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1. ABSTRACT

sUAS (small-Unmanned Aircraft System) and advanced surface energy balance models allow detailed assessment
and monitoring (at plant scale) of different (agricultural, urban, and natural) environments. Significant progress has been
made in the understanding and modeling of atmosphere-plant-soil interactions and numerical quantification of the internal
processes at plant scale. Similarly, progress has been made in ground truth information comparison and validation models.
An example of this progress is the application of sUAS information using the Two-Source Surface Energy Balance (7SEB)
model in commercial vineyards by the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment -
GRAPEX Project in California. With advances in frequent sUAS data collection for larger areas, sUAS information
processing becomes computationally expensive on local computers. Additionally, fragmentation of different models and
tools necessary to process the data and validate the results is a limiting factor. For example, in the referred GRAPEX project,
commercial software (4rcGIS and MS Excel) and Python and Matlab code are needed to complete the analysis. There is a
need to assess and integrate research conducted with sUAS and surface energy balance models in a sharing platform to be
easily migrated to high performance computing (HPC) resources. This research, sponsored by the National Science
Foundation F'4IR Cyber Training Fellowships, is integrating disparate software and code under a unified language (Python).
The Python code for estimating the surface energy fluxes using TSEB2T model as well as the EC footprint analysis code
for ground truth information comparison were hosted in myGeoHub site https://mygeohub.org/ to be reproducible and
replicable.

Keywords: surface energy balance, cyberinfrastructure, remote sensing, sUAS, myGeoHub, HPC, Python, TSEB2T, FAIR
2. INTRODUCTION

Evapotranspiration (ET) is a key component for hydrology, agricultural water management®, and better water resources
allocation for ecosystem. For best water resources management practices, accurate estimation of ET is essential to
understand the interactions between water and energy cycles', droughts !, climate change'> and plant growth. ET is
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considered the highest component in the hydrologic cycle, constitutes 70% of precipitation on land to the atmosphere!. For
agricultural water management, ET is the key indicator for quantifying crop water demand and vegetation stress. There are
several approaches have been used for quantifying the actual ET such as scintillometers °, lysimeters'®, and eddy covariance
flux towers!4; however, these methods are limited to small sampling area under assumption of surface homogeneity’, which
is less likely to be met in reality.

Recently, the advent of remote sensing technique with wide range of platforms allow us to produce spatial ET
information at different resolutions spanning from sub-meters to kilometers. Spatial information can be acquired by
satellites, manned aircraft, and small unnamed aerial systems (SUAS)® which then grounded in the theory behind the surface
energy balance (SEB) models’ such as the Two-Source Energy Balance. The inputs for these models include the
micrometeorological information (wind speed, air temperature, water vapor pressure, and incoming solar radiation) and
other information related to the vegetation cover and land surface temperature which derived from remotely-sensed data.
The development of SUAS platforms and various sensors associated with advanced SEB models (e.g., TSEB'?) nowadays
are an example for the progress made in remote sensing being used for estimating ET in complex agricultural environments
such as vineyards. Despite the fact of progress made in the understanding and modeling of atmosphere-plant-soil
interactions and numerical quantification of the internal processes at plant scale, as well as ground truth information
comparison and validation, more work on sUAS data processing is still necessary.

From a general perspective, sUAS information processing becomes computationally expensive on local computers.
This requires a more powerful computational platform in order to efficiently derive the value of those data. The advent of
high performance computing recent years become very helpful to integrate resources from different locations and analyze
real-time big data. In this research effort, sSUAS and surface energy balance models are being integrated with a sharing
platform namely myGeoHub https://mygeohub.org/ to be easily migrated to the HPC resources to parallelize, streamline
and enable seamless integration of modeling components.

2. METHODOLOGY
1.1 Model Overview

In this study, the Two Source energy Balance (TSEB) model was used to calculate surface energy fluxes. TSEB was
originally developed by Norman et al, 1995'2 and undergone several revisions to partition the radiative and turbulent energy
fluxes between soil and canopy. In this case, net radiation (R,) and sensible heat flux (H) are partitioned between
soil/substrate and canopy. There are several versions of TSEB model including TSEB-PT (Priestley Taylor), TSEB-DTD
(Dual Time difference), TSEB-2T (Dual Temperature), and TSEB-2T-DMS (Data-mining sharpening of temperature).
TSEB-PT model assumes a composite radiometric temperature (Tr.q) from the soil/substrate and canopy. The decomposition
of radiometric temperature (Trq) between soil/substrate and canopy is based on the fractional cover (f;). TSEB-DTD is
similar to TSEB-PT model with further development by decomposing the Trq into soil/substrate temperature (Ts) and
canopy temperature (T.) using two observations of Trq. The first observation acquired 1.5 h after the sunrise (Trad,0), while
the second obtained during the daytime (Trq1). TSEB-2T-DMS model is another version of TSEB that
partitions Ts and T using a data-mining fusion algorithm to sharpen the original LST to be similar to the optical data. This
would allow a better discrimination between Ts and T.. The TSEB2T model is a contextual TSEB that estimates T and T.
from LST imagery based on the relationship between vegetation index (VI) and LST, particularly LST-NDVI, to calculate
Ts and T, within a specific spatial domain. As shown in Figure (1), the TSEB2T !! model separates Ry, H, and LE between
vegetation and soil. The equations below describe the mathematical expressions behind the TSEB approach

R,=LE+H+G, (1)
Rpe = He + LE,, Q)
R,s = Hg + LEg + G, 3)
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Figure 1. Schematic representation of TSEB2T model

where R, is the net radiation, H is the sensible heat flux, LE is the latent heat flux, and G is the soil heat flux. Ts
and T, are the soil and canopy temperature, respectively, derived from the LST and high enough resolution of optical data.
Subscripts of ¢ and s represent the canopy and soil components, respectively. LE. and LE;s are solved as residuals when (T,
and T;) observations are available.

2.2 EC footprint model

Eddy Covariance (EC) footprint models are used for describing the position and size of surface source areas, as
well as the relative contribution of passive scalar sources to measured fluxes®. The EC flux footprint is defined as a
mathematical expression used to transfer between sources and sinks of passive scalars at the surface, Q, and the turbulent
flux, F.. There are several parameters influencing the EC footprint estimation which include atmospheric stability, receptor
height, and surface roughness, all of which strongly affect the size of the footprint. The mathematical function used to
describe the flux footprint is shown in Equation (4)

F.(0,0,zp) = st Q. (x, Yf(x,y)dxdy )

where F. is a flux density (per unit area), Q.(x,y) is the as source or sink at the surface. Because the footprint function is
always estimated at a specific measurement height (receptor height), the vertical reference in f is neglected. From a single
unit point source or sink,Q,,, Equation (4) can be simplified as follows

Fc(0,0,zm)
fCoy) == ) ®)

In this research, Kljun et al, 2002 * model has been considered for footprint analysis. This model uses the three-
dimensional Lagrangian stochastic footprint model LPDM-B and found to satisfy the well-mixed condition continuously
for convective to stable stratifications and for measurement heights (receptors) within or above the surface layer. Assuming
that crosswind turbulent dispersion can be treated independently from vertical/streamwise transport, the mathematical
expression for EC can be expressed in terms of a crosswind-integrated footprint, f¥ and a cross-dispersion function, Dy

f(x,y) = Y(x)D, (6)
— 1 2
f(x,y) = ¥ Toma, P (— 2Zy2> O

More details about the derivation of the footprint model and model parameters can be found in Kljun et al. 20153
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3. RESULTS

3.1Taxonomy for reusability in environmental modelling

TSEB2T was developed by Norman et al, 1995'% and further developed by Nieto et al., 2019'" and hosted in
myGeoHub to use the model in conjunction with remotely sensed information and other micrometeorological data to
estimate ET and compare against the actual ground data obtained from EC towers installed in the field. The myGeoHub
was chosen for several reasons. First, in general, web application can provide users easy access to the data, tools and
simulation resources across different locations. Second, myGeoHub was designed to support geospatial modeling? such as
remote sensing models that deal with big data and require a powerful computational platform for analyzing data in a record
time. Third, this hub now is hosting several datasets, groups, and training materials that help users to have a wide range of
educational resources. This workflow enables researchers to focus more on the scientific research rather than dealing with
software replication and data migration.

The workflow resulting from this research work organizes the reusability spectrum into four levels: findable,
accessible, interoperable, and reusable. These levels represent a progression started with the base level, findability, first
step to achieve, followed by accessibility, interoperability, and finally reusability.

Reusability

The ultimate goal

of FAIR is to optimize
the reuse of data

Interoperability

The data usually have to be integrated with
other data. In addition, the data need to
interoperate with workflows or
applications for the purpose of storage,
analysis, and processing.

Accessibility
Once the user finds the necessary data, they need to know how
they can be accessed. Another interpretation for accessibility is

the ability to use the software and having access its functionality.

Findability
The first step in (re)using data is to find them. Findability is a fundamental principle,
which is essential to find a resource before any other consideration. One of major
concerns of findability for research software is to ensure software can be identified

unambiguously when looking for it.

Figure 2. The reusability taxonomy for complex computational studies comprising a progression that requires increased effort and time
from findability, through accessibility, interoperability and reusability.

FAIR principles were used in this study to improve the reuse of sUAS data by making it more findable, accessible,
interoperable, and reusable by users and machines. This study effort also helps researchers to demonstrate the impact of
their work by enabling the reuse of the data, and can foster future and broader collaboration. Using FAIR principles in
TSEB2T allow users also to run the model for multiple sUAS images at the same time as well as validate the results by
using the ground truth measurements from EC towers.

3.2 Separation of soil and canopy temperatures (Ts and T.)

Figure (3) shows the Python code deployed in myGeoHub for separating the soil/substrate and canopy
temperatures (Ts and T.) using the relationship between the normalized difference vegetation index (NDVI) and the
composite land surface temperature (LST). First, T and T. are calculated by taking the average value of pixels that are pure

Proc. of SPIE Vol. 11747 117470K-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Jul 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



soil/substrate and pure canopy within a model grid size. For detecting NDVI threshold values of soil, a relationship between
Leaf area index (LAI) and NDVI is constructed where the threshold value is identified when LAI is nearly zero. In case of
very dense vegetation (pure soil pixels not exist) or sparse vegetation lacking pure vegetation pixels inside the contextual
spatial domain, a linear fit between LST and NDVI can by generated to estimate Ts and T..

: Ju pyter 2T _model Last Checkpoint: 10/22/2020 (unsaved changes)

File Edit View Insert Cell Kemnel Widgets Help Snippets
+ < B 2 ¥ MRun B C MW Code ~ = X Appmode = Ll

In [5]: ## import the required packages and libaries for the code
import os
import gdal
import numpy as np
import scipy
from scipy.stats import linregress
import pandas as pd

In [4]: # data input include the LST, NDVI, input resolution, output resolution
ndvi_file="/home/mygeohub/aymnassar/Ayman_python_code/NDVI_20140809_©_15.tif"
1st_file="/home/mygeohub/aymnassar/Ayman_python_code/NDVI_20140809_0_15.tif"
lai_file="/home/mygeohub/aymnassar/Ayman_python_code/NDVI_2014@809_8_15.tif"

in_res=0.6 # the resolution of input imagery data

out_res=3.6 # the resolution of output imagery data

ndvi_veg=0.746908 # identify the threshold value of NDVI for vegetation
ndvi_so0il=0.366844941 # identify the threshold value of NDVI for soil

Figure 3. Python code for separating T. and Ts.
3.3 EC footprint estimation
Figure (4) shows a screenshot of Python code in myGeoHub to estimate the EC footprint using the 2D flux model
developed by Kljun et al. 20153, The fetch shape and orientation of the footprint depend on the micro-meteorological
conditions at the site measured by the EC towers. Those measurements involve friction velocity, turbulence fluxes, and
wind speed, which affect atmospheric stability, and canopy and EC measurement height. Figure (5) represents the EC
footprints at different times.

: Jupytef Footprint_Kqun_modeI Last Checkpoint: Last Tuesday at 418 PM (unsaved changes)

File Edit View Insert Cell Kemel Widgets Help Snippets

+ = A B 4 ¥ MWRin B C W Code v = X Appmode | lm

name: £, uLype: upject

In [13]: zm_s = 5 #Measurement height [m]

_c = temp_df['Hc'] #Height of canopy [m]

_s = 3000. #Height of boundary Layer [m]

dx =round(3.60,1) ## the spatial resolution of the footprint
origin_d = 500 #Model distance from origin [m]

> =

# air temperature
Ta=temp_df['Ta"]

# Calculate MO Lenght

Cp=1005.0

rho=1.3079-0.0045*Ta

#L=CalcL (temp df['ustar’], Ta+273.15, rho, Cp, temp df['H'], temp_df[’'LE'])
L=temp_df[ "obukov']

## calculate sigmav

sigmav=Calcsigma_v(temp_df[ 'ustar'],L)

#Convert Llocal Lat/lon to local UTM (Lodi: UTM 18).

x_coor=round(temp df['X'],6)

y_coor=round (temp_df['Y'],6)

station_coord = (x_coor,y_coor) #Lodi Lat/lon in WGS-84

in_proj = proj.Proj(init="EPSG:4326")

out_proj = proj.Proj(init='EPSG:32610")

(station_x,station_y) = prej.transform(in_proj,out_proj,*station_ceoord)

new_dat = Nene

Figure 4. Python code for the EC footprint analysis.
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Figure 5. Layout of EC footprints for two towers at different times at Lodi vineyard.
3.4 Surface energy fluxes calculations

Figure (6) shows the Python code for calculating the surface energy fluxes using TSEB2T model. The key inputs for
the model include canopy and soil temperatures (T, and Ts), fractional cover (F.), Leaf Area Index (LAI), canopy width-to-
canopy height ratio (w_C/h_C), Canopy height (h_C), as well as other inputs related to the micrometeorological data. The
main model outputs are the energy fluxes (R,, H, LE, and G) beside other ancillary data.
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_ : JUpytET TSEB-2T model Last Checkpoint: 24 minutes ago (unsaved changes)

File Edit View Insert Cell Kernel Widgets Help Snippets
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In [5]:  ## TSEB-2T model
[flag, T_AC, Ln_S, Ln_C, LE_C, H.C, LE_S, H_S, G, R_S, R_x, R_A, u_friction, L,
n_iterations] = tseb.TSEB_2T(T_C,
T_s=T_s,
T_A_K=T_A,
u=u,
ea=ea,
pP=pP.
Sn_C=Sn_C,
Sn_S=Sn_S,
L_dn=L_dn,
LAI=LAI,
h_C=h_cC,
emis_C=emis_C,
emis_S=emis_S,
z_8M=z_8M,
d_e=d_o,
z_u=z_u,
z_T=z_T,
leaf_width=0.1,
20_so0il=z@_soil,
alpha_PT=1.26,
x_LAD=x_LAD,
tNc=flcy
f_g=1.0,
w_C=1,
resistance_form=[@, {'KN_b': np.full(LAI.shape, ©.065),
'KN_c': np.full(LAI.shape, 0.0038),
'KN_C_dash': np.full(LAI.shape, 90)}],
calcG_params=[[2, ©.35, 3, 24], 12])

Figure 6. Python code for calculating surfaces energy fluxes using TSEB-2T model.

High : 650
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Figure 7. Energy fluxes (Rs, G, H, and LE) using TSEB2T.
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4. CONCLUSION

In this study, myGeoHub as a sharing platform has been used to integrate remotely sensed data and other
micrometeorological data to estimate ET using TSEB2T model and compare against the ground truth measurements
obtained from the EC towers. myGeoHub supports the geospatial modeling, data analysis and visualization needs for
research and education communities through hosting datasets, tools, training materials and educational contents. This
implies that data can be easily findable, accessible and interoperable with workflows and applications for the purpose
of reusability. Python code of the TSEB2T has been deployed in myGeoHub to facilitate the reproducibility and
replicability of the model by users. Moreover, the EC footprint analysis code was hosted in the hub which can replicated
to generate several footprints/source area using the micrometeorological data obtained from the EC towers.
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