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1. ABSTRACT
sUAS (small-Unmanned Aircraft System) and advanced surface energy balance models allow detailed assessment 

and monitoring (at plant scale) of different (agricultural, urban, and natural) environments. Significant progress has been 
made in the understanding and modeling of atmosphere-plant-soil interactions and numerical quantification of the internal 
processes at plant scale. Similarly, progress has been made in ground truth information comparison and validation models. 
An example of this progress is the application of sUAS information using the Two-Source Surface Energy Balance (TSEB) 
model in commercial vineyards by the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment - 
GRAPEX Project in California. With advances in frequent sUAS data collection for larger areas, sUAS information 
processing becomes computationally expensive on local computers. Additionally, fragmentation of different models and 
tools necessary to process the data and validate the results is a limiting factor. For example, in the referred GRAPEX project, 
commercial software (ArcGIS and MS Excel) and Python and Matlab code are needed to complete the analysis. There is a 
need to assess and integrate research conducted with sUAS and surface energy balance models in a sharing platform to be 
easily migrated to high performance computing (HPC) resources.  This research, sponsored by the National Science 
Foundation FAIR Cyber Training Fellowships, is integrating disparate software and code under a unified language (Python). 
The Python code for estimating the surface energy fluxes using TSEB2T model as well as the EC footprint analysis code 
for ground truth information comparison were hosted in myGeoHub site https://mygeohub.org/ to be reproducible and 
replicable.  
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2. INTRODUCTION
Evapotranspiration (ET) is a key component for hydrology, agricultural water management8, and better water resources 

allocation for ecosystem. For best water resources management practices, accurate estimation of ET is essential to 
understand the interactions between water and energy cycles15, droughts 1, climate change13 and plant growth. ET is 
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considered the highest component in the hydrologic cycle, constitutes 70% of precipitation on land to the atmosphere10. For 
agricultural water management, ET is the key indicator for quantifying crop water demand and vegetation stress. There are 
several approaches have been used for quantifying the actual ET such as scintillometers 5, lysimeters16, and eddy covariance 
flux towers14; however, these methods are limited to small sampling area under assumption of surface homogeneity7, which 
is less likely to be met in reality.  

Recently, the advent of remote sensing technique with wide range of platforms allow us to produce spatial ET 
information at different resolutions spanning from sub-meters to kilometers. Spatial information can be acquired by 
satellites, manned aircraft, and small unnamed aerial systems (sUAS)6 which then grounded in the theory behind the surface 
energy balance (SEB) models9 such as the Two-Source Energy Balance. The inputs for these models include the 
micrometeorological information (wind speed, air temperature, water vapor pressure, and incoming solar radiation) and 
other information related to the vegetation cover and land surface temperature which derived from remotely-sensed data. 
The development of sUAS platforms and various sensors associated with advanced SEB models (e.g., TSEB12) nowadays 
are an example for the progress made in remote sensing being used for estimating ET in complex agricultural environments 
such as vineyards. Despite the fact of progress made in the understanding and modeling of atmosphere-plant-soil 
interactions and numerical quantification of the internal processes at plant scale, as well as ground truth information 
comparison and validation, more work on sUAS data processing is still necessary. 

From a general perspective, sUAS information processing becomes computationally expensive on local computers. 
This requires a more powerful computational platform in order to efficiently derive the value of those data. The advent of 
high performance computing recent years become very helpful to integrate resources from different locations and analyze 
real-time big data. In this research effort, sUAS and surface energy balance models are being integrated with a sharing 
platform namely myGeoHub https://mygeohub.org/ to be easily migrated to the HPC resources to parallelize, streamline 
and enable seamless integration of modeling components. 

 

2. METHODOLOGY 
1.1 Model Overview 

In this study, the Two Source energy Balance (TSEB) model was used to calculate surface energy fluxes. TSEB was 
originally developed by Norman et al, 199512 and undergone several revisions to partition the radiative and turbulent energy 
fluxes between soil and canopy. In this case, net radiation (Rn) and sensible heat flux (H) are partitioned between 
soil/substrate and canopy. There are several versions of TSEB model including TSEB-PT (Priestley Taylor), TSEB-DTD 
(Dual Time difference), TSEB-2T (Dual Temperature), and TSEB-2T-DMS (Data-mining sharpening of temperature). 
TSEB-PT model assumes a composite radiometric temperature (Trad) from the soil/substrate and canopy. The decomposition 
of radiometric temperature (Trad) between soil/substrate and canopy is based on the fractional cover (fc). TSEB-DTD is 
similar to TSEB-PT model with further development by decomposing the Trad into soil/substrate temperature (Ts) and 
canopy temperature (Tc) using two observations of Trad. The first observation acquired 1.5 h after the sunrise (Trad,0), while 
the second  obtained during the daytime (Trad,1). TSEB-2T-DMS model is another version of TSEB that 
partitions Ts and Tc using a data-mining fusion algorithm to sharpen the original LST to be similar to the optical data. This 
would allow a better discrimination between Ts and Tc. The TSEB2T model is a contextual TSEB that estimates Ts and Tc 
from LST imagery based on the relationship between vegetation index (VI) and LST, particularly LST-NDVI, to calculate 
Ts and Tc within a specific spatial domain. As shown in Figure (1), the TSEB2T 11 model separates Rn, H, and LE between 
vegetation and soil. The equations below describe the mathematical expressions behind the TSEB approach 

Rn = LE + H + G, (1) 

Rnc = Hc + LEc, (2) 

Rns = Hs + LEs + G, (3) 
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Figure 1. Schematic representation of TSEB2T model 

where Rn is the net radiation, H is the sensible heat flux, LE is the latent heat flux, and G is the soil heat flux. Ts 
and Tc are the soil and canopy temperature, respectively, derived from the LST and high enough resolution of optical data. 
Subscripts of c and s represent the canopy and soil components, respectively. LEc and LEs are solved as residuals when (Tc 
and Ts) observations are available. 

 

2.2 EC footprint model 

Eddy Covariance (EC) footprint models are used for describing the position and size of surface source areas, as 
well as the relative contribution of passive scalar sources to measured fluxes3. The EC flux footprint is defined as a 
mathematical expression used to transfer between sources and sinks of passive scalars at the surface, Qc, and the turbulent 
flux, Fc. There are several parameters influencing the EC footprint estimation which include atmospheric stability, receptor 
height, and surface roughness, all of which strongly affect the size of the footprint. The mathematical function used to 
describe the flux footprint is shown in Equation (4) 

Fc(0,0, zm) = ∫ Qc(x, y)f(x, y)dxdyℜ        (4) 

where Fc is a flux density (per unit area), Qc(x, y) is the as source or sink at the surface. Because the footprint function is 
always estimated at a specific measurement height (receptor height), the vertical reference in f is neglected. From a single 
unit point source or sink,Qu, Equation (4) can be simplified as follows 

      f(x, y) = Fc(0,0,zm)
Qu(x,y)

                                   (5) 

In this research, Kljun et al, 2002 4 model has been considered for footprint analysis. This model uses the three-
dimensional Lagrangian stochastic footprint model LPDM-B and found to satisfy the well-mixed condition continuously 
for convective to stable stratifications and for measurement heights (receptors) within or above the surface layer. Assuming 
that crosswind turbulent dispersion can be treated independently from vertical/streamwise transport, the mathematical 
expression for EC can be expressed in terms of a crosswind-integrated footprint, fy�   and a cross-dispersion function, Dy  

   f(x, y) = fy� (x)Dy                                     (6) 

   f(x, y) = fy� 1
√2πσy

exp �− y2

2σy2
�                (7) 

More details about the derivation of the footprint model and model parameters can be found in Kljun et al. 20153 
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3. RESULTS 

3.1Taxonomy for reusability in environmental modelling 

 TSEB2T was developed by Norman et al, 199512 and further developed by Nieto et al., 201911 and hosted in 
myGeoHub to use the model in conjunction with remotely sensed information and other micrometeorological data to 
estimate ET and compare against the actual ground data obtained from EC towers installed in the field. The myGeoHub 
was chosen for several reasons. First, in general, web application can provide users easy access to the data, tools and 
simulation resources across different locations. Second, myGeoHub was designed to support geospatial modeling2 such as 
remote sensing models that deal with big data and require a powerful computational platform for analyzing data in a record 
time. Third, this hub now is hosting several datasets, groups, and training materials that help users to have a wide range of 
educational resources. This workflow enables researchers to focus more on the scientific research rather than dealing with 
software replication and data migration. 

 The workflow resulting from this research work organizes the reusability spectrum into four levels: findable, 
accessible, interoperable, and reusable.  These levels represent a progression started with the base level, findability, first 
step to achieve, followed by accessibility, interoperability, and finally reusability.  

 
Figure 2. The reusability taxonomy for complex computational studies comprising a progression that requires increased effort and time 

from findability, through accessibility, interoperability and reusability. 

FAIR principles were used in this study to improve the reuse of sUAS data by making it more findable, accessible, 
interoperable, and reusable by users and machines. This study effort also helps researchers to demonstrate the impact of 
their work by enabling the reuse of the data, and can foster future and broader collaboration. Using FAIR principles in 
TSEB2T allow users also to run the model for multiple sUAS images at the same time as well as validate the results by 
using the ground truth measurements from EC towers.  
 
3.2 Separation of soil and canopy temperatures (Ts and Tc) 
 Figure (3) shows the Python code deployed in myGeoHub for separating the soil/substrate and canopy 
temperatures (Ts and Tc) using the relationship between the normalized difference vegetation index (NDVI) and the 
composite land surface temperature (LST). First, Ts and Tc are calculated by taking the average value of pixels that are pure 
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soil/substrate and pure canopy within a model grid size. For detecting NDVI threshold values of soil, a relationship between 
Leaf area index (LAI) and NDVI is constructed where the threshold value is identified when LAI is nearly zero. In case of 
very dense vegetation (pure soil pixels not exist) or sparse vegetation lacking pure vegetation pixels inside the contextual 
spatial domain, a linear fit between LST and NDVI can by generated to estimate Ts and Tc. 
  

 
Figure 3.  Python code for separating Tc and Ts. 

3.3 EC footprint estimation 
Figure (4) shows a screenshot of Python code in myGeoHub to estimate the EC footprint using the 2D flux model 

developed by Kljun et al. 20153. The fetch shape and orientation of the footprint depend on the micro-meteorological 
conditions at the site measured by the EC towers. Those measurements involve friction velocity, turbulence fluxes, and 
wind speed, which affect atmospheric stability, and canopy and EC measurement height. Figure (5) represents the EC 
footprints at different times.  

 
Figure 4. Python code for the EC footprint analysis. 

Proc. of SPIE Vol. 11747  117470K-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Jul 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

Figure 5. Layout of EC footprints for two towers at different times at Lodi vineyard. 
 

3.4 Surface energy fluxes calculations 
 
Figure (6) shows the Python code for calculating the surface energy fluxes using TSEB2T model. The key inputs for 

the model include canopy and soil temperatures (Tc and Ts), fractional cover (Fc), Leaf Area Index (LAI), canopy width-to-
canopy height ratio (w_C/h_C), Canopy height (h_C), as well as other inputs related to the micrometeorological data. The 
main model outputs are the energy fluxes (Rn, H, LE, and G) beside other ancillary data. 
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Figure 6. Python code for calculating surfaces energy fluxes using TSEB-2T model. 

 

 
Figure 7. Energy fluxes (Rn, G, H, and LE) using TSEB2T. 
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4. CONCLUSION 

In this study, myGeoHub as a sharing platform has been used to integrate remotely sensed data and other 
micrometeorological data to estimate ET using TSEB2T model and compare against the ground truth measurements 
obtained from the EC towers. myGeoHub supports the geospatial modeling, data analysis and visualization needs for 
research and education communities through hosting datasets, tools, training materials and educational contents. This 
implies that data can be easily findable, accessible and interoperable with workflows and applications for the purpose 
of reusability.  Python code of the TSEB2T has been deployed in myGeoHub to facilitate the reproducibility and 
replicability of the model by users. Moreover, the EC footprint analysis code was hosted in the hub which can replicated 
to generate several footprints/source area using the micrometeorological data obtained from the EC towers. 
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