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Abstract—Low dimensional nonlinear structure abounds in
datasets across computer vision and machine learning. Kernelized
matrix factorization techniques have recently been proposed
to learn these nonlinear structures for denoising, classification,
dictionary learning, and missing data imputation, by observing
that the image of the matrix in a sufficiently large feature
space is low-rank. However, these nonlinear methods fail in the
presence of sparse noise or outliers. In this work, we propose a
new robust nonlinear factorization method called Robust Non-
Linear Matrix Factorization (RNLMF). RNLMF constructs a
dictionary for the data space by factoring a kernelized feature
space; a noisy matrix can then be decomposed as the sum of a
sparse noise matrix and a clean data matrix that lies in a low
dimensional nonlinear manifold. RNLMF is robust to sparse noise
and outliers and scales to matrices with thousands of rows and
columns. Empirically, RNLMF achieves noticeable improvements
over baseline methods in denoising and clustering.

Index Terms—Matrix factorization, denoising, subspace clus-
tering, dictionary learning, kernel method.

I. INTRODUCTION

EAL data or signals are often corrputed by noise or

outliers. As such, data denoising is a core task across
applications in computer vision, machine learning, data mining
and signal processing. Many denoising strategies exploit the
difference between the distribution of the data (structured,
coherent) and the distribution of the noise (independent).
Perhaps the simplest latent structure is low-rank structure,
which appears throughout a wide range of applications [1] and
undergirds celebrated algorithms such as principal component
analysis (PCA) [2], [3], robust PCA (RPCA) [4], and low-rank
matrix completion [5], [6], [7]. For instance, RPCA aims to
decompose a partially corrupted matrix as the sum of a low-
rank matrix and a sparse matrix, thus separating the sparse
noise from the low rank data. Another well-known latent
structure is sparsity, or more specifically, the property that
data vectors can be modeled as a sparse linear combination
of basis elements. Sparse structure appears in compressed
sensing [8], subspace clustering [9], [10], [11], [12], dic-
tionary learning [13], [14], [15], [16], image classification
[17], [18], noise/outlier identification [19], [20], and semi-
supervised learning [21], [22]. For instance, the self-expressive
models widely used in subspace clustering [9], [10], [23]
exploit the fact that each data point can be represented as

Jicong Fan is with the School of Data Science, The Chinese University
of Hong Kong (Shenzhen) and Shenzhen Research Institute of Big Data,
Shenzhen, China. Email: fanjicong@cuhk.edu.cn

Chengrun Yang and Madeleine Udell are with the School of Operations
Research and Information Engineering, Cornell University, Ithaca, NY 14853,
USA. Email: {cy438,udell} @cornell.edu

a linear combination of a few data points lying in the same
subspace and hence are able to recognize noise and outliers
when the data are drawn from a union of low-dimensional
subspaces. In [22], the authors proposed to explicitly pursue
structured (block-diagonal) sparsity for robust representation
with partially labeled data. In recent years, a number of kernel
methods [24], [25], [26], [27], [28] and deep learning methods
[29], [30], [31], [32] have been proposed to remove noise
from data with nonlinear low-dimensional latent structures.
Nevertheless, the kernel denoising methods have high time and
space complexities. Most of the deep-learning-based denoising
methods require clean data samples (e.g. noiseless images),
as supervision, to train the neural networks. In this paper,
we focus on unsupervised denoising. More recently, a few
kernelized factorization methods [33], [34], [35], [36] have
been proposed for nonlinear dictionary learning but they are
not able to handle sparse noise. To solve the problem, we
in this paper provide a robust nonlinear matrix factorization
method and apply it to dictionary learning, denoising, and
clustering.

II. RELATED WORK AND OUR CONTRIBUTION
A. Robust principal component analysis

Suppose a data matrix X € R™*" is partially corrupted
by sparse noise E € R"*" to form noisy observations X =
X + E. The robust PCA (RPCA) model in [4] assumes that
X is low-rank and aims to solve

mi&ir%ize | X | + A|E|l1, subjectto X +E =X, (1)

where || X ||, denotes the matrix nuclear norm (sum of singular
values; a convex relaxation of matrix rank) of X. RPCA
cannot effectively denoise data with nonlinear latent structure,
as the corresponding matrix X is often of high rank. In [28], a
robust kernel PCA (RKPCA) was proposed to remove sparse
noise from nonlinear data. The space and time complexities
of the naive algorithm are O(n?) and O(n?®) respectively,
to store an n X n kernel matrix and compute its singular
value decomposition (SVD). Hence RKPCA cannot handle
large-scale data. In addition, RKPCA has no out-of-sample
extension: a method to reduce the noise of new data (rows of
the data matrix X)) efficiently.

B. Robust dictionary learning and subspace clustering

Classical dictionary learning [37] and sparse coding algo-
rithms [13], [38], [39], [40] denoise by projecting onto d



dictionary atoms. The dictionary matrix D € R™*% and sparse
coefficient matrix C' € R4*™ are found by solving

1
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where Sp = {S € R™*? : ||s;|| < 1,Vj = 1,...,d}! and
Sc :={S € R™" . ||sjllo < k,Vj=1,...,n}.
Formulations (2) and (3) cannot handle sparse noise and out-
liers. Consequently, several robust dictionary learning (RDL)
algorithms [19], [41], [42], [20], [43], [44] have been pro-
posed. For instance, [19] proposed to solve
minimize
DeSp,C
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using both batch and online optimization approaches. In [20],
the authors proposed to set threshold ¢ and solve

n
minimize ;min(nwj — Dgjll2,6) + AICl1, (5
to limit the contribution of outliers to the objective.

Problem (4) may fail when the data are corrupted by small
dense noise. Problem (5) finds outliers but cannot recover
the clean data because the hard-thresholding parameter e
eliminates the representation loss for the outliers and then sets
the corresponding columns of C' to zero.

In contrast, the following RDL formulation extended from
(4) [19] simultaneously learns the dictionary and identifies the
noise:

minimize

DeSp,CE

1, 4
51X =DC = E|7+Xc|Cll + AsR(E). (6)

Here X is the observed noisy matrix, E models the noise or
outliers, and R(E) penalizes errors E. For example, when X
contains sparse noise, we set R(E) = || E||;. The D obtained
from (6) can be used to denoise new data efficiently.

The formulation (6) is closely related to a few other pro-
posals. For example, by setting D = X, one derives the self-
expressive model used in sparse subspace clustering (SSC)
[9]. Moreover, replacing ||C||; with ||C||., one gets the low-
rank representation (LRR) [10] model. A few extensions of
SSC and LRR for subspace clustering can be found in [45],
[46], [47], [48]. We may use SSC and LRR to remove additive
noise and outliers. For instance, when a few columns of X are
outliers, SSC and LRR can identify the outliers by encouraging
FE to be column-wise sparse. When X is corrupted by sparse
noise, we set R(E) = | E||;. The recovered matrix is X — E.
Compared to RDL (6), in terms of denoising, the major
advantage of SSC and LRR is they are nonconvex. However,
since the dictionary used in SSC and LRR is the noisy data
matrix, the denoising performance may degrade. In addition,
SSC and LRR are not effective in denoising new data.

'Throughout this paper, given a matrix X, we denote its j-th column by
a;, and denote its entry at location (%, j) by x;;.

C. Kernel dictionary learning

In recent years, several authors have proposed to augment
dictionary learning with kernel methods to learn nonlinear
structures [33], [34], [35], [36], [49]. For instance, [33] pro-
posed to solve

minimize = [|¢(X) — 6(X)DC — ¢(X )diag(w)||3

DeSp,Ccese 2

(N
+ Acl|Cllo + Awllwllo,

where ¢ denotes the feature map induced by a kernel function

and Sp = {S € R4 : ||s;|| = 1,¥j = 1,2,...,d}. The

nonzeros of w in (7) identify the outliers in X. In [36], the

following problem was considered:

. 1 .
minimize —|lo(X) — ¢(D)C||2F, (8)
DeSp,CeSe 2
where Sp = {§ € Rm™xd Is;ll = 1,Vj =

1,2,...,d; s/s; = p,Vi # j}, and p is a predefined
parameter.

One advantage of (8) over (7) is that the computational
cost was reduced if n > m. Nevertheless, (8) is vulnerable
to outliers. Moreover, neither (7) nor (8) can identify sparse
noise in X and recover the clean data. The reason is that
the denoised matrix itself does not appear in the objective
functions.

D. Contributions of this paper

Our contributions are three-fold. First, we propose a new
robust nonlinear matrix factorization model together with
an effective optimization algorithm that explicitly separates
the sparse noise or outliers from the observed data. Sec-
ond, we provide theory to prove correctness of our factor-
ization in the feature space induced by kernels, and jus-
tify the use of squared Frobenius norm regularization on
the feature matrix and coefficient matrix in the factoriza-
tion model. Finally, based on the robust nonlinear matrix
factorization model, we propose a new subspace clustering
method. Extensive experiments on synthetic data, real image
data, and real motion capture data showed that our pro-
posed methods are more effective than baseline methods in
dictionary learning, denoising, and subspace clustering. The
MATLAB codes of the proposed methods are publicly avail-
able at https://github.com/jicongfan/Robust-Nonlinear-Matrix-
Factorization.

ITI. ROBUST NON-LINEAR MATRIX FACTORIZATION
A. Low-rank factorization in kernel feature space

Suppose the columns of a data matrix X € R™*"™ come
from a generative model M. Let ¢ : R™ — R! be the feature
map induced by a kernel function

K(@i,x;) = (6(@:), () = d(:) " p(;).
Two popular kernels are the polynomial (Poly) kernel and
Gaussian radial basis function (RBF) kernel

Poly : K¢ q(xi,x;) = (w;ril:j +c)?

RBF: K,(x;, x;) = exp (f%Hml — a:jH2) ,



where ¢, g, and o are hyper-parameters.

Let 6(X) = [6(@1), 6(@s), .., 6(@,)]. When 6(X) is
low-rank or can be well approximated by a low-rank matrix,
we will seek a factorization of the form

#(X) ~ ¢(D)C, )

where D € R™*? is a dictionary of d atoms, C € R¥*" is
the coefficient matrix, and d < min{/,n}. This factorization
model was also considered in [33], [36], [49].

We denote the feature ma% of the polynomial kernel by
eq. Then ¢ey(X) € R("")*" In [49], [50], the authors
assumed that the data generating model M is a union of p-
degree polynomials with random coefficients, fl/} : R" —
R™, j=1,....k, r<m;forj=1,...,k, the n/k columns
of X are given by = fli}(z), and z € R consists of
uncorrelated random variables; see the following formulation

X = [f{l}(zl)7 B f{l}(‘zn/k)7
f{2}(zn/k+l)7 ey f{z}(ZQR/k)7 sy
f{k}(zn—n/k—&-l)a R f{k} (zn)]Pv

where P € R™*™ is an unknown permutation matrix. They
[49] showed that

rank(X) = min{m,n, k("37)}, (10)

and

(1)

Thus, when p is large, X is high rank; but ¢, (X)) is low-rank
provided that n is large enough.

Let ¢, be the feature map of the Gaussian RBF kernel. The
following reveals the connection between two types of kernels.

rank(d%,q (X)) = min{ (m+q) n, k (T;éiq) 1.

q

., llz: |1+l [1*+2¢
Lemma 1. Define s;; := exp (*T; . Then for
any ¢ > 0, o, x;, and x;,

oo

ICU(:ci,acj) = Sij Z

u=0

Kc,u(mivxj)

o2uy!
It follows from Lemma 1 that

.

b0 (i) = i [Wodd o(:), W1 B 1 (), ..., Weo oo ()]
where s; = exp (—%) and w, = 1/(¢“Vu!) for
u = 0,1,...,00. Therefore, ¢,(X) € R>®*" is full rank,
according to (11). Let Sx = diag(sy,...,s,) and Sp =
di llda ||+ lldall®+c h
iag (exp(—"F5oz—), ..., exp(—"g=—) ). We have
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Lemma 2. Define & = max{0.5n, Vdn|C| g,
0.5d||C||2||C|lr} and k2 = max{max; ||z;||?, max; ||d;||*}.
Suppose 0 > kg + c. Then for any q > 0,

S160(X) — 6, (D)C3

9,2
w’U.
= Z ?”Qﬁcu(X)SX - ¢cu(D)SDC”% + R,
u=0

3 —5 “
where |R| < 1 exp(=53) <K2+c> .

q o2

Lemma 2 shows the factorization error of the feature matrix
induced by the RBF kernel can be well approximated by
the weighted sum of the factorization errors of the feature
matrices induced by polynomial kernels of different degrees if
o and ¢ are sufficiently large. Notice that rank (¢ (X )Sx) =
rank(¢. ., (X)) because Sx is diagonal with positive diagonal
entries. The following corollary of Lemma 2 provides an upper
bound on the factorization error using the RBF kernel:

Corollary 1. Suppose d > rank(¢. (X)) and 0 > ks + c.
Then for any q > 1, there exist D and C' such that

3Ky exp(—=%) </§2 + c)q

q o2

$190(X) ~ 6o(D)YC <

Remark 1. Since 4 relates to ||C||, the bound in Corollary
1 may be tighter when ||C/||% is smaller.

Hence, when d > k("'7%) and n, o are sufficiently large,
our factorization model (9) holds as follows:

¢c,q(X) = ¢c,q(D)C and ¢¢T(X) ~ ¢U(D)C

When using polynomial kernel or Gaussian RBF kernel, we
can exactly or approximately factorize ¢(X) into ¢(D) and
C, where d could be much smaller than n. This property
enables us to extract nonlinear features (rows of C), find useful
basis elements (columns of D), or remove noise from X.

B. Robustness in data space

1) General objective function: Suppose a data matrix X €
R™>"™ is partially corrupted by sparse noise E € R™*™ to

form noisy observations
X =X+E, (12)

where the locations of nonzero entries of E are uniform and
random. We wish to recover X from X. Using (9) and (12),
we define the factorization loss as

£(D,C,B) = 5|6(X — E) ~ o(D)C3 (13)

=T (6o(X ~ B)T6(X ~ B)) ~Tx (CTo(D)To(X — B))
+5T(CTH(D)TH(D)C),

where Tr(-) denotes the matrix trace. Using the kernel, we
have (X — E)¢(X — E) = K(X — E,X — E) €
R, $(D)T(X — E) = K(D,X — E) € R, and
#(D)T¢(D) = K(D, D) € R¥™4, Hence from (13),

1 N N
L(D.C.E) = Tr (IC(X _E. X - E))
T % 1 T
CTr (C K(D, X — E)) n 7Tr(C K(D, D)C).
2
In addition, we define the regularization as
R(D,C,E) := ApR(D) + AcR(C) + A\gR(E),

where Ap, Ac, and Ap are penalty parameters. Then we
propose to solve

minimize £(D,C, E)+R(D,C,E)£ J(D,C.E). (14)



Remark 2. In (14), we can introduce a constraint D = X-E
to eliminate D, which leads to a self-expressive model, i.e.
represent ¢(X — E) with itself multiplied by C; then we
only need to compute C and E. However, as C € R™*", the
space and time complexities will increase significantly.

2) Noise-specific penalty on E: We suggest choosing
penalties of E from below, based on the suspected noise
distribution.
o When all entries of X are corrupted by Gaussian noise,
ie. Ejj ~N(0,€%),V (i,5) € [m] x [n], we set R(E) =
1 2
LB

e When X is partially and randomly corrupted, i.e., E is a
sparse matrix and P[E;; # 0] = p, we set R(E) = || E||1,
where 0 < p < 1 and ||-||; denotes the ¢; norm of vector
or matrix serving as a convex relaxation of the ¢y, norm.

e When a few columns of X are corrupted by Gaus-

sian noise, we set R(E) = | E||2,1, where ||E|21 =
Z?Zl llejll2 is a convex relaxation of the number of
nonzero columns of E.

Next, we detail the choices of R(D) and R(C).

3) Smooth penalty on D and C: We can set R(D) =
LIO(D) [ and R(C) = J|CE. We have R(D)
3Tr (¢(D)"¢(D)) = LTr (K(D, D)). In this case, we often
require that d is equal to (or a little bit larger than) the rank
or approximate rank of ¢(X). Otherwise, the recovery error
will be large.

Lemma 3. Let X € R™*", D € R™*4 and C € R*™*™, For
any ¢ : R™ — R!, suppose d > rank(¢(X)), then

1 1

s oin 516D+ 5ICIE = [6(X)].
Lemma 3 shows using factorization we can minimize an

upper bound of ||¢(X)||«, which may eventually reduce the

value of ||¢(X)||«. The following corollary implies that solv-

ing problem (14) may find a low-nuclear-norm matrix ¢(D)C

to approximate qb(X —E).

Corollary 2. For any ¢ : R™ — R/,

A A
FoD)E + S ICIE = VAo llo(D)C]..

Nevertheless, we may not achieve the equality in Lemma
3 and Corollary 2 because of the presence of ¢. Notice
that with RBF kernel, Tr(IC(D,D)) = d, which means
ApR(D) has no effect on the minimization and can be
discarded; thus the number of penalty parameters is reduced.
The following lemma explains the connection between ||C||%
and ||¢(D)C||. when using RBF kernel.

Lemma 4. Suppose ¢ is induced by RBF kernel. Then for any
D € R™*? gnd C € R¥*™,

IC|lr > |6(D)Cl|./Vd.

4) Non-smooth penalty on D and C': For example, we set
R(D) = ||¢(D)]|«, where || - || denotes the matrix nuclear
norm. We have R(D) = Tr(K(D, D)'/?). Such penalty on
D will encourage ¢(D) to be low-rank. Similarly, we can
penalize C' to be low-rank by R(C) = ||C]||... Moreover, we

may set R(C) = ||C||1, which encourages C' to be sparse.
The motivation is the same as dictionary learning: each column
of ¢(X) can be represented by a linear combination of a few
columns of ¢(D). Nevertheless, the nonsmooth R(D) and
R(C) will increase the difficulty of optimization.

In the remaining of this paper, we will focus on Gaussian
RBF kernel because of the following reasons. First, we only
need to determine one parameter o in Gaussian RBF kernel,
compared to two parameters ¢ and ¢ in polynomial kernel.
Second, Gaussian RBF kernel is easier to optimize and the pa-
rameter o controls the weights of low-order features and high-
order features effectively. In addition, as mentioned above,
when using Gaussian RBF kernel and R(D) = 1 ¢(X)|%,
we do not need the parameter \p.

IV. OPTIMIZATION FOR RNLMF

Problem (14) is nonconvex and nonsmooth and has three
blocks of variables. We propose to initialize D randomly and
initialize E with zeros, then update C, D, and F alternately.
In the numerical results, we show that the alternating mini-
mization always provide satisfactory denoising performance,
provided that parameters such as Ag are properly determined.

A. Update C by closed-form solution or proximal gradient

method
At iteration ¢, suppose we have got D;_; and E;_;. Let

L(C)=—Tr (CTIC(Dt_l, X - Et_l))
1
n 5Tr(CTIC(Dt_l, Dt_l)C).
We aim to solve

mini(rjnize L(C) + AcR(C). (15)
When R(C) = 1||C||%, by letting Vo [L(C)+AcR(C)] =

0, we update C to the solution of (15):

C, = (K(Di-1,Di—1) + AcIy) 'K(Dy—1, X — Ey_y),
(16)

where I; € R is an identity matrix. The problem is actually
closely related to the kernel ridge regression, in which the
feature map is performed only on the regressors D and qS(X —
E) is replaced by the dependent variables.

When R(C) = ||C||1 or ||C||«, (15) has no closed-form
solution. We use first order approximation to find a majorizer
of L(C) at C;_4

t
-
L(C) < L(Ct71)+<VC£(Ct71)7C_Ct71>+7c||c_ct71”%‘
and then solve

t
minimize %Cnc — Cy_1 + Ve L(Cro1)/mH]% + AcR(C),

. )
where VCE(thl) = —K(thl,X — Etfl) +
K(Di—1,D;_1)C¢—1. Here we need 74 >

IIC(D¢—1, Di—1)||2 to ensure that (17) is non-expansive.
Consequently, the closed-form solution of (17) as well as



(16) are shown in Table I. In the table, © denotes the
soft-thresholding operator defined by

O,(v) = % max(|v] — u,0).

In addition, ¥ denotes the singular value thresholding operator
[51] defined by

U, (M)=U®6,S)V',
where U, S, and V are given by the SVD M =USV ".

TABLE I: Solution for C; with respect to different R(C')

R(C) C;

$ICI% | (K(Dt-1, Ds—1) + AcTa) 'K(Di—1, X — E;—1)
ICllx 9>\C/th (Ci—1 = VeL(Ci-1)/7L)

(o] Vag/rt (Com1 = Vo L(Ci1)/7E)

The following lemma shows that the update of C' when
R(C) = ||C||1 or ||C||« ensures the objective function is
nonascending.

Lemma 5. Let C, be the solution of (17) with R(C') = ||C||;
or ||C||«. Denote Lt, = ||K(Dy—1, Dy_1)||2. Then

j(Dt717Ct>Et71) - j(Dt717Ct717Et71)

7_t 7Lt
<- %HQ — Cial%,

where 7¢ > LE..

B. Update D by relaxed Newton method
Having obtained E;_; and C}, we let

L£(D)=—Tr (CtTIC(D, X - Et_l))

1
+ §Tr(C’tTIC(D7 D)Ct).
Because of the presence of kernel function, the minimization
of £(D) has no closed-form solution. The gradient® is

VpL(D)=L%((X — E;1)Wp — DWp)
+ % (DQp — DQp),

where Wp = —CJ 0K(X —E,_1,D), Qp = (0.5C,C])®
K(D, D), Wp = diag(1,) Wp), and Qp = diag(1] Qp).
One straightforward approach is to update D by gradient
descent with backtracking line search, which however requires
evaluating £(D) for multiple times and hence increases the
computational cost. In addition, one may consider using
second-order information to accelerate the optimization. Note
that G — (O] [K(X— By 1, D)) (& B 1)) /o™
Thus, when o is large, we regard Wp (also Wp, Qp,
and Qp) as a constant independent of D and consider the
derivative of VpL(D) at D,_;. Consequently, we define

H;, , = %(_WDt—l +2Qp, , — QQDt—1)7

. n- 0K
2Use the chain rule g—é =3 ]'31 % 57 Where IC € R™1 %72
= Z >

is the kernel matrix computed from Z.

where 1 > 0 is large enough such that H;_; + pI is positive
definite.Then we update D by a relaxed Newton step

D; = Di1 — 7 VpL(Dey)(Heoy +pI)7' (18)

where TE > 1 controls the step size. The effectiveness of (18)
is justified by the following lemma.

Lemma 6. Suppose D; is given by (18) and T} and u are
sufficiently large. Then

J(Dy,Cy, Ey_1) — J(Dy—1,C4, Ey_y)
<= o Tt (VDL(Dyoy) (Heo1 + uI)'VpL(Dy—1)T) <O0.

Remark 3. Empirically, in our experiments, we found H
was always positive definite. Hence we set p = 0 in all
experiments. In addition, Tp = 1 works well in practice.

We can also incorporate momentum into the update of D:

Ay =0l + %VDﬁ(Dt—l)(Ht—l +u)™h(19)
where 0 < n < 1; then
D, =D, ; — A,. (20)

The following corollary shows that when 7 is sufficiently
small, the objective function is non-increasing.

Corollary 3. Suppose D is given by (20) and T} is suffi-
ciently large. Then

J(Dy,Cy, Ei_1) — J(Dy-1,Cy, Ey_q)

1
< - ot Tr (vDE(thl)(th + uI)_lvpL'(Dt,l)T)
D

7727't T
+ 2DTF (A¢—1(Hy—q +pD)A) .

21

When d is large, to avoid the high computational cost of
the inverse of H;_;, we suggest replacing (20) with
D, =D; 1 — Ay, (22)

where At = ’f]Atfl + %VDK(thl)/HHt71H2~

Algorithm 1 Optimization for RNLMF

Input: X, d, )\0, )\E, ag,n, titer-
1: Initialize: E =0, C =0, D ~N(0,1), A=0, t=0.
2: repeat
3: t+—t+1.
Update C' using Table 1.
Update A using (19)
Update D using (20).
7: Update E using Table II.
8: until converged or ¢ = tji,
Output: X = X-E,D,C.

SAN A




C. Update E by proximal gradient method
Having got C; and D, we let

L(E) :%Tr (K(X - B.X - B)) ~ 1 (C/ (D, X ~ E))

n

~2 —Tr (C/K(D.. X - B))

Then we need to solve

minibljnize L(E)+ A gR(E), (23)

which, however, has no closed-form solution. Compute the
gradient of L(E) as
VeL(E) = %((X - E)Gg - DiGg), (24

where G = —C,©K(D;, X — E) and G = diag(1] G ).
Suppose the Lipschitz constant of VgL(E) at iteration ¢ is
L. Let 7}, > L% and we have

L(E) <L(Ei—1) +(VEL(E;-1),E — E;_1)
¢
.
+ 7EHE — B3
Thus we update E by solving
¢

minimize %EHE — By 1+ VEL(E:1)/7h% + A\eR(E).
(25)
The closed-form solutions of (25) with different R(E) are

shown in Table II. In the table, Y, (+) is the column-wise soft-
thresholding operator [52] defined as

Tu(v) = {

TABLE II: Solution of (25) with respect to different R(E)

(v =wv
[

if ||v]| > w;

0, otherwise.

R(E) Ey

T
1 E
LIE|% . (Bt—1 — VEL(Ei—1)/7%)
1Bl | Oxp/rt (Bio1t = VEL(E:-1)/7g)
[Bll21 | Ty/rt (B = VEL(E-1)/7E)

To determine 75, we estimate L% as LY

ENGE, |l2/0? = €1 GE,_,||oo/c? where ¢ is a sufficiently
large constant. Equivalently, we set 75 = £||1) G, | |l0o/0?
where ¢ is a sufficiently large constant. The following lemma
indicates that updating E by Table II is nonexpansive.

Lemma 7. Let E, be the solution of (25), where 'rﬁ;
€1 GE, ,|ls/0? and & is sufficiently large. Then

j(DtaCtaEt) - j(Dta CtaEt—l)

Tt _Lt
£ _——E|E, - E, 4|7 <0.

=2
Remark 4. Empirically, we found that Lemma 7 often holds
when & = 1. It means L', well approximates the Lipschitz
constant of Vg L(E) at iteration t.

D. The overall algorithm

The optimization for RNLMF is summarized in Algorithm
1. The hyper-parameter ¢ controls the smoothness of Gaussian
RBF kernel and provides us flexibility to handle nonlinearity
of different levels. We set 0 = cn =2 >ij & — 25|, where ¢
is a constant such as 0.5, 1, or 3. When the data have strong
nonlinearity, we use a smaller o (smaller c); otherwise, we use
a larger o (larger c).

In Algorithm 1, when R(C) = |C|. or ||C|:, the
convergence with n = 0 is guaranteed by Theorem 1, al-
though a nonzero 7 (e.g., 0.5) works better in practice. When
R(C) = 3||C||%, the convergence is similar and the proof is
omitted for simplicity. Proving the algorithm converges to a
critical point is out of the scope of this paper, though it may
be accomplished by following the methods used in [53].

Theorem 1. Let {Cy, Dy, E;} be the sequence generated by
Algorithm 1 with n = 0. Suppose T}, 11, and & are sufficiently
large. Then

Jim J(Dy,Cy, Et) — J(Dy-1,Ci—1,Er 1) =0,
hm HDt — thlHF = O,

t—o00

lim HCt — Ct—lHF = O,

t—o0

lim HEt - Et—l”F =0.

t—o00

In Section IV-A, when R(C) = ||C||1 or ||C||«, the
subproblem of C' has no closed-form solution, which may
slow down convergence. We found that using ||C||% in the
early iterations and then switching to ||C||; or ||C||. can speed

up convergence. Nevertheless, our numerical results in Section
VIII showed that ||C||% outperformed ||C||; and ||C]|..

V. TIME AND SPACE COMPLEXITY

In Algorithm 1, we need to store X € Rm*n, E € Rmxn,
D € R™4, C e R™", K(X — E,D) € R"™9, and
K(D, D) € R¥*4, Then the space complexity of RNLMF is
as O(mn+md+dn+d?) or O(mn+dn) equivalently because
of m,d < n. In each iteration of Algorithm 1, the main
computational cost is from the computation of IC(X' —E, D),
the inverse of a d x d matrix (or the SVD of a d x n
matrix) in Table I, the inverse of a d x d matrix in updating
D, and the related multiplications in (16), (18), and (24).
Then the time complexity in each iteration of RNLMF is
O(d® + d®n + d*m + dmn).

The time and space complexities of RPCA [4], LRR [10],
NLRR [47], SSC [9], RDL (problem (6)), and RNLMF are
compared in Table III, where truncated (top-r) SVD is con-
sidered in LRR and R(C) = ||C||; or ||C||% are considered
for RNLMF. We see that when n is large, SSC and LRR have
high time and space complexities. The computational costs of
RNLMF and RDL are similar, though in real applications the
d in RNLMF should be larger than that in RDL. But RNLMF
is able to handle data generated by more complex models.

VI. OUT-OF-SAMPLE EXTENSION OF RNLMF

It is worth mentioning that in an online fashion, the dictio-
nary D given by Algorithm 1 can be used to denoise a new



TABLE III: Time and space complexities

Time complexity Space complexity
RPCA O(m?2n) O(mn)
LRR O(mn? + rn?) O(mn +n?)
NLRR O(m2n +rmn) | O(mn+rn)
SSC O(mn?) O(mn +n?2)
RDL O(d?n + dmn) O(mn + dn)
RNLMF | O(d%n + dmn) O(mn + dn)

*Assume 7 < m < n, r < d < n, and d? < mn.

data matrix X’ generated from the same model as X. The
approach is shown in Algorithm 2.

Algorithm 2 Out-of-sample extension of RNLMF

Input: X', D (given by Algorithm 1), icer.
1: Initialize: E' =0, C' =0, t = 0.
2: repeat
3 t<—t+1.
4: Update C’ using Table 1.
5 Update E’ using Table II.
6: until converged or ¢ = tj,,
= X' -

Output: X' E. C'.

VII. SUBSPACE CLUSTERING BY RNLMF

RNLMF can be regarded as a robust nonlinear feature
extraction method, thus the feature matrix C can be used for
clustering. One may perform SSC [9] or LRR [10] on C,
which, however, is not efficient. We propose to compute an
affinity matrix by solving the following least squares problem

minimize }[|C — CA} + 3|4}, @6)
where 7 is a penalty parameter. The solution is A =
(CTC+~I)~'CTC. Note that least squares regression is also
effective in subspace segmentation [54]. Then let A + | A, set
diag(A) = 0, and keep the largest « entries of each column of
A and discard the other entries. A normalization is performed
on each column of A: a; = a;/max(a;), j =1,2,...,n. To
ensure a symmetric affinity matrix, we set A < (A+AT)/2.
Finally, spectral clustering is performed on A. The procedures
are summarized in Algorithm 3. The role of Procedures 3 ~ 5
is similar to the post-processing in SSC and LRR, making the
affinity matrix more compact. It is worth mentioning that using
the Woodbury identity, line 2 in Algorithm 3 is equivalent
to A = |y 1CT(I +~~tCCT)~1C|, which reduced the
computational cost.

When the number of data points is very large (e.g. n > 10%),
we cannot use Algorithm 3 to cluster the whole dataset because
the high space cost of A. Recently a few large-scale subspace
clustering methods have been proposed [55], [12] and they
often take advantage of exemplars or landmark points selection
to cluster large-scale datasets but cannot effectively handle
sparse noise. Similar ideas may apply to our RNLMF, which
however is out of the scope of this paper.

Algorithm 3 Subspace clustering by RNLMF

Input: X, k, K, 7.

1: Compute C using Algorithm 1.

= |(CTC +~I)"'CTC| and set diag(A) = 0.

Keep only the largest x entries of each column of A.
For j =1,2,...,n, a; < a;/ max(a;).
A+ (A+AT))2
: Perform spectral clustering on A with cluster number k.
Output k clusters of X.

AN i

VIII. EXPERIMENTS ON SYNTHETIC DATA
We generate synthetic data by
z=f(z),fe{F F. . . F},

R3 — R, 1 < j < k is an order-3
~ U(~1,1). The

where each F7 :
polynomial mapping and z = [21, 2o, 23] "
model can be reformulated as

x =Pz Pc{I' 2. . T,

where TV € R30%19 ~ N(0,1) for 1 < j < k, and 2 € R
consists of order-1, 2 and 3 polynomial features of z. For
each fixed I/, we generate 300 random samples of . Then
we obtain a matrix X € R39%300k which is full-rank when
k> 2. We then add sparse noise to X, i.e. X =X+E,
where 55557 >_i; L(Ei; # 0) = p and the nonzero entries of E
are drawn from N (0, o2). The locations of nonzero entries are
chosen uniformly at random by sampling without replacement.
Denote the standard deviation of the entries of X by o,.

The denoising performance is evaluated by the normalized
root-mean-square-error:

RMSE := | X — X | #/| X]|F,

where X denotes the recovered matrix. All results we report in
this paper are the average of 20 repeated trials. In RNLMF, we
set d = 2mk, choose A\¢ from [1,5,10]/103, and choose A\g
from [0.3,0.5,1,2]/10%; we set 0 = n =2 >ij 1€ —2;]|. Such
parameter settings are utilized throughout this paper, unless
stated otherwise.

A. Choice of R(C)

Figure 1(a) shows the RMSE of RNLMF with different
penalty operators of C' when k = 3 and varying p, for
which we have sufficiently tuned A¢c and Ap separately for
each regularizer R(C'). We see that ||C/||% always outperform
IC|ly and ||C]|.. In Figure 1(b), where & = 3 and p = 0.3,
|C||% outperformed ||C||; and ||C]||., in all choices of d
(the number of columns of D). In addition, RNLMF is
relatively not sensitive to d provided that d is large enough
(e.g. d > 135). The advantage of ||C||% over ||C||; and ||C]|.
may result from: (1) ||C||% leads to a closed-form solution
for updating C', which enables the optimization of RNLMF
to obtain a better stationary point; (b) ¢(X) is low-rank such
that the denoising problem does not benefit from enforcing
C to be sparse; (c) enforcing C' to be low-rank reduces the
compactness of ¢(D). In the remaining of this paper, we only
use R(C) = ||C||% in RNLMF.
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B. Influence of hyper-parameters in RNLMF

Figure 2 shows the influence of 7 in the optimization of
RNLMF with R(C) = ||C||%, in the case of k = 3 and
p = 0.3. We see that when 7 increases, the objective function
converges faster. But when 7 is too large, the algorithm may

diverge.
TP
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Fig. 2: Influence of n in the optimization of RNLMF

Figure 3(a) shows the sensitivity of our method to the hyper-
parameters A\c and Ag on synthetic data (K = 3, p=0.3).
We see that our RNLMEF is not sensitive to A¢ and has low
recovery error when 0.1 x 1073 < Ap < 0.7 x 1073, Figure
3(b) shows the influence of the hyper-parameter o of Gaussian
RBF kernel and d in RNLMF. We see that ¢ = 0.56 and 1.0
outperformed o = 1.56 and 26. In addition, d = 270 is the
best to o = 0.56 and 1.0, d = 240 is the best to o = 1.56,
and d = 210 is the best to o = 24. It indicates that when o is
small, the optimal d should be large.
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Fig. 3: Influence of A\¢, Ag, o, and d in RNLMF (k = 3,
p=03,0=n"23llz;: — Z|).

C. Comparison with RPCA, LRR, SSC, and RDL in denoising

Since the kernel methods [33], [34], [35], [36], [49]
do not provide denoised matrix X, we compare RNLMF
with RPCA (problem (1), solved by ADMM), RDL (prob-
lem (6), solved by PALM [53]), LRR [10], and SSC
[9]. First, we consider sparse noise and use R(E) =
||E|1 for all compared methods. In RPCA, the parameter
A is chosen from [0.5,0.75,1,1.5,2,2.5,3]/v/n. In RDL,
we set the number of dictionary atoms as 0.5mk or mk,
choose Ac from [1,3,5,10]/10%, and choose Ap from
[0.03,0.05,0.07,0.1,0.15,0.2]. The parameters in LRR and
SSC are carefully tuned to provide the best denoising perfor-
mance as possible. The parameter setting in RNLMF has been
stated in the beginning of Section VIII.
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Fig. 4: RMSE on synthetic data (7= = 1, different & and p).
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Figure 4 shows the recovery errors when o./c, =1 and p
and k vary. When k or p increase, the recovery task becomes
more difficult. SSC and RDL outperformed RPCA and LRR.
The reason is that sparse representation is more effective than
low-rank model in handling high-rank matrices. In every case
of Figure 4, the RMSE of our RNLMF is much lower than
those of other methods. The improvement given by RNLMEF is
owing to the ability of RNLMF to handle nonlinear data and
full-rank matrices, which are challenges for other methods.

We investigate the influence of the noise magnitude on
the performance of five methods in the case of £k = 3 and
p = 0.3, shown in Figure 5. We see that RNLMF consistently
outperforms other methods with different o, /c.

To evaluate the ability of all methods to handle column-wise
noise, we add independent and identically distributed noise
drawn from A (0, 02) to a fraction (denoted by p) of columns
of X. Therefore, we use R(E) = || E||2,1 in all compared
methods. Shown in Figure 6, the RMSE of RNLMF is the
lowest in every case.

IX. EXPERIMENTS ON IMAGE DATA

To test the performance of our method on real data, we
consider the following four image datasets.



Fig. 6: RMSE on synthetic data with column-wise noise.

o COIL20[56]/COIL100[57], images of 20/100 objects.
Each object has 72 images of different poses.

« Extended Yale Face database B (Yale Face for short) [58],
face images of 38 subjects. Each subject has about 64
images under various illumination conditions.

o AR Face database (a subset) [59], consisting of the face
images of 50 males and 50 females [17]. Each subject has
26 images with different facial expressions, illumination
conditions, and occlusions.

We resize the images in AR Face to 33 x 24 and resize the
images in the other three databases to 20 x 20. We consider
two cases of image corruption. In the first case, we add salt-
and-pepper noise of density 0.25 to 30% of the images. In the
other case, for each data set, we occlude 30% of the images
with a block mask of size 0.25h x 0.25w and position random,
where h and w are the height and length of the images. Since
the two cases are sparse noise patterns, we use R(E) = | E||;
in RPCA, LRR, SSC, RDL, and RNLME. For COIL20, Yale
Face, AR Face, and COIL100, the d in RDL is set to 196,
196, 256, and 512 respectively, while the d in RNLMF is set
to 256, 256, 512, and 768 respectively.
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Fig. 7: The dictionaries learned from COIL20.
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Fig. 8: The dictionaries learned from Yale Face.

Compared to Yale Face and AR Face, the nonlinearity
of data structure in COIL20 and COIL100 are much higher
because of the different posses of the objects. For each data
set, we stack the pixels of each image as a matrix column and
then form a matrix X of size m x n, where m = hw and
n is the number of images. The metric R := || X|./|| X || F
can be utilized to compare the rank of the data matrices
of the four data sets. For COIL20, COIL100, Yale Face,
and AR Face, the values of R are 5.17, 5.03, 4.65, and
4.33 respectively. Thus for COIL20 and COIL100, we set
o=mn"?2 > I£; — ;| in RNLMF; for Yale Face and AR
Face, we set o = 3n 2 > ij |&i—2;| and 5~ 2 > i 1=z
in RNLMF respectively. We expect that the 1mprovement given
by RNLMF on COIL20 and COIL100 are higher than those
on Yale Face and AR Face.

A. Denoising result

The dictionaries given by RDL and RNLMF on COIL20
and Yale Face are visualized in Figure 7 and Figure 8. We see
that the dictionary of RNLMF consists of real images, because
Gaussian RBF kernel in RNLMF plays a role of smooth
interpolation and RNLMF constructs a set of “landmark”
points to represent all data point as accurate as possible.

Figure 9 and Figure 10 show some examples of the original
images, noisy images, and recovered images of COIL20 and
Yale Face. The denoising performance of RNLMF is better
than those of RPCA and RDL. The average RMSE and its
standard deviation of 20 repeated trials are reported in Table
IV. Note that we actually performed NLRR [47] rather than
LRR [10] on COIL100 because the data size is large, though
we still use the name LRR for consistency. In the table,
RNLMF outperformed other methods significantly in all cases.

B. Clustering result

We check the clustering performance of RNLMF compared
with LRR [10] [47], SSC [9], KSSC [45], GMC-LRSSC [48],
So/lo-LRSSC [48], and EKSS [60] on the four datasets.
Since KSSC, GMC-LRSSC, S(/¢p-LRSSC, and EKSS cannot
handle sparse noise we first process the data by RPCA and
then implement the four clustering methods. Moreover, in line
with [60], we perform EKSS on the features extracted by PCA
rather than the pixel values; otherwise, the clustering error of
EKSS is too large. In Algorithm 3, we set v = 0.01; we
set kK = 5 on Yale Face and COIL100, and set x = 15 on the



TABLE IV: RMSE (%) of denoising on the noisy image data

Data Noise RPCA LRR SSC RDL RNLMF

Random 12.2840.04 | 13.844+0.09 | 12.05+0.08 | 11.04+0.14 | 9.31+0.44

COIL20 Occlusion 20.54+0.31 | 18.344+0.45 | 15.26+0.38 | 14.89+0.63 | 10.25+0.59
Random+Occlusion | 21.26+0.23 | 21.814+0.24 | 18.84+0.23 | 18.914+0.39 | 12.67+0.56

Random 13.75£0.02 | 13.284+0.05 | 12.39+0.06 | 11.894+0.09 | 9.15+0.03

COIL100 Occlusion 20.98+0.05 | 18.954+0.11 | 18.09+0.12 | 17.41£0.15 | 13.82+0.17
Random&Occlusion | 23.93+0.22 | 21.264+0.18 | 20.05+£0.25 | 20.76+0.58 | 14.86+0.32

Random 9.25+0.03 | 12.87+0.03 | 13.04+£0.04 | 9.71+£0.11 7.71+£0.14
Yale Face Occlusion 15.80+£0.15 | 13.4140.14 | 13.28+0.11 | 13.68+0.19 | 10.96+0.14
Random+Occlusion | 17.07+0.14 | 16.054+0.13 | 16.66+0.12 | 16.24+0.28 | 12.20+0.29

Random 8.4140.02 9.26+0.03 9.15+0.02 7.81+0.11 6.010.02
AR Face Occlusion 13.25+£0.04 | 12.1940.13 | 11.57+0.11 | 11.89£0.16 | 10.65+0.07
Random+Occlusion | 13.49+0.05 | 13.184+0.07 | 13.04+0.06 | 12.71£0.12 | 11.754+0.13

Noisy image

RPCA |

Fig. 10: Denoising Yale Face

TABLE V: Clustering error (%) on the original image data

LRR | SSC | KSSC | GMC- | So/lo- | EKSS | RNLMF

LRSSC | LRSSC
COIL20 | 25.21 | 1436 | 21.94 | 25.83 | 1840 | 1347 | 13.13
COIL100 | 5228 | 44.63 | 44.67 | 55.04 | 46.99 | 28.57 | 23.53
Yale Face| 13.26 | 21.75 | 20.55 | 2320 | 12.01 | 1431 | 10.77
AR Face | 1927 | 24.61 | 2554 | 18.92 | 27.15 | 22.65 | 13.88

COIL20 and AR Face. The hyper-parameters of other methods
are carefully tuned to provide their best performances. The
clustering errors on the original data are reported in Table
V, in which RNLMF has the lowest clustering error in every

TABLE VI: Clustering error (%) on the noisy image data

LRR | SSC | KSSC | GMC- | So/flo- | EKSS | RNLMF

LRSSC | LRSSC
COIL20 | 34.79 | 24.65| 4042 | 31.11 | 28.68 | 21.11 | 14.03
COIL100 | 65.54 | 52.17 | 61.56 | 6597 | 49.58 | 54.17 | 34.18
Yale Face| 55.82 | 35.21 | 64.25| 3343 | 33.14 | 18.97 | 21.13
AR Face | 63.38 | 39.88 | 61.50 | 36.65 | 38.92 | 28.96 | 23.27

003

Fig. 11: A few examples of CMU motion capture data.

case. As shown in Table VI, RNLMF outperformed other
methods significantly on noisy COIL20, COIL100 and AR
Face. The main reason is that RNLMF is more effective than
other methods in handling high-rank matrices corrupted by
sparse noise. EKSS benefits a lot from the preprocessing of
RPCA especially on Yale Face, of which the matrix rank is
much lower than those of COIL20 and COIL100.

X. EXPERIMENTS ON MOTION CAPTURE DATA

Besides image data sets that consist of the images of
multiple objects or subjects, many other data sets in com-
puter vision as well as other areas can also form high-rank
matrices. For example, in CMU motion capture database
(http://mocap.cs.cmu.edu/), many subsets consist of the time-
series trajectories of multiple human motions such as walking,
jumping, stretching, and climbing; the dimension of the signal
(the number of sensors) is 62, much smaller than the number
of samples; the formed matrices are often high-rank because
different human motion corresponds to different data latent
structure. Figure 11 shows a few examples of the data.

In this paper, we consider the Trial 09 of subject #01 and
the Trial 06 of subject #56. The sizes of the corresponding
data matrices are 62 x 4242 and 62 x 6784, respectively. We
add Gaussian noises to 10% or 30% of the entries of the two
matrices, where the variance of the noise is the same as that of
the data. In RPCA, the parameter ) is set as 1/+/n or 1.5/1/n;



TABLE VII: RMSE (%) and MAE (%) on motion capture data

[ subject [ p | RPCA | LRR [ 8SC | RDL [ RNLMF
£01 0.1 11.1940.10 9.89+0.08 10.3640.11 12.7540.98 9.78+0.45
RMSE 0.3 | 21.984+0.13 | 17.5440.10 | 18.66+0.12 | 23.51+1.22 | 11.82+1.13
456 0.1 8.6710.11 9.06+ 0.08 9.95+0.07 9.19+0.50 6.11+0.33
0.3 | 22.9340.69 | 17.7340.07 18.504+0.07 | 19.03£0.99 | 11.27+1.17
£01 0.1 7.10+0.04 7.38+0.08 8.5240.06 7.33+£0.72 4.90+0.40
MAE 0.3 | 21.85+0.20 | 22.314£0.14 | 23.75+£0.09 | 23.61+1.76 | 10.1140.79
456 0.1 5.68+0.33 6.57+0.05 8.234+0.05 5.68+0.28 4.1140.28
0.3 | 22.23+£0.40 | 18.67+0.13 | 22.48+0.09 | 17.89+0.48 | 11.04+0.71
TABLE VIII: RMSE (%) and MAE (%) on motion capture data (out-of-sample-extension)
Training data Testing data
subject | p RPCA | RDL | RNLMF RPCA [ RDL | RNLMF
£01 0.1 11.3440.39 | 12.20+£1.19 9.21+1.02 13.7840.33 11.9840.51 7.51+0.87
RMSE 0.3 | 21.964+0.17 | 23.06%+1.14 | 11.45+0.73 | 20.35+0.34 | 22.834+0.96 | 10.86+1.09
456 0.1 8.65+0.11 9.07+0.83 6.04-0.52 10.244-0.19 8.924+1.04 5.57+0.28
0.3 | 22.51£1.14 | 19.87£1.19 | 10.89+0.69 | 17.37+£0.50 | 18.94+1.16 | 10.58+0.62
£01 0.1 7.13+0.10 7.37+0.58 4.83+0.68 9.65+0.13 7.96+0.41 4.93+0.60
MAE 0.3 | 22.03+0.32 | 22.044+1.33 | 10.11+£0.32 | 23.51+0.28 | 22.524+1.03 | 10.33+0.28
456 0.1 5.70+0.08 5.81+£0.42 4.07+£0.25 7.86+£0.90 5.93+0.36 4.05+0.22
0.3 | 22.04£0.69 | 18.06+0.62 | 10.78+0.53 19.0740.77 16.9440.55 | 10.69+0.50

the Lagrange penalty parameter is set as A. In RDL, we set
d = 31, A\c = 0.07 or 0.08, and A\g = 2 or 3. In RNLMEF,
we set d = 62, 0 = 0.5n2 Y, [|&; — 2], Ac = 0.01, and
choose A from {2 x 1075,4 x 1075,5 x 107°}.

Since the variances of the 62 signals are not at the same
level, we also consider the normalized mean-absolute-error

MAE := | X — X[/ X .

Table VII shows the average RMSE and MAE of 20 re-
peated trials and the standard deviation. RNLMF outperformed
other methods significantly especially when p = 0.3.

We randomly split the data into two subsets of equal size.
We perform RPCA, RDL, and RNLMF on one subset (training
data) and then use the trained model to denoise the other subset
(testing data). Let X' be the noisy testing data. For RPCA,
we consider the following problem

1,4
minimize _ || X' ~UV —E'|[z+ v [V][E+Asl Bl @7

where U € R™*" consists of the first  left singular vectors
of X obtained by solving (1) and r is set to be 10 or 20 in
this study. For RDL, we consider

1. -
minimize — | X'~ DC'—B[3+Acl|C' 1+ As | B, (28)

where D is obtained by solving (6). Notice that the out-of-
sample extensions of LRR and SSC use the whole data matrix
X as a dictionary and hence are not efficient, compared to
those of RPCA, RDL, and RNLMEF. Moreover, the perfor-
mance of LRR and SSC are similar to those of RPCA and
RDL. Therefore, for simplicity, the out-of-sample extensions
of LRR and SSC will not be considered in this study.

The results of 20 repeated trials are reported in Table VIII.
We see that the recovery performance on training data and
testing data are similar. In addition, RNLMF is more effective

than RPCA and RDL in denoising new data. The results in
Table VIII are also similar to those of RNLMF in Table VII.
We conclude that the dictionary matrix D given by RNLMF
can be used to denoise new data efficiently and the denosing
accuracy is comparable to that on the training data.

XI. CONCLUSION

We have proposed a new method called RNLMF to recover
high-rank matrices from sparse noise. We analyzed the under-
lying meaning of the factorization loss and the regularization
terms in the objective function. RNLMF can be used in
robust dicionary learning, denoising, and clustering and is also
scalable to large-scale data. Comparative studies on synthetic
data and real data verified the superiority of RNLMF. One
interesting finding is that in RNLMF, R = ||C||%. yields higher
recover accuracy, compared to R = ||C||. and ||C|;. The
reason has been analyzed in Section VIIL. It is possible that a
sparse C' given by RNLMF is more useful in sparse coding
based classification.
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APPENDIX
A. Proof for Lemma 1
iVl
=K, ((ih jj)

Proof. Let & = [x
IC[,(:BZ-,:BJ-)

1 o
— v gz (Il + o] = 2(e:.2,)

z;||? + z:||? 1 -
—eX < | ’L|| || J” > eXp O-2<m“m]>)
_ ||ac1||2 + ||903||2 — (T, &;)"
—exp (- > e
u=0
_ ||9731||2 + ||ﬂ73a||2 — (@] z; + )"
~ exp ( y leim s
u=0
_ |£L‘l||2 + ||£L'J||2 +2¢ Icc,u(wiy wj)
~exp ( 2 3o Kealenz),

u=0

B. Proof for Corollary 1

Proof. Since d > rank(¢. q(X
C € R¥" such that

, there exist D € R™*4 and
)

¢C,Q(X) = ¢c,q(D)é
Let C = Sf,lC‘SX, then
(bc’q(X)SX = ¢c7q(D)SDC.

As ¢. 4 contains all features of ¢, with u < g, ie. ¢oq =

(e, -] T, we have
¢c,u(X)SX = ¢c,u(D)SDC7 V0 S (% S q.
Combing these equalities with Lemma 2, we finish the proof.
O
C. Proof for Lemma 2
Proof. Define w, = 1/(c%v/u!). We have
1
S160(X) = 6, (D)C%
- wy 2
= 5 ¢eu(X)Sx — ¢e.u(D)SpC
u=0 (29)
q w2 )
= Z 7u||¢6,u(X)SX - ¢C,u(D)SDCHF
u=0
+ Ry + Ry + Rs,
N
where R = Zu:q+l 7Tr(ICC7u(X,X)SXSX),

Ry = —Y2 . wiTr(CTSLK. (D, X)Sx), and

2
o w?
Ry = Y00 . > —(Tr(CTS)Keu(D,D)SpC). Suppose

02 > Ko + c. We have

|R1|—¥

||9ﬁz||2 +0)

>

u=q+1

- i ]|* + e\
<y ( ) (30)
—~ 2(q!) o
- 0.5 exp(—=%) /max; ||z;||* + ¢\
- q ( o? ) '
(oo}
[Rol < Y wil|CllellSnlll|Sx Iz KCe.u(Ds X)l| e
u=q+1
<Vdnexp(-5)|Cllp > wi(max|z, d; + c|)
u=q+1 K
- Vdnexp(—5)||C| r (maxm |EAIIEA —|—c)
- q! o2
(31)
o0 ’U)2
|Rg| < ) 7”HC||2HC||FHSD||§H/CC,u(D7D)HF
u=q+1
< 0.5dexp(—5)[ClalCllr > wi(llg?ﬂd:dj + )
u=q+1
_ 05dexp(- £)|ClalClr s ol + ¢,
< i ( )
q! o
(32)

Let x1 = max{0.5n, Vdn||C||r,0.5d||C||2||C||r} and ko =
max{max; ||z;||?, max; ||d;||*}. We obtain

3Ky exp(—%) (52 + C)q

|R1| + |Ra| + |R3| < : ! (33)
q: o
O
D. Proof for Lemma 3
Proof. 1t is known that
Blz+5ICI7 = 16(X)[l.. (34
B 2H 1% + || 17 = llo(X)l (34)

Considering one more constraint B = ¢(D

LoD

BC= as(X),B #(D) 2

> 2B
L 2|| I +

Combining (34) and (35) finishes the proof. O

), we must have

1
7+ S ICIE
(35)

*HCII%-

E. Proof for Lemma 4
Proof. For all ¢ > 0, we have
le(D) + cllCll7 = 2V o(D
Choosing ¢ = ||¢(D)|%/||C||%, we have
IClrlloD)]F = ¢(D)C]..
Recalling ||¢(D)||% = d, we arrive at

IC|lr = |6(D)Cl|./Vd.

)C .-



FE. Proof for Lemma 5

Proof. Note that VoL(C) = —IC(Dt,hX - E;, 1) +
K(Dy_1,D;_1)C is L% -Lipschitz continuous, where L, =
HK(Dt—laDt—l)”?' ThUS

L(C}) < L(Cy—1) + (Cy — C1—1, Ve L(Ci1))

Lt (36)
CHCt Ci_1ll7-

According to the definition of the proximal map ©,, (or ¥,,)
[52], we have
C,; e mci'n <C — thl, Vcﬁ(ct,1)>
st 37
+ 5 1€ = Coall + AcR(C).
where R(C) = ||C||; (or ||C||.). By taking C' = Cy_4, it
follows from (37) that

(Cy — C4—1,VcL(Ci—1)) + A\cR(Cy)
SAcR(Ci-1) = %I\Ct — Cill- o
Combining (36) and (38), we have
L(Cy) + AcR(CY) gL‘(Ct 1) + AcR(Ct-1)
S tye e
This finished the proof. O

G. Proof for Lemma 6

Proof. Recall that £(D) = —Tr (C’tTIC(D,X —Et_l)) +

1
fTr(CTIC (D,D)C, ) and the gradient is
1
o2

VpL(D)=%(X - E,_ 1)WD - LDWp

+ ;DQ 2DQp,
where Wp = ~C] ©K(X ~E,_1, D), Qp = (0.5C,C/)o
K(D,D), Wp = diag(lTWD) and QD = diag(1) Qp).
Let s;; = exp(—”[X*Et’l]zgH na[£2/1 s ) and suppose o is
large enough. Then according to Lemma 1, we have

X T
Wpr—C 0S80 1+ EE) Dy

where we have omitted the higher (u > 2) order terms of the
polynomial approximate of Gaussian RBF kernel. Similarly,
we have

Qp ~ (0.5C,C)® Sp & (1+ 22)

D)1 +|HD] H2)
20

where [Spl;; = exp(—
Let’s check the sensitivity of V pL(D

on D. First, consider the first term in V p £(

exp(— ”[X_Et_lg;”;HHD]zjH2 ). We have

|2(X - E)(Cl o (Se 1+
- S0 (1 EER ),
<L |X = B 1| Ctlloo max{2]| S|l 2/|Slo }
X —Ei1)(D - D)||p
<Al X — B, ,|*|D - D||r,

) to the perturbation
D) and let [S];; =

(X—E;_1)' D
T)

X |lo~

(39)

where ||S]|so.[|S]loc < 1. We see that when o is large and
IC|loo is small, the first term in V p£(D) is not sensitive to
the changes of D.

Now consider the third term of VpL(D). Let Qp be the
perturbed copy of Qp computed from D. We have

Z[DQp _DQf)”F
~%|(D - D)Qp -
—(0.5C,C)Y o 8p o (
%HQDHHD - bHF +
Z|QollD - D|r
+ Z(IDI” + | DIIDINC:CY oo D = D] . (40)

D((0.5C,C)® Sp & (

D2l

ZIDIIC:C || DTD ~ DTD| ¢

DD)

<
<

In (40), when o is large enough, the second term can be
smaller than the first term and Qp = 0. SCtC It means
the D in Qp makes small contribution to D@ p. Therefore,
the contribution of D in Qp to the Hessian of £(D) can
be neglected. The conclusion also applies to Qp and Wp.
In addition, comparing (39) with (40), we can neglect the
contribution of the first term of VpL£(D) to the Hessian of
L(D).

Now let’s consider second order approximation of L£(D)
around D;_:

ﬁ(D) zﬁ(thl) + <VD£(Dt,1), D — Dt,1>

+ 2vec(D — Dy—1) ' Hi_1vec(D — Dy—q) ',
(4D

where H;_; is the Hessian at iteration ¢ — 1. It is difficult to
compute H;_1. However, our previous analysis indicates that

we can treat Wp, Wp, Qp, and Q p as constants independent
of D at iteration ¢. Thus the estimated Hessian is

H, , ... 0
,;Lt—l — : ) : e [Rmdxmd
0 ... Hi_4
where H;_1 = ( WDt .+ ZQDt L 2Q_Dt—1) € Rixd,

Let u > 0 be sufﬁc1ently large such that H; 1 + ul is
positive definite. Let 7}, > 1 be sufficiently large such that

L(D) <L(Dy_1) + (VpL(Di_1),D — D;_1)
+ 2T (D — Dy_1)(Hy 1+ pI)(D — Dy_q)7).
(42)

We then minimize the right side of (42) by letting the
derivative be zero and get

1
D, =D, | — TTVDL(Dt_l)(Ht_l +ul)™t (43)
D

Invoking (43) into (42) yields
L(Dy) < L(Dy_1)

1
— 5T (VDL(Di—1)(Hi—1 + pI) 'VpL(Di—1)").
D

Since H;_1 + pI is positive definite, we have
L(D;-1) <0.
This finished the proof. O

L(D,) -



H. Proof for Corollary 3 where £ > 1 is a large enough constant. Since o is sufficiently
Proof. Recall that D, = Dy_; — Ay, where A, = nA,_; + largeand ||C| o is encouraged to be small in its update, & will
T#VDE(Dt,l)(Ht,l +pI)~' and 0 < 5 < 1. Follow the DOt be too large.

D

same analysis on H in the proof of Lemma 6. In (42), letting We may estimate the Lipschitz constant of Vg L(E) as

D = D, we have Ly = A= (Vd| X — E|[|De]| + | D|*) + %[ Gll.
L(D,) which however will increase the computational cost because

<L(Di-1) —(VDpL(D:-1),nA:_1) of the spectral norms of X — E and D;. For simplicity, we
~(VDL(Di-1), 75 VD L(Dyt) (Hyoy + pI) ™) use

L T i = €1Gr, ,||/o® = €] G, lloc/o?.
+ 2Tr (° Aoy (Hy—1 + pI)A/)

i whe e £ > 1 should be large enough. Then letting 7}, > Lt
+ 3T (”At—l(Ht—l +pd) (- VD L(Dy—1)(Hi—1 + 1I) 7wk have

+ %Tr ((%VDE(th)(HtA + MI)_ V(Hi—1+ MI)WAtq) L(E) < L(Ei-1) +(E — E;1,VEL(E¢-1))

T %Tr (VDL(Di—1)(Hy—1 + MI)_lvDﬁ(Dt—l)T) + %”E —E; 1|7, @
=£(Di-1) = %Tr (VpL(Dy—1)(Hi—y + pI) "'V pL(Dy_1)prbvided that ¢ is sufficiently large. According to Table II and

—(VDpL(Ds_1),nA; 1) the definition of the proximal map [52], we have

+ IRy (A (Hyy + pD)A] ) E, € min (E — By, VEL(E;-1)) B

¢
+nTr (A1 VpL(Di—1)") + %EHE — B, 1|2 + AgR(E).

=L(Dy_1) — 55 Tr (VpL(Dy—1)(Hy—y + MI)-lvpc(DH)T?1 .
D where R(E) = ||E|%, ||E|1, or ||E||2,1. By taking E =

2_t
+ T2 Tr (A1 (Hyy + pD)A]) E,_,, it follows from (46) that
O (Bt — E; 1,VEL(E; 1)) + A\eR(E})
¢ 47
_TEygm, _ 2
1. Proof for Lemma 7 <AER(Ei-1) 9 |E: — Bt/
Proof. Note that In addition, the Lipschitz continuity of Vg £L(E) around E;_;

. _ indicates that
VeL(E)= L ((X - E)Gr — D,Gg),
BL(E) = 7 ( )Gs ~ DiG) L(Ey) < L(Ey_1) + (B, — By, VEL(E,_,))

where G = —C,©OK(D;, X — E) and G = diag(1] G ). L}% , (48)
According to Lemma 1 (let ¢ = 0 and assume o is large 1E: — Er 1|,
enough), we have Combining (48) and (47), we have
(Gilij ~ ~[Cilijsig(1 + Pllg=edy ~ —[C], L(E)) + \R(E) <L(Ey 1) + AeR(E; 1)
. t
where s;; = exp(— ID: ] Hlm] e’ ). Let E be an per- 7LE||Et E; 1|3
turbed copy of E. It follows that 2
Let 74 = €||1) GR,_, |lo/0? and ¢ be sufficiently large, then
IGe — Gilr 7t — L% > 0. This finished the proof. O

”“QGS@(HM)—CtGS@<1+W>HF
207|C e max{[|S |, ISl } | D} (E — )|
32af2||0||m||Dt||||E ~E|r.

GEHF < \/aHGE - Gglr.

J. Proof for Theorem 1

Proof. Combining Lemmas 5, 6, and 7, we have

J (D¢, Cy, E) < J(Dy—1,Ci_1, Ey_1) — Al (49)

Then we have where Af] = Af]c + AfJD + AtJE and
VEL VgL Lt
IVEL(E) — (E)|r AL, :70”627@ "

%H(XfE)GE—DfGE ~ (X - E)Gy — D,Gp)|r .

+H(X E)G _DtG ((X E)G - DG E)HF ASD 2 t Tr(VDﬁ(Dt 1)(Ht71 ‘*‘MI)_IVDE(thl)T),
<L X — E|||Gr — Gl + 5 ||D:|||Ge — G £ _ Lt

<HIE - BllGe - Golle+ 2D ~Gple  y th Lo g

+ %|GLIIE - Ellr

(2HS4HW (\/Zi”X — E||| Dy + ||DtH2) + %HGEH)HE _ E”FAS Tév > LC’ H,;_1 + pI is positive definite, and TE > Lt
£ A . we have Af,c >0, Af]D >0, and Af,E > 0. It follows that
=IG:IIE - E|F,

(44) J(Dy,Cy, Ey) < J(Dy—1,Ci—1, Ey—1).

=
<



Since J(D, C, E) is bounded below, we have

tlglgo J(Dy,Cy, Ey) — J(Dy—1,Ci—1, E 1) = 0.

Summing (49) from 0 to oo, we have

J (Do, Co, Ey) — J (Do, Coo, Exg) > Y Al
t=0

Hence

ZA'}C +AL + AL <.
t=0

As Affc’ Af]D,AtJE > ( for all ¢, we conclude that

lim |VpL(D:-1)|lr =0,
t—o0

lim ||Ct — Ct71||F = 0)
t—o0

lim [|E; — E;—||p = 0.
t—o0

Combining the first equality above with (43) yields

lim ||Dt — Dt—l”F =0.
t—o0

This finished the proof. O
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