 5D BIM and CAD	7, 8, 10, 14, 20, 21, 25, 33, 35	8, 10, 14, 20, 21, 33, 35	-	8, 14, 20, 25, 35	12, 19, 20, 24, 33, 35	10, 25, 35	20, 25, 35	10, 12, 13, 17, 18, 19, 25, 33, 35	10, 19, 20, 21, 24, 33, 35	7, 8, 14, 19, 20, 24	8, 20	14, 19, 20, 24, 25	24	24, 35	7, 19, 24, 25, 35	25
	AR/VR/MR	-	19	-	-	-	-	19	17, 19	-	-	-	-	17, 19	19	-	
	Game	18		-	-	18	18	-	18	-	-	-	-	-	18	-	
	Computer simulations	1, 4, 11, 13, 21, 26	1, 3, 4, 9, 11, 12, 13	-	3, 4, 5, 11, 13	1, 2, 3, 4, 11	-	-	13	1, 2, 3, 4, 5, 9, 21	-	-	-	7, 11, 16	-	-	
	EIS	-	30, 35	-	-	20, 30, 35	-	-	-	-	-	-	-	-	17, 20, 30, 35	-	
Digitalization and Virtualization	Cloud computing and digital platforms	35	35	-	-	17, 24	-	-	17, 35	17, 24, 35	20, 24	20	20, 24	24	-	8, 20, 24	20
	IoT/IoS	31, 35	30, 31, 35	-	-	17, 30, 31, 35	-	-	31, 35	30, 31, 35	-	-	-	-	-	30, 31, 35	-
	Big Data	29	29	-	-	29	-	-	-	29	-	-	29	-	29	-	-
Sensing	RTLS	29, 31, 34, 35	19, 24, 29, 30, 31, 34, 35	-	34	1, 2, 17, 19, 24, 29, 30, 31, 34, 35	17	19	24, 29, 35	1, 2, 24, 29, 30, 31, 34, 35	24	-	24	24, 29, 35	24	18, 24, 29, 31, 35	-
	Laser scanning, point cloud, image sensing	-	19	-	-	19	-	19	-	-	-	-	-	-	-	-	-

Construction Automation Technologies		Lean Construction Principles															
		Reduction of variability	Reduction of cycle times / inventories	Reduction of batch sizes	Increased flexibility	Selection of an appropriate production control approach	Standardization	Continuous improvement	Use of visual management	Design of production system for flow and value	Ensuring comprehensive requirements capture	Focus on concept selection	Ensuring requirements flow down	Verification and validation	Going and seeing for yourself - "going to Gemba"	Decision by consensus, consideration of all options	Cultivation of an extended network of partners
AI and Machine Learning	ES: Algorithms	1, 7, 8, 15, 21, 27, 28	1, 15, 27, 28, 32	15, 16, 28	4, 5, 16, 27, 32	1, 7, 19	28	-	-	1, 5, 9, 15, 16, 21, 28, 32	7, 8, 27	8, 27	-	-	-	27	-
	ANN, SVM, RBS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Data Analysis	6, 31	31	-	6	31	-	-	6, 31	6	-	-	-	-	-	31	-
	KBS	29	29	-	-	29	-	-	-	-	-	-	-	-	29	-	-
	NLP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note: Color grading represents number of unique publications (orange = 1 or 2; light orange 3 to 5; yellow = 6 or more)

References: [1] Altaf et al., 2018; [2] Arashpour, Wakefield, Blismas and Maqsood, 2015, [3] Arashpour, Wakefield, Blismas and Minas, 2015; [4] Arashpour et al., 2016 [5] Arashpour et al., 2018; [6] Azzi et al., 2011; [7] Banihashemi et al., 2018; [8] Benros and Duarte, 2009; [9] Chen et al., 2019; [10] Gbadamosi et al., 2019; [11] Goh and Goh, 2019; [12] Han et al., 2012; [13] Innella et al., 2019; [14] Jensen et al., 2012; [15] Ko, 2010; [16] Kong et al., 2017; [17] Li, Xue, et al., 2018; [18] Li, Shen, et al., 2018; [19] Li et al., 2019; [20] Linner and Bock, 2012; [21] Malik et al., 2019; [22] Martinez et al., 2008; [23] Martinez et al., 2013; [24] Niu et al., 2017; [25] Piroozfar et al., 2019; [26] Rausch et al., 2019; [27] Said et al., 2017; [28] Shewchuk and Guo, 2012; [29] Wang et al., 2017; [30] Wang et al., 2018; [31] Xu et al., 2018; [32] Yang et al., 2016; [33] Zhang et al., 2018; [34] Zhao et al., 2019; [35] Zhong et al., 2017.

Table V. Interactions of RSSs and LC Principles in OC Supported by the Investigated Literature

	Interaction description	Evidence from the investigated literature
A	The use of RSSs such as robots, automated equipment, and digital fabrication machines ensures a constant production flow and reduces the variability of OC processes in the manufacturing and onsite construction processes due to its precision, which in turn, reduces defective work and product variability.	Goh and Goh, 2019; Innella et al., 2019; Linner and Bock, 2012; Martinez et al., 2008; Martínez et al., 2013
B	Robots can perform quality inspection of products, reducing product variability, and ensuring higher quality products.	Linner and Bock, 2012
C	AGVs reduce queues in the production line, resulting in less variability in the production flows of OC manufacturing, because it can enhance the storage process of the newly manufactured products. This also contributes to the reduction in the duration of manufacturing cycles. However, the efficient use of AGVs depends on a fully integrated and automated material handling system.	Chen et al., 2019
D	Robotics enabled processes greatly reduce the cycle times, especially in the manufacturing phase, by carrying out the work continuously and reducing the number of manual interventions.	Azzi et al., 2011; Goh and Goh, 2019; Innella et al., 2019; Martinez et al., 2008; Martínez et al., 2013; Zhang et al., 2018
E	Production flexibility increases because robots and automated equipment are fully programmable devices, which adapt to variations in or between production runs, allowing for reduced changeover times and seamless transition between activities. Another aspect is that they can be reconfigured to perform different tasks every cycle.	Azzi et al., 2011; Linner and Bock, 2012; Martinez et al., 2008; Martínez et al., 2013
F	Production control based on a pull system approach is facilitated, as robots and automated equipment only perform a task based on orders, to meet current demand and reduce waste.	Innella et al., 2019; Linner and Bock, 2012; Martinez et al., 2008
G	The relative uniqueness of construction projects and the fragmentation of the AEC industry result in a low level of standardization, which is challenging for higher levels of RSSs implementation. The simplification and standardization of building components facilitate the use of robots, automated equipment, and digital fabrication machines, which in turn increase the efficiency of the whole building production process, from design to on-site assembly. Ultimately, simplification and standardization also promote the reduction of production variability.	Linner and Bock, 2012; Martinez et al., 2008
H	The use of automated equipment and digital fabrication machines in construction favor the parallel execution of activities by allowing the interaction of workers and automated equipment. Particularly when OC is adopted, another layer of parallel work is added, as offsite manufacturing processes and onsite construction activities are carried out simultaneously.	Linner and Bock, 2012
I	Focusing on designing the production for flow and value, robots, automated equipment, and digital fabrication machines improve production capacity by increasing productivity when compared with manually performed work. In addition, these technologies are more reliable as they produce better quality products in less time.	Goh and Goh, 2019; Linner and Bock, 2012; Malik et al., 2019; Martínez et al., 2013; Zhang et al., 2018

Table VI. Potential Interactions of RSs and LC Principles Within OC to be Further Investigated

	Interaction explanation	Evidence from literature
J	Wearable devices and exoskeletons augment workers' physical abilities and reduce physical fatigue and work-related musculoskeletal injuries resulting from performing heavy lifting, repetitive, and prolonged tasks, particularly in the on-site construction phase. Wearable devices equipped with motion trackers and warning indicators reduce accidents (e.g., falls and struck by), which is particularly important in the construction phase. These capabilities of wearable devices contribute to improved labor productivity and safety, helping to keep a more constant production flow, reduce production cycle times and improve product quality while promoting continuous improvement.	Bock et al., 2012; Kim et al., 2019; de Looze et al., 2016
K	UAVs help improve productivity through the intelligent collection and processing of construction site data that can be linked to BIM and other management tools, simplifying information capture and sharing and allowing the monitoring of construction progress. Thus, the adoption of UAVs is in line with several LC principles: (1) reduction of variability, (2) selection of an appropriate production control approach, (3) continuous improvement, (4) use of visual management, (5) design of the production system for flow and value, and (6) product verification and validation.	Anwar et al., 2018; Dupont et al., 2017
L	Digital fabrication machines allow to visualize the production methods and processes and also facilitate prototyping. Prototyping is important to test and inspect products for defects before committing to full tool production, which contributes to reduce product and production variability, and ultimately makes verification and validation of both product and process more efficient in the design and manufacturing phases.	Buswell et al., 2007, 2008; He et al., 2021a; Wu et al., 2016
M	Digital fabrication machines significantly reduce design cycle (potential design time savings of up to 60%) by allowing the interaction of CAD, reverse engineering analysis, rapid prototyping, and rapid tooling and production. The production of components by using CNC machines completely integrated with BIM models is also faster and more flexible than manual production.	Buswell et al., 2008; He et al., 2021b
N	The less time it takes and the less uncertainty there is to replenish the stock, the less stock is needed. Therefore, reliable and precise technologies such as robots and automated equipment allow working with reduced inventories in a just-in-time and just-in-sequence basis, especially in the manufacturing phase, since the production capacity will be more constant and reliable.	Bouchard, 2017; Saidi et al., 2016
O	Inventory management with the use of UAVs (e.g., drones) enables more accurate supply-demand reconciliation, ultimately reducing the available inventory. In addition, the use of drones allows constant monitoring of both offsite and onsite material flow.	Anwar et al., 2018; Dupont et al., 2017; Han et al., 2018
P	Considering that robots, automated machines/equipment, and digital fabrication machines can be easily adapted to transitions in production, they are ideal to realize small-batch manufacturing in OC.	Angerer et al., 2015; Buswell et al., 2007; Wadhwa, 2012
Q	Different types of exoskeletons and wearable devices allow the execution of different tasks, improving the flexibility and reducing the variability of production. It is important to have multi-skilled workers trained to use different types of wearable devices.	Bock et al., 2012; Kim et al., 2019

		Interaction explanation	Evidence from literature
1	R	Digital fabrication and CNC machines facilitate production leveling and the use of pull system as they are controlled by computers that integrate and precisely control the flow of information, promoting on-demand production, and reducing waste of resources.	Chryssolouris et al., 2009; He et al., 2021b
2	S	Standardized products and processes lead workers to perform tasks more consistently. In this way, it is easier to identify physically demanding activities performed by workers and provide the opportunities to use wearable technology to provide the greatest benefit to workers in terms of performance improvement and injury prevention.	Lo et al., 2020
3	T	Continuous improvement depends on analyzing the data collected during the construction process, as companies can only improve what they can measure. This process is facilitated and improved with the use of RSs that automatically generate accurate and rich data, necessary to monitor and control the production processes, allowing a comprehensive performance measurement, especially when associated with other CA technologies such as big data, IoT, etc.	Bouchard, 2017; Cho and Kim, 2018; Kontovourkis and Tryfonos, 2020; Saidi et al., 2016
4	U	R&D is very important in the RS domain, so the more robotic technologies evolve, the more potential benefits they bring to civil construction, resulting in a process of continuous improvement for the AEC industry.	Davila Delgado et al., 2019; Dupont et al., 2017; Saidi et al., 2016; Wu et al., 2016
5	V	The use of robots and automated equipment in offsite or onsite production allows workers to have time to focus on activities that add more value to the process or to see ways to improve the process by being able to interact and collaborate with robots/machines.	García de Soto et al., 2019; Tsarouchi et al., 2016
6	W	Robots can work collaboratively with workers, favoring the parallel processing of tasks. Human-robot interaction is a field of high relevance in many industries and is gaining momentum in construction, especially in OC.	García de Soto et al., 2019; Tsarouchi et al., 2016
7	X	UAV/ ground robot collaboration is based on the use of UAVs to provide accurate data in real time that allows precise commands to be sent to automated equipment on the construction site (e.g., autonomous dozers and excavators). This area of activity still depends on research.	Dupont et al., 2017
8	Y	Wearable exoskeletons have the potential to improve the performance of construction workers as a reliable technology, which contribute to the lean principle of ensuring the capability of the production system. However, further research and training are needed to confirm the efficient use of this type of equipment in the construction industry.	Kim et al., 2019; de Looze et al., 2016
9	Z	UAS/ UVA enables remote access to the construction site, allowing problems to be solved as if the stakeholders were at the actual place (Gemba), which eases decision-making.	Anwar et al., 2018; Dupont et al., 2017

Table VII. Matrix of Interactions Between RSs and LC Principles

Lean Construction Principles	Robotic Systems				
	Robots	Wearable devices	UAVs and AGVs	Automated equipment	DF/ CNC and CAM
Reduction of variability					
Reduction of product variability	A, B	J	K	A	L
Reduction of production variability	A, G	J, Q	C, K	A, G	L
Reduction of cycle times - reduce inventories					
Reduction of production cycle durations	D	J	C	D	M E
Reduction of inventory	N	-	O	N	-
Reduction of batch sizes	P	-	-	P	P
Increased flexibility					
Reduction of changeover times	E	-	-	E	M
Use of multiskilled teams	-	Q	-	-	-
Selection of an appropriate production control approach					
Use of pull systems	F	-	K	F	R
Production leveling	F	-	K	F	R
Standardization	G	S	-	G	G
Continuous improvement	T, U, V	J, T, U	K, U	T, U, V	T, U
Use of visual management					
Visualization of production methods	-	-	K	-	L
Visualization of production process	-	-	K	-	L
Design of production system for flow and value					
Simplification	G	-	K	G	G
Use of parallel processing	W	-	X	H	H
Use of reliable technology	I	Y	K	I	I
Ensuring the capability of the production system	I	Y	K	I	I
Ensuring comprehensive requirements capture					
Focus on concept selection	-	-	-	-	-
Ensuring requirements flow down	-	-	-	-	-
Verification and validation	-	-	K, O, Z	-	L
Going and seeing for yourself - "going to Gemba"	-	-	Z	-	-
Decision by consensus, consideration of all options	-	-	Z	-	-
Cultivation of an extended network of partners	-	-	-	-	-