
© 2021 National Technology & Engineering Solutions of Sandia, LLC

SIAM J. OPTIM. © 2021 National Technology \& Engineering Solutions of Sandia, LLC
Vol. 31, No. 2, pp. 1242--1275

RANDOMIZED SKETCHING ALGORITHMS FOR LOW-MEMORY
DYNAMIC OPTIMIZATION\ast

RAMCHANDRAN MUTHUKUMAR\dagger , DREW P. KOURI\ddagger , AND MADELEINE UDELL\dagger

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper develops a novel limited-memory method to solve dynamic optimization
problems. The memory requirements for such problems often present a major obstacle, particularly
for problems with PDE constraints such as optimal flow control, full waveform inversion, and optical
tomography. In these problems, PDE constraints uniquely determine the state of a physical system
for a given control; the goal is to find the value of the control that minimizes an objective. While the
control is often low dimensional, the state is typically more expensive to store. This paper suggests
using randomized matrix approximation to compress the state as it is generated and shows how to
use the compressed state to reliably solve the original dynamic optimization problem. Concretely,
the compressed state is used to compute approximate gradients and to apply the Hessian to vectors.
The approximation error in these quantities is controlled by the target rank of the sketch. This
approximate first- and second-order information can readily be used in any optimization algorithm.
As an example, we develop a sketched trust-region method that adaptively chooses the target rank
using a posteriori error information and provably converges to a stationary point of the original
problem. Numerical experiments with the sketched trust-region method show promising performance
on challenging problems such as the optimal control of an advection-reaction-diffusion equation and
the optimal control of fluid flow past a cylinder.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . PDE-constrained optimization, matrix approximation, randomized algorithm,
single-pass algorithm, sketching, adaptivity, trust-region method, flow control, Navier--Stokes equa-
tions, adjoint equation

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 49M37, 49L20, 68W20, 90C30, 90C39, 93C20

\bfD \bfO \bfI . 10.1137/19M1272561

1. Introduction. In this paper, we introduce novel low-memory methods to
solve discrete-time dynamic optimization problems that are based on randomized
matrix sketching. Such problems arise in many practical applications, including full
waveform inversion [26, 33, 38], optimal flow control [18, 28], financial engineering [22],
and optical tomography [2, 23], to name a few. Let M be the dimension of the state
space and m be the dimension of the control space. For many practical applications,

\ast Received by the editors July 5, 2019; accepted for publication (in revised form) January 22, 2021;
published electronically May 10, 2021. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA0003525. This paper describes objective
technical results and analysis. Any subjective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S. Department of Energy or the United States
Government.

https://doi.org/10.1137/19M1272561
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The first and third authors were supported in part by DARPA award FA8750-17-2-

0101, NSF awards IIS-1943131 and CCF-1740822, the ONR Young Investigator Program, and the
Simons Institute. The first and second authors were supported in part by the Laboratory Directed
Research and Development program at Sandia National Laboratories.

\dagger Department of Operations Research and Information Engineering, Cornell University, Ithaca,
NY 14853 USA (rm949@cornell.edu, udell@cornell.edu).

\ddagger Optimization and Uncertainty Quantification, Sandia National Laboratories, Albuquerque, NM
87185 USA (dpkouri@sandia.gov).

1242

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1272561
mailto:rm949@cornell.edu
mailto:udell@cornell.edu
mailto:dpkouri@sandia.gov

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1243

M \gg m. We consider the discrete-time dynamic optimization problem

(1.1)
minimize

\bfu n\in RM , \bfz n\in Rm

N\sum
n=1

fn(un - 1,un, zn)

subject to cn(un - 1,un, zn) = 0, n = 1, . . . , N,

where zn \in Rm, un \in RM are the control actions and system states at the nth
time step, respectively, u0 \in RM is the provided initial state of the system, fn :
RM \times RM \times Rm \rightarrow R is a ``cost"" or ``objective"" associated with the nth state and
control, and cn : RM \times RM \times Rm \rightarrow RM is a constraint function that advances the
state from un - 1 into un. One major application of problem (1.1) is to optimize (a
discretized version of) a continuous-time dynamical system. In this case, the form of
cn presented above corresponds to single-step time integration schemes. Other time
stepping methods can also be handled with the approach described here. Additionally,
our approach can handle dynamic optimization problems with static controls, includ-
ing, e.g., initial conditions, material parameters, and shape or topological designs.
However, for simplicity we focus on problems of the form (1.1).

1.1. Memory versus computation: Trade-offs. Memory limits often con-
strain numerical algorithms for (1.1). For example, suppose the objective and con-
straints are twice differentiable. To solve (1.1) using a traditional sequential quadratic
programming algorithm, we must store the entire state trajectory \{ un\} , the Lagrange
multipliers associated with each constraint function in (1.1), and the control trajectory
\{ zn\} : in total, we have a memory requirement of N(2M + m) floating point num-
bers. For example, discretizations of full waveform inversion problems for petroleum
exploration regularly result in state vectors of size M = 64 billion with the number of
time steps exceeding N = 400, 000 [27]. In view of the onerous memory requirements
of straightforward algorithms, algorithm designers must make hard choices to reduce
the fidelity of the model or to repeat computation.

One can reduce the storage and computational complexity, at the cost of accu-
racy, using coarse spatial and temporal grids to model the problem. A more ambi-
tious approach than coarsening is to solve (1.1) using a reduced-order model (ROM)
[1, 10, 21]. However, ROMs are often tailored for specific dynamical systems and
demand significant domain expertise. Moreover, ROMs can be difficult to implement
in practice, requiring significant and often invasive modification of the simulation
software. Naively implemented, ROMs are also a poor fit for optimization. For exam-
ple, proper orthogonal decomposition ROMs are constructed using snapshots of the
state trajectory \{ un\} , which depend on the current control trajectory \{ zn\} . There-
fore, as the control changes during optimization, the approximation quality of the
ROM degrades. Adaptive ROM generation for optimization is an active research
topic [11, 41]. Balanced truncation is better suited for optimization since it does not
depend on snapshots of the state trajectory. However, balanced truncation is typi-
cally limited to linear, time-invariant dynamical systems. See [5] for a review of ROM
techniques for PDE-constrained optimization.

An alternative approach substitutes computation for memory. Suppose the dy-
namic constraint in (1.1) uniquely determines the state given the control and forms
the equivalent reduced optimization problem by eliminating the state ``nuisance vari-
able."" The optimization variable in this approach is simply the control \{ zn\} : Nm
floating point numbers. However, evaluating the objective function requires solving
the dynamic constraint. Worse, evaluating the gradient of the objective function re-
quires the solution of the backward-in-time adjoint equation [20]: to solve it, we must

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1244 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

traverse the state trajectory backward, from the end to the beginning. Unfortunately,
the state must generally be computed forward in time.

Checkpointing methods perform this backward pass without storing the full state
[3, 15, 30, 37]. Instead, they store judiciously chosen snapshots of the state variables
un in memory or to hard disk. The state is then recomputed from these checkpoints
to solve the adjoint equation. This procedure results in lower memory requirements
but drastically increases the cost of computing gradient information. For example, if
we can store at most k state vectors in memory (i.e., kM floating point numbers) and
we solve the dynamic optimization problem (1.1) using the checkpointing strategy
described in [15] with k checkpoints, then Proposition 1 of [15] guarantees that the
minimum number of additional state time steps required to perform the backward
pass of the adjoint equation is

w(N, k) := \tau N - \beta (k + 1, \tau - 1), where \beta (s, t) :=

\biggl(
s+ t

s

\biggr)
and \tau is the unique integer satisfying \beta (k, \tau - 1) < N \leq \beta (k, \tau). This cost is com-
pounded when higher-order derivatives are required.

Our approach is closely related to the compression approaches described in [9,
13, 14]. The method in [13, 14] applies to (1.1) with dynamic constraints given by
discretized partial differential equations (PDEs). Their approach uses a sequence of
nested meshes to adaptively reduce to the state storage requirement. Consequently,
this method is not directly applicable to general problems with the form (1.1). On
the other hand, the authors of [9] explore the use of three methods based on principal
component analysis (PCA), sequential Gram--Schmidt orthogonalization (GS), and
the discrete Fourier transformation (DFT) for adjoint-based error estimation of PDE
systems. The PCA and GS approaches compress in space, but only provide marginal
compression in time, while the DFT provides temporal compression. The authors
recommend the combination of these spatial and temporal compression approaches
and show compelling results for the combination of GS and DFT. In the context
of PDE-constrained optimization, our approach provides both temporal and spatial
compression using randomized sketching.

1.2. Randomized sketching for dynamic optimization. In contrast to the
checkpointing methods, our sketching methods can achieve \scrO (N) computation with
\scrO (N +M) storage, where the constant hidden by the big-O notation depends on the
rank of the state matrix. Indeed, our methods solve the state equation only once
at each iterate. The sketching method is simple and easy to integrate into existing
codes: (1) compute the sketch while solving the state equation by forming a random
projection, (2) reconstruct the approximate state via simple linear algebra, and (3)
use the low-rank approximation in place of the state throughout the remainder of the
computation, for example, to solve the adjoint equation and compute an approximate
gradient. Under standard assumptions, we can quantify the effect of these approxi-
mate gradients on the quality of the approximate solution to the dynamic optimization
problem (1.1). We also develop a trust-region algorithm to solve (1.1) that ensures
convergence by adaptively choosing the rank.

1.3. Outline. We first introduce notation and describe the problem formulation.
We then introduce a sketching method for matrix approximation and analyze the error
committed when solving (1.1) with a fixed-rank sketch. Subsequently, we introduce
an adaptive-rank trust-region algorithm and discuss its convergence. We verify our
assumptions for a class of optimal control problems constrained by linear parabolic

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1245

PDEs. We provide numerical results for this class of problems as well as for a class
of flow control problems for which the assumptions have not been verified.

2. Problem formulation. To begin, we introduce notation for the dynamic
optimization problem. We consider the control vectors zn and the state vectors un

to be column vectors and collect the control and state trajectories into the stacked
column vectors

Z =

\left[z1
...
zN

\right] , zn \in Rm \forall n = 1, . . . , N,

U =

\left[u1

...
uN

\right] , un \in RM \forall n = 1, . . . , N.

We denote the control and state spaces, respectively, by Z := RmN and U := RMN .
Moreover, we consider the family of coordinate projections pn : RMN \times RmN \rightarrow
RM \times RM \times Rm defined by

p1(U,Z) := (u0,u1, z1) and pn(U,Z) := (un - 1,un, zn), n = 2, . . . , N,

where the initial state u0 is given. Other choices of the projection mappings \{ pn\}
result in different orderings of the trajectory. These model, e.g., delays in the dynamics
or different time stepping schemes. Throughout the paper, \| \cdot \| 2 refers to the Euclidean
vector norm and \| \cdot \| F the Frobenius matrix norm. For later results, we will require the
weighted norms \| v\| 2\bfA = v\top Av for v \in R\ell , where A \in R\ell \times \ell is a symmetric positive
definite matrix. In addition, we denote the singular values of a matrix B \in RM\times N by
\sigma min(B) = \sigma 1(B) \leq \cdot \cdot \cdot \leq \sigma min(M,N)(B) = \sigma max(B).

Using this notation, we can represent the dynamic constraint and objective as the
functions

c(U,Z) :=

\left[c1 \circ p1...
cN \circ pN

\right] (U,Z) and f(U,Z) :=

N\sum
n=1

fn \circ pn(U,Z),

where c : U\times Z\rightarrow U and f : U\times Z\rightarrow R and we can rewrite the dynamic optimization
problem (1.1) as

(2.1)
minimize
\bfU \in U, \bfZ \in Z

f(U,Z)

subject to c(U,Z) = 0.

2.1. Assumptions and the reduced problem. Throughout this paper, we
will assume that f and c are continuously differentiable on U \times Z. In general, we
denote by \sansd i the partial derivative of a function with respect to its ith argument. We
assume that there exists a control-to-state map S : Z \rightarrow U such that for any control
Z \in Z, \=U := S(Z) is the unique state trajectory that satisfies the dynamic constraint,

c(\=U,Z) = 0,

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1246 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

and that the state Jacobian of the constraint, \sansd 1c(\=U,Z), has a bounded inverse for
all controls Z \in Z. Note that the unique state trajectory \=U = S(Z) has the form

S(Z) :=

\left[
S1(u0, z1)

S2(S1(u0, z1), z2)
...

SN (SN - 1(. . . , zN - 1), zN)

\right] ,
where \=un = Sn(\=un - 1, zn) \in RM denotes the unique solution to

cn(\=un - 1, \=un, zn) = 0 \forall n = 1, . . . , N.

Under these assumptions, the implicit function theorem (cf. [20, Thm. 1.41]) ensures
that the operators Sn and S are continuously differentiable. In addition, if c has
continuous \ell th-order derivatives for \ell \in N, then Sn and S are \ell th-order continuously
differentiable. Using the control-to-state map S, we can reformulate (2.1) as the
reduced dynamic optimization problem

(2.2) minimize
\bfZ \in Z

\{ F (Z) := f(S(Z),Z)\} .

Our goal is to solve the reduced dynamic optimization problem (2.2) efficiently. This
reduced formulation is helpful when the problem size, and therefore the memory
required to store the state, is large.

2.2. Gradient computation and adjoints. We consider derivative-based op-
timization approaches to solve the dynamic optimization problem (2.2). These require
computing first-order and (if possible) second-order derivative information. To com-
pute the gradient of the reduced objective function F , we employ the adjoint method
[20], which results from an application of the chain rule to the implicitly defined re-
duced objective function F . In particular, the variation of F in the direction V \in Z
is given by

\langle \nabla F (Z),V\rangle Z = \langle \sansd 1f(S(Z),Z), S\prime (Z)V\rangle U + \langle \sansd 2f(S(Z),Z),V\rangle Z
= \langle S\prime (Z)\ast \sansd 1f(S(Z),Z) + \sansd 2f(S(Z),Z),V\rangle Z,

where S\prime (Z) denotes the derivative of the control-to-state map S at Z and S\prime (Z)\ast its
adjoint. Here, \langle \cdot , \cdot \rangle Z and \langle \cdot , \cdot \rangle U denote inner products on Z and U, respectively. The
implicit function theorem ensures that S\prime (Z)V satisfies the linear system of equations

(2.3) \sansd 1c(S(Z),Z)S
\prime (Z)V + \sansd 2c(S(Z),Z)V = 0.

By the assumption that the state Jacobian of the constraint, \sansd 1c(S(Z),Z), has a
bounded inverse for all control Z \in Z, we have that (2.3) has a unique solution given
by

S\prime (Z) = - (\sansd 1c(S(Z),Z)) - 1\sansd 2c(S(Z),Z).

Therefore, the adjoint of the derivative of the control-to-state map is given by

S\prime (Z)\ast = - (\sansd 2c(S(Z),Z))\ast (\sansd 1c(S(Z),Z)) - \ast .

Substituting this expression into (2.2) yields the gradient

\nabla F (Z) = (\sansd 2c(S(Z),Z))
\ast \=\Lambda + \sansd 2f(S(Z),Z),

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1247

where the adjoint, \=\Lambda = \Lambda (Z) \in U, is the unique trajectory that solves the adjoint
equation:

(2.4) (\sansd 1c(S(Z),Z))
\ast \=\Lambda = - \sansd 1f(S(Z),Z).

This discussion gives rise to Algorithm 2.1 for computing gradients of the reduced
objective function F .

Algorithm 2.1 Compute gradient using adjoints.

Input: Control Z
Output: Gradient of reduced objective function \nabla F (Z)
1: function Gradient(Z)
2: Solve the state equation, c(U,Z) = 0, and denote the solution \=U
3: Solve the adjoint equation, (\sansd 1c(\=U,Z))

\ast \Lambda = - \sansd 1f(\=U,Z), and denote the
solution \=\Lambda

4: Compute the gradient as \nabla F (Z) = \sansd 2f(\=U,Z) + (\sansd 2c(\=U,Z))
\ast \=\Lambda

5: return \nabla F (Z)

Algorithm 2.1 hides the dynamic nature of the state and adjoint computations. In
fact, we compute \=U forward in time starting from u1 to uN . In contrast, the adjoint
equation is computed backward in time. To see this, express the adjoint equation in
terms of the N components fn and cn:

0 = \sansd 1f(S(Z),Z) + (\sansd 1c(S(Z),Z))
\ast \=\Lambda

=
N\sum

n=1

\sansd 1(fn \circ pn)(S(Z),Z) + (\sansd 1(cn \circ pn)(S(Z),Z))\ast \=\bfitlambda n.

We can calculate partial derivatives of cn \circ pn and fn \circ pn using the chain rule. The
adjoint equation then reduces to the following system of equations for n = 1, . . . , N :

(\sansd 2cN (\=uN - 1, \=uN , zN))\ast \bfitlambda N = - \sansd 2fN (\=uN - 1, \=uN , zN),

(\sansd 2cn(\=un - 1, \=un, zn))
\ast \bfitlambda n = - \sansd 2fn(\=un - 1, \=un, zn) - \sansd 1fn+1(\=un, \=un+1, zn+1)

 - \sansd 1cn+1(\=un, \=un+1, zn+1)
\ast \bfitlambda n+1,

where \=un = Sn(\=un - 1, zn) for n = 1, . . . , N . Here, information required for the solve
flows backward in time from \=\bfitlambda N to \=\bfitlambda 1: in general, computing \=\bfitlambda n requires the state
vectors \=un - 1, \=un, and \=un+1. The most straightforward computational approach is
to solve the state equation and store the full state trajectory before computing the
adjoint. The adjoint vectors \=\bfitlambda n are used to form the gradient vector gn at the nth
time step as

gn = \sansd 3fn(un - 1,un, zn) + (\sansd 3cn(un - 1,un, zn))
\ast \bfitlambda n.

Both the state \=U and adjoint \=\Lambda are intermediate variables used to compute the
gradient \nabla F (Z), and both require MN storage. The control Z requires only mN
storage, which is often much smaller in practical applications, i.e., M \gg m.

3. Low-memory matrix approximation. Our method forms a low-memory
approximation to the state matrix in order to solve the dynamic optimization problem
without storing or recomputing the state matrix. In this section, we describe this

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1248 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

approximation in detail. Given a fixed storage budget, in a single pass column-by-
column over the matrix, the method collects information about the matrix from which
the matrix can be accurately reconstructed. This information is called a sketch of the
matrix. The approach we adopt in this paper forms the sketch as a random projection
of the matrix. This approach has been studied extensively in the numerical analysis
and theoretical computer science communities, and many variants are available [6,
7, 17, 29, 34, 35, 36, 39, 40]. In particular, the authors of [36] provide evidence
that data generated from scientific simulations (including velocity fields in fluid-flow
models, such as those presented in our numerics below) are efficiently compressed
by sketching methods. When the state space itself has tensor product structure, a
tensor sketch that respects that structure can further reduce memory requirements
[31]. For concreteness (and for use in our numerical experiments), we describe the
method developed in [36].

Consider a matrix A \in RM\times N and a target rank parameter r. The method of
[36] produces a low-rank matrix approximation \^A that is (in expectation) not much
farther from A than the best rank-r approximation, using \scrO (r(M +N)) storage.

Define the sketch parameters r \leq k \leq s. The quality of the approximation, and
also the storage required for the sketch, increases with these parameters. In this
paper, we choose k := 2r + 1 and s := 2k + 1, and adjust the target rank parameter
r to obtain satisfactory performance. To define the sketch, fix four random linear
dimension reduction maps (DRMs) with i.i.d. standard normal entries:

(3.1)
\Upsilon \in Rk\times M and \Omega \in Rk\times N ;

\Phi \in Rs\times M and \Psi \in Rs\times N .

Note that other random ensembles work similarly; see [36]. The sketch of the target
matrix A consists of

X := \Upsilon A \in Rk\times N , the co-range sketch;

Y := A\Omega \ast \in RM\times k, the range sketch;

Z := \Phi A\Psi \ast \in Rs\times s, the core sketch.

Roughly speaking, the range sketch Y captures the row space (top left singular vec-
tors) of A; the co-range sketch X captures the column space (top right singular
vectors); and the core sketch Z captures their interactions (singular values). Linear-
ity of the sketch allows us to compute it without storing the full matrix A. Suppose
A = [a1 \cdot \cdot \cdot aN] is presented column by column. Then we can compute the co-range
sketch X = X(N) by the following recursion (with the initial estimate of the sketch
set to 0):

(3.2) X(0) = 0, X(i) = X(i - 1) +\Upsilon aie
\top
i , i = 1, . . . , N,

where ei is the ith unit vector, and similarly for the range sketch Y and core sketch
Z.

Sketch object. We use \{ A\} r to denote an object of the sketch class, which contains
the sketch parameters k, s, the dimension reduction maps \Upsilon ,\Omega ,\Phi ,\Psi , and the range,
co-range, and core sketches X,Y,Z.

Storage. The sketch matrices X, Y, and Z can be stored using k(M + N) + s2

floating point numbers. Hence the memory required to store a sketch object with
target rank parameter r is \scrO (r(M+N)+r2). When storage is limited, the DRMs can

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1249

be regenerated on the fly from a random seed or generated from a random ensemble
with lower storage requirements [31, 32], so we omit the DRMs from our storage
calculation.

3.1. Reconstruction. To reconstruct a low-rank approximation from the sketch,
compute the QR factorizations [12, Chap. 5.2] of X\ast and Y,

(3.3)
X\ast =: PR1, where P \in RN\times k;

Y =: QR2, where Q \in RM\times k.

Use the core sketch Z to compute a core approximation by solving two small least-
squares problems

(3.4) C := (\Phi Q)\dagger Z((\Psi P)\dagger)\ast \in Rk\times k.

Then compute a rank-k approximation of the target matrix A as

(3.5) \{ \{ A\} \} r := QCP\ast .

This approximation can be truncated to rank r by replacing C \in Rk\times k with its
best rank-r approximation. For use in the dynamic optimization problem (1.1), after
reconstruction we store the low-rank factors, Q \in RM\times k and W = CP\ast \in Rk\times N ,
in the sketch object \{ A\} r. To reduce storage further, one can overwrite X and Y
with Q and W. From these, we can reconstruct the jth column (the state at the
jth time step) as needed, via \{ \{ A\} \} r[:, j] = QW[:, j]. Each of these operations uses
storage proportional to k(M + N), so the total storage complexity to approximate
A \in RM\times N (in factored form) is \scrO (k(M +N)).

Remark 3.1. We summarize the sketch class and its methods in Algorithm A.1
in Appendix A. Briefly, the function Sketch acts as a class constructor (in object-
oriented paradigm). The function Initialize! initializes the fields of the sketch
object by fixing four random linear DRMs and setting the initial sketch matrices
X,Y,Z to zero. When the sketch object has already been instantiated (such as in
line 11, Algorithm 4.4 and line 8, Algorithm 4.5), the function Initialize! resets
the fields according to the new rank parameter r. Thus previously allocated memory
can be reused.

3.2. Intuition. We present an intuitive view of this sketching approximation
method, following [17, 35, 36]. Consider a target matrix A \in RM\times N . The rows of the
DRM \Omega are the i.i.d. random vectors \bfitomega 1, . . . ,\bfitomega k \in RN . As before, define the range
sketch Y = [y1 \cdot \cdot \cdot yk] \in RM\times k, where each column yi = A\bfitomega i \in RM .

The columns of Y capture the range of A, and with probability one, \bfitomega i /\in
nullspace(A) for any i. Hence each yi can be viewed as an independent random
sample from range(A), and range(Y) \subseteq range(A) with equality when Rank(A) = k.
Similarly, the co-range sketch captures the range of A\ast : range(X\ast) \subseteq range(A\ast). To
compute an orthonormal basis for the range, we apply the QR factorization to Y and
X\ast , respectively, to obtain orthonormal matrices Q \in RM\times k and P \in RN\times k with the
same span. Therefore, the following approximations hold:

A \approx QQ\ast A, A \approx APP\ast , and A \approx QQ\ast APP\ast .

Sketching provides a tractable way to control the relative error in this approx-
imation by varying the target rank parameter r since the error tends to zero as r

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1250 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

increases. We restate a few lemmas from [17, 36] to show how the error depends on
the parameters k = 2r + 1 and s = 2k + 1. For use in these results, we define the jth
tail energy of a matrix A as

\tau j(A) := min
Rank(\bfB)<j

\| A - B\| F =

\Biggl(\sum
i\geq j

\sigma 2
i (A)

\Biggr) 1
2

.

Lemma 3.2 (Theorem 10.5 in [17], Lemma A.5 in [36]). Let A \in RM\times N be a
matrix, and let r be the target rank parameter. Choose sketch parameters k = 2r + 1
and s = 2k + 1. Draw \Upsilon , \Omega with i.i.d. standard normal entries, and compute (Q,P)
according to (3.1)--(3.3). Then

E\bfOmega \| A - QQ\ast A\| F \leq
\surd
2 \cdot \tau r+1(A),

E\bfUpsilon \| A - APP\ast \| F \leq
\surd
2 \cdot \tau r+1(A),

E\bfOmega ,\bfUpsilon \| A - QQ\ast APP\ast \| F \leq
\surd
3 \cdot \tau r+1(A).

We can form a low-rank approximation A by applying either Q or P\ast (or both) to
A to form the low-rank approximations Q(Q\ast A), (AP)P\ast , or Q(Q\ast AP)P\ast [35, 36].
However, we must access the matrix A again to compute these approximations. In
the context of dynamic optimization, this second access to A is quite expensive, as it
entails either storing the entire state matrix or solving the state equation again.

Instead, it is possible to infer the action of A from the sketches themselves. One
approach, proposed in [36], uses the additional sketch Z to record the action of A on
the random DRMs \Phi and \Psi . We obtain an approximation of the core Q\ast AP as

Z = \Phi A\Psi \ast \approx (\Phi Q)(Q\ast AP)(P\ast \Psi \ast),

C := (\Phi Q)\dagger Z((\Psi P)\dagger)\ast \approx Q\ast AP.

The following lemma quantifies the error in the core approximation.

Lemma 3.3 (Lemma A.4 in [36]). Let A \in RM\times N be a matrix, and let r be the
target rank parameter. Choose sketch parameters k = 2r + 1 and s = 2k + 1. Draw
\Upsilon ,\Omega ,\Phi ,\Psi with i.i.d. standard normal entries, and compute (Q,P,C) according to
(3.1)--(3.4). Then C is an unbiased estimate for the core matrix Q\ast AP and

E\bfPhi ,\bfPsi \| C - Q\ast AP\| F \leq \| A - QQ\ast APP\ast \| F.

To compute the error in the final approximation \{ \{ A\} \} r := QCP\ast , we note that

\| A - QCP\ast \| 2F = \| A - QQ\ast APP\ast +QQ\ast APP\ast - QCP\ast \| 2F
= \| A - QQ\ast APP\ast \| 2F + \| Q(Q\ast AP - C)P\ast \| 2F.

Thus we can combine Lemmas 3.2 and 3.3 to obtain the total reconstruction error.

Theorem 3.4 (total reconstruction error [36]). Let A \in RM\times N be a matrix,
and let r be the target rank parameter. Choose sketch parameters k = 2r + 1 and
s = 2k+1. Compute range, co-range, and core sketches (X,Y,Z) according to (3.2).
The low-rank approximation \{ \{ A\} \} r computed in (3.3)--(3.5) satisfies

E\bfOmega ,\bfUpsilon ,\bfPhi ,\bfPsi \| A - \{ \{ A\} \} r\| F \leq
\surd
6 \cdot \tau r+1(A).

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1251

This result shows that the rank-k approximation to A computed by sketching is
only a constant factor farther from A than the best rank-r approximation on average.
We shall later demonstrate how these error bounds can be used for a posteriori error
estimation of the inexact gradient for dynamic optimization. It is also possible to
obtain an unbiased estimate of the error in approximation, \| A - \{ \{ A\} \} r\| F, in one
streaming pass over the target matrix A using an additional test matrix; see [36,
section 6] for details.

In this paper, we state most bounds in terms of the expected error. It is also
possible to bound the probability of large deviations. Indeed, the probability that
\| A - \{ \{ A\} \} r\| F deviates by \epsilon from its expectation decreases superexponentially as
the sketch parameters k and s increase since Lipschitz functions of Gaussian ran-
dom variables exhibit dimension-free concentration. See [17, Theorem 10.9] for more
details.

4. Randomized sketching for dynamic optimization. This section presents
our limited-memory algorithm to solve the dynamic optimization problem (2.2). Any
first-order optimization method relies on the gradient of the objective function, so we
begin with a discussion of how to compute a limited-memory approximate gradient in
subsection 4.1. We also discuss how the same approach can be extended to apply the
Hessian to a vector using limited memory. This enables usage of second-order meth-
ods. We next quantify the error in the approximate gradient. To quantify this error,
we rely on regularity assumptions detailed in subsection 4.2. This analysis undergirds
our results on the optimization algorithms presented in the next two subsections. In
subsection 4.3, we present our first approach that considers computing the gradient
using a fixed-rank sketch. This method has the advantage that it uses a fixed storage
budget. However, for this method to work well, the state corresponding to any control
must be well approximated by a fixed-rank sketch whose rank is known in advance.
In subsection 4.4, we present our second approach, an adaptive method that updates
the sketch rank to control the error in the gradient. We obtain a provably convergent
optimization method by using this adaptive approach to compute the gradient within
a trust-region algorithm. Unlike the fixed-rank method, this approach does not re-
quire a rank estimate a priori. However, this approach has the disadvantage that the
storage budget required is dictated by the progress of the optimization algorithm and
is not known a priori.

4.1. Computing first- and second-order information with limited mem-
ory. To compute the gradient and to apply the Hessian with limited memory, we can
sketch the state while solving the state equation, c(U,Z) = 0. Upon solving the
adjoint equation, we reconstruct from the sketch to compute an approximate state.
This allows us to compute an approximate gradient based on the approximate state.

4.1.1. Solving the state equation. Fix the target rank parameter r. To set
notation, denote by mat(U,M,N) the state vectors at different time steps un collected
into a matrix, mat(U,M,N) := [u1 \cdot \cdot \cdot uN] \in RM\times N . With some abuse of notation,
we define the approximate state to be the low-rank approximation reconstructed via
sketching the state matrix \{ \{ U\} \} r := \{ \{ mat(U,M,N)\} \} r. Since the state matrix is
computed forward in time starting from u1 to uN , we can simultaneously update
the sketch matrices X,Y, and Z using the ColumnUpdate! function of the sketch
class Algorithm A.1. The reduced objective function can be simultaneously exactly
evaluated in this procedure. This method is presented as Algorithm 4.1. Here, the
notation Function!() denotes a method that can modify its arguments or associated

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1252 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

Algorithm 4.1 Solve state equation, and compute exact objective function value.

Input: A control iterate Z \in Rm\times N , sketch object \{ U\} r for state and sketch rank
parameter r \leq min\{ M,N\}

Output: Updated sketch object \{ U\} r and reduced objective function value F (Z)
Storage: \scrO (r(M +N) +mN)
1: function SolveState!(\{ U\} r, Z)
2: (ucurr, F)\leftarrow (u0, 0)
3: for n\leftarrow 1 to N do
4: Solve cn(ucurr,unext, zn) = 0 for unext Solve nth state equation

5: F \leftarrow F + fn(ucurr,unext, zn) Update objective function value

6: \{ U\} r.ColumnUpdate!(unext, n) Update sketch with nth column of state

7: ucurr \leftarrow unext

8: return F

class. In the context of the approximate state, we shall refer to c(U,Z) as the state
residual.

4.1.2. Computing an approximate gradient from the sketched state.
For a fixed control Z, the true adjoint \=\Lambda solves the adjoint equation (2.4) at the true

state \=U, while the approximate adjoint \widehat \Lambda r solves the adjoint equation (2.4) at the

sketched state \widehat Ur = \{ \{ \=U\} \} r:

(\sansd 1c(\widehat Ur,Z))
\ast \widehat \Lambda r = - \sansd 1f(\widehat Ur,Z).

By analogy with the state residual c(U,Z), define the adjoint residual h : U\times U\times Z\rightarrow U
as

h(\Lambda ,U,Z) := \sansd 1f(U,Z) + (\sansd 1c(U,Z))
\ast \Lambda .

The adjoint residual evaluated at arguments (\Lambda ,U,Z) is zero when \Lambda solves the
adjoint equation (2.4) for any control Z and stateU. Consider in particular the special
cases of this equality using the true state h(\=\Lambda , \=U,Z) = 0 and using the sketched state

h(\widehat \Lambda r, \widehat Ur,Z) = 0. For arbitrary \Lambda , U, and Z, we define the map g : U\times U\times Z\rightarrow Z as

g(\Lambda ,U,Z) := \sansd 2f(U,Z) + (\sansd 2c(U,Z))
\ast \Lambda .

This function computes the gradient at Z when we use the true state \=U and true
adjoint \=\Lambda :

g(\=\Lambda , \=U,Z) = \sansd 2f(\=U,Z) + (\sansd 2c(\=U,Z))
\ast \=\Lambda = \nabla F (Z).

On the other hand, the function g can approximate the gradient using the sketched
variables as

gr(Z) := g(\widehat \Lambda r, \widehat Ur,Z).

Algorithm 4.2 describes a backward-in-time procedure for computing a limited-memory
approximate gradient gr(Z) from the sketched state \widehat Ur.

4.2. Regularity assumptions. Throughout the remainder of the paper, we
make the following regularity assumptions. These assumptions allow us to develop

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1253

Algorithm 4.2 Compute gradient from sketched state.

Input: A control iterate Z \in Rm\times N and sketch object \{ U\} r for state
Output: Approximate gradient g = gr(Z) \approx \nabla F (Z)
Storage: \scrO (r(M +N) +mN)
1: function Gradient(\{ U\} r, Z)
2: (\widehat ucurr, \widehat unext)\leftarrow (\{ U\} r.Column(N - 1), \{ U\} r.Column(N))

3: Solve the adjoint equation at index N for \widehat \bfitlambda next,

(\sansd 2cN (\widehat ucurr, \widehat unext, zN))\ast \widehat \bfitlambda next = \sansd 2fN (\widehat ucurr, \widehat unext, zN)

4: Compute gradient at index N ,

gN \leftarrow \sansd 3fN (\widehat ucurr, \widehat unext, zN) + (\sansd 3cN (\widehat ucurr, \widehat unext, zN))\ast \widehat \bfitlambda next

5: for n\leftarrow N - 1 to 1 do
6: if n = 1 then
7: \widehat uprev \leftarrow u0

8: else
9: \widehat uprev \leftarrow \{ U\} r.Column(n - 1))

10: Solve the adjoint equation at index n for \widehat \bfitlambda curr,

(\sansd 2cn(\widehat uprev, \widehat ucurr, zn))
\ast \widehat \bfitlambda curr = \sansd 2fn(\widehat uprev, \widehat ucurr, zn) + \sansd 1fn+1(\widehat ucurr, \widehat unext, zn+1)

 - (\sansd 1cn+1(\widehat ucurr, \widehat unext, zn+1))
\ast \widehat \bfitlambda next

11: Compute gradient at index n,

gn \leftarrow \sansd 3fn(\widehat uprev, \widehat ucurr, zn) + (\sansd 3cn(\widehat uprev, \widehat ucurr, zn))
\ast \widehat \bfitlambda curr

12: (\widehat unext, \widehat ucurr, \widehat \bfitlambda next)\leftarrow (\widehat ucurr, \widehat uprev, \widehat \bfitlambda curr)

13: return g = [g1, . . . , gN]

provable guarantees on the optimization error in the algorithms presented in the next
two subsections. These conditions are adapted from [41].

Assumption 1. Assume that the following conditions hold for the dynamic opti-
mization problem (2.2):

1. The set of states corresponding to controls in an open and bounded set Z0 \subseteq Z
is bounded: there exists U0 \subset U open and bounded such that \{ U \in U | \exists Z \in
Z0, c(U,Z) = 0\} \subseteq U0.

2. There exist singular value thresholds 0 < \sigma 0 \leq \sigma 1 < \infty such that for any
U \in U0 and Z \in Z0, the state Jacobian matrix \sansd 1c(U,Z) satisfies \sigma 0 \leq
\sigma min(\sansd 1c(U,Z)) \leq \sigma max(\sansd 1c(U,Z)) \leq \sigma 1.

3. The following functions are Lipschitz continuous on U0 \times Z0 with respect to
their first arguments, and their respective Lipschitz moduli are independent
of Z \in Z0:
(a) the state Jacobian of the constraint, \sansd 1c(U,Z);
(b) the control Jacobian of the constraint, \sansd 2c(U,Z);
(c) the state gradient of the objective function, \sansd 1f(U,Z);
(d) the control gradient of the objective function, \sansd 2f(U,Z).

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1254 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

These assumptions are often satisfied in applications. For example, we show in
section 5 that they hold for optimal control problems with parabolic PDE constraints.
We note that the existence of \sigma 1 in Assumption 1 is satisfied because U0 is bounded
and \sansd 1c(U,Z) is Lipschitz continuous with respect to its first argument with Lipschitz
modulus K1, which is independent of Z \in Z0. In particular, we have that

\| \sansd 1c(U,Z)H\| 2
\| H\| 2

=
1

\| H\| 2

\bigm\| \bigm\| \bigm\| \bigm\| limt\downarrow 0 c(U+ tH,Z) - c(U,Z)
t

\bigm\| \bigm\| \bigm\| \bigm\|
2

\leq K1 \forall H \in U \setminus \{ 0\} .

Therefore, we can take \sigma 1 = K1.

4.3. A fixed-rank approach. A natural limited-memory algorithm to solve
the dynamic optimization problem (2.2) is to fix the sketch rank parameter r used to
compute the gradient a priori. Algorithm 4.3 shows the steps involved in this method.
The resulting approximate gradient can be used inside any first-order optimization
method to (approximately) solve the dynamic optimization problem (2.2). One can
also apply matrix-free second-order optimization methods such as Newton--Krylov
methods. These methods require only the application of the Hessian to a vector: for
an arbitrary vector V \in Z, we must compute \nabla 2F (Z)V. Using the chain rule, we
can apply the Hessian to V by first computing the state sensitivity \=W := S\prime (Z)V \in
U (i.e., the solution to (2.3)) and then the adjoint sensitivity \=P := \Lambda \prime (Z)V \in U.
The state sensitivity is computed forward in time, while the adjoint sensitivity is
computed backward in time. We can control the storage footprint for these operations
by sketching the state, adjoint, and state sensitivity. Algorithms A.3 to A.6 detail
the steps required to apply the Hessian to a vector with storage \scrO ((r1+ r2+ r3)(M +
N) +mN) for rank parameters r1, r2, r3 \leq min\{ M,N\} .

In this section, we analyze the error of the fixed-rank method and prove a useful
stopping criterion under Assumption 1.

Algorithm 4.3 Fixed-rank algorithm for approximate gradient.

Input: A control iterate Z \in Rm\times N and rank parameter r \leq min\{ M,N\} .
Output: Approximate gradient gr(Z)
Storage: \scrO (r(M +N) +mN)
1: function FixedRankGradient(Z)
2: \{ U\} r \leftarrow Sketch(M,N, rank = r) Instantiate sketch object for state
3: F \leftarrow SolveState!(\{ U\} r,Z) Solve state equation
4: \{ U\} r.Reconstruct!() Reconstruct low-rank factors
5: g \leftarrow Gradient(\{ U\} r,Z) Compute gradient
6: return g

Recall that variables with bars \=U, \=\Lambda denote the exact solutions to the state or
adjoint equation uniquely determined for a fixed control Z \in \scrZ , while variables with
hats \widehat Ur, \widehat \Lambda r are approximate solutions with approximation error controlled by the
rank parameter r.

Proposition 4.1. Suppose Assumption 1 holds for a bounded control set Z0.
Then there exist \kappa 0, \kappa 1 > 0 such that the error in the state satisfies

(4.1) \kappa 0\| U - \=U\| 2 \leq \| c(U,Z)\| 2 \leq \kappa 1\| U - \=U\| 2 \forall U \in U0, Z \in Z0,

where U0 \subseteq U is defined in condition 1 in Assumption 1.

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1255

Furthermore, the error in the adjoint is controlled by the adjoint residual together
with the state residual: for some \kappa 2 > 0 and \kappa 3 > 0,

(4.2) \| \Lambda - \=\Lambda \| 2 \leq \kappa 2\| c(U,Z)\| 2 + \kappa 3\| h(\Lambda ,U,Z)\| 2 \forall U, \Lambda \in U0, \forall Z \in Z0.

Hence the error in the gradient is controlled by the adjoint and state residuals: for
some \kappa 4 > 0 and \kappa 5 > 0,

\| g(\Lambda ,U,Z) - g(\=\Lambda , \=U,Z)\| 2 = \| g(\Lambda ,U,Z) - \nabla F (Z)\| 2
\leq \kappa 4\| c(U,Z)\| 2 + \kappa 5\| h(\Lambda ,U,Z)\| 2.(4.3)

Remark 4.2. All constants in Proposition 4.1 depend only on finite quantities
defined by Assumption 1.

Proof. The proof of this result is similar to the proofs of Propositions A.1--A.2
in [41]. To bound the error in the state, recall that the state residual is zero when
evaluated at the true state, c(\=U,Z) = 0. Therefore,

c(U,Z) = c(U,Z) - c(\=U,Z) =
\int 1

0

\sansd 1c(\=U+ t(U - \=U),Z) \cdot (U - \=U) dt.

The error bound (4.1) then follows from Assumption 1.2 using \kappa 0 = \sigma 0 and \kappa 1 = \sigma 1.
Similarly, we show the bound on the adjoint error using the adjoint residual,

h(\Lambda , \=U,Z) = h(\Lambda , \=U,Z) - h(\=\Lambda , \=U,Z) = (\sansd 1c(\=U,Z))
\ast (\Lambda - \=\Lambda),

together with the Cauchy--Schwarz inequality and Assumption 1.2 to see that

\sigma 0\| \Lambda - \=\Lambda \| 2 \leq \| h(\Lambda , \=U,Z)\| 2 \leq \sigma 1\| \Lambda - \=\Lambda \| 2.

We now bound the adjoint residual as

\| h(\Lambda , \=U,Z)\| 2 \leq \| h(\Lambda ,U,Z)\| 2 + \| h(\Lambda , \=U,Z) - h(\Lambda ,U,Z)\| 2
\leq \| h(\Lambda ,U,Z)\| 2 + \| \sansd 1c(U,Z) - \sansd 1c(\=U,Z)\| F\| \Lambda \| 2
+ \| \sansd 1f(U,Z) - \sansd 1f(\=U,Z)\| 2.

The bound (4.2) follows from the Lipschitz continuity of \sansd 1c and \sansd 1f , the boundedness
of U0\times Z0, and (4.1). The proof of (4.3) is identical to the proof of Proposition A.2 in
[41]. In particular, (4.3) follows from (4.1), (4.2) and the assumed Lipschitz continuity
of \sansd 2c and \sansd 2f .

Corollary 4.3. Suppose Assumption 1 holds for a bounded control set Z0. Fix
a control Z \in Z0 and rank parameter r. Suppose the approximate state \widehat Ur = \{ \{ \=U\} \} r
is in U0 almost surely. Then the state residual is bounded by the tail energy of the
true state \=U on average:

E \| c(\widehat Ur,Z)\| 2 \leq
\surd
6\kappa 1 \tau r+1(mat(\=U,M,N)).

Now recall that the approximate adjoint \widehat \Lambda r solves the adjoint equation (2.4) at the

approximate state \widehat Ur. Suppose that \widehat \Lambda r \in U0 almost surely. Then the error in the
adjoints satisfies

(4.4) E \| \widehat \Lambda r - \=\Lambda \| 2 \leq
\surd
6\kappa 1\kappa 2 \tau r+1(mat(\=U,M,N)).

Finally, the approximate gradient gr(Z) = g(\widehat \Lambda r, \widehat Ur,Z) satisfies the error bound

(4.5) E \| gr(Z) - \nabla F (Z)\| 2 \leq
\surd
6\kappa 1\kappa 4 \tau r+1(mat(\=U,M,N)).

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1256 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

Proof. This result is a direct consequence of Proposition 4.1 and Theorem 3.4.

Corollary 4.3 suggests that we should choose the fixed-rank parameter r so that
the tail energy, \tau r+1(mat(\=U,M,N)), is small. However, it can be difficult to choose a
good fixed-rank parameter in advance since the tail energy of the true state \=U depends
on the control variable Z. Under stronger assumptions on the reduced objective F ,
we can bound the distance from a given control to the optimum as a function of the
approximate gradient and the state residual. Both of these are easy to compute, and
hence this result can be used as a stopping criterion.

Theorem 4.4. Suppose Assumption 1 holds for a bounded control set Z0. Fix
a control Z \in Z0 and rank parameter r, and suppose the approximate state \widehat Ur and
adjoint \widehat \Lambda r are in U0 almost surely. Additionally assume that the reduced objective
function F is strongly convex on Z0 with parameter \alpha > 0. Let Z \star \in Z0 denote the
solution to the reduced dynamic optimization problem (2.2). Then

(4.6) \alpha \| Z - Z \star \| 2 \leq \kappa 4\| c(Ur,Z)\| 2 + \| gr(Z)\| 2.

Proof. Using the strong convexity of F and the optimality of Z \star , the error in
control is bounded above by the gradient of the reduced objective function F as

\alpha \| Z - Z \star \| 22 \leq \langle \nabla F (Z) - \nabla F (Z \star),Z - Z \star \rangle Z = \langle \nabla F (Z),Z - Z \star \rangle Z.

Applying the Cauchy--Schwarz inequality and employing (4.3) ensures that

\alpha \| Z - Z \star \| 2 \leq \| \nabla F (Z) - gr(Z) + gr(Z)\| 2
\leq \| \nabla F (Z) - gr(Z)\| 2 + \| gr(Z)\| 2
\leq \kappa 4\| c(Ur,Z)\| 2 + \| gr(Z)\| 2.

To use Theorem 4.4, run any optimization method using the approximate gradi-
ent gr(Z). Suppose the method terminates after \ell iterations at control Z(\ell) so that
\| gr(Z(\ell))\| 2 \leq \epsilon . Theorem 4.4 shows that the error in our optimal control is controlled
by the state residual:

\alpha \| Z(\ell) - Z \star \| 2 \leq \kappa 4\| c(Ur,Z
(\ell))\| 2 + \epsilon .

4.4. An adaptive-rank approach. In this section, we introduce an optimiza-
tion algorithm, the sketched trust-region method, that dynamically adjusts the sketch-
ing rank parameter used to compute the approximate gradient. The rank is chosen
to guarantee convergence to a stationary point of the dynamic optimization problem
(2.2). This algorithm relies on the trust-region framework [8], which converges despite
inexact first- and second-order information [19, 24, 25]. Unlike the fixed-rank method
described in the previous section, the sketched trust-region method is a complete
limited-memory optimization recipe.

Let us describe the standard trust-region method and the conditions required
for convergence in the context of the dynamic optimization problem (2.2). Let Z(\ell)

be the control at the \ell th iteration, with corresponding reduced objective function
value f (\ell) := F (Z(\ell)). The trust-region method approximates the reduced objective
function centered around Z(\ell), \bfitnu \mapsto \rightarrow F (Z(\ell) + \bfitnu), by a quadratic model

m(\ell)(\bfitnu) := f (\ell) + \langle g(\ell),\bfitnu \rangle Z +
1

2
\langle H(\ell)\bfitnu ,\bfitnu \rangle Z.

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1257

To find the next iterate, the trust-region method computes a step \=\bfitnu which approx-
imately1 solves the trust-region subproblem constrained by the trust-region radius
\Delta (\ell):

(4.8)
minimize m(\ell)(\bfitnu)
subject to \| \bfitnu \| 2 \leq \Delta (\ell).

This step is accepted so long as the actual decrease in the objective function value
is large enough relative to the predicted decrease according to the model m(\ell). If
the step is accepted and the actual reduction exceeds a specified threshold, the trust-
region radius \Delta (\ell) is increased. If the step is rejected, we decrease the trust-region
radius.

To ensure global convergence of the trust-region method, the model used to form
the trust-region subproblem must satisfy Assumption 2 [19, 24].

Assumption 2 (trust-region model).
1. The approximate gradient g(\ell) is close to the true gradient \nabla F (Z(\ell)) in that

it satisfies

(4.9) \| g(\ell) - \nabla F (Z(\ell))\| 2 \leq \theta min
\Bigl\{
\| g(\ell)\| 2,\Delta (\ell)

\Bigr\}
for some fixed \theta > 0 independent of \ell .

2. The approximate Hessians H(\ell) are bounded independent of k: there exists
\tau 1 > 0 such that

\| H(\ell)\| F \leq \tau 1 <\infty \forall \ell = 1, 2,

We will show below how to ensure the first requirement with an approximate
gradient g(\ell) := gr(Z

(\ell)) computed using the sketched state \widehat Ur with a sufficiently
large rank parameter r. The second requirement is easily ensured by setting H(\ell) to
be the identity, while we expect (and observe) faster convergence in practice when
H(\ell) is the approximate Hessian. See Algorithm A.5, which shows how to apply the
approximate Hessian. Convergence is guaranteed regardless of the rank chosen for
the Hessian approximation. We suggest fixing this parameter to be the same as the
rank parameter for the approximate gradient.

4.4.1. Choosing the rank to guarantee convergence. The sketched trust-
region method sets g(\ell) = gr(Z

(\ell)) for some rank r. Algorithm 4.4 ensures that r is
chosen large enough that this approximate gradient satisfies the error bound (4.9),
as proved in the following lemma. The function \mu : N \times [0,\infty) \rightarrow N on line 9 of
Algorithm 4.4 dictates how the rank r is increased and therefore is increasing in its
first argument and decreasing in its second. A simple choice would be \mu (r, \tau) = 2r or
\mu (r, \tau) = r + 1. The function ResidualNorm, listed in Algorithm A.2, computes the
Euclidean norm of the state residual.

Lemma 4.5. Instate Assumption 1. Compute the gradient approximation g(\ell)

using the adaptive-rank algorithm (Algorithm 4.4) with fixed state residual tolerance
\kappa grad > 0. Then g(\ell) satisfies the gradient error bound (4.9) with \theta = \kappa 4\kappa grad.

1Formally, the algorithm computes a step \=\bfitnu that satisfies the fraction of Cauchy decrease condi-
tion [8]:

(4.7) m(\ell)(\bfzero) - m(\ell)(\=\bfitnu) \geq \kappa fcd\| g(\ell)\| 2 min

\Biggl\{
\Delta (\ell),

\| g(\ell)\| 2
1 + \| H(\ell)\| F

\Biggr\}
for some \kappa fcd \geq 0 independent of \ell . This condition is easy to achieve using, e.g., the dogleg or
truncated conjugate gradient method to compute \=\bfitnu .

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1258 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

Proof. The adaptive-rank algorithm controls the error in the gradient approxi-
mation by increasing the target rank parameter until the constraint residual satisfies

(4.10) \| c(\widehat Ur,Z
(\ell))\| 2 \leq \kappa grad min

\Bigl\{
\| gr(Z(\ell))\| 2,\Delta (\ell)

\Bigr\}
.

A rank that satisfies (4.10) necessarily exists since the residual norm \| c(\widehat Ur,Z
(\ell))\| 2 \rightarrow

0 as r \rightarrow min\{ M,N\} . Therefore, Proposition 4.1 provides a bound on the error in
the gradient approximation,

\| gr(Z(\ell)) - \nabla F (Z(\ell))\| 2 \leq \kappa 4\| c(\widehat Ur,Z
(\ell))\| 2 \leq \kappa 4\kappa grad min

\Bigl\{
\| gr(Z(\ell))\| 2,\Delta (\ell)

\Bigr\}
.

Algorithm 4.4 Adaptive-rank algorithm for approximate gradient.

Input: A control iterate Z \in Rm\times N , initial rank estimate r, sketch object for state
\{ U\} r, trust-region radius \Delta > 0, state residual tolerance \kappa grad > 0, and rank
update function \mu : N\times [0,\infty)\rightarrow N.

Output: Approximate gradient gr(Z) \approx \nabla F (Z) for rank parameter r such that the
bound (4.10) is satisfied.

Storage: \scrO (r(M +N) +mN) for some rank parameter r \leq min\{ M,N\} .
1: function AdaptiveRankGradient(Z, r, \{ U\} r)
2: repeat
3: \{ U\} r.Reconstruct!() Reconstruct low-rank factors

4: rnorm\leftarrow ResidualNorm(\{ U\} r,Z) Compute norm of constraint residual

5: g \leftarrow Gradient(\{ U\} r,Z) Compute gradient

6: rtol\leftarrow \kappa grad \cdot min\{ \| g\| 2,\Delta \} . Compute residual tolerance

7: if rnorm \leq rtol then Gradient approximation satisfies (4.9)

8: return g

9: r \leftarrow \mu (r, rtol) Increase rank parameter

10: \{ U\} r \leftarrow Initialize!(M,N, rank = r) Re-initialize state sketch

11: F \leftarrow SolveState!(\{ U\} r,Z). Solve state equation

12: until r > min\{ M,N\}
13: return g,r

Remark 4.6. The fixed-rank algorithm (Algorithm 4.3) computes an approximate
gradient with nondeterministic error bounded in expectation by the tail energy (4.5).
The runtime of this algorithm is deterministic and depends on the rank parameter r.
In contrast, the adaptive-rank algorithm (Algorithm 4.4) is guaranteed to produce an
approximate gradient that satisfies the gradient error bound (4.9) with \theta = \kappa 4\kappa grad.
However, the runtime is stochastic since it depends on the quality of the state sketch.

4.4.2. Sketched trust-region algorithm. We present the resulting sketched
trust-region algorithm as Algorithm 4.5. To start the optimization, we use an ini-
tial trust-region radius \Delta (0), the initial rank parameter r0, and the initial control
Z(0). The trust-region hyperparameters of Algorithm 4.5 are the ratio of reduction
thresholds 0 < \eta 1 < \eta 2 < 1 and the trust-region radius update parameter \gamma \in (0, 1).
The function SolveTRSubProblem computes the step \=\bfitnu that approximately solves the
trust-region subproblem (4.8) and satisfies the fraction of Cauchy decrease condition
(4.7). Internally, SolveTRSubProblem may use the function ApplyFixedRankHessian

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1259

(see Algorithm A.5) to apply the fixed-rank Hessian approximation. To validate the
trust-region step, we compare the actual and predicted reductions,

ared(\ell) := F (Z(\ell)) - F (Z(\ell) + \=\bfitnu) and pred(\ell) := m(\ell)(0) - m(\ell)(\=\bfitnu).

We accept the step if their ratio is greater than the threshold \eta 1. The predicted
reduction is readily computed as a byproduct of the trust-region subproblem solve;
see, e.g., [8, Chap. 17.4], for more details. The actual reduction requires us to solve
the state and evaluate the reduced objective function at the control candidate Z(\ell)+\=\bfitnu .
To do this, we apply Algorithm 4.1, which only requires the storage of two state time
steps. Note that the sketched trust-region method sketches the state at Z(\ell) + \=\bfitnu so
that (if the step is accepted) the approximate gradient can be computed using the
sketch without solving the state equation again.

Algorithm 4.5 Sketched trust-region algorithm.

Input: Initial control Z(0), trust-region radius \Delta (0), target rank parameter r0,
and trust-region hyperparameter set P = \{ \eta 1, \eta 2, \gamma \}

Output: Control iterate Z(K) such that the stopping criterion is satisfied
1: function SketchedTrustRegion(Z(0), \Delta (0), r0, P)
2: \{ U\} r \leftarrow Sketch(M,N, rank = r0) Instantiate state sketch

3: f (0) \leftarrow SolveState!(\{ U\} r,Z(\ell)) Sketch state and evaluate objective

4: r \leftarrow r0 Set sketch rank
5: while ``Not Converged"" do
6: (g(\ell), r)\leftarrow AdaptiveRankGradient(\bfZ (\ell), r, \{ \bfU \} r) Approximate gradient

7: (\=\bfitnu , pred(\ell))\leftarrow SolveTRSubProblem(g(\ell),\Delta (\ell)) Compute trial step
8: \{ \bfU \} r.Initialize!(M,N, rank = r) Re-initialize state sketch
9: f (\ell +1) \leftarrow SolveState!(\{ \bfU \} r,\bfZ (\ell) + \=\bfitnu) Compute new objective function value

10: \rho (\ell) = (f (\ell) - f (\ell +1))/pred(\ell) Compute ratio of reduction
11: \bfi \bff \rho (\ell) \geq \eta 1 \bft \bfh \bfe \bfn Validate step using ratio of reduction
12: \bfZ (\ell +1) = \bfZ (\ell) + \=\bfitnu
13: \bfe \bfl \bfs \bfe
14: \bfZ (\ell +1) = \bfZ (\ell)

15: \bfi \bff \rho (\ell) \geq \eta 2 \bft \bfh \bfe \bfn Update trust-region radius
16: \Delta (\ell +1) \in [\Delta (\ell),\infty)
17: \bfe \bfl \bfs \bfe \bfi \bff \rho (\ell) \leq \eta 1 \bft \bfh \bfe \bfn
18: \Delta (\ell +1) \in (0, \gamma \| \=\bfitnu \| 2]
19: \bfe \bfl \bfs \bfe
20: \Delta (\ell +1) \in [\gamma \| \=\bfitnu \| 2,\Delta (\ell)]

In practical applications, it can be difficult to estimate a priori the rank of the
state matrix for a given control. Algorithm 4.5 helpfully learns the rank while solving
the optimization problem but could require full rank (and hence quite a lot of memory)
in the worst case. If memory constraints are severe, we might recommend using the
fixed-rank algorithm or checkpointing instead, or a hybrid approach that adaptively
increases the rank up to some upper bound.

The following theorem shows that the sequence of iterates \{ Z(\ell)\} generated by
Algorithm 4.5 converges to a stationary point of the reduced objective function F .

Theorem 4.7 (convergence of the sketched trust-region algorithm). Instate As-
sumption 1, and further suppose that the reduced objective function F is bounded below
and twice continuously differentiable with locally uniformly bounded Hessian: for any
bounded convex set Z0 \subset Z, there exists \tau 0 > 0 such that

\| \nabla 2F (Z)\| F \leq \tau 0 <\infty \forall Z \in Z0.

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1260 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

Suppose that the iterates Z(\ell) generated by Algorithm 4.5 lie in the open, bounded,
and convex set Z0 \subset Z for all \ell . Then the sequence of iterates \{ Z(\ell)\} satisfies

lim inf
\ell \rightarrow \infty

\| g(\ell)r \| 2 = lim inf
\ell \rightarrow \infty

\| \nabla F (Z(\ell))\| 2 = 0.

Proof. Notice that the trust-region model used by Algorithm 4.5 satisfies As-
sumption 2. Therefore, the proof of this result follows from the convergence analysis
for the inexact trust-region method in [24] with only a slight modification to account
for the local assumptions associated with Z0.

Remark 4.8. The assumption that F is twice continuously differentiable can be
relaxed to the requirement that F is continuously differentiable with Lipschitz con-
tinuous gradient. In this case, the proof of Theorem 4.7 is virtually identical to the
proof in [24]; however, the proofs of Lemmas A.2 and A.3 in [24] must be updated
accordingly.

Remark 4.9. Algorithm 4.5 converges deterministically in the sense of Theorem
4.7, although the time required for convergence is random since it uses the adaptive
algorithm (Algorithm 4.4) to compute the search direction. Algorithm 4.4 may require
multiple full state solves (cf. line 11) to obtain a gradient that satisfies (4.9). When
the state is low rank, or when the rank parameter r estimates the rank well, very few
additional solves will be necessary (depending on the rank update function \mu). More-
over, the rank parameter never decreases in Algorithm 4.5; hence the per-iteration
cost saturates after a finite number of iterations (again depending on \mu).

5. Optimal control of linear parabolic PDEs. In this section, we introduce
a class of linear parabolic optimal control problems and discuss how to discretize
them to obtain a problem of the form (2.1) that satisfies Assumption 1 and the
inexact gradient condition (4.9). Let \Omega \subset Rd be an open, connected, and bounded
set, and let \Gamma \subseteq \Omega \cup \partial \Omega , where \partial \Omega denotes the boundary of \Omega . The set \Gamma is the
spatial support of the control function and permits both boundary and volumetric
controls. The state is supported on the space-time cylinder \Omega T := (0, T)\times \Omega , and the
control is supported on \Gamma T := (0, T) \times \Gamma for T > 0. We denote by H1(\Omega) the usual
Sobolev space of L2(\Omega)-functions with weak derivatives in L2(\Omega) and let V \subseteq H1(\Omega)
be a separable Hilbert space such that V is continuously and densely embedded into
L2(\Omega) (typically, V = H1(\Omega) or V = H1

0 (\Omega)). Furthermore, we assume that \Gamma is
sufficiently regular so that

v \mapsto \rightarrow
\int
\Gamma

gv dx \in V \ast \forall g \in L2(\Gamma),

where V \ast denotes the topological dual space of V .
Let \scrL (t) : V \rightarrow V \ast denote a second-order linear elliptic partial differential opera-

tor for t \in [0, T]. For example, \scrL (t) could represent the weak form of the advection-
reaction-diffusion operator

(5.1) u \mapsto \rightarrow \{ - \nabla \cdot (A(t, \cdot)\nabla u) + b(t, \cdot) \cdot \nabla u+ c(t, \cdot)u\} ,

where A : \Omega T \rightarrow Rd\times d is the diffusivity tensor, b : \Omega T \rightarrow Rd is an advection field, and
c : \Omega T \rightarrow R is a reaction coefficient. Here, \nabla refers to the derivative with respect to
x. To guarantee the existence of solutions, we assume that the linear operator \scrL is
uniformly bounded and uniformly coercive, which we define below.

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1261

Definition 5.1. The operator \scrL is uniformly bounded if for some \varepsilon 0 > 0 inde-
pendent of t \in [0, T],

\langle \scrL (t)u, v\rangle V \ast ,V \leq \varepsilon 0\| u\| V \| v\| V \forall u, v \in V,

for almost all (a.a.) t \in [0, T]. Moreover, \scrL is uniformly coercive if for some \varepsilon 1 > 0
independent of t \in [0, T],

\varepsilon 1\| v\| 2V \leq \langle \scrL (t)v, v\rangle V \ast ,V \forall v \in V,

for a.a.`t \in [0, T]. Here, \langle \cdot , \cdot \rangle V \ast ,V denotes the duality pairing between V \ast and V .

In addition to being uniformly bounded and coercive, we assume that t \mapsto \rightarrow
\langle \scrL (t)u, v\rangle V \ast ,V is measurable for all u, v \in V , \beta \in L2(0, T ;V \ast) is a forcing term,
and u0 \in L2(\Omega) is the initial state. We consider the optimal control problem

minimize

\Biggl\{
1

2

\int T

0

\int
\Omega

(u - w)2 dxdt+ \alpha

2

\int T

0

\int
\Gamma

z2 dxdt

\Biggr\}
(5.2a)

subject to u \in W (0, T), z \in L2(\Gamma T),\left\{

\int
\Omega

\partial u

\partial t
(t, \cdot)v dx+ \langle [\scrL (t)u](t, \cdot), v\rangle V \ast ,V

= \langle \beta (t), v\rangle V \ast ,V +

\int
\Gamma

z(t, \cdot)v dx a.a. t \in [0, T] \forall v \in V,

u(0, x) = u0(x) a.a. x \in \Omega ,

(5.2b)

where \alpha > 0 is the control penalty parameter, w \in L2(\Omega T) is the desired state, and

W (0, T) := \{ v : \Omega T \rightarrow R | v \in L2(0, T ;V) and \partial v/\partial t \in L2(0, T ;V \ast)\}

is the solution space for (5.2b). In fact, under the stated assumptions, (5.2b) has a
unique solution in W (0, T) for any z \in L2(\Gamma T) (cf. [20, Thm. 1.35]).

5.1. Discretization. To obtain a finite-dimensional approximation of (5.2), we
discretize the PDE (5.2b) using Galerkin finite elements in space and implicit Euler in
time. The subsequent results also hold for other time discretizations, including Crank--
Nicolson or explicit Euler. We partition the time interval [0, T] into N subintervals
(tn - 1, tn) with 0 = t0 < t1 < \cdot \cdot \cdot < tN - 1 < tN = T and denote the finite-element
approximation space for the state by VM \subset V , where M is the dimension of VM .
We further denote by Zm \subset L2(\Gamma) the control approximation space where m is the
dimension of Zm. Using these spaces, we can write the discretized state equation as
follows: for fixed zm,n \in Zm with n = 1, . . . , N , find uM,n \in VM with n = 1, . . . , N
such that uM,0 = \widetilde u0, where \widetilde u0 \in VM is an approximation of u0 and\int

\Omega

uM,nv dx+ \delta tn\langle \scrL (tn)uM,n, v\rangle V \ast ,V

=

\int
\Omega

uM,n - 1v dx+ \delta tn\langle \beta (tn), v\rangle V \ast ,V + \delta tn

\int
\Gamma

zm,nv dx \forall v \in VM ,

where \delta tn := tn - tn - 1. Given bases \{ \phi i\} Mi=1 and \{ \psi i\} mi=1 of VM and Zm, respectively,
we can rewrite the discretized PDE as the following linear system of equations: given
zn \in Rm for n = 1, . . . , N , find un \in RM such that

(5.3) cn(un - 1,un, zn) = (M+ \delta tnKn)un - Mun - 1 - \delta tnbn - \delta tnBzn = 0

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1262 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

for n = 1, . . . , N , where

[M]ij :=

\int
\Omega

\phi j\phi i dx, [Kn]ij := \langle \scrL (tn)\phi j , \phi i\rangle V \ast ,V ,

[B]ij :=

\int
\Gamma

\psi j\phi i dx, [bn]j := \langle \beta (tn), \phi j\rangle V \ast ,V .

With this notation, the discretized version of (5.2a) is

(5.4)
minimize
\bfU \in U,\bfZ \in Z

1

2

N\sum
n=1

\delta tn
\bigl\{
(un - wn)

\top M(un - wn) + \alpha z\top nRzn
\bigr\}

subject to (5.3),

where we have approximated the temporal integral in the objective function using the
right endpoint rule, wn \in RM are the coefficients associated with an approximation
of w(tn, \cdot) in VM , and

[R]ij =

\int
\Gamma

\psi j\psi i dx.

The assumptions on \scrL and the choice of discretization ensure that (M + \delta tnKn) is
invertible for all n = 1, . . . , N and therefore condition 2 in Assumption 1 is satisfied.
In addition, since the dynamic constraint in (5.4) is linear in the state and control
variables, and the objective function in (5.4) is quadratic, condition 3 in Assumption 1
is satisfied. Finally, since the matrices (M+ \delta tnKn) are invertible and the constraint
is linear, the dynamic constraint has a unique solution that depends linearly on the
control Z \in Z. Therefore, condition 1 in Assumption 1 holds for any bounded set of
controls. To verify (4.9), we employ stability estimates for (5.3).

5.2. Stability estimates. The linearity of (5.2b) and the uniform coercivity of
\scrL provide numerous convenient properties associated with the discretized PDE (5.3).
In this section, we use these properties to ensure that the required assumptions for our
sketching algorithm are satisfied. We first have the following error bound associated
with the discretized state equation (5.3).

Theorem 5.2. Let \=U \in U denote the solution to (5.3) for fixed control Z \in Z,
and let U \in U be arbitrary. Then the following bound holds:

\| \bfu n - \=\bfu n\| \bfM \leq (1 + \delta tn\omega \varepsilon 1)
 - 1

\Biggl\{
\| \bfu 0 - \=\bfu 0\| \bfM +

n\sum
i=1

\| ci(\bfu i - 1,\bfu i, \bfz i)\| \bfM - 1

\Biggr\}
, n = 1, . . . , N,

where \=un and un are the nth subvectors in \=U and U, respectively, and \omega > 0 is the
embedding constant associated with V \lhook \rightarrow L2(\Omega).

Proof. First, we write cn(un - 1,un, zn)
\top (un - \=un) in the form of (5.3). To this

end, let \=uM,n, uM,n \in VM denote the functions

\=uM,n =
M\sum
i=1

[\=un]i\phi i and uM,n =
M\sum
i=1

[un]i\phi i,

respectively, and let \eta n = (uM,n - \=uM,n). Then cn(un - 1,un, zn)
\top (un - \=un) is equal

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1263

to \int
\Omega

uM,n\eta n dx+ \delta tn\langle \scrL (tn)uM,n, \eta n\rangle V \ast ,V

 -
\int
\Omega

uM,n - 1\eta n dx - \delta tn\langle \beta (tn), \eta n\rangle V \ast ,V - \delta tn
\int
\Gamma

zm,n\eta n dx

=

\int
\Omega

\eta 2n dx+ \delta tn\langle \scrL (tn)\eta n, \eta n\rangle V \ast ,V -
\int
\Omega

\eta n - 1\eta n dx

since \=uM,n solves (5.3). The Cauchy--Schwarz inequality, the continuous embedding
of V into L2(\Omega), and the uniform coercivity of \scrL then ensure that

(1 + \delta tn\omega \varepsilon 1)\| un - \=un\| \bfM \leq \| cn(un - 1,un, zn)\| \bfM - 1 + \| un - 1 - \=un - 1\| \bfM .

Repeated application of this inequality yields the desired bound.

Theorem 5.2 ensures that the lower bound in (4.1) holds for all Z \in Z and U \in U
(rather than only on some bounded sets Z0 and U0). The upper bound in (4.1) follows
due to the linearity of cn and holds again for all Z \in Z and U \in U. Moreover, if Ur

is the sketched state, then Theorem 5.2 yields

\| ur,n - \=un\| \bfM \leq (1 + \delta tn\omega \varepsilon 1)
 - 1

n\sum
i=1

\| ci(ur,i - 1,ur,i, zi)\| \bfM - 1 .

Next, we demonstrate that the adjoint error bound (4.2) holds globally as well. To
this end, we write the adjoint equation associated with the discretized problem (5.4):

(M+ \delta tNKN)\ast \bfitlambda N = - \delta tNM(uN - wN),(5.5a)

(M+ \delta tnKn)
\ast \bfitlambda n = M\bfitlambda n+1 - \delta tnM(un - wn) for n = N - 1, . . . , 1.(5.5b)

As before, we denote the solution to (5.5) with un replaced by \=un for n = 1, . . . N by
\=\Lambda . We have the following useful stability estimate associated with (5.5) that bounds
the error in the adjoint.

Theorem 5.3. Let \=\Lambda \in U be the solution to the adjoint equation (5.5) associated
with \=U \in U, and let \Lambda , U \in U be arbitrary. Then the following bound holds:

\| \bfitlambda n - \=\bfitlambda n\| \bfM \leq (1 + \delta tn\omega \varepsilon 1)
 - 1

\Biggl\{
N\sum

j=n

\| (\bfM + \delta tn\bfK n)
\ast \bfitlambda n - \bfM \bfitlambda n+1 + \delta tn\bfM (\bfu n - \bfw n)\| \bfM - 1

+ \| \bfitlambda N - \=\bfitlambda N\| \bfM + \delta tn\| \bfu n - \=\bfu n\| \bfM

\Biggr\}
, n = 1, . . . , N,(5.6)

where \=\bfitlambda n and \bfitlambda n denote the nth subvectors of \=\Lambda and \Lambda , respectively, and \omega > 0 is
the embedding constant associated with V \lhook \rightarrow L2(\Omega).

Proof. Using notation similar to that in the proof of Theorem 5.2, we can write
the adjoint residual evaluated at \Lambda and U as

(5.7)

\int
\Omega

\lambda M,nv dx+ \delta tn\langle \scrL (tn)\ast \lambda M,n, v\rangle V \ast ,V

 -
\int
\Omega

\lambda M,n+1v dx+ \delta tn

\int
\Omega

(uM,n - wM,n)v dx

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1264 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

for v \in VM , where wM,n \in VM is the appropriate approximation of w. Evaluating this
residual at \=\Lambda and \=U returns zero. Let en = (\lambda M,n - \=\lambda M,n) and \eta n = (uM,n - \=uM,n).
With this notation, (5.7) is equal to\int

\Omega

env dx+ \delta tn\langle \scrL (tn)\ast en, v\rangle V \ast ,V -
\int
\Omega

en+1v dx+ \delta tn

\int
\Omega

\eta nv dx.

Set v = en. Then applying the Cauchy--Schwarz inequality and using the uniform
coercivity of \scrL and the continuous embedding of V into L2(\Omega) yields

(1 + \delta tn\omega \varepsilon 1)\| \bfitlambda n - \=\bfitlambda n\| \bfM \leq \| (M+ \delta tnKn)
\ast \bfitlambda n - M\bfitlambda n+1 + \delta tnM(un - wn)\| \bfM - 1

+ \| \bfitlambda n+1 - \=\bfitlambda n+1\| \bfM + \delta tn\| un - \=un\| \bfM .

Repeated application of this bound proves the desired result.

By Theorems 5.2 and 5.3, we see that the adjoint error bound (4.2) holds globally.
In particular, let \Lambda r denote the solution to (5.5) associated with the sketched state
Ur. Then Theorems 5.2 and 5.3 ensure that

\| \bfitlambda r,n - \=\bfitlambda n\| \bfM \leq (1 + \delta tn\omega \varepsilon 1)
 - 1\delta tn\| ur,n - \=un\| \bfM

\leq (1 + \delta tn\omega \varepsilon 1)
 - 2\delta tn

n\sum
i=1

\| ci(ur,i - 1,ur,i, zi)\| \bfM - 1 .

Hence Algorithm 4.4 ensures that the inexact gradient condition (4.9) is satisfied.

6. Numerical examples. We demonstrate the effectiveness of the sketched
trust-region algorithm on two PDE-constrained optimization problems. We pres-
ent one example, the optimal control of an advection-reaction-diffusion equation, that
satisfies the assumptions of the previous section and therefore is guaranteed to con-
verge. We also present results on optimal flow control. This application is governed
by the Navier--Stokes equations for which it is difficult to verify the assumptions of our
theory, and so our algorithm does not necessarily admit guarantees for this problem.
Nevertheless, we show remarkably good performance for this application.

In the numerics, we compute the function ResidualNorm using a domain-specific
weighted norm (instead of the Frobenius norm) that respects the natural problem
scaling. The guarantees of the method still hold: since all norms are equivalent in
finite-dimensional vector spaces, we can ensure that the gradient error bound (4.9)
holds (with a different value of the parameter \theta) using any norm to measure the state
residual. In addition, for both examples we set \kappa grad = 1, \Delta (0) = 10, \eta 1 = 0.05,
\eta 2 = 0.9, and \gamma = 0.25 in Algorithm 4.5. We terminate the algorithm if the norm
of the gradient is smaller than a prescribed tolerance gtol or when it exceeds a set
maximum number of iterations maxit.

We note that the main computational cost of our approach is computing the
objective function value, its gradient, and applying its Hessian to a vector. Sketching
the various quantities is negligible in comparison. With this in mind, we only list
the number of optimization iterations of each method for the following examples, as
wall-clock time is proportional to the number of iterations. Additionally, in contrast
to ROM techniques, there are no offline costs associated with our sketching approach.

6.1. Optimal control of an advection-reaction-diffusion equation. For
this example, our goal is to control the linear parabolic PDE (5.2b), where \Omega =
(0, 0.6) \times (0, 0.2), \Gamma = \Omega , and \scrL is given by (5.1) with time-independent coefficients.

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1265

In particular, the forcing term \beta is the characteristic function of the intersection
of the ball of radius 0.07 centered at (0.1, 0.1)\top with \Omega the diffusivity coefficient
A = 0.1 I, where I \in Rd\times d is the identity matrix, the reaction coefficient is c \equiv 1,
and the advection field is given by b(x) = (7.5 - 2.5x1, 2.5x2)

\top . We further supply
(5.2b) with zero initial concentration u0 = 0 and pure Neumann boundary conditions
(i.e., V = H1(\Omega)). Note that \scrL is constant in time and is uniformly coercive since
\nabla \cdot b \equiv 0 in \Omega and b \cdot n \geq 0 on \partial \Omega , where n denotes the outward normal vector.
Moreover, we set the target state w \equiv 1. Our optimization problem is then given by
(5.2) with \alpha = 10 - 4. We discretized (5.2b) in space using Q1 finite elements on a
uniform mesh of 60\times 20 quadrilateral elements. In time, we discretize using implicit
Euler with 500 equal time steps. This discretization results in 1,281 \times 500 = 640,500
degrees of freedom. Moreover, the maximum possible rank of the state matrix is 500.
Figure 1 depicts the tail energy and sketching error averaged over 20 realizations for
the uncontrolled and optimal states. Both the tail energy and sketching error decay
exponentially fast until saturating below \scrO (10 - 12).

Uncontrolled

0 50 100

10 -10

10 -5

10 0

Sketch Error
Tail Energy

Optimal

0 50 100

10 -10

10 -5

10 0

Sketch Error
Tail Energy

Fig. 1. The sketching error averaged over 20 realizations and the tail energy for the uncontrolled
state (left) and the optimal state (right) of the advection-reaction-diffusion example. Recall that the
rank of the sketch is k = 2r + 1.

We solved this problem using a Newton-based trust-region algorithm with fixed
sketch rank and using Algorithm 4.5 with the rank update function \mu (r, \tau) = max\{ r+
2, \lceil (p2 - log \tau)/p1\rceil \} , where p1 > 0 and p2 \in R are computed by fitting a linear model
of the logarithm of the average sketching error as a function of the rank for the
uncontrolled state. For this problem, p1 = 2.6125, p2 = 2.4841, gtol = 10 - 7, and
maxit = 20. The final objective value, the iteration count, the number of function
evaluations, the number of gradient evaluations, the cumulative truncated conjugate
gradient (CG) iteration count, and the compression factor \zeta are defined to be

\zeta :=
full storage

reduced storage
=

640,500

k(1,281 + 500) + s2
,

where k = 2r + 1, s = 2k + 1 for each rank parameter r from 1 to 5 are displayed in
Table 1. Notice that with rank 1 the algorithm did not converge, whereas the optimal
objective function value is achieved up to 6 digits with rank 2. This is likely due
to inaccuracies in the gradient. For this problem, the rank-2 sketch requires roughly
three times more CG iterations (which dominate the computational work) than the
full-storage algorithm; however, using the rank-2 sketch reduces the required memory
by a factor of 70.96.

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1266 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

The iteration history of Algorithm 4.5 is listed in the top section of Table 2. For
comparison, we have also listed the iteration history for the full-storage algorithm in
the bottom section of Table 2. We notice that the sketched trust-region algorithm
performs comparably to the full-storage algorithm but reduces the required memory
by a factor of \zeta = 23.14 at the final iteration. It may be possible to further reduce
the memory burden by tuning the parameter \kappa grad or by employing a different rank
update function \mu . We further note that Algorithm 4.5 increases the rank three
times (twice at iteration 2 and once at iteration 3), resulting in three additional state
solves---a modest increase in computational work when compared to the reduction in
required memory.

Table 1
Algorithmic performance summary for the advection-reaction-diffusion example for fixed rank,

adaptive rank, and full storage: objective is the final objective function value, iteration is the
total number of iterations, nstate is the number of state solves, nadjoint is the number of adjoint
solves, iterCG is the total number of truncated CG iterations, and compression \zeta is the compression
factor. \ast The rank 1 experiment terminated because it exceeded the maximum number of iterations.

rank objective iteration nstate nadjoint iterCG compression \zeta
\ast 1 5.544040e-4 20 21 11 196 118.79

2 5.528490e-4 5 6 6 151 70.96

3 5.528490e-4 4 5 5 78 50.46

4 5.528490e-4 4 5 5 67 38.08

5 5.528490e-4 4 5 5 59 31.83

Adaptive 5.528490e-4 4 8 5 65 23.14

Full 5.528490e-4 4 5 5 53 1.00

Table 2
The iteration histories for the adaptive rank (top) and full storage (bottom) algorithms: iter

is the iteration number, value is the objective function value, gnorm is the norm of the gradient,
snorm is the norm of the step, delta is the trust-region radius, iterCG is the number of truncated
CG iterations, rank is the rank of the sketch, and rnorm is the maximum residual norm associated
with the sketched state. In the adaptive rank algorithm, the rank is updated using the rank update
function \mu (r, \tau) if the maximum residual norm exceeds the prescribed tolerance.

iter value gnorm snorm delta iterCG rank rnorm

A
d
a
p
t
i
v
e

0 5.446e-2 5.990e-3 --- 1.000e+1 --- 1 2.707e-4

1 1.375e-2 2.205e-3 1.000e+1 2.500e+1 1 1 1.990e-4

2 1.475e-3 1.408e-4 2.499e+1 6.250e+1 5 5 6.700e-7

3 5.531e-4 6.431e-7 4.077e+1 1.563e+1 27 7 3.893e-9

4 5.528e-4 5.039e-9 1.059e+0 3.906e+2 32 7 1.508e-9

F
u
l
l

0 5.446e-2 5.989e-3 --- 1.000e+1 --- --- ---

1 1.375e-2 2.201e-3 1.000e+1 2.500e+1 1 --- ---

2 1.472e-3 1.401e-4 2.500e+1 6.250e+1 5 --- ---

3 5.538e-4 1.361e-6 4.051e+1 1.563e+1 19 --- ---

4 5.528e-4 8.416e-9 2.178e+0 3.906e+2 28 --- ---

6.2. Optimal control of flow past a cylinder. For this example, we follow
the problem set up in [18] and consider fluid flow past a cylinder. The cylinder impedes
the flow; our goal is to rotate the cylinder to improve the flow rate. Formally, we let
cylinder C \subset R2 denote the closed ball of radius R = 0.5 centered at the origin x0 =
(0, 0)\top , define the domain D = (- 15, 45)\times (- 15, 15), and let \Gamma out = \{ 45\} \times (- 15, 15)
denote the outflow boundary. We consider the optimal flow control problem

(6.1) minimize
z\in L2(0,T)

\int T

0

\biggl\{ \int
\partial C

\biggl(
1

Re

\partial v

\partial n
 - pn

\biggr)
\cdot (z\tau - v\infty) dx+

\alpha

2
z(t)2

\biggr\}
dt, \alpha > 0,

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1267

where the velocity and pressure pair (v, p) : [0, T] \times D \rightarrow R2 \times R solves the Navier--
Stokes equations

\partial v

\partial t
 - 1

Re
\Delta v + (v \cdot \nabla)v +\nabla p = 0 in (0, T)\times D \setminus C,(6.2a)

\nabla \cdot v = 0 in (0, T)\times D \setminus C,(6.2b)

1

Re

\partial v

\partial n
 - pn = 0 on (0, T)\times \Gamma out,(6.2c)

v = v\infty on (0, T)\times \partial D \setminus \Gamma out,(6.2d)

v = z\tau on (0, T)\times \partial C(6.2e)

with appropriately specified initial conditions on v and p. In (6.2), n is the outward
normal vector on \Gamma out, \tau is the tangent vector

\tau (x) =

\biggl[
0 1
 - 1 0

\biggr]
(x - x0), x \in \partial C,

and Re is the Reynold's number. Problem (6.1) minimizes the power required to
overcome the drag on C. See [18, p. 87] for a comprehensive physical interpretation
of this problem. The control action z defined in (6.2e) is the angular velocity of
the cylinder. The vector v\infty := (1, 0)\top is the freestream velocity profile, and the
boundary condition (6.2c) is stress-free. Similar to [18], we generate initial conditions
for (6.2) by simulating (6.2) on the time interval (- T0, 0) for some T0 > 0 starting
with v(- T0, \cdot) and p(- T0, \cdot) set to the potential flow around C [4]. The first row of
Figure 2 depicts the computed initial velocity v0.

We discretized (6.2) in time with implicit Euler and approximated the temporal
integral in (6.1) with the right end-point rule. Moreover, we discretized (6.2) in space
using Q2--Q1 finite elements on the quadrilateral mesh depicted in Figure 3. The
mesh contains 2,672 elements and 2,762 vertices. For our results, we set the time
steps \delta tn = 0.025, T0 = 80, T = 20, and Re = 200.

We refer the reader to [16, 18, 20] and the references therein for partial verification
of Assumption 1 for various flow control problems.

The second row of Figure 2 depicts the optimal vorticity at the final time t = 20
(left) and the velocity field near the cylinder (right), while in the final row of Figure 2,
we plot the computed optimal control. As seen in Figure 2, the optimal control
effectively eliminates the vortex shedding seen in the first row of Figure 2 for the
initial velocity. In Figure 4, we plot the sketching error averaged over 20 realizations
and the tail energy (ranks 1 through 200) for the uncontrolled state (left) and the
optimal state (right). We see that the decay in the sketching error and tail energy is
roughly exponential, suggesting that our method should only require modest storage.

We solved the discretized optimization problem using a Newton-based trust-region
algorithm with fixed sketch ranks \{ 8, 16, 32, 64\} and using Algorithm 4.5 with the
rank update function \mu (r, \tau) = 2r. The performance of the fixed-rank, adaptive-
rank, and full storage experiments is summarized in Table 3. For each experiment,
we set gtol = 10 - 5 and maxit = 40. The only fixed-rank experiment to converge
was rank 64. However, the rank-32 experiment produced an objective function value
that was within 6 digits of the optimal value. The rank-32 experiment likely did
not converge due to inaccuracies in the gradient. For the adaptive algorithm, we
started with the initial rank set to 8. The behavior of the rank updates as well as the
required gradient inexactness tolerances, and computed residual norms are plotted in

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1268 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

Initial Vorticity (t = 0)

Controlled Vorticity (t = 20)

Initial Velocity (t = 0)

Controlled Velocity (t = 20)

Optimal Control

0 2 4 6 8 10 12 14 16 18 20
t

-0.6

-0.4

-0.2

0

0.2

0.4

z

Fig. 2. The initial velocity (first row) and the final, controlled velocity (second row). These
images include the magnitude of vorticity (\nabla \times v) on the subdomain [- 5, 15] \times [- 5, 5] (left) and
velocity v on the subdomain [- 2, 6]\times [- 2, 2] (right). The bottom row depicts the computed optimal
control.

Fig. 3. Quadrilateral mesh with 2672 elements and 2762 vertices.

Figure 5. Algorithm 4.5 required comparable computation as the full-storage approach
but reduced the memory by a factor of \zeta = 5.88 at the final iteration. The memory

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1269

Uncontrolled

0 50 100 150 200

10 -10

10 -5

10 0

10 5

Sketch Error
Tail Energy

Optimal

0 50 100 150 200

10 -10

10 -5

10 0

10 5

Sketch Error
Tail Energy

Fig. 4. The sketching error averaged over 20 realizations and the tail energy for the uncontrolled
state (left) and the optimal state (right) for the flow control example. Recall that the rank of the
sketch is k = 2r + 1.

burden could be further reduced by tuning \kappa grad or by choosing a less aggressive rank
update function \mu . Similar to the example in section 6.1, the rank is increased three
times (once at iterations 0, 1, and 10; see Figure 5), resulting in three additional state
solves.

Table 3
Algorithmic performance summary for the flow control example for fixed rank, adaptive rank,

and full storage: objective is the final objective function value, iteration is the total number of
iterations, nstate is the number of state solves, nadjoint is the number of adjoint solves, iterCG
is the total number of truncated CG iterations, and compression \zeta is the compression factor. \ast The
rank 8, 16, and 32 experiments terminated because they exceeded the maximum number of iterations.

rank objective iteration nstate nadjoint iterCG compression \zeta
\ast 8 18.35919 40 41 15 136 45.44
\ast 16 18.20003 40 41 33 897 23.35
\ast 32 18.19779 40 41 31 236 11.80

64 18.19779 29 41 34 110 5.88

Adaptive 18.19779 23 27 24 121 5.88

Full 18.19779 29 30 24 107 ---

0 5 10 15 20
10

20

30

40

50

60

70

0 5 10 15 20
10 -6

10 -4

10 -2

10 0

Tolerance
Residual Norm

Fig. 5. Inexact gradient behavior of Algorithm 4.5 applied to the flow control problem. Left:
the sketch rank as a function of iteration. Right: the required gradient inexactness tolerance and
computed residual norm as functions of iteration.

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1270 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

Appendix A. Sketching routines. In this appendix, we provide pseudocode
for the sketching algorithms described throughout the paper. In particular, we first
present the abstract sketch class and then describe the methods required to apply the
sketch-based approximation of the Hessian to a vector.

Algorithm A.1 Sketch class and methods.

1: class Sketch
2: member variables k,s sketch parameters

3: member variables \Upsilon ,\Omega ,\Phi ,\Psi random test matrices

4: member variables X,Y,Z sketch matrices

5: member variables Q,W low-rank factors

6: member variables rec reconstruction flag

7: function Sketch(M , N , rank = r) Sketch class constructor

8: Initialize!(M , N , rank = r)
9: New(rec, k, s,\Upsilon ,\Omega ,\Phi ,\Psi ,X,Y,Z,Q,W)

10: function Initialize!(M , N , rank = r) Sketch class initializer

11: rec \leftarrow FALSE.
12: k \leftarrow 2r + 1, s\leftarrow 2k + 1
13: \Upsilon \leftarrow randn(k,M), \Omega \leftarrow randn(k,N) Test matrix for range and co-range

14: \Phi \leftarrow randn(s,M) ,\Psi \leftarrow randn(s,N) Test matrices for core

15: X\leftarrow zeros(k,N), Y \leftarrow zeros(M,k) Approximation sketch of zero matrix

16: Z\leftarrow zeros(s, s)
17: Q\leftarrow zeros(M,k), W\leftarrow zeros(k,N) Low-rank factors

18: \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn ColumnUpdate!(\bfh , n, \theta = 1.0, \eta = 1.0) Update sketch matrices

19: X\leftarrow \theta X+ \eta (\Upsilon h)e\ast n
20: Y \leftarrow \theta Y + \eta h(\Omega en)

\ast

21: Z\leftarrow \theta Z+ \eta (\Phi h)(\Psi en)
\ast

22: function Reconstruct!() Reconstruct low-rank factors

23: (Q,R2) \leftarrow qr(Y, 0)
24: (P,R1) \leftarrow qr(X\ast , 0)
25: C\leftarrow ((\Phi Q)\setminus Z)/((\Psi P)\ast)
26: W\leftarrow CP\ast

27: rec \leftarrow TRUE
28: function Column(j) Reconstruct a single column

29: if rec then
30: return Q \cdot W[:, j]

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1271

Algorithm A.2 Compute residual norm for control Z.

Input: A control iterate Z \in Rm\times N and sketch object \{ U\} r for state U \in RMN\times 1

Output: Residual norm: rnorm = \| c(\widehat Ur,Z)\| 22
Storage: \scrO (r(M +N))
1: function ResidualNorm(\{ U\} r, Z)
2: (\widehat ucurr, rnorm)\leftarrow (\{ U\} r.Column(N), 0)
3: for n\leftarrow N to 1 do
4: \widehat uprev \leftarrow \{ U\} r.Column(n - 1)
5: rnorm\leftarrow rnorm + \| cn(\widehat uprev, \widehat ucurr, zn)\| 22
6: \widehat ucurr \leftarrow \widehat uprev

7: return rnorm

Algorithm A.3 Solve adjoint equation.

Input: Control Z \in Rm\times N and sketch objects:
\{ U\} r for state U \in RM\times N

\{ \Lambda \} r for adjoint \Lambda \in RM\times N

Output: Updated adjoint sketch object \{ \Lambda \} r
Storage: \scrO ((r1 + r2)(M +N)) for adjoint rank parameter r2 \leq min\{ M,N\}
1: function SolveAdjoint!(\{ \Lambda \} r, \{ U\} r, Z)
2: (\widehat ucurr, \widehat unext)\leftarrow (\{ U\} r.Column(N - 1), \{ U\} r.Column(N))

3: Solve the adjoint equation at index N for \widehat \bfitlambda next,

\sansd 2cN (\widehat ucurr, \widehat unext, zN)\widehat \bfitlambda next = \sansd 2fN (\widehat ucurr, \widehat unext, zN)

4: \{ \Lambda \} r.ColumnUpdate!(\widehat \bfitlambda next, N)
5: for n = N - 1 to 1 do
6: if n = 1 then
7: \widehat uprev \leftarrow u0

8: else
9: \widehat uprev \leftarrow \{ U\} r.Column(n - 1)

10: Solve the adjoint equation at index n for \widehat \bfitlambda curr,

\sansd 2cn(\widehat uprev, \widehat ucurr, zn)\widehat \bfitlambda curr = \sansd 2fn(\widehat uprev, \widehat ucurr, zn) + \sansd 1fn+1(\widehat ucurr, \widehat unext, zn+1)

 - \sansd 1cn+1(\widehat ucurr, \widehat unext, zn+1)\widehat \bfitlambda next

11: \{ \Lambda \} r.ColumnUpdate!(\widehat \bfitlambda curr, n)

12: (\widehat unext, \widehat ucurr, \widehat \bfitlambda next)\leftarrow (\widehat ucurr, \widehat uprev, \widehat \bfitlambda curr)

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1272 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

Algorithm A.4 Solve state sensitivity equation.

Input: Control Z \in Rm\times N , direction vector V \in Rm\times N , and sketch objects:
\{ U\} r for state U \in RM\times N

\{ W\} r for state sensitivity W \in RM\times N

Output: Updated state sensitivity sketch object \{ W\} r
Storage: \scrO ((r1 + r3)(M +N)) for state sensitivity rank parameter r3 \leq min\{ M,N\}
1: function SolveStateSensitivity!(\{ W\} r,\{ U\} r, Z, V)
2: for n = 1 to N do
3: if n = 1 then
4: (\widehat uprev, \widehat ucurr, \widehat wprev)\leftarrow (u0, \{ U\} r.Column(1),0)
5: else
6: (\widehat uprev, \widehat ucurr, \widehat wprev)\leftarrow (\widehat ucurr, \{ U\} r.Column(n), \widehat wcurr)

7: Solve the state sensitivity equation at index n for \widehat wcurr

\sansd 2cn(\widehat uprev, \widehat ucurr, zn)\widehat wcurr = \sansd 3cn(\widehat uprev, \widehat ucurr, zn)vn - \sansd 1cn(\widehat uprev, \widehat ucurr, zn)\widehat wprev

8: \{ W\} r.ColumnUpdate!(\widehat wcurr, n)

Algorithm A.5 Apply fixed-rank Hessian approximation to a vector.

Input: Control Z \in Rm\times N , sketch object for state \{ U\} r, direction V \in Rm\times N ,
and rank parameters r2, r3 \leq min\{ M,N\}

Output: Application of approximate Hessian to vector V, \~H \approx \nabla 2f(Z)V
Storage: \scrO ((r1 + r2 + r3)(M +N))
1: function ApplyFixedRankHessian(Z , \{ U\} r, V, r2, r3)
2: \{ \Lambda \} r \leftarrow Sketch(M,N, rank = r2) Initialize adjoint sketch object

3: SolveAdjoint!(\{ \Lambda \} r, \{ U\} r,Z) Solve adjoint equation

4: \{ \Lambda \} r.Reconstruct!() Get low-rank factors for adjoint

5: \{ W\} r \leftarrow Sketch(M,N, rank = r3) Initialize state sensitivity sketch object

6: SolveStateSensitivity!(\{ W\} r, \{ U\} r,Z,V) Solve state sensitivity equation

7: \{ W\} r.Reconstruct!() Get low-rank factors for state sensitivity

8: \~H\leftarrow ApplyHessian(\{ W\} r, \{ \Lambda \} r, \{ U\} r,Z,V) Apply Hessian to \bfV

9: return \~H

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1273

Algorithm A.6 Apply Hessian to a vector using sketching.

Input: Control Z \in Rm\times N , direction vector V \in Rm\times N , and sketch objects:
\{ U\} r for state U \in RM\times N

\{ \Lambda \} r for adjoint \Lambda \in RM\times N

\{ W\} r for state sensitivity W \in RM\times N

Output: Application of approximate Hessian to vector V, H \approx \nabla 2f(Z)V
Storage: \scrO ((r1 + r2 + r3)(M +N))
1: function ApplyHessian(\{ W\} r,\{ \Lambda \} r,\{ U\} r, Z, V)

2: (\widehat ucurr, \widehat unext, \widehat \bfitlambda next)\leftarrow (\{ U\} r.Column(N - 1), \{ U\} r.Column(N), \{ \Lambda \} r.Column(N))
3: (\widehat wcurr, \widehat wnext)\leftarrow (\{ W\} r.Column(N - 1), \{ W\} r.Column(N))
4: Solve the adjoint sensitivity equation at index N for \widehat pnext,

(\sansd 2cN (\widehat ucurr, \widehat unext, zN))\ast \widehat pnext = - \sansd 2,3LN (\widehat ucurr, \widehat unext, zN , \widehat \bfitlambda next)vN

+ \sansd 2,2LN (\widehat ucurr, \widehat unext, zN , \widehat \bfitlambda next)\widehat wnext + \sansd 2,1LN (\widehat ucurr, \widehat unext, zN , \widehat \bfitlambda next)\widehat wcurr

5: Apply Hessian of Lagrangian at index N ,

hN = \sansd 3,3LN (\widehat ucurr, \widehat unext, zn, \widehat \bfitlambda next)vn - \sansd 3,1LN (\widehat ucurr, \widehat unext, zn, \widehat \bfitlambda next)\widehat wcurr

 - \sansd 3,2LN (\widehat ucurr, \widehat unext, zn, \widehat \bfitlambda next)\widehat wnext + (\sansd 3cN (\widehat ucurr, \widehat unext, zN))\ast \widehat pnext

6: for n = N - 1 to 1 do
7: Solve the adjoint sensitivity equation at index n for \widehat pcurr,

(\sansd 2cn(\widehat uprev, \widehat ucurr, zn))
\ast \widehat pcurr = - (\sansd 1cn+1(\widehat ucurr, \widehat unext, zn))

\ast \widehat pnext

 - \sansd 2,3Ln(\widehat uprev, \widehat ucurr, zn, \widehat \bfitlambda curr)vn - \sansd 1,3Ln+1(\widehat ucurr, \widehat unext, zn, \widehat \bfitlambda next)vn+1

+ \sansd 2,2Ln(\widehat uprev, \widehat ucurr, zn, \widehat \bfitlambda curr)\widehat wcurr + \sansd 1,2Ln+1(\widehat ucurr, \widehat unext, zn, \widehat \bfitlambda next)\widehat wnext

+ \sansd 2,1Ln(\widehat uprev, \widehat ucurr, zn, \widehat \bfitlambda curr)\widehat wprev + \sansd 1,1Ln+1(\widehat ucurr, \widehat unext, zn, \widehat \bfitlambda next)\widehat wcurr.

8: Apply Hessian of Lagrangian at index n

hn \leftarrow \sansd 3,3Ln(\widehat uprev, \widehat ucurr, zn, \widehat \bfitlambda curr)vn - \sansd 3,1Ln(\widehat uprev, \widehat ucurr, zn, \widehat \bfitlambda curr)\widehat wprev

 - \sansd 3,2Ln(\widehat uprev, \widehat ucurr, zn, \widehat \bfitlambda curr)\widehat wcurr + (\sansd 3cn(\widehat uprev, \widehat ucurr, zn))
\ast \widehat pcurr

9: (\widehat unext, \widehat ucurr, \widehat \bfitlambda next)\leftarrow (\widehat ucurr, \widehat uprev, \widehat \bfitlambda curr)
10: (\widehat wnext, \widehat wcurr, \widehat pnext)\leftarrow (\widehat wcurr, \widehat wprev, \widehat pcurr)

11: return H = [h1, . . . ,hN]

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 National Technology & Engineering Solutions of Sandia, LLC

1274 R. MUTHUKUMAR, DREW P. KOURI, AND MADELEINE UDELL

Acknowledgments. We thank the editorial staff and anonymous reviewers for
their helpful comments.

REFERENCES

[1] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control 6,
SIAM, Philadelphia, 2005, https://doi.org/10.1137/1.9780898718713.

[2] S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems,
Inverse Problems, 25 (2009),123010, https://doi.org/10.1088/0266-5611/25/12/123010.

[3] G. Aupy, J. Herrmann, P. Hovland, and Y. Robert, Optimal multistage algorithm for
adjoint computation, SIAM J. Sci. Comput., 38 (2016), pp. C232--C255, https://doi.org/
10.1137/15M1019222.

[4] G. Batchelor, An Introduction to Fluid Dynamics, Cambridge Math. Lib., Cambridge Uni-
versity Press, Cambridge, UK, 1999, https://doi.org/10.1017/CBO9780511800955.

[5] P. Benner, E. Sachs, and S. Volkwein, Model order reduction for PDE constrained opti-
mization, in Trends in PDE Constrained Optimization, Birkh\"auser/Springer, Cham, 2014,
pp. 303--326.

[6] C. Boutsidis, D. P. Woodruff, and P. Zhong, Optimal principal component analysis in
distributed and streaming models, in Proceedings of the Forty-Eighth Annual ACM Sym-
posium on Theory of Computing, 2016, pp. 236--249, https://doi.org/10.1145/2897518.
2897646.

[7] K. L. Clarkson and D. P. Woodruff, Numerical linear algebra in the streaming model, in
Proceedings of the Forty-First ACM Symposium on Theory of Computing, 2009, https:
//doi.org/10.1145/1536414.1536445.

[8] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods, SIAM, Philadelphia,
2000, https://doi.org/10.1137/1.9780898719857.

[9] E. C. Cyr, J. N. Shadid, and T. Wildey, Towards efficient backward-in-time adjoint com-
putations using data compression techniques, Comput. Methods Appl. Mech. Engrg., 288
(2015), pp. 24--44.

[10] L. Ded\`e, Reduced basis method and a posteriori error estimation for parametrized linear-
quadratic optimal control problems, SIAM J. Sci. Comput., 32 (2010), pp. 997--1019, https:
//doi.org/10.1137/090760453.

[11] M. Fahl and E. Sachs, Reduced order modelling approaches to PDE-constrained optimization
based on proper orthogonal decomposition, in Large-Scale PDE-Constrained Optimization,
Lect. Notes Comput. Sci. Eng. 30, L. T. Biegler, O. Ghattas, M. Heinkenschloss, and
B. van Bloemen Waanders, eds., Springer-Verlag, Berlin, 2003, https://doi.org/10.1007/
978-3-642-55508-4 16.

[12] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins Stud. Math. Sci., Johns
Hopkins University Press, Baltimore, MD, 1996.

[13] S. G\"otschel, N. Chamakuri, K. Kunisch, and M. Weiser, Lossy compression in optimal
control of cardiac defibrillation, J. Sci. Comput., 60 (2014), pp. 35--59.

[14] S. G\"otschel, C. von Tycowicz, K. Polthier, and M. Weiser, Reducing memory require-
ments in scientific computing and optimal control, in Multiple Shooting and Time Domain
Decomposition Methods, Springer, Cham, 2015, pp. 263--287.

[15] A. Griewank and A. Walther, Algorithm 799: Revolve: An implementation of checkpoint-
ing for the reverse or adjoint mode of computational differentiation, ACM Trans. Math.
Software, 26 (2000), pp. 19--45, https://doi.org/10.1145/347837.347846.

[16] M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, Philadelphia,
2002, https://doi.org/10.1137/1.9780898718720.

[17] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217--288, https://doi.org/10.1137/090771806.

[18] J.-W. He, R. Glowinski, R. Metcalfe, A. Nordlander, and J. Periaux, Active control
and drag optimization for flow past a circular cylinder: I. Oscillatory cylinder rotation, J.
Comput. Phys., 163 (2000), pp. 83--117, https://doi.org/10.1006/jcph.2000.6556.

[19] M. Heinkenschloss and L. N. Vicente, Analysis of inexact trust-region SQP algorithms,
SIAM J. Optim., 12 (2001), pp. 283--302, https://doi.org/10.1137/S1052623499361543.

[20] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints,
Math. Model. Theory Appl. 23, Springer, New York, 2009, https://doi.org/10.1007/
978-1-4020-8839-1.

[21] A. A. Jalali, C. S. Sims, and P. Famouri, Reduced Order Systems, Lect. Notes Control Inf.

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1088/0266-5611/25/12/123010
https://doi.org/10.1137/15M1019222
https://doi.org/10.1137/15M1019222
https://doi.org/10.1017/CBO9780511800955
https://doi.org/10.1145/2897518.2897646
https://doi.org/10.1145/2897518.2897646
https://doi.org/10.1145/1536414.1536445
https://doi.org/10.1145/1536414.1536445
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/090760453
https://doi.org/10.1137/090760453
https://doi.org/10.1007/978-3-642-55508-4_16
https://doi.org/10.1007/978-3-642-55508-4_16
https://doi.org/10.1145/347837.347846
https://doi.org/10.1137/1.9780898718720
https://doi.org/10.1137/090771806
https://doi.org/10.1006/jcph.2000.6556
https://doi.org/10.1137/S1052623499361543
https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1007/978-1-4020-8839-1

© 2021 National Technology & Engineering Solutions of Sandia, LLC

RANDOMIZED SKETCHING FOR DYNAMIC OPTIMIZATION 1275

Sci. 343, Springer-Verlag, Berlin, 2006, https://doi.org/10.1007/11597018.
[22] C. Kaebe, J. H. Maruhn, and E. W. Sachs, Adjoint-based Monte Carlo calibration of fi-

nancial market models, Finance Stoch., 13 (2009), pp. 351--379, https://doi.org/10.1007/
s00780-009-0097-9.

[23] A. D. Klose and A. H. Hielscher, Optical tomography using the time-independent equation of
radiative transfer---Part 2: Inverse model, J. Quant. Spectrosc. Radiat. Transf., 72 (2002),
pp. 715--732, https://doi.org/10.1016/S0022-4073(01)00151-0.

[24] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, A
trust-region algorithm with adaptive stochastic collocation for PDE optimization under
uncertainty, SIAM J. Sci. Comput., 35 (2013), pp. A1847--A1879, https://doi.org/10.1137/
120892362.

[25] D. P. Kouri and D. Ridzal, Inexact trust-region methods for PDE-constrained optimization,
in Frontiers in PDE-Constrained Optimization, Springer, New York, 2018, pp. 83--121,
https://doi.org/10.1007/978-1-4939-8636-1 3.

[26] J. R. Krebs, J. E. Anderson, D. Hinkley, R. Neelamani, S. Lee, A. Baumstein, and
M.-D. Lacasse, Fast full-wavefield seismic inversion using encoded sources, Geophysics,
74 (2009), pp. WCC177--WCC188, https://doi.org/10.1190/1.3230502.

[27] M.-D. Lacasse, L. White, H. Denli, and L. Qiu, Full-wavefield inversion: An extreme-scale
PDE-constrained optimization Problem, in Frontiers in PDE-Constrained Optimization,
Springer New York, 2018, pp. 205--255, https://doi.org/10.1007/978-1-4939-8636-1 6.

[28] C. Lee, J. Kim, and H. Choi, Suboptimal control of turbulent channel flow for drag reduction,
J. Fluid Mech., 358 (1998), p. 245--258, https://doi.org/10.1017/S002211209700815X.

[29] M. W. Mahoney, Randomized algorithms for matrices and data, Found. Trends Mach. Learn.,
3 (2011), pp. 123--224, https://doi.org/10.1561/2200000035.

[30] P. Stumm and A. Walther, New algorithms for optimal online checkpointing, SIAM J. Sci.
Comput., 32 (2010), pp. 836--854, https://doi.org/10.1137/080742439.

[31] Y. Sun, Y. Guo, C. Luo, J. A. Tropp, and M. Udell, Low-rank Tucker approximation of
a tensor from streaming data, SIAM J. Math. Data Sci. 2 (2020), pp. 1123--1150, https:
//doi.org/10.1137/19M1257718.

[32] Y. Sun, Y. Guo, J. A. Tropp, and M. Udell, Tensor random projection for low memory
dimension reduction, in NeurIPS Workshop on Relational Representation Learning, 2018.

[33] A. Tarantola, Linearized inversion of seismic reflection data, Geophys. Prospect., 32 (1984),
pp. 998--1015, https://doi.org/10.1111/j.1365-2478.1984.tb00751.x.

[34] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Fixed-Rank Approximation of a
Positive-Semidefinite Matrix from Streaming Data, Adv. Neural Inform. Process. Syst. 30,
2017.

[35] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for
low-rank matrix approximation, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1454--1485,
https://doi.org/10.1137/17M1111590.

[36] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Streaming low-rank matrix approx-
imation with an application to scientific simulation, SIAM J. Sci. Comput., 41 (2019),
pp. A2430--A2463, https://doi.org/10.1137/18M1201068.

[37] Q. Wang, P. Moin, and G. Iaccarino, Minimal repetition dynamic checkpointing algorithm
for unsteady adjoint calculation, SIAM J. Sci. Comput., 31 (2009), pp. 2549--2567, https:
//doi.org/10.1137/080727890.

[38] M. Warner and L. Guasch, Adaptive waveform inversion: Theory, GEOPHYSICS, 81 (2016),
pp. R429--R445, https://doi.org/10.1190/geo2015-0387.1.

[39] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor.
Comput. Sci., 10 (2014), pp. 1--157, https://doi.org/10.1561/0400000060.

[40] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for
the approximation of matrices, Appl. Comput. Harmon. Anal., 25 (2008), pp. 335--366,
https://doi.org/10.1016/j.acha.2007.12.002.

[41] M. J. Zahr, K. T. Carlberg, and D. P. Kouri, An efficient, globally convergent method
for optimization under uncertainty using adaptive model reduction and sparse grids,
SIAM/ASA J. Uncertain. Quantif., 7 (2019), pp. 877--912, https://doi.org/10.1137/
18M1220996.

D
ow

nl
oa

de
d

08
/0

2/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1007/11597018
https://doi.org/10.1007/s00780-009-0097-9
https://doi.org/10.1007/s00780-009-0097-9
https://doi.org/10.1016/S0022-4073(01)00151-0
https://doi.org/10.1137/120892362
https://doi.org/10.1137/120892362
https://doi.org/10.1007/978-1-4939-8636-1_3
https://doi.org/10.1190/1.3230502
https://doi.org/10.1007/978-1-4939-8636-1_6
https://doi.org/10.1017/S002211209700815X
https://doi.org/10.1561/2200000035
https://doi.org/10.1137/080742439
https://doi.org/10.1137/19M1257718
https://doi.org/10.1137/19M1257718
https://doi.org/10.1111/j.1365-2478.1984.tb00751.x
https://doi.org/10.1137/17M1111590
https://doi.org/10.1137/18M1201068
https://doi.org/10.1137/080727890
https://doi.org/10.1137/080727890
https://doi.org/10.1190/geo2015-0387.1
https://doi.org/10.1561/0400000060
https://doi.org/10.1016/j.acha.2007.12.002
https://doi.org/10.1137/18M1220996
https://doi.org/10.1137/18M1220996

	Introduction
	Memory versus computation: Trade-offs
	Randomized sketching for dynamic optimization
	Outline

	Problem formulation
	Assumptions and the reduced problem
	Gradient computation and adjoints

	Low-memory matrix approximation
	Reconstruction
	Intuition

	Randomized sketching for dynamic optimization
	Computing first- and second-order information with limited memory
	Solving the state equation
	Computing an approximate gradient from the sketched state

	Regularity assumptions
	A fixed-rank approach
	An adaptive-rank approach
	Choosing the rank to guarantee convergence
	Sketched trust-region algorithm

	Optimal control of linear parabolic PDEs
	Discretization
	Stability estimates

	Numerical examples
	Optimal control of an advection-reaction-diffusion equation
	Optimal control of flow past a cylinder

	Appendix A. Sketching routines
	Acknowledgments
	References

