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Glassy dynamics and equilibrium state on the honeycomb lattice: Role of surface diffusion and
desorption on surface crowding
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The phase behavior and adsorption kinetics of hard-core particles on a honeycomb lattice are studied by means
of random sequential adsorption with surface diffusion. We concentrate on reversible adsorption by introducing
a desorption process into our previous model and varying the equilibrium rate constant as a control parameter.
We find that an exact prediction of the temporal evolution of fractional surface coverage and the surface pressure
dynamics of reversible adsorption can be achieved by use of the blocking function of a system with irreversible
adsorption of highly mobile particles. For systems out of equilibrium we observe several features of glassy
dynamics, such as slow relaxation dynamics, the memory effect, and aging. In particular, the analysis of our
system in the limit of small desorption probability shows simple aging behavior with a power-law decay.
A detailed discussion of Gibbs adsorption isotherm for nonequilibrium adsorption is given, which exhibits a
hysteresis between this system and its equilibrium counterpart.
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I. INTRODUCTION

The phase behavior and dynamics of adsorption in two-
dimensional systems are key aspects of many current research
areas such as phase transitions in amphiphilic monolayers
[1], emulsion stability due to particle adsorption at interfaces
[2–4], particle self-assembly into clusters [5–8], chemisorp-
tion on metal surfaces [9,10], and the melting at an interface
[11,12].

Understanding the approach to the equilibrium state and
the kinetics of adsorption are of great interest, particularly
in separation and filtration, where both desorption and ad-
sorption are present. Models accounting for desorption have
also been used in vibrated granular systems [13,14], and
in the adsorption of asphaltenes at toluene/water interfaces
[15]. Further examples of the relevance of desorption occur
in response to changes in experimental conditions, such as
changing the pH of a solution, [16–18], rinsing with solvent
or buffers [19,20], variations in temperature [21], and the
addition of surfactants [13].

The Langmuir model [22] has been widely used to describe
the adsorption behavior of reversible systems [1,23,24]. How-
ever, the Langmuir model has limitations: it fails to provide
satisfactory predictions for systems composed of interacting
particles [25–27] and when the adsorbate is larger than the
adsorption site [27,28]. These deficiencies of the Langmuir
model are addressed by the random sequential adsorption
(RSA) and lattice gas models, which describe the adsorption
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kinetics and equation of state (EOS) of a monolayer, re-
spectively. It is worth noting that, if the adsorption does not
follow the Langmuir model, the adsorption properties and
EOS become sensitive to the underlying lattice geometry such
as square [29,30], triangle [31,32], and honeycomb lattices
[33,34].

In the RSA model, molecules or particles which are larger
than the adsorption sites are sequentially added at random to
an initially empty surface, with the restriction that overlaps
are forbidden. As the coverage increases, the free area left
for further adsorption decreases, not only because of the sites
occupied by previously adsorbed molecules but also because
vacancies can be too small to allow adsorption without over-
lap. In the absence of surface diffusion or desorption, the
adsorption process rapidly slows down and coverages only
asymptotically approaches the jamming limit, equivalent to
random maximum packing. In this limit, the jamming cov-
erage depends on the lattice structure, the size and shape
of the adsorbed particles [33,35]. However, several physical
processes involve both adsorption and desorption, and here
the system may stabilize in an equilibrium state below the
maximum packing. In this situation, the RSA model with
the addition of a desorption process has been used in the
literature to study ion binding in Langmuir monolayers [16],
the dynamics of ligand-substrate binding [36], the adsorption
of fibrinogen molecules [37], and the decoration of micro-
tubules with dimeric kinesin molecular motors [36]. All of
these processes can be described via the simple RSA model at
their early stage, while at a higher coverage stage detachment
and reattachment of species plays a major role. It has been
observed experimentally that the relaxation timescale of ad-
sorbed particles, due to their rearrangement on the surface, can
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be comparable to the deposition timescale [38]. Diffusional
relaxation on the surface leads to a denser monolayer with a
more ordered configuration where the steric hindrance effects
of previously adsorbed particles slows the process at the later
stages [39].

The lattice gas model is a statistical mechanical approach
to describe adsorbate configurations which, among other fea-
tures, exhibits a phase transition at high surface coverage. This
approach has been used to study phase transitions of photoex-
cited Rydberg gases [40], the self-assembly of isophthalic acid
on graphite [41], the adsorption of selenium on a nickel sur-
face [9], and the chemisorption of oxygen on palladium [42].
Although many versions of the lattice gas model have been
studied in the literature, only the single case of a triangular lat-
tice with first neighbor exclusion has an exact solution, given
by Baxter [43]. For all other variants, a number of lattice gas
methods have been developed over the years based on various
approximations: the matrix method of Kramer and Wannier
[44–50], the density (or activity) series expansion method
[44,45,51–55], the generalized Bethe method [56–58], Monte
Carlo simulations [49,59–63], the Rushbrooke and Scoins
method [64], and fundamental measure theory [65]. Despite
all of these efforts, the lattice gas model has not provided the
adsorption kinetics of the system, and instead the main focus
has been the EOS and the nature of phase transitions.

To combine the advantages of the RSA and lattice gas
models we previously developed an alternative method, the
RSAD model, to derive the EOS of two-dimensional nondes-
orbing hard-core particles based on kinetic arguments and the
Gibbs adsorption isotherm on a triangular lattice [66,67]. One
of the advantages of the RSAD model is its ability to locate
the equilibrium state, ensuring that adequate thermalization
had occurred and that finite-size effects are negligible. In the
RSAD model, surface diffusion is introduced in parallel with
adsorption so that vacancies large enough to adsorb further
particles are both created and annihilated. When diffusion is
sufficiently large, the size distribution of vacancies no longer
depends on the history of adsorption (the positions where
the adsorbates first arrived on the substrate) but only on the
fractional surface coverage [68]. Note that, in this model, the
potential energy is effectively infinite for particle overlap and
zero otherwise, so that the system can therefore be considered
as athermal [50,62,66]. Our results show that the RSAD model
can be used as an equilibrium model where the EOS, the
phase-transition coverage, and the nature of this transition are
all in excellent agreement with the only available model with
an exact solution in the literature [43].

Our past work on the RSAD model focused on irreversible
adsorption of equilibrium states, but in this paper we substan-
tially extend our previous RSAD approach by incorporating a
desorption process and further explore the dynamics far from
equilibrium. An important motivation is the experimental ob-
servation that when the relaxation timescale is much smaller
than the experimental time-window, a system may evolve out
of equilibrium [2,16,69]. In the remainder of this section we
review the theoretical basis for the method and discuss the
numerical implementation in Sec. II. A detailed discussion
of our findings for both equilibrium and nonequilibrium sys-
tems is given in Sec. III and we summarize the paper in
Sec. IV.

II. SIMULATION DETAILS

In the RSAD approach, for a two-dimensional lattice gas
in equilibrium with a three-dimensional solution of adsorbate
molecules, the equality of chemical potential throughout the
system leads to

d� = kT
�

Aa
d lnC. (1)

Here, � is the surface pressure, T is temperature, k is
Boltzmann’s constant, Aa represents the interfacial area cov-
ered by a single adsorbate molecule, � is the fractional
surface coverage, and C is the concentration of the (three-
dimensional) solution. Integrating the above equation gives:

∫ �

0

�

C

∂C

∂�
d� = Aa

kT
�, (2)

from which we see that knowledge of the adsorption isotherm,
the relationship between C(�), bulk concentration, and frac-
tional coverage, enables one to calculate the EOS, �(�).

The adsorption isotherm, in turn, can be obtained through
kinetic arguments. At equilibrium the rates of adsorption and
desorption of molecules are equal:

KaC(1 − β(�)) = Kd�, (3)

where Ka and Kd are the adsorption and desorption rate con-
stants, respectively, and β(�) is the “blocking function,” the
fraction of the surface area, which is excluded from further
adsorption by already-adsorbed molecules. Solving for C and
inserting the resultant expression into the integral version of
the Gibbs adsorption isotherm yields∫ �

0
[1 − β(�)]

∂

∂�

[
�

1 − β(�)

]
d� = Aa

kT
�. (4)

Thus, the blocking function is the only information needed
to calculate the EOS, and we have shown previously [66,67]
that, for lattice gases, the blocking function can be precisely
extracted from RSAD simulations. From the definition of the
adsorption rate, used above to define adsorption equilibrium,
the blocking function can be extracted from the numerical
simulations through the derivative of surface coverage with
respect to time:

∂�

∂t
= Kl

1 + Kl
[1 − β(�)] − �

1 + Kl
, (5)

where t = nAa/A, n is the number of attempts, A is the total
number of sites, and Kl = KaC/Kd . The blocking function
can be further obtained from the rebuttal rate of adsorption
attempts. In the absence of desorption (Kl = ∞), with highly
mobile particles, the system can reach the full coverage. For
the system of nondesorbing particle in equilibrium, Eq. (5)
reduces to

∂�

∂t
= 1 − β(�). (6)

The blocking function in Eq. (6) is obtained from the
adsorption or desorption method described later in detail.

The adsorption of hard-core molecules with first-neighbor
exclusion on the honeycomb lattice involves the adsorption of
molecules covering two adsorption sites (see Fig. 1). Here, we
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FIG. 1. Honeycomb lattice with first-neighbor exclusion where
each adsorbate covers two sites identified by red circles. The center
of the adsorbate is represented by a blue circle, arrows indicate
possible displacements of particles, and the blue crosses represent
the sites where the center of other particles are not allowed to occupy.

employ two complementary methods as described in our pre-
vious works [66,67]: an “adsorption method,” which begins
from an empty lattice, and a “desorption method,” which be-
gins with a full lattice and progressively decreases coverage.
In the adsorption method, molecules or particles are progres-
sively added to an initially empty d × d lattice surface where
a periodic boundary condition is used to ameliorate finite-size
effects. The only restriction is that overlap is not allowed; an
assumption based physically on short-range electrostatic re-
pulsion. For each adsorption attempt, a random position (x, y)
is selected representing the center of mass of the particle. If
the selected site and its neighbors are empty, adsorption is
accepted, otherwise, it is rejected. Diffusion, the simultaneous
movement of particles, is introduced sequentially with a pre-
defined ratio D between the number of diffusion attempts and
the adsorption attempt: For D = 3 each adsorption is followed
by three diffusion attempts, etc. For each diffusion attempt, a
previously adsorbed particle and a direction for the displace-
ment of the particle are selected randomly; yellow arrows in
Fig. 1 illustrate the possible directions. If moving the center of
mass of the particle to the next node along this direction does
not violate the nonoverlap condition, diffusion is accepted;
otherwise, it is rejected. It is worth noting that, in the RSAD
model, when diffusion is fast enough, the surface layer is at
internal equilibrium (even during transient adsorption) and the
blocking function can be considered as a state function.

For the desorption method, the lattice is initially full. In
this method, two particles are randomly selected and removed.
Then one adsorption attempt and D diffusion attempts are
performed, until one particle is successfully deposited, fol-
lowing the same procedure as for the adsorption method. The
choice of the sequence (two desorption events followed by one
adsorption) is arbitrary but answers the need at each time step
to decrease coverage and add at least one particle to calculate
the adsorption rate. Note that desorption method is another
way to calculate the adsorption rate in a reverse order.

For both adsorption and desorption methods, the blocking
function is extracted from the rebuttal rate of adsorption at-
tempts. Five hundred independent runs are performed, and an
ensemble average is used to reduce the noise arising from

the numerical calculation of the derivative of the coverage.
The blocking function is fit with a polynomial function before
using it to generate the adsorption isotherm. The latter is
inserted into the Gibbs adsorption isotherm equation to obtain
the EOS.

In the current study, we have additionally incorporated
desorption into the system aiming to validate our hypothesis
that the correct evolution of fractional surface coverage and
its equilibrium value, as well as the blocking function, can be
faithfully predicted for systems with different values of Kl ,
provided we have the knowledge of the system with Kl = ∞.
In this method, at each attempt, we randomly choose a site
with a predefined value of Kl . The desorption attempts are
carried out as follows: If a chosen site lies inside the adsorbed
particle (inside the red circle illustrated in Fig. 1), that particle
is removed. Otherwise, we choose randomly one of the three
neighboring sites and if that belongs to the center of mass
of an adsorbate, we remove that particle. It is worth noting
that, in this case, the desorption attempt imposes a kinetic
constraint because particle removal can be rejected, whereas
in the desorption method two particles are enforced to be
removed. We performed these sets of simulations with and
without surface diffusion. For a system with surface diffu-
sion, after each attempt, D diffusion attempts are performed
as described before. Fifteen hundred independent runs were
performed to extract the success rate of adsorption attempts
and to obtain the blocking function.

III. RESULTS

The determination of phase behavior and, in particular, the
nature of phase transitions in two-dimensional (2D) systems
is often clouded by finite-size effects and by access to the
appropriate thermodynamic regime, which can bring uncer-
tainty regarding phase behavior of the system; mainly the
nature of phase transitions [11,67,70,71]. Accessing the ther-
modynamic regime and using sufficiently large system size to
suppress errors due to finite-size effects are initial steps toward
studying the phase behavior of the system [11,12,67,72]. One
of the advantages of using the RSAD method is that we know
how big our system should be to ensure that the results are
both accurate and computationally inexpensive.

The effect of surface diffusion and system size are shown
in Figs. 2(a) and 2(b). Initially, when the system is dilute,
all of the curves regardless of their methods, the magni-
tude of surface diffusion, or the system size coincide at low
surface coverage, as presented in Fig. 2(a). At high surface
coverage, the probability of success of adsorbing a new par-
ticle reduces drastically due to the caging effect. However,
as the ordering of particles enhances, this caging effect di-
minishes to maximize the available surface for accepting
the incoming particles. The system reaches the equilibrium
state when curves obtained from the two methods (adsorp-
tion and desorption) overlap for the entire range of fractional
surface coverage, which justifies the access to the thermody-
namic regime. So the results obtained from the adsorption
and desorption methods are expected to bracket the correct
equilibrium EOS.

To assess the role of lattice geometry, we further com-
pared the blocking function of hard-core particles with
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FIG. 2. (a) Effect of surface diffusion and lattice size on success
rate of adsorption. “Ads” and “Des” refer to adsorption and desorp-
tion methods, respectively. (b) The inset magnifies the high-coverage
region to better show the sensitivity of the blocking function to
surface diffusion and lattice size. (c) Comparison of the blocking
function of the honeycomb with the triangular lattice [66].

first-neighbor exclusion on a honeycomb lattice with those
on a triangular lattice [66] in Fig. 2(c). Owing to extra lattice
spacing between adjacent sites in the honeycomb lattice, the
lower blocking function is obtained over adsorption of parti-
cles compared with the triangular lattice.

The EOS and phase transition of hard-core molecules with
the first neighbor exclusion on a honeycomb lattice were stud-
ied with various statistical mechanical approaches [34,47,73–
75]. Runnels et al. [47] used an exact finite matrix method
based on a sequence of exact solutions for lattices of in-
finite length and increasing finite width. The results show
that, far from the transition zone, convergence occurs rapidly;
while in the transition region, thermodynamic properties such
as density and pressure are functions only of lattice width,
which can be extrapolated to infinite width, giving the second-
order transition at critical density and surface pressure of
0.845 ± 0.02 and 2.24 ± 0.1, respectively. Debierre et al. [73]
used a phenomenological renormalization method to obtain a
second-order transition at a fractional surface coverage and
surface pressure of 0.83 ± 0.01 and 2.20 ± 0.02, respectively.
Baxter [74] found the critical component of hard-core parti-
cles on a honeycomb lattice by using a corner transfer matrix
and obtained a second-order transition at a surface coverage
of 0.844. Poland [75] used high density and the Padé approxi-
mation to obtain the second-order phase transition at a surface
coverage of 0.822 and a surface pressure of 2.164 and 2.178
for low- and high-density series, respectively.

Although all of these methods share similarities regarding
the second-order nature of the phase transition, there is no

FIG. 3. (a) Comparison between our EOS where d = 100 and
D = 10 with Runnels et al. (exact finite matrix method) [47] for
hard-core molecules on a honeycomb lattice. (b) The inset shows a
magnified view of the EOS in the phase-transition region. (c) Com-
parison between the EOS of honeycomb and triangular lattices. Aa

for the honeycomb and triangular lattices are two and three, respec-
tively. (d) Analysis of phase-transition region of honeycomb lattice
based on derivative of surface pressure of desorption method with
respect to surface coverage (d = 100 and D = 10).

consensus on the critical value of surface coverage at the
transition. Our results have been compared with the analytical
calculation of Runnels et al. [47] for d = 100 and D = 10 in
Figs. 3(a) and 3(b). As illustrated in Fig. 3(a), at low surface
coverage there is no difference between the reported equations
of state. However, in the vicinity of the phase transition, a
slight difference is observed [see Fig. 3(b)]. Runnels’ EOS
follows the adsorption method at a lower limit of surface
coverage of the transition region and the desorption method
at a higher limit of surface coverage of the transition region.
Eventually, all of the EOSs coincide as they approach the
maximum packing coverage.

Comparing the EOS of the honeycomb lattice with that
of the triangular lattice [66] in Fig. 3(c) shows that, initially,
both equations of state overlap at low surface coverage. As
the surface coverage increases, triangular lattice shows higher
surface pressure in the vicinity of the phase transition. Close
to the maximum packing, finding the vacant site becomes the
only determinant factor; consequently, all of the equation of
states obey the Langmuir model and both lattice geometries
display the same surface pressure.

The phase-transition zone of the honeycomb lattice is ex-
amined in more detail by taking the derivative of the surface
pressure with respect to surface coverage, as displayed in
Fig. 3(d). A second-order phase transition is obtained, which
is in agreement with others [34,47,73–75], where the critical
exponents obtained by Debierre et al. [73] and others [34,47]
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FIG. 4. (a) Blocking function for different Kl,RSA where d = 100
and D = 0. Filled dots show the equilibrium values of surface cov-
erage. (b) Time evolution of fractional surface coverage for different
Kl,eq where d = 100 and D = 10 in the presence of surface diffusion.
White dashed lines are obtained from the prediction of the RSAD
model.

suggest that this system belongs to the 2D Ising universality
class. The onset of deviation from the liquid regime starts
at � = 0.704 and the system solidifies at � = 0.818 and a
surface pressure of 2.169 ± 0.002, where the adsorption and
desorption methods set the upper and lower limit, respectively.
Our results are in a good agreement with Poland [75]. Al-
though the honeycomb and triangular lattices both display a
second-order phase transition, the triangular lattice deviates at
the lower surface coverage � = 0.652 from the liquid regime
and undergoes solidification at the higher surface coverage
� = 0.827, exhibiting a wider window of phase transition
[66].

Systems with desorbing particles reach the equilibrium
state below the maximum packing, as evinced in many exper-
imental studies [15]. We explored the role of desorption for a
system in equilibrium (high surface diffusion), revealing that,
for different values of Kl,eq, the blocking function obtained
is the same as the one predicted by Eq. (6) [Kl,eq = ∞ in
Fig. 4(a)] until the steady-state value is achieved. The solid
circles in Fig. 4(a) denote the steady-state surface coverage
for the specified values of Kl,eq. Additionally, by plugging the
blocking function obtained from Eq. (6) back into Eq. (5), we
were able to obtain the time evolution of surface coverage for
a given value of Kl,eq. These intriguing result are in excellent
agreement with the simulation results [see white dashed lines
in Fig. 4(b)]. Note that our simulations are performed on
a homogeneous surface. However, surface heterogeneity can
arise, for example, due to the variation in adsorption energy,
nonuniform arrangement of the surface, etc., which could lead
to various structural ordering on the substrate [76,77].

In the absence of surface diffusion and for Kl,RSA = ∞
(corresponding to a system with no desorption), the system
will reach the jamming state at the fractional surface coverage
of 0.758, as illustrated in Fig. 4(a). The jamming limit in RSA
is strongly dependent on the initial configuration [13]. In the
absence of surface diffusion, dynamics of adsorption, which
can be described with a RSA model, pushes the system toward
a locked or metastable configuration. Ordering is necessary to
unlock this configuration, which is a slow process and can
be mediated by detachment and reattachment of the particles
[36]. Figure 4(a) shows that, at the given fractional surface

coverage, a larger surface is available in the equilibrium state
compared with the RSA configuration [78].

For the RSA with desorption, the adsorption process is
dominant at the early stage and increasing the equilibrium rate
constant results in the faster crowding of the surface. For small
values of Kl,RSA and when the surface is dilute, the blocking
function exactly overlaps with the equilibrium blocking func-
tion curve [see red curve in Fig. 4(a)] [78–80]. However, for
intermediate values of Kl,RSA [e.g., green curve in Fig. 4(a)],
the system rapidly gets crowded while following the RSA
curve and then slowly relaxes toward equilibrium with the
higher surface coverage [14,16] where the insertion probabil-
ity monotonically decreases by the increase of coverage [80].

For the system where the surface coverage surpasses the
jamming coverage [see, for example, the blue curve for
Kl,RSA = 18 in Fig. 4(a)], the initial dominant adsorption pro-
cess follows the RSA model and densifies the system in a very
irregular fashion, making the deposition of a new particle very
hard. At the late stage of the process, the desorption plays a
significant role and the success rate of adsorption shows an
interesting trend in which after the initial abrupt decline, it
increases very slowly with the increase of surface coverage,
indicating a higher success rate of adsorption at a higher
surface coverage. Note that the blocking function eventually
reaches a steady-state value identical to the equilibrium value.
In the presence of desorption, the equilibrium rate constant Kl

determines the equilibrium coverage while surface diffusion
speeds up the process of reaching the equilibrium coverage
without affecting the final value of coverage [14].

RSA with desorption shares qualitative similarities with
many phenomenological properties of supercooled liquids and
glasses. For instance, as the Kl,RSA → ∞, the system gets
trapped in a metastable state and will not be able to relax
toward the equilibrium. At high yet finite values of the equi-
librium rate constant, the early stage of this process suggests
a mechanism similar to a quenched disorder which leads
to the formation of a supercooled liquid with a frustrated
structure. This analogy with supercooled liquid appearing at
the early state could be signaling the occurrence of aging
phenomena at the late stage of the process. The aging phe-
nomena is due to the strong memory effect originating from
the high correlation with the initial configuration of the system
where the relaxation evolves very slowly [81]. To quantify this
out-of-equilibrium system and further validate our hypoth-
esis regarding the aging process, we calculate the two-time
density-density correlation function [69,82]:

C(t, tw ) = 〈�(t )�(tw )〉 − 〈�(t )〉〈�(tw )〉〈
�(tw )2

〉 − 〈�(tw )〉2 , t � tw. (7)

Angular brackets indicate an ensemble average, and tw is
the waiting time of sampling. Out of equilibrium, C(t, tw )
depends on both t and tw.

The aging properties of RSA with desorption for Kl,RSA =
100 is shown in Fig. 5. The insertion probability of this
system falls below the Kl,RSA = 18 in Fig. 4(a) but follows
the same trend. Figure 5(b) shows the disorder configuration
of the system corresponding to a state in which the insertion
probability stops decaying. As the coverage slowly increases
and the desorption process picks up, the degree of freedom in
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FIG. 5. (a) Two-time density-density correlation function at different tw where D = 0, d = 100, Kl,RSA = 100. The black dotted lines are
obtained from Eq. (8). (b) The heatmap plot of the number of contacting neighboring sites for a system with Kl,RSA = 100 at different temporal
surface coverages of (b) � = 0.7532, (c) � = 0.9459, (d) � = 0.979. The color bar identifies the number of contacting neighbors.

the system enhances and the decorrelation occurs due to the
unlocking of the frustrated structure. As the degree of ordering
in the system enhances, which is evinced by the formation of
clusters [see black clusters in Figs. 5(c) and 5(d)], theC(t, tw )
curve shows an interesting trends where it follows the unique
curve [see black dotted lines in Fig. 5(a)], which can be fit
with the following equation:

C(t, tw ) = (1 − q) exp [−α(t − tw )] + q

(
tw + ts
t + ts

)
, (8)

where q, α, and ts are fitting parameters. The constant q in-
creases by increasing the Kl,RSA and ts is approximately equal
to tw. Figure 5(a) shows that the correlation function follows
two times sectors. Initially all of the correlation curves decay
to a nonzero plateau and follow the stationary exponential
term in Eq. (8).

The exponential term in Eq. (8) is related to localized
motion of particles within the cage, which facilitates fast
filling of the vacant sites and obeys time-translation invariance
independent of tw [83,84]. Then, the correlation curves decay
from this plateau to zero and follow the power-law term (with
exponent −1) in Eq. (8). The second decay depends on the
waiting time and is called simple aging because it follows
the power law. As the waiting time increases, the decorrela-
tion takes longer, suggesting that cages are stiffer [81]. The
second term implies the structural relaxation and appearance
of cluster coarsening in the system where clusters merge by
increasing tw [83]. With the passage of time, the clusters’
coarsening results in the increase of insertion probability. Note
that the equilibrium state [Fig. 5(d)] is less blocked than
the disorder configuration [Fig. 5(b)]. Equation (8) suggests
the weak-ergodicity breaking scenario where, for t > tw, the
correlation function decays as follows [84,85]:

lim
t→∞C(t, tw ) = 0, (9)

lim
tw→∞C(t, tw ) = (1 − q) exp [−α(t − tw )] + q, (10)

lim
tw→∞ lim

t−tw→∞C(t, tw ) = q, (11)

where q is the Edwards-Anderson order parameter which can
be defined from Eq. (11) [81]. In our system, for Kl,RSA =
100, we find q = 0.8257.

We further address the influence of system’s initial state on
its dynamical response to a sudden change of Kl . The follow-
ing outlines the series of simulations that were performed to
obtain different initial states and once the system reached the
target coverage (� = 0.758) the simulations were stopped:

A Starting from an empty lattice, the RSA with Kl2 = ∞
was performed to achieve a glassy state with a much higher
blocking function compared with the equilibrium.

B Starting from an empty lattice, the RSA were performed
with a chosen value of Kl2 = 14 that would result in steady-
state coverage above the target coverage of � = 0.758 to
achieve a system with a blocking function higher than the
equilibrium state.

C For a steady-state system with high coverage, the value of
Kl1 = 18 was dropped to a low value Kl2 = 0.5, engendering
a system with a blocking function much smaller than that of
the equilibrium state.

D For a fully packed system, the value of Kl1 = ∞ was
dropped to Kl1 = 0, leading to a system with a blocking func-
tion much smaller than that of the equilibrium system. Once
the systems reached the target coverage from the different
paths described above, the value of Kl2 was changed to a new
value Kl3 = 18 [Fig. 6(a)] and Kl3 = 7 [Fig. 6(b)] to study the
dynamical response of the system to this stimuli.

For the glassy state A [see Figs. 6(a) and 6(b)], a valley
appears in the coverage temporal evolution curve, where the
depth of the valley depends on the value Kl3. For larger Kl3, the
depth will be shallower. However, this valley will disappear
for a critical small value of Kl3 and the coverage will decrease
monotonically to reach the steady-state value. The opposite
behavior is observed for the system with D initial state by the
appearance of a peak in the coverage-time plot [Figs. 6(a) and
6(b)]. However, the appearance of this peak depends on the
value of Kl3. For B (C) state, for the sudden change of Kl2

to Kl3 = 18, where the steady-state coverage is higher than
the initial state, the surface coverage will smoothly (abruptly)
increases to reach the steady-state value. The opposite trend is
observed for the sudden change of Kl2 to Kl3 = 7. Figure 6(a)
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FIG. 6. Dynamical response of the system to abrupt change of Kl2 to (a) Kl3 = 18 and (b) Kl3 = 7 from different initial states A, B, C, and
D. (c) The insertion probability of adsorption for different initial states A, B, C, and D due to abrupt changes of Kl2 to Kl3 = 18 and Kl3 = 7
corresponding to panels (a) and (b). (d) Dynamical response of the system with initial jammed configuration to the sudden change of Kl (from
∞ to 11.62) for different values of surface diffusion.

shows that the time evolution of surface coverage, regardless
of their history, overlaps after some relaxation time.

To gain a better insight into the dynamical response of
the system to different initial states, we further analyze the
insertion probability. Figure 6(c) displays an interesting result
that there is a specific path [identified by black dashed lines in
Fig. 6(c)] related to each value of Kl . If the initial state is above
(below) this path, the adsorption (desorption) process is ini-
tially dominant until it crosses this path, and then there is
a tug-of-war competition between adsorption and desorption
along this path until the system reaches the steady-state value.
If the crossing occurs on the right (left) of the equilibrium
line [black line in Fig. 6(c)], the surface coverage decreases
(increases) to reach the steady state. This path is encoded in
the memory of the system and the system retains a strong
memory of its Kl history where the slope of this path is nearly
equal to the inverse of Kl .

Dynamical response of an initially jammed system to the
sudden change of Kl (from ∞ to 11.62) and for different
values of surface diffusion has been investigated, as shown
in Fig. 6(d). The judicious choice of Kl = 11.6 serves to
drive the system towards the steady-state coverage equal to
the jamming coverage (the initial state of the simulation).
This abrupt change results in the initial increase of desorption
rate and consequently enhances the insertion probability of
adsorption. For fast-enough surface diffusion, the system im-
mediately reaches the steady-state configuration. However, in
the absence of surface diffusion or at low values, a minimum
appears in the time evolution plot of surface coverage, which
is rooted in the relaxation of the caging effect.

In hard-core system, internal energy is a function only of
temperature and not of density [86]. Given hard-core inter-
actions are athermal, all of the phase transitions are entropy
driven, where the ordered phase has a higher entropy than the
disordered phase [34,86]. Consequently, we expect that the
hysteresis between equilibrium system and its nonequilibrium
counterpart comes from change in configurational entropy
[87]. Therefore, the blocking function and surface coverage
would be the only information required to calculate the sur-
face pressure. To corroborate this statement, we compare the
surface pressure obtained from the blocking function for two
systems with the equal equilibrium rate constant of Kl = 18

but different surface diffusion D = 0.01 and D = 10, which
are named Kl,neq = 18 and Kl,eq = 18, respectively [Figs. 7(a)
and 7(b)]. The blocking functions are the same for both sys-
tems at the steady state and also at low surface coverages [see
Fig. 7(a)]. As such, we expect that, at these two limits, the
surface coverages overlap, the insertion of both equilibrium
and nonequilibrium blocking functions [Fig. 7(a)] into Eq. (4)
yields the same surface pressure. Figure 7(b) shows that the
values of surface pressure at the equilibrium are exactly identi-
cal for both Kl,neq = 18 and Kl,eq = 18, which underscores the
validity of our hypothesis. For systems in equilibrium, surface
pressure is only a function of surface coverage, as evinced

FIG. 7. (a) Success rate of adsorption for the equilibrium system
Kl,eq = 18 and nonequilibrium system Kl,neq = 18 where d = 100.
(b) Surface pressure versus surface coverage. (c) Time evolution of
surface pressure for systems with various Kl,eq. White dashed lines
are obtained from the prediction of the RSAD model.
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by the overlap of the surface pressure curves for Kl,eq = 18
and Kl,eq = ∞. So the knowledge of blocking function of a
nondesorbing system at equilibrium (Kl,eq = ∞) would be
sufficient to accurately obtain the surface pressure of the
equilibrium systems with various Kl,eq. Figure 7(b) further
displays that the surface pressure curve of nonequilibrium
system is always higher than the equilibrium one as the system
becoming gradually packed, which can explain the hysteresis
observed in some experiments [2]. We also compare the time
evolution of equilibrium surface pressure for systems with
defined Kl,eq and the results obtained from Kl,eq = ∞. This
is accomplished by inserting the blocking function obtained
from Eq. (6) into Eqs. (4) and (5) and integrating to obtain the
temporal evolution of surface pressures [identified by white
dashed lines in Fig. 7(c)], which shows excellent agreement
with the simulation results.

IV. CONCLUSION

In this paper we studied the phase behavior and adsorption
kinetics of hard-core molecules with first-neighbor exclusions
on a honeycomb lattice by incorporating a desorption process
through a varying equilibrium rate constant in the RSAD
model. Our analyses confirm earlier statistical mechanics
results concerning the second-order nature of the phase tran-
sition [34,47,73–75]. We show that the system is in a liquid
regime below a surface coverage of 0.704 and undergoes a
second-order transition at a surface coverage of 0.818, which
is in a good agreement with the work of Poland [75] who used
high density and Padé approximation methods to obtain the
EOS.

Comparing the results of a hard-core particle on a honey-
comb lattice with the same on a triangular lattice [66] shows
that the blocking function is sensitive to the lattice geometry.
However, once the surface coverage and the blocking function
are obtained from RSAD model, all other thermodynamic
properties can be calculated from the same scheme explained
in Sec. II irrespective of the lattice geometry. Higher surface
pressure is obtained at intermediate surface coverage for the
triangular lattice, while at low surface coverages and close to
the maximum packing both lattice structures display the same
surface pressure. Both lattice geometries show a second-order
phase transition; however, the triangular lattice undergoes a
wider range of phase transitions, meaning that it deviates from
the liquid regime at a lower surface coverage and solidifies at
a higher surface coverage.

For the systems with desorption processes present, all of
the results related to the temporal evolution of the blocking
function, surface coverage, and surface pressure for various
Kl can be derived from the blocking function of a system

with Kl,eq = ∞. Taken together, the RSAD model without
desorption is able to accurately recover deposition dynamics
results for systems with desorption.

In the absence of surface diffusion, the blocking function
generated by the RSA model including desorption shows
three distinct regimes. Initially, when the surface is dilute,
the blocking function is identical to that in thermal equilib-
rium. At intermediate coverage, the blocking function initially
follows the RSA model and then decreases monotonically
to reach the equilibrium blocking coverage at the steady
state. However, when the surface coverage surpasses the jam-
ming coverage, the insertion probability of a new particle
shows an interesting trend in which, after the initial abrupt
decline, it increases very slowly with the increase of sur-
face coverage. At steady-state and for a given value of the
rate constant, the blocking function and surface coverage
eventually recover the values for nondesorbing systems at
equilibrium. Aging analysis of the last regime with small
desorption probability through the two-time density-density
correlation function shows two time sectors, where it initially
follows the stationary regime and then decays as a power
law. As the waiting time increases, the decorrelation takes
longer, which is an indication of a stiffer cage. As time
passes, the structural relaxation and clustering of particles
favor more densification which leads to a lower blocking
function.

Analyses of the dynamical response of the system to an
abrupt change of the rate constants Kl at different initial states
reveals that there is a specific path toward equilibrium for each
value of Kl , where the slope of this path is almost equal to
1/Kl . This result also explains the appearance of a peak and a
valley after a sudden change of Kl to a secondary value. For a
system without surface diffusion, the system retains a strong
memory of its history while the presence of surface diffusion
results in the rapid decorrelation of memory effects.

Hard-core systems are entropy driven, and as such the
blocking function and surface coverage would be the only
information required to calculate the surface pressure. We
show that the equilibrium surface pressure is insensitive to the
values of surface diffusion and systems in that low and high
values of surface diffusion result in identical surface pressure.
Out of equilibrium and as the surface coverage is gradually
increased, the system shows higher surface pressure than the
equilibrium one, which could explain the hysteresis reported
in some experimental observations.
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