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Abstract 
Motivation: Procedures for structural modeling of protein-protein complexes (protein docking) produce 
a number of models which need to be further analyzed and scored. Scoring can be based on inde-
pendently determined constraints on the structure of the complex, such as knowledge of amino acids 
essential for the protein interaction. Previously, we showed that text mining of residues in freely avail-
able PubMed abstracts of papers on studies of protein-protein interactions may generate such con-
straints. However, absence of post-processing of the spotted residues reduced usability of the con-
straints, as a significant number of the residues were not relevant for the binding of the specific proteins. 
Results: We explored filtering of the irrelevant residues by two machine learning approaches, Deep 
Recursive Neural Network (DRNN) and Support Vector Machine (SVM) models with different train-
ing/testing schemes. The results showed that the DRNN model is superior to the SVM model when 
training is performed on the PMC-OA full-text articles and applied to classification (interface or non-
interface) of the residues spotted in the PubMed abstracts. When both training and testing is performed 
on full-text articles or on abstracts, the performance of these models is similar. Thus, in such cases, 
there is no need to utilize computationally demanding DRNN approach, which is computationally ex-
pensive especially at the training stage. The reason is that SVM success is often determined by the 
similarity in data/text patterns in the training and the testing sets, whereas the sentence structures in 
the abstracts are, in general, different from those in the full text articles. 
Availability: The code and the datasets generated in this study are available at 
https://gitlab.ku.edu/vakser-lab-public/text-mining/-/tree/2020-09-04. 
Contact: vakser@ku.edu or pkundro@ku.edu  
Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  
Protein-protein interactions (PPI) play a key role in cellular mechanisms. 
Computational approaches, such as protein docking, are important for the 
structural characterization of PPI. Protein docking determines the struc-
ture of a protein-protein complex, given the structure of the interacting 
proteins (Vakser, 2014). A typical docking pipeline involves three major 
steps: (i) global scan generating multiple tentative protein-protein matches 
(docking poses), (ii) evaluation of these poses by physics-based or 
knowledge-based scoring functions, and (iii) structural refinement of the 
top-scoring matches. The ability of the modeling protocol to differentiate 
between correct (near native) and incorrect docking poses determines the 
overall docking success. Knowledge of even a single residue at the 

protein-protein interface is a powerful constraint for the docking search, 
dramatically reducing the number of docking poses to be evaluated, thus 
significantly increasing reliability of the resulting docking models. 
Such knowledge can be acquired from the PPI-related scientific publi-

cations. However, rapidly growing number of biomedical publications in 
public repositories, such as PubMed, renders manual extraction of relevant 
information nearly impossible. This necessitates utilization of automated 
text mining (TM) procedures for generating docking constraints (extract-
ing interface residues from the text of publications). The textual content 
of the publications is easily understandable by human experts, but pro-
cessing of that information by computers requires TM algorithms, specific 
for each particular field of study. So far, TM applications have been 
mainly focused on prediction of interactions between biological macro-
molecules (Caufield and Ping, 2019; Li, et al., 2016; Papanikolaou, et al., 
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2015; Raja, et al., 2020; Tagore, et al., 2019; Yu, et al., 2018). However, 
the TM algorithms applicable to protein-protein docking currently are un-
derdeveloped. 
The TM techniques extract usable bits of information from the body of 

text. A scientific text has varying information concentration and coverage 
depending on a section. Abstracts of scientific publications typically are 
readily and freely available, have high information density, but have lim-
ited content coverage compared to the full-text papers (Lan and Su, 2010; 
Martin, et al., 2004; Schuemie, et al., 2004). The full texts use longer sen-
tences and parenthesized material (Cohen, et al., 2010) and have hetero-
geneous distribution of information (as measured by density of keywords 
in various sections) (Shah, et al., 2003). Access to the full-text papers cre-
ates a more comprehensive source (corpus) for the text mining and in-
creases the recall compared to the abstracts (Caporaso, et al., 2008; 
Westergaard, et al., 2018). However, copyright restrictions generally limit 
the use of full text articles in the automated TM protocols (Cohen and 
Hersh, 2005; Rodriguez-Esteban, 2009). The number of PMC-OA (the re-
pository of freely available full-text papers) articles is not increasing at the 
same rate as the number of PubMed abstracts. The full-text articles have 
statistical properties (such as a term frequency in the document) that are 
more robust, but have more noise compared to the abstracts (Lin, 2009). 
Text mining of the full-text papers has helped in extraction of various bi-
ological information (Corney, et al., 2004; Fink, et al., 2008; Friedman, et 
al., 2001; Gerner, et al., 2010; Gerner, et al., 2012; Mallory, et al., 2015; 
McIntosh and Curran, 2009), including one on non-structural aspects of 
PPI (Dogan, et al., 2017; Hakenberg, et al., 2010; Huang, et al., 2004; 
Krallinger, et al., 2008; Peng, et al., 2016).  
Understanding the textual context of publications requires recognition 

of specific patterns in texts that can be identified by machine learning 
(ML) techniques, especially, deep learning (DL) approaches implemented 
using neural networks (NN) with several hidden layers (Ching, et al., 
2018; Habibi, et al., 2017). Each successive layer learns higher level of 
abstraction (Bengio, et al., 2013; LeCun, et al., 2015). NN are trained us-
ing the back-propagation algorithm (LeCun, et al., 2015) where the error 
(the difference between actual and desired output) is projected backwards 
layer-by-layer, with the connection weights adjusted in proportion (Ru-
melhart, et al., 1986). The NN applications include, but not limited to au-
tomatic speech recognition (Schwenk, 2007), machine translation 
(Mikolov, 2012),  paraphrasing (Turney, 2013), image and scene annota-
tion  (Socher, et al., 2011; Weston, et al., 2011), as well as prediction of 
protein-protein interactions (Yao, et al., 2019). However, DL is computa-
tionally demanding, especially at the training stage (which is necessary to 
repeat, e.g. when the model changes), and thus such approaches may be 
employed when simpler ML algorithms, e.g. Support Vector Machine 
(SVM), do not suffice. 
For computational procedures, it is desirable to represent words using 

numbers. Simplistic approaches may assign a unique single number (sca-
lar) to each word of a language (e.g., in lexicographical order). The next 
step is to represent a word as a series of numbers (word vector or word 
embedding), so that vector operations can be meaningfully applied 
(Mikolov, et al., 2013a; Mikolov, et al., 2013b). Then, the inner product 
of the two vectors would be a measure of similarity of the two words, the 
sum of the two vectors would reflect the combined meaning of the two 
words, and the subtraction of the two vectors (offset) would capture the 
relations (e.g. plural relations, like "molecules vs. molecule" and "residues 
vs. residue" would have similar offsets). Word vectors, e.g. implemented 
in the word2vec software, can be efficiently estimated on a large scale 
(Mikolov, et al., 2013a). They are widely used as a first generic step in a 
united architecture for solving a specific Natural Language Processing 
(NLP) task using deep neural networks (Collobert and Weston, 2008; 

Irsoy and Cardie, 2014a; Irsoy and Cardie, 2014b; Mikolov, et al., 2013a; 
Mikolov, et al., 2013b; Mikolov, et al., 2013c; Socher, et al., 2011), e.g. 
for machine translation requiring large vocabulary across multiple lan-
guages (Brants, et al., 2007). The word vectors are used in analysis of sen-
tence-level sentiment, a quantitative score of a subjective information (e.g. 
“tone of a speaker” or “attitude of a customer”) (Socher, et al., 2011; So-
cher, et al., 2013). 
Earlier, we implemented an algorithm that searches for the patterns of 

letters and digits typically used by authors referring to a specific residue 
in a protein (referred to as basic TM in this paper). We showed that such 
information, although mined in a simplistic manner, efficiently excludes 
incorrect docking models from consideration and thus significantly im-
proves docking success rate (Badal, et al., 2015). However, without inter-
pretation of the context in which the residue appears in the text, the initial 
pool of the extracted data inevitably contains residues that are not relevant 
for the binding of specific proteins. Thus, the initially extracted set of res-
idues needs further post-processing. Recently, we investigated filtering of 
the non-relevant residues by several Natural Language Processing (NLP) 
techniques, such as keywords semantic similarities, dictionaries look-up 
and analysis of sentence parse trees with and without SVM model (Badal, 
et al., 2018). However, the amount of non-relevant residues still remained 
high. In this paper, for the analysis of context in which the residue is men-
tioned, we use a deep recursive neural network (DRNN) model based on 
the concept of the word vectors. We compared the performance of the 
DRNN and SVM models in various training/testing schemes and showed 
that the DRNN model is superior, albeit slightly, to the SVM model when 
training is performed on the PMC-OA full-text articles and applied to clas-
sification (interface vs. non-interface) of the residues spotted in the Pub-
Med abstracts. When both training and testing is performed on the full-
texts articles, the performance of the models is similar. Thus, the use of 
DRNN, which is computationally expensive especially at the training 
stage, in such cases may be unnecessary. 

2 Methods 

2.1 Basic text mining protocol  
Our basic TM tool consists of information retrieval (IR; retrieval of pub-
lications relevant to a particular pair of interacting proteins), and infor-
mation extraction (IE; extraction of residues in the abstracts of identified 
publications) (Badal, et al., 2015). In this study, in addition to using Pub-
Med resources from https://www.ncbi.nlm.nih.gov/ (NCBI, 2013), we 
also downloaded and stored locally the PMC-OA full text articles from 
http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/. Thus, the IR stage was mod-
ified to incorporate the local availability of the full-text articles, as op-
posed to E-fetch from the E-utilities for the PubMed abstracts. PMID (a 
unique ID for a PubMed abstract) and PMCID (a unique ID for a PMC-
OA full-text articles) are different for the same article. For computational 
efficiency, mapping between them, allowing fetching of a full-text article 
given a PMID of its abstract, was implemented as a PostgreSQL table. As 
in our previous study (Badal, et al., 2015), articles, relevant to a protein 
pair, were retrieved by AND-queries (requiring that both proteins in the 
complex are mentioned in the text) and OR-queries (either of the proteins 
is mentioned) using NCBI E-utilities (http://www.ncbi.nlm.nih.gov/ 
books/ NBK25501). Then using PMID-PMCID mapping, the available 
full-text articles for that protein pair were identified (for 2,640,816 PMID 
only 196,912 PMCID were mapped). These full-text articles and abstracts 
were subjected to the IE stage of the protocol (Fig. 1), which spots differ-
ent variations of the residue name and its number (Badal, et al., 2015). A 
simple residue filtering was performed  



 

 
Figure 1. Flowchart of the text-mining system. Algorithm of the text mining with the SVM model is the same as in (Badal, et al., 2018) and thus is not shown in detail. Both full text 

sets are unified in one training set (shown by the dashed line) when the trained neural network is tested on the PubMed abstracts. 

 

by checking that the residues are on the protein surfaces. All or part of 
residue-containing sentences (hereafter termed as R-sentences) from the 
full-text articles were used to estimate the effectiveness of the basic TM 
on the full-texts and to train the DRNN and the SVM models. The trained 
models were used to classify residues found in the PubMed abstracts and 
full-text articles as interface or non-interface. In the same training/testing 
scenarios, both SVM and DRNN models used the same list of raw-mined 
residues. Thus, the difference in performance of the machine learning 
models generated by the two approaches originates only from the differ-
ence in the text manipulation steps (see below). 

2.2 Evaluating performance of the text mining protocol 
Whereas residues essential for protein recognition could be outside the 
protein-protein interface, the goal of our text mining approach is to gener-
ate constraints for docking, which implies residues at the protein-protein 
interface. Thus, the performance of the TM protocol for a particular PPI, 
for which N residue-containing articles (abstract-only or full-text) were 
retrieved, was evaluated as (Badal, et al., 2015) 
 
 

,   (1) 
 

where 𝑁!"#$ and 𝑁!#%# are the numbers of interface and non-interface resi-
dues, correspondingly, mentioned in article i for this PPI, which were not 
filtered out by an algorithm. If all residues in an article were purged, this 
article was excluded from the PTM calculations. Distribution of  for all 

complexes in the dataset provides detailed decription of efficiency of the 
TM algorithm for that dataset. We also compared the performance of two 
algorithms for residue filtering (Badal, et al., 2018) by 
 

,   (2) 

where  and  are the number of targets with PTM value 
yielded by algorithms X1 and X2, respectively. Since the major contribu-
tions to PTM distribution are from all-false-positive (PTM = 0) and all-true-
positive (PTM = 1) cases, algorithm efficiency can be roughly assessed just 
by the two extreme values of DN(PTM) at PTM = 0 and PTM = 1. The values 
DN(0) < 0 and DN(0) > 0 indicate better performance of model X1 with 
respect to model X2 in purging of the PPI-irrelevant residues from the 
mined articles.  

2.3 Datasets 
The approaches were benchmarked on the set of 579 non-redundant (at 
30% sequence identity) binary protein-protein complexes from the 
DOCKGROUND resource (https://dockground.compbio.ku.edu) (Kundro-
tas, et al., 2018). The dataset for training ML models (DRNN and SVM) 
consisted of 4,982 residue-containing sentences (hereafter referred to as 
R-sentences), which passed the initial screening of residue-containing sen-
tences automatically extracted by the OR-queries from the full-text PMC-
OA articles  (full training set). By querying the native PDB structures, 
these sentences were classified into 1,605 positive (interface residue) and 
3,377 negative (non-interface residue) R-sentences. The interface residues 
were defined by 6 Å distance between any atoms across the chains inter-
face. The dataset for testing the ML models comprised 5,786 R-sentences 
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(or their parts around identified residues, see Results), extracted from the 
PubMed abstracts by the OR-queries (abstract testing set). Since only a 
small fraction of the training text came from PMC-OA abstracts of the 
PMC-OA articles, we did not exclude PubMed abstracts that have PMC-
OA full-text articles available.  
For testing the ML models on the full-text articles, the training set con-

sisted of 803 positive and 1689 negative sentences extracted from the ar-
ticles describing studies of the top 290 complexes from the full list of com-
plexes (sorted in alphabetical order of corresponding PDB codes). The re-
maining sentences from the articles describing studies of the rest of the 
complexes comprised the test set. 

2.4 Generation of keywords 
To identify keywords relevant to the protein binding, we computed the 
differences (bias) in word frequencies (percent of the sentences with that 
word) calculated separately for the positive and negative R-sentences in 
the full training set. Words with the biases between 1 and -1, stop words 
and names of a protein, an amino acid or species were omitted from con-
sideration. This resulted in 47 PPI+ive (PPI-relevant, positive bias) and 37 
PPI-ive (PPI-irrelevant, negative bias) keywords (Table S1). 

2.5 Support Vector Machine model 
The features for the SVM model consisted of the scores, calculated from 
the parse trees of the R- and the context (immediately preceding and fol-
lowing the R-sentence) sentences. This score reflects an effective count of 
the edges on the parse tree between a residue (or root for the context sen-
tences) and all the keywords from the Table S1 (detailed description is 
published elsewhere (Badal, et al., 2018)). Sentence parse trees were built 
by the Perl module of the Stanford parser (De Marneffe and Manning, 
2008a; De Marneffe and Manning, 2008b) http://nlp.stanford.edu/soft-
ware/index.shtml downloaded from http://search.cpan.org site. The SVM 
model was trained and validated using program SVMLight with linear, 
polynomial and RBF kernels (Joachims, 1998; Joachims, 1999; Morik, et 
al., 1999). Analysis of the results indicated (data not shown) that the best 
SVM performance was achieved using RBF kernel with gamma 0.25 for 
both training-testing schemes (training on full-texts, testing on abstracts 
and training and testing on full-texts only). 

 
Figure 2. Schematic representation of a sentence binary tree and associated sentiment 
labels. 

2.6 Docking protocol 
Docking by our GRAMM procedure (Vakser, 1996) was evaluated on the 
unbound protein structures from the DOCKGROUND X-ray benchmark set 
4 (Kundrotas, et al., 2018). The set originally consisted of 389 protein 
complexes, out of which 57 were also present in the set used in develop-
ment of the TM protocols and thus were excluded from docking. The res-
idues identified by the TM protocols were used to generate a confidence 
score (for details, see Badal, et al., 2018) to increase the weight of protein-
protein matches that had these residues at the predicted interface (Badal, 
et al., 2018). The quality of a match was assessed by Cα ligand (smaller 
protein in the complex) interface root-mean-square deviation (i-RMSD) 
between the interface of the docked unbound ligand and corresponding 
atoms of the unbound ligand superimposed on the bound one in the co-
crystallized complex. Docking was evaluated by the percentage of the suc-
cessfully predicted complexes. The low-resolution protein-protein match 
was considered correct if it was inside the binding funnel (i-RMSD ≤ 8 Å; 
Hunjan, et al., 2008), making it a practical starting point for the refinement 
trajectories (Hunjan, et al., 2008). Protein complex was considered pre-
dicted successfully at low resolution if such match was among top 100. 
Docking was also assessed by the enrichment of the prediction pool by the 
correct matches across all complexes (overall increase in the number of 
the top-100 predictions). Text mining provides constraints for docking re-
gardless of the complexity of their modeling (e.g. for protein interactions 
involving large conformational changes upon binding), which should be 
instrumental for the refinement. In practical docking, the number of mod-
els for the refinement is limited by the computational efficiency of the 
refinement protocol. Currently available protocols, including those with 
the GPU implementation, make 100 refinement trajectories practical 
(Dauzhenka, et al., 2018). 

3 Results and Discussion 

3.1 Architecture of neural network 
For the DRNN training, we generated PPI-specific sentiment tree bank, 
which is a set of binary trees (Fig. 2) of the R-sentences from the training 
set with each leaf and internal node tagged by a sentiment labels  and 
, respectively (j counts words in the sentence). According to the Stan-

ford Sentiment Treebank (Socher, et al., 2013), we utilized five standard 
sentiment classes: very +ive (labeled 4), +ive (3), neutral (2), -ive (1), very 
–ive (0). In our case, a sentiment (or more precisely, its label), quantifies 
the degree to which the information in a sentence is relevant to protein-
protein docking, i.e. how likely residues mentioned in the sentence are at 
the protein-protein interface (label 4 is most probable and label 0 is least 
probable). In a sentence of N words, the bj is calculated as 
 

   (3) 
 
for the positive and negative sentences, respectively. The sentiment label 
aj is 
 ,     (4) 

where Fj is the fixed sentiment label for PPI+ive and PPI-ive keywords 
(Table S1). 
Such labeling scheme ensures that the final sentiment label of a sen-

tence mentioning interface residues is 3 or 4 (0 or 1 for sentences with 
non-interface residues) and captures the baseline trend of a sentiment, 
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steadily increasing for the positive and decreasing for the negative sen-
tences. The sets of aj and bj were the first part of the input, necessary for 
the DRNN training. 
The second part of the training input was a set of initial word vectors 

(numeric weights associated with the word), , for each of the 74,438 
unique words in the sentences of the training set (out of ~20M total 
words). The vectors were generated by the word2vec program with skip-
gram model (a predictive language model that works well for even rarely 
used words) and the default training window size of 10 (the number of 
considered words in the context) (Mikolov, et al., 2013a). The 

dimensionality of the word vectors was set to 300, considered sufficient 
for complex NLP tasks (Jurafsky and Martin, 2017; Mikolov, et al., 
2013b; Pennington, et al., 2014). The word vectors corresponding to sim-
ilar words were distributed close to each other (Fig. 3). The amino acids 
were in one region of the vector space, as were the words associated with 
shapes. Similarly, co-localized were words such as "interaction" and 
"complex." Antonyms, such as hydrophobic, hydrophilic, are also in the 
proximity of each other, indicating that these terms are linguistically in-
terchangeable.

 

Table 1. Overall performance of basic TM on abstracts (PubMed and PMC-OA) and full texts (PMC-OA) 

Dataset Query Typea    Ltotb Lintc Coverage (%)d Success (%)e Accuracy (%)f 

PubMed abstracts  AND 128 108 22.1 18.7 84.4 

PubMed abstracts OR 328 273 56.6 47.2 83.2 

PMC-OA abstracts AND 37 21 6.3 3.6 56.7 

PMC-OA abstracts OR 164 89 28.3 15.3 54.2 

PMC-OA full-text AND 103 70 17.7 12.0 67.9 

PMC-OA full-text OR 313 238 54.0 41.1 76.0 

 

a AND and OR query requires that the name of both proteins (AND) or either protein (OR) is mentioned in the returned document 
b Number of complexes, for which TM retrieved at least one article with residues 
c Number of complexes with at least one interface residue found in the retrieved articles 
d Ratio of Ltot and total number of complexes (579) 
e Ratio of Lint and total number of complexes (579) 
f Ratio of Lint and Ltot 

 

 
Table 2. Overall TM performance on test set of PMC-OA full-text articles retrieved by OR-queries with simplified residue filtering (basic TM) and with 
residue filtering by SVM and DRNN models trained on reduced full-text training set. 

Model Ltot a Lint b Coverage (%)c Success (%)d Accuracy (%)e DN(0)f DN(1)f 

Basic TM 157 115 60.6 44.4 73.2 ‒ ‒ 

SVM  87 58 33.6 22.4 66.7 ‒22 +15 

DRNN  75 46 28.9 17.8 61.3 ‒24 +11 

 

a Number of complexes for which TM found at least one article with residues 
b Number of complexes with at least one interface residue found in articles 
c Ratio of Ltot and total number of complexes (259) 
d Ratio of Lint and total number of complexes (259) 
e Ratio of Lint and Ltot 
 f From Eq. 6 with values from basic TM (first row) as X2  

{ }kv
!!"



Table 3. Overall TM performance on PubMed abstracts retrieved by OR-queries with simplified residue filtering (basic TM) and with residue filtering 
by the SVM and DRNN models. Trained DRNN model was used for classifying residues in the entire sentence, as well as using 7-words window around 
mined residues. Both SVM and DRNN models were trained on the complete full-text training set. 

Model Ltot a Lint b Coverage (%)c Success (%)d Accuracy (%)e DN(0)f DN(1)f 

Basic TM 328 273 56.6 47.2 83.2 ‒ ‒ 

SVM 182  135 31.4 23.3 74.1 -15 -3 

DRNN (Whole sentence) 179 120 30.9 20.7 67.0 ‒3 +6 

DRNN (7-words window) 150 104 25.9 18.0 69.3 ‒16 +13 

 

a Number of complexes for which TM protocol found at least one abstract with residues 
b Number of complexes with at least one interface residue found in abstracts 
c Ratio of Ltot and total number of complexes (579) 
d Ratio of Lint and total number of complexes (579) 
e Ratio of Lint and Ltot 
 f From Eq. 6 with values from basic TM (first row) as X2 
 
Both input components were submitted to the program drsv 

(https://github.com/oir/deep-recursive) (Irsoy and Cardie, 2014a) to train 
3-layers DRNN model. The DRNN learned over ~10 epochs (epoch is de-
fined as a sweep through the entire training set). Beyond 10 epochs, 
DRNN was getting over-trained (Fig. S1). The same program was used to 
evaluate the sentiment for the entire or partial sentences using trained 
DRNN model. In this case, the input consisted of the sentiment labels aj 
(Eq. 2) assigned to the words of a sentence or its parts. Such DRNN ar-
chitecture with corresponding sentiment treebanks (domain knowledge 
specific or generic) is widely used (e.g. in the analysis of Netflix movie 
reviews (Irsoy and Cardie, 2014a; Socher, et al., 2013)). 
 

3.2 Mining of full-text articles 
The full text of a paper provides much more information than its abstract. 
But due to copyright restrictions only just over one million articles are 
freely available in the PMC-OA database, compared to ~26 million entries 
in the PubMed database of freely available abstracts. This causes signifi-
cantly better TM performance on the PubMed abstracts than on the ab-
stracts of the PMC-OA articles (Table 1). 
The limited access to the full texts is counterweighted by the abundant 

information in them, as the overall TM performance on the PMC-OA full-
text articles is comparable to that on the PubMed abstracts (Table 1). Sig-
nificantly better TM performance on PMC-OA full-texts than on the 
PMC-OA abstracts (Table 1) points to more frequent mentioning of resi-
dues in the full texts (for 149 complexes, all mined residues were in the 
full texts only). However, due to lesser space constraints in the full texts, 
residues there are mentioned in a variety of contexts. This leads to a sig-
nificantly larger number of PPI-irrelevant residues in the full texts than in 
the abstracts (corresponding bars at PTM = 0 and PTM = 1 in Fig. 4). 
Research on a specific protein interaction could be published only in 

journals with limited access to their full texts. Our results indicated that 
for a significant part of the complexes in our set (75 out of 579, or ~13%) 
this is indeed the case (one such example is shown in Figure S2 with the 
detailed description in Text S1). Thus, we argue that, at least presently, 

PMC-OA full-text articles are more suitable for thorough analysis of res-
idue-mentioning context (with consequent application to the residue purg-
ing in the PubMed abstracts) rather than for the extraction of the raw in-
formation. 
Both SVM and DRNN models similarly affected the TM of the full-text 

articles (Table 2 and Fig. 5) and their abstracts (Table S2 and Fig. S3). 
SVM model purged all initially mined residues (i.e. all mined residues 
were considered non-interface ones) for a smaller number of complexes 
(second column in Table 2). At the same time, it was slightly better in 
removing non-interface residues from the full-text articles (last column in 
Table 2). Compared to the basic TM, both SVM and DRNN models for 
the full-text articles significantly increased the fraction of complexes, for 
which all mined residues are located at the complex interfaces. In the ab-
stracts of the PMC-OA articles, DRNN and SVM removed all retrieved 
abstracts with the residues for ~ 70% of the complexes. Thus, the differ-
ence between the two models was not statistically significant.  The perfor-
mance of the SVM model only slightly depends on the keywords used for 
the SVM training and testing (Table S3 and Figure S4 show the results for 
the SVM model with the manually selected keywords from our previous 
study (Badal, et al., 2018)). In our simplified scheme, we assigned a defi-
nite sentiment only to frequently appearing words designated as PPI key-
words. Thus, we could miss infrequently occurring words or word groups 
that carry a strong sentiment. This is illustrated in Figure 6 where residue 
Asp53 at the interface of heat shock HSP82 and AHA1 proteins was in-
correctly filtered by both SVM and DRNN models. However, human 
reader can easily identify this residue as the interface one (additional ex-
amples in Text S3). In the future, performance of a DRNN model can be 
potentially improved by the use of PPI-specific hand-curated sentiment 
tree bank. 

3.3 Text mining of abstracts 
When both SVM and DRNN models are trained on full-text articles, and 
applied to classification of residues in the abstracts, the results are similar, 
with somewhat better performance of the DRNN model (reflected in the 
last column of Table 3 and the rightmost columns of Figure 7). For this 
model, however, the larger fraction of complexes with only interface 



Text mining for modeling of protein complexes 

residues in the final list is counterweighted by the largest fraction of com-
plexes, for which only non-interface residues were mined (left- and right-
most columns in Figure 7). The training of the DRNN model was done on 
the entire set of full-text articles, but its performance only weakly depends 
on the size of the training set (Table S4 and Fig. S5). The SVM model was 
better in removing complexes with only non-interface residues mined, but 
failed in increasing the number of complexes, for which all mined residues 
are PPI-relevant (Table 3).   
We argue that performance of the SVM model suffered from the differ-

ent structure of sentences in the full-texts and the abstracts. The DRNN 
model learns data/text patterns at a higher level of generality, and thus 
easily adapts to different domains, as diverse as, for example, protein 
docking and Netflix movie reviews. This suggests the use of DL algo-
rithms for analysis of TM results when, for example, a particular PPI is 
widely studied by a variety of authors using different lexical semantic 
styles. On the other hand, SVM models may be better in finer analysis of 
articles of the same group of authors with similar writing styles. 
Besides better adaptation of DRNN to the different sentence structures, 

it also has an advantage of an easy implementation of independent classi-
fication of multiple residues in a sentence by limiting the context to a few 
words around the residue (contextual window) and estimating a sentiment 
for that part of the sentence only. Obviously, a smaller contextual window 
allows independent classification of a larger number of residues in the sen-
tence. However, due to the loss of broader contextual information embed-
ded in the trained DRNN model, the sentiment accuracy may decrease. 
Our results indicate that the optimal TM performance is achieved when 
the sentiment is calculated for sentence fragments of seven words around 
the residue (Fig. 8). Overall, the DRNN model with the contextual window 
significantly improves filtering of the non-PPI residues, while only 
slightly reducing the coverage of the dataset (Table 3 and Fig. 7). Figure 
S6 illustrates the advantage of sentiment calculation using context window 
for cationic trypsin - tryptase inhibitor complex. 

3.4 Application to modeling of protein complexes 
We tested the applicability of the above protocols to protein docking. The 
TM protocols used were basic TM, SVM and DRNN (trained on whole 
sentences) - all applied to full-text papers. The results showed the number 
of successfully predicted complexes increase over the basic TM by 5% 
and 10% using SVM and DRNN correspondingly. The total number of the 
top-100 correct matches across all complexes increased by 12% and 19%, 
respectively (Fig. 9). The current added value of the text mining in dock-
ing is limited in part by the lack of uniform standard of residue numbering. 
In different studies, the numbering often depends on the sequence frag-
ment used in the experiments. The numbering of residues in the PDB 
structures is even more complicated as it may depend not only on what 
fragment was crystallized, but also on other factors (e.g., for comparison 
with homologous proteins, numbers like 20A and 20B may be inserted 
between 20 and 21). Fortunately, in the course of time, the numbering of 
residues is starting to follow that of the sequences (or their isoforms) in 
the UNIPROT database. However, currently, improving the mapping of 
the mined residues, especially those from the older literature, to structures 
needed for docking would require complicated analysis of the textual con-
text, which is outside the scope of this study. Also, the number of the full-
text articles in the open access, from which the residues could be mined, 
is still relatively small. With the rapid growth of popularity of the open 
access publishing (Piwowar, et al., 2018), the increase in the success rate 
should grow as well. Thus, the utility of the machine learning approaches 
in application to protein docking, the basic principles of which we ex-
plored in this study, will expand accordingly, leading to more accurate 
modeling of protein interactions.  
 

 
Figure 3. Example of the initial word vectors distribution. Highlighted areas show similar words in the same region of the vector space. The distribution was generated by arbitrarily 
choosing a set of 55 words that are typically found in PPI publications, not meeting any scientific criteria, but representing a rich mix of domain vocabulary. The words were put in a 
list, along with the file containing word-vector lookup table (output of word2vec). The t-SNE software (van der Maaten and Hinton, 2008) extracted relevant 55 word-vectors and 
performed dimensionality reduction, until the required criteria of given perplexity (40) is met and the final dimensionality is reduced to 2. The points were plotted and labelled using 
pyplot in a python script. The highlighted areas were overlaid on the graph. 



 

Figure 4. Basic text mining on abstracts and full-texts. The performance PTM for indi-
vidual complexes was calculated by Eq. 1. The distribution is normalized to the total 
number of complexes for which residues were extracted (Table 1). 
 
 

 

Figure 5. Comparison of text-mining protocols on full texts. Both SVM and DRNN 
were trained on reduced full-text training set. The performance PTM was calculated by 
Eq. 1. The distribution is normalized to the total number of complexes for which resi-
dues were extracted (Table 2). 

 

 

Figure 6. Example of residues mined from full texts. The structure is 1usu, chain A 
(gray) and B (cyan). Out of six residues identified by the basic TM (four at the interface, 
in green and blue, and two not at the interface, in red) NLP SVM and DRNN models 
correctly classified three interface residues (green) and failed to identify Asp53 (which 
could be easily identified by a human reader, see Text S2). Only one non-interface 
residue (magenta) was mined from the PubMed abstracts. The abstracts from PMC-OA 
did not predict any residues in basic TM. Details are in Text S2. 

 

 
Figure 7. Comparison of text-mining protocols on abstracts. The PubMed abstracts 
were retrieved by the OR-queries with simplified residue filtering (basic TM) and with 
the residue filtering by SVM model and DRNN. Both SVM and DRNN were trained 
on entire full-text training set. DRNN was applied for classifying residues in the entire 
sentence and with 7-words window around the mined residues. The performance PTM 
for individual complexes was calculated by Eq. 1. The distribution is normalized to the 
total number of complexes for which residues were extracted (Table 3). 

 

Figure 8. TM performance with residue filtering by DRNN using different window 
sizes around mined residues. DRNN was trained on the entire training set of PMC-
OA full-text articles. The performance PTM  was calculated by Eq. 1. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 9. The increase in successful docking predictions over the basic TM protocol. The 
change of the number of correctly predicted complexes is in blue and the change of the 
number of correct matches in top 100 is in orange. 
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4 Conclusion 
We continued development of the methodology for generating con-

straints from publicly available literature for application to structural mod-
eling of protein complexes. Capitalizing on our earlier results on generat-
ing such constraints from the basic text mining of PubMed abstracts 
(Badal, et al., 2015), improved by natural language processing techniques 
(Badal, et al., 2018), in this study, we focused on comparing performances 
of machine learning models generated by two methods (Deep Recursive 
Neural Network and Support Vector Machine) in filtering non-interface 
residues from the same list of initially mined residues either in PubMed 
abstracts or PMC-OA subset of freely available full text articles. 
The PMC-OA full text articles, despite representing a small subset of 

scientific publications, provide a useful source for training of DRNN 
model. The networks can be applied to classification of residues found in 
the abstracts, where the sentence structures are, in general, different from 
those in the full-text articles. In such case, the DRNN model is superior to 
SVM model, because the success of the latter is often determined by the 
similarity in data/text patterns in the training and the testing sets. Our study 
provides an insight into the optimal context size for TM applications, 
based on the significant improvement of the DRNN model's performance 
when the sentiment was calculated for a part of the sentence around the 
mined residue rather than for the entire sentence. The results indicate that 
the bank of sentiment trees, specific for protein-protein interactions and 
curated by the experts in the field, is essential for further performance im-
provement of the ML-enhanced text-mining. Overall, following our pre-
vious results on NLP application to abstracts (Badal, et al., 2018), we 
showed that DRNN model similarly outperform the basic TM on the ab-
stracts, and both SVM and DRNN models outperform the basic TM when 
applied to the full-text papers. Greater availability of the full-text papers 
should increase usefulness of this source of information for structural 
modeling of protein complexes. A simpler SVM approach is often suffi-
cient for filtering residues mined from the texts with patterns similar to 
those used for training (abstracts - abstracts or full texts - full texts). Thus, 
the use of DL approaches (which are computationally demanding, espe-
cially, at the training stage) in such cases may be unnecessary. 
 
By its nature, the approach based on full-text articles depends on the 

pool of published open access articles about the target protein complex. 
Thus, naturally its application to the recent challenging targets is still lim-
ited. However, with the growth of popularity of the open access publish-
ing, the utility of the approach will grow. Our study focused on applica-
bility of the text mining to modeling of protein complexes, in anticipation 
of the inevitable future growth of the open access publishing. 
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SUPPLEMENTARY MATERIAL 

 

Table S1. List of automatically generated keywords and associated sentiment labels. Positive and 
negative scores (biases) indicate keywords relevant (PPI+ive) and irrelevant (PPI-ive), respectively, 
to protein-protein binding sites. Details are in Methods (main text). 

Score Keyword Sentiment  Score Keyword Sentiment 
-6.2086 Mutations 0  1.0936 Spots 3 
-5.9771 Mutants 0  1.1334 Compounds 3 
-4.6471 Domain 0  1.1391 Active 3 
-3.9662 Mutant 0  1.1903 intermolecular 3 
-2.9279 Mutation 0  1.2049 Interacting 3 
-2.6234 Anti 0  1.2172 Bond 3 
-2.5567 Cells 0  1.2236 Extensive 3 
-2.1993 Sites 1  1.2634 Defined 3 
-2.1408 Observed 1  1.3243 Ubiquitin 3 
-2.0669 Position 1  1.3600 Docking 3 
-1.9548 Gene 1  1.3602 Structure 3 
-1.8865 Additional 1  1.3658 Form 3 
-1.6241 Phosphorylation 1  1.3942 Expected 3 
-1.4819 Effects 1  1.4608 Stable 3 
-1.4340 Substitutions 1  1.5494 Pocket 3 
-1.4193 Using 1  1.6241 Complexes 3 
-1.4072 Effect 1  1.7257 Salt 3 
-1.3690 Previously 1  1.7428 Loops 3 
-1.3186 Reduced 1  1.7436 Terminal 3 
-1.2951 Values 1  1.7469 Surface 3 
-1.2812 Results 1  1.8078 Buried 3 
-1.2804 Motif 1  1.8793 Aromatic 3 
-1.2780 Substitution 1  2.0572 Sequence 3 
-1.2552 Kinase 1  2.0645 Cluster 3 
-1.1301 Levels 1  2.2051 Main 3 
-1.1065 Reported 1  2.3774 Interface 3 
-1.1025 Linker 1  2.4139 Interact 3 
-1.0708 Catalytic 1  2.4456 Affinity 3 
-1.0642 Amino 1  2.4764 Catenin 3 
-1.0562 Specific 1  2.5009 Helix 4 
-1.0432 Identified 1  2.5481 Site 4 
-1.0416 Direct 1  2.5764 Chains 4 
-1.0399 Chemical 1  2.6105 Contacts 4 
-1.0107 Factor 1  2.7096 Patch 4 
-1.0050 Described 1  2.7569 Interaction 4 
-1.0049 Helices 1  2.7836 Complex 4 
-1.0042 Core 1  3.2955 Hydrogen 4 
1.0270 Burring 3  3.9495 Formed 4 
1.0278 Contributing 3  4.1811 Chain 4 
1.0603 Protonation 3  4.4273 Interactions 4 
1.0855 Forms 3  5.2863 Binding 4 
1.0900 Interacts 3  9.1639 Hydrophobic 4 
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Table S2. Overall TM performance on the abstracts of PMC-OA test set of full-text articles with sim-
plified residue filtering (basic TM) and with the residue filtering by the SVM model and DRNN. Both 
SVM model and DRNN were trained on the reduced full-text training set. 

Method Ltot a Lint b Coverage (%)c Success (%)d Accuracy (%)e DN(0)f DN(1)f 

Basic TM 79 40 30.5 15.4 50.6 ‒ ‒ 

SVM 23 16 8.9 6.2 69.6 ‒34 ‒3 

DRNN 20 14 7.7 5.4 70.0 ‒35 ‒5 

 

a Number of complexes for which TM found at least one abstract with residues 
b Number of complexes with at least one interface residue found in abstracts 
c Ratio of Ltot and total number of complexes (259) 
d Ratio of Lint and total number of complexes (259) 
e Ratio of Lint and Ltot 
f From Eq. 2 in the main text with values from basic TM (first row) as X2 
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Table S3. Overall TM performance on full texts with residue filtering using SVM model with automat-
ically (Table S0) and manually (Badal, et al., 2018) selected keywords. 

 

Keywords Ltota Lintb Coverage (%)c Success (%)d Accuracy (%)e 

Auto 87 58 33.6 22.4 66.7 

Manual 95 62 36.7 23.9 65.3 

 
a Number of complexes for which TM protocol found at least one article with residues 
b Number of complexes with at least one interface residue found in articles 
c Ratio of Ltot and total number of complexes (259) 
d Ratio of Lint and total number of complexes (259) 
e Ratio of Lint and Ltot 
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Table S4. Influence of the training set on TM performance with residue filtering by DRNN.  

Training dataset Ltot a Lint b Coverage (%)c Success (%)d Accuracy (%)e DN(0)f DN(1)f 

Full PMC-OA set, 
(4,982 sentences) 179 120 30.9 20.7 67.0 ‒3 +6 

Reduced PMC-OA set 
(2,492 sentences) 116 77 20.0 13.3 66.4 ‒24 ‒7 

 

a Number of complexes for which TM protocol found at least one abstract with residues 
b Number of complexes with at least one interface residue found in abstracts 
c Ratio of Ltot and total number of complexes (579) 
d Ratio of Lint and total number of complexes (579) 
e Ratio of Lint and Ltot 
f From Eq. 6 in the main text with values from the second row in Table 1 as X2  
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Figure S1. Dependence of Deep Recursive Neural Network accuracy on the training length. Training 
and testing were performed on the 4,982 sentences of the PMC-OA full-text articles and 5,786 sen-
tences of the PubMed abstracts, respectively. The accuracy was defined as the fraction of sentences 
in the dataset, for which the correct sentiment was assigned. The DRNN learned over ~10 epochs. 
Beyond that it appeared to be over-trained (accuracy on the training set increases without the corre-
sponding increase in the accuracy on the test set). Sharp falls and rises in the DRNN accuracy can 
be attributed to the drop-out method used to avoid the exploding gradient issue (Irsoy and Cardie, 
2014). Drop-out nodes were chosen at random and at times could correspond to a weight representing 
important learning, thus causing a sudden drop in test and training accuracies learned in subsequent 
epochs. 
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Figure S2. Example of residues mined from abstracts but not from full texts. The abstracts are from 
PubMed and the full texts are from PMC-OA. The structure is 3a7q chain A (gray) and B (cyan). 
Interface (green) and non-interface (red) residues are mined by the basic TM protocol. Details are in 
Text S1. 
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Figure S3. TM performance on the abstracts of PMC-OA test set of full-text articles with simplified 
residue filtering (basic TM) and with residue filtering by SVM model and DRNN. SVM model and 
DRNN were trained on the reduced full-text training set. The performance  for individual com-
plexes was calculated by Eq. 1 in the main text. The distribution is normalized to the total number of 
complexes for which residues were extracted (Table S3). 
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Figure S4. Comparison of the SVM model performance with automatic (Table S1) and manually se-
lected (Badal, et al., 2018) keywords. The performance  for individual complexes was calculated 
by Eq. 1 in the main text. The distribution is normalized by the total number of complexes for which 
residues were extracted (Table S2). 
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Figure S5. Influence of the training set on TM performance with residue filtering by DRNN. Full and 
reduced training sets consisted of 4,982 and 2,492 residue-containing sentences, respectively, from 
PMC-OA full-text articles. The performance  for individual complexes was calculated by Eq. 1 in 
the main text. The distribution is normalized by the total number of complexes for which residues were 
identified (Table S4). 
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Figure S6. Example of residues mined from abstracts by DRNN-enhanced protocol in full sentence 
and with 7-words window. The structure is 2uuy chain A (gray) and B (cyan). Residues correctly iden-
tified at the interface are in green, and incorrectly identified in red. DRNN correctly identified two out 
of three residues in full sentences (the incorrectly identified residue is in magenta). With the window 
size of seven it correctly identified two residues (Gly216, Tyr151). Details are in Text S4. 
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Text S1: for Figure S2  

Residue filtering by basic TM for the complex of reelin (chain A) and low-density lipoprotein receptor-
related protein 8 (chain B) of 3a7q identified from PubMed abstracts and not from PMC–OA full text. 
Only AND-query identified 3 PubMed abstracts. Three residues passed the initial filters of the basic 
TM (see Methods in the main text), of which 2 are at the interface (PTM = 0.66). All three residues 
belong to reelin (chain A of 3a7q). Direct citation of PDB entry identified Lys2467 and Lys2360 (both 
in chain A). These residues play an important role in interaction of reelin with apolipoprotein E receptor 
2 (ApoER2) (Yasui, et al., 2010). Structure-guided alanine mutagenesis of fifth and sixth reelin repeats 
(R5-6) identified that residues Lys2467 and Lys2360 (both in chain A), are part of central binding site 
for low-density lipoprotein receptor (Yasui, et al., 2007). Another residue Ala2101 (chain A) was iden-
tified in mutant reelin where this mutant failed to assemble into multimers via disulfide bonds. How-
ever, it non-covalently associated high molecular weight oligomeric states in solution. The binding 
assay (surface plasmon resonance) showed that this mutant retained binding capability towards low 
density lipoprotein receptor (Yasui, et al., 2011). 
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Text S2: for Figure 6 (main text) 

Residue filtering by basic TM for the complex of heat shock protein HSP82 (chain A) and AHA1 (chain 
B) of 1usu identified one residue from PubMed abstract. PMC (OA) abstracts did not identify any 
residues, while PMC (OA) full-text article identified six residues. The residue identified by PubMed is 
not at the interface (PTM = 0). Four out of six residues identified by PMC (OA) full text are at the 
interface (PTM = 0.66). NLP-hybrid method on PMC (OA) full-text further filtered the residues by iden-
tifying three residues, all of which are at the interface (PTM = 1). All residues were identified by OR-
queries. 

TM on abstract from PubMed identified Glu90 in mutant study of Thr90 in Hsp90α when inves-
tigating the phosphorylation impact of this residue, showing that Thr90 is involved in the regulation of 
the Hsp90α chaperone machinery (Wang, et al., 2012) (PTM = 0).  

TM on PMC (OA) full-text articles identified six residues. The abstract of this full-text article, 
where the residues Leu66, Ile64 and Phe100 were identified as PPI-related using basic TM, is about 
a method to photo-crosslink interacting proteins using p-azido-L-phenylalanine (pAzpa). The non-ca-
nonical amino acid pAzpa was incorporated into a domain of Aha1 that was known to bind Hsp90 in 
vitro (Berg, et al., 2014). The abstract of the full-text article from which residue Asp145 was retrieved 
using basic TM is on the analysis of SGT1–HSP90 (Suppressor of G2 allele of skp1 and Heat-shock 
protein 90). The full text mentions this residue as a target for site-directed mutagenesis in HSP90 in 
wheat (Kadota, et al., 2008). Asp53 was identified in the full-text article on structural study of Aha1 
binding with Hsp90 to modulate ATP hydrolysis cycle and client activity in vivo. When this residue is 
mutated in N-terminal domain in yeast Hch1p it impairs the ability to stimulate Hsp90 (Koulov, et al., 
2010). The abstract where the residue Glu22 was identified by basic TM mentions the results of com-
putational study of allosteric regulation in Hsp90 complexes with p23 and Aha1 as the co-chaperones. 
NLP-hybrid on full text correctly classified three interface residues (Leu66, Ile64 and Phe100). It re-
jected 3 residues (Asp145, Asp53 and Glu22) of which one (Asp53) was at the interface. Deep learn-
ing on full text yielded results identical to those of NLP-hybrid. DL with 7 words window accepted two 
residues which are at the interface (Leu66 and Ile64). 

The interface residue Asp53 can be easily identified by a human reader from the following text 
(Koulov, et al., 2010) ”A previous study identified a mutation in the N-terminal domain of yeast Hch1p 
(D53K) that impaired its ability to stimulate yeast Hsp90 (Meyer et al., 2004). We made the equivalent 
mutation in human Aha1 (E67K) and tested for stimulation of Hsp90 ATPase activity. No stimulation 
was observed, similar to that observed previously for yeast D53K (Figure 5B).” The failure of the 
automated protocols here is because this residue was mentioned not in relation to the proteins studied 
in the paper, but in a broader context of analogy between current and other studies. 
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Text S3: Examples of false negatives 

Example 1. Residue Ser91 at the interface of 2yho chains A and B was found in the sentence “Further, 
wild-type Otub1 and its catalytic mutant (Otub1(C91S)), but not Otub1(D88A), bind to the MDM2 cog-
nate E2, UbcH5, and suppress its Ub-conjugating activity in vitro” from a full-text publication (Sun, et 
al., 2012). 

Example 2. Residue Glu67 at the interface of 2uyz chains A and B was found in the sentence “Sur-
prisingly, DPP9 binds to SUMO1 independent of the well-known SUMO interacting motif, but instead 
interacts with a loop involving Glu(67) of SUMO1” from a full-text publication (Pilla, et al., 2012). 

Both residues were rejected by DRNN and SVM models but can be easily identified by a human 
reader. We argue that this is due to the need to interpret a sequence of keywords (underlined in the 
above examples) rather than a single keyword as in our machine learning model, in order to access 
the correct context of the residue mentioning. Also, in these sentences, additional ambiguity is created 
by words “surprisingly”, “but” and the negation. 
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Text S4: for Figure S6 

Residue filtering by basic TM for the complex of Cationic Trypsin (chain A) and Tryptase Inhibitor 
(chain B) of 2uuy identified 13 residues from 12 PubMed abstracts. Only 4 of 13 residues were cor-
rectly identified at the interface (PTM = 0.30). DL using whole sentence identified 3 residues, of which 
only 2 were at the interface (PTM = 0.66). DL using window of 7 identified 2 residues, both at the 
interface (PTM = 1). All residues were identified by OR-queries. 

Basic TM identified correctly Gly216 in a structural analysis of trypsin-BPTI interfaces 
(Kawamura, et al., 2011). Tyr151 was correctly identified by basic TM in trypsin forming hydrophobic 
interface in investigation of molecular specificity of Kunitz domain 1 (KD1) of issue factor pathway 
inhibitor-2 (Schmidt, et al., 2005). Tyr151 was also identified in another abstract where crystal struc-
ture of trypsin were compared between different organism such as Atlantic salmon, chum salmon and 
bovine (Toyota, et al., 2002). Tyr151 again was correctly, and Ser146 incorrectly, identified in PubMed 
abstract where the residue is part of substrate activation binding site of bovine trypsin (Oliveira, et al., 
1993). 

Glu79 was incorrectly identified at interface by basic TM in the abstract describing E79K muta-
tion in cationic trypsin causing increase in transactivation of anionic trypsinogen and used in-vitro 
analysis of recombinant wild and mutant enzymes (Teich, et al., 2004). Gly65 and Gly23 were incor-
rectly identified by basic TM from an abstract that describes the specificity of papaya proteinase IV 
(PPIV) for cleaving glycyl bonds (Buttle, et al., 1990). Of Thr144 and Gly148 identified by TM only the 
latter is at the interface. The abstract is on the structure of complex of bdellastasin and porcine beta-
trypsin (Rester, et al., 2000). Of Gly174, Gln175 and Gly216 identified by TM only the last two were 
correctly determined to be at the interface. The abstract is about a comparative study of structures of 
cyclotheonamide A (CtA) complexes of alpha-thrombin and beta-trypsin (Ganesh, et al., 1996). 
Ser112 was incorrectly identified by basic TM at interface, from abstract about supercharged mutant 
(variant) of serine protease human enteropeptidase light chain (Simeonov, et al., 2012).  

Lys145 and Ser146 were incorrectly identified by basic TM at the interface, in abstract about a 
crystal structure of an active autolysate form of porcine alpha-trypsin (APT) (Johnson, et al., 1997). 
Lys145 and Ser146 were also identified as an autolysis position in the abstract where the crystal 
structure of Porcine epsilon-trypsin was studied by molecular replacement (Huang, et al., 1994). 
Lys222 was incorrectly identified by basic TM from an abstract about covalent binding of proteinases 
by human alpha 2-macroglobulin (Sottrup-Jensen, et al., 1990). 

DL using full sentence identified 3 residues (Tyr151, Thr144 and Gly148), of which 2 (Tyr151, 
Gly148) were correctly determined at the interface. Thr144 is incorrectly identified at the interface. DL 
using window size 7 identified 2 residues (Gly216, Tyr151), both at the interface. 
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