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Low-Rank Tucker Approximation of a Tensor from Streaming Data˚
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Abstract. This paper describes a new algorithm for computing a low-Tucker-rank approximation of a tensor.
The method applies a randomized linear map to the tensor to obtain a sketch that captures the
important directions within each mode, as well as the interactions among the modes. The sketch can
be extracted from streaming or distributed data or with a single pass over the tensor, and it uses
storage proportional to the degrees of freedom in the output Tucker approximation. The algorithm
does not require a second pass over the tensor, although it can exploit another view to compute a
superior approximation. The paper provides a rigorous theoretical guarantee on the approximation
error. Extensive numerical experiments show that the algorithm produces useful results that improve
on the state-of-the-art for streaming Tucker decomposition.
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1. Introduction. Large-scale datasets with natural tensor (multidimensional array) struc-
ture arise in a wide variety of applications, including computer vision [39], neuroscience [9],
scientific simulation [3], sensor networks [31], and data mining [21]. In many cases, these tensors
are too large to manipulate, to transmit, or even to store in a single machine. Luckily, tensors
often exhibit a low-rank structure and can be approximated by a low-rank tensor factorization,
such as CANDECOMP/PARAFAC (CP), tensor train, or Tucker factorization [20]. These
factorizations reduce the storage costs by exposing the latent structure. Sufficiently low rank
tensors can be compressed by several orders of magnitude with negligible loss. However,
computing these factorizations can require substantial computational resources. One challenge
is that these large tensors may not fit in the main memory on our computer.

In this paper, we develop a new algorithm to compute a low-rank Tucker approximation of
a tensor from streaming data using working storage proportional to the degrees of freedom in

˚Received by the editors April 23, 2019; accepted for publication (in revised form) June 26, 2020; published
electronically November 10, 2020.

https://doi.org/10.1137/19M1257718
Funding: The research of the first, second, and fifth authors was supported in part by DARPA award FA8750-17-2-

0101 and NSF grant CCF-1740822. The research of the fourth author was supported by ONR awards N00014-11-10025,
N00014-17-12146, and N00014-18-12363.

:Department of Statistics and Data Science, Cornell University, Ithaca, NY 14853 USA (ys784@cornell.edu).
;Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706 USA (yguo@cs.wisc.edu).
\S Columbia University, New York, NY 10027 USA (cl3788@columbia.edu).
\P Department of Computing + Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125-5000

USA (jtropp@cms.caltech.edu).
}School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853 USA (udell@

cornell.edu).

1123

D
ow

nl
oa

de
d 

07
/3

0/
21

 to
 1

57
.1

31
.1

01
.1

06
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1257718
mailto:ys784@cornell.edu
mailto:yguo@cs.wisc.edu
mailto:cl3788@columbia.edu
mailto:jtropp@cms.caltech.edu
mailto:udell@cornell.edu
mailto:udell@cornell.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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the output Tucker approximation. The algorithm forms a linear sketch of the tensor, and it
operates on the sketch to compute a low-rank Tucker approximation. The main computational
work is all performed on a small tensor whose size is proportional to the core tensor in the
Tucker factorization. We derive detailed probabilistic error bounds on the quality of the
approximation in terms of the tail energy of any matricization of the target tensor.

This algorithm is useful in at least three concrete problem settings:
1. Streaming: Data about the tensor is received sequentially. At each time, we observe

a low-dimensional slice, an individual entry, or an additive update to the tensor (the
``turnstile"" model [28]). For example, each slice of the tensor may represent one time
step in a computer simulation or the measurements from a sensor array at a particular
time. In the streaming setting, the complete tensor is not stored; indeed, it may be
much larger than available computing resources.
Our algorithm can approximate a tensor, presented as a data stream, by sketching the
updates and storing the sketch. The linearity of the sketching operation guarantees
that sketching commutes with slice, entrywise, or additive updates. Our method forms
an approximation of the tensor only after all the data has been observed, rather than
approximating the tensor-observed-so-far at any time. This protocol allows for offline
data analysis, including many scientific applications. Conversely, this protocol is not
suitable for real-time monitoring.

2. Limited memory: Data describing the tensor is stored on the hard disk of a computer
with much smaller RAM. This setting reduces to the streaming setting by streaming
the data from disk.

3. Distributed: Data describing the tensor may be stored on many different machines.
Communicating data among these machines may be costly due to low network band-
width or high latency. Our algorithm can approximate tensors stored in a distributed
computing environment by sketching the data on each slave machine and transmitting
the sketch to a master, which computes the sum of the sketches. Linearity of the sketch
guarantees that the sum of the sketches is the sketch of the full tensor.

In the streaming setting, the tensor is not stored, so we require an algorithm that can compute
an approximation from a single pass over the data. In contrast, multiple passes over the data
are possible in the memory-limited or distributed settings.

This paper presents algorithms for all these settings, among other contributions:
‚ We present a new linear sketch for higher order tensors that we call the Tucker
sketch. This sketch captures the principal subspace of the tensor along each mode
(corresponding to factor matrices in a Tucker decomposition) and the action of the
tensor that links these subspaces (corresponding to the core). The sketch is linear, so it
naturally handles streaming or distributed data. The Tucker sketch can be constructed
from any dimension reduction map, and it can be used directly to, e.g., cluster the
fibers of the tensor along some mode. It also can be used to approximate the original
tensor.

‚ We develop a practical algorithm to compute a low-rank Tucker approximation from the
Tucker sketch. This algorithm requires a single pass over the data to form the sketch and
does not require further data access. A variant of this algorithm, using the truncated
QR decomposition, yields a quasi-optimal method for tensor approximation that (inD
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expectation) matches the guarantees for HOSVD or ST-HOSVD up to constants.
‚ We show how to efficiently compress the output of our low-rank Tucker approximation

to any fixed rank without further data access. This method exploits the spectral decay
of the original tensor, and it often produces results that are superior to truncated QR.
It can also be used to adaptively choose the final size of the Tucker decomposition
sufficient to achieve a desired approximation quality.

‚ We propose a two-pass algorithm that uses additional data access to improve on the
one-pass method. This two-pass algorithm was also proposed in the simultaneous work
[27]. Both the one-pass and two-pass methods are appropriate for limited memory or
distributed data settings.

‚ We develop provable probabilistic guarantees on the performance of both the one-pass
and two-pass algorithms when the tensor sketch is composed of Gaussian dimension
reduction maps.

‚ We exhibit several random maps that can be used to sketch the tensor. Compared
to the Gaussian map, these alternatives are cheaper to store, easier to apply, and
experimentally deliver similar performance as measured by the tensor approximation
error. In particular, we demonstrate the benefits of a Khatri--Rao product of random
matrices, which we call the tensor random projection (TRP), which uses exceedingly
low storage.

‚ We perform a comprehensive simulation study with synthetic data, and we consider ap-
plications to several real datasets. These results demonstrate the practical performance
of our method. In comparison to the only existing one-pass Tucker approximation
algorithm [26], our methods reduce the approximation error by more than an order of
magnitude given the same storage budget.

‚ We have developed and released an open-source package in Python, available at
https://github.com/udellgroup/tensorsketch, that implements our algorithms.

2. Background and related work. We begin with a short review of tensor notation and
some related work on low-rank matrix and tensor approximation.

2.1. Notation. Our paper follows the notation of [20]. We denote scalar, vector, matrix,
and tensor variables, respectively, by lowercase letters (x), boldface lowercase letters (x),
boldface capital letters (X), and boldface Euler script letters (X). For two vectors x and y,
we write x ą y if x is greater than y elementwise.

Define rN s :“ t1, . . . , Nu. For a matrix X P Rmˆn, we respectively denote its ith row,
jth column, and pi, jqth element by Xpi, .q, Xp., jq, and Xpi, jq for each i P rms, j P rns. We
write X: P Rnˆm for the Moore--Penrose pseudoinverse of a matrix X P Rmˆn. In particular,
X: “ pXJXq´1XT if m ě n and X has full column rank; X: “ XT pXXT q´1 if m ă n and X
has full row rank.

2.1.1. Kronecker and Khatri--Rao product. For two matrices A P RIˆJ and B P RKˆL,
we define the Kronecker product AbB P RIKˆJL as

(2.1) AbB “

»

—

–

Ap1, 1qB ¨ ¨ ¨ Ap1, JqB
...

. . .
...

ApI, 1qB ¨ ¨ ¨ ApI, JqB

fi

ffi

fl

.
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1126 Y. SUN, Y. GUO, C. LUO, J. TROPP, AND M. UDELL

For J “ L, we define the Khatri--Rao product as AdB, that is, the ``matching columnwise""
Kronecker product. The resulting matrix of size pIKq ˆ J is defined as

AdB “ rAp¨, 1q bBp¨, 1q ¨ ¨ ¨Ap¨, Jq bBp¨, Jqs.

2.1.2. Tensor basics. For a tensor X P RI1ˆ¨¨¨ˆIN , its mode or order is the number N of
dimensions. If I “ I1 “ ¨ ¨ ¨ “ IN , we denote RI1ˆ¨¨¨ˆIN as RIN . The inner product of two
tensors X,Y is defined as xX,Yy “

řI1
i1“1

¨ ¨ ¨
řIN

iN“1
Xi1...iNYi1...iN . The Frobenius norm of X

is }X}F “
a

xX,Xy.

2.1.3. Tensor unfoldings. Let \=I “ \Pi N
j“1Ij and Ip´nq “ \Pi j‰nIj , and let vecpXq denote

the vectorization of X. The mode-n unfolding of X is the matrix Xpnq P RInˆIp´nq . The inner
product for tensors matches that of any mode-n unfolding:

(2.2) xX,Yy “ xXpnq,Ypnqy “ TrppXp\mathrm{n}qqJYp\mathrm{n}qq.

2.1.4. Mode \bfitn -rank of a tensor. The mode-n rank is the rank of the mode-n unfolding.
We say a tensor X has (multilinear) rank rpXq “ pr1, . . . , rN q if its mode-n rank is rn for each
n P rN s.

2.1.5. Tensor contractions. Write G “ X ˆn U for the mode-n (matrix) product of X
with U P RJˆIn . That is, G “ X ˆn U ðñ Gpnq “ UXpnq. The tensor G has dimension
I1ˆ ¨ ¨ ¨ˆ In´1ˆJ ˆ In`1ˆ ¨ ¨ ¨ˆ IN . Mode products with respect to different modes commute:
for U P RJ1ˆIn , V P RJ2ˆIm ,

Xˆn Uˆm V “ Xˆm V ˆn U if n ‰ m.

Mode products obey the associative rule. This rule simplifies mode products with matrices
along the same mode: for A P RJ1ˆIn , B P RJ2ˆJ1 ,

Xˆn Aˆn B “ Xˆn pBAq.

2.1.6. Tail energy. To state our results, we will need a tensor equivalent for the decay in
the spectrum of a matrix. For each unfolding Xpnq, define the \rho th tail energy

p\tau pnq\rho q2 :“

\mathrm{m}\mathrm{i}\mathrm{n}pIn,Ip´nqq
ÿ

ką\rho 

\sigma 2
kpX

pnqq,

where \sigma kpX
pnqq is the kth largest singular value of Xpnq.

2.2. Tucker approximation. Given a tensor X P RI1ˆ¨¨¨ˆIN and target rank r “ pr1, . . . ,
rN q, the goal of multilinear approximation is to approximate X by a tensor of multilinear rank
r. Concretely, we search over Tucker decompositions of the approximating tensor with core
tensor G P Rr1ˆ¨¨¨ˆrN and factor matrices Un P RInˆrn for n P rN s with each Un satisfying
UJ

nUn “ I. For brevity, we define JG;U1, . . . ,UN K “ G ˆ1 U1 ˆ2 ¨ ¨ ¨ ˆN UN . Any bestD
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LOW-RANK TUCKER APPROXIMATION FROM STREAMING DATA 1127

rank-r Tucker approximation is of the form JG‹;U‹
1, . . . ,U

‹
N K, where G‹,U‹

n solve the Tucker
approximation problem

(2.3)
minimize }X´ Gˆ1 ˆ . . .Un`1 ˆN UN}

2
F

subject to UJ
nUn “ I.

The problem (2.3) is a challenging nonconvex optimization problem. Moreover, the solution is
not unique [20]. We use the notation JXK\bfr to represent a best rank-r Tucker approximation of
the tensor X, which in general we cannot compute.

2.2.1. HOSVD. The standard approach to computing a rank r “ pr1, . . . , rN q Tucker
approximation for a tensor X begins with the higher order singular value decomposition
(HOSVD) [10, 37] (Algorithm 2.1).

Algorithm 2.1. Higher order singular value decomposition (HOSVD) [10, 37].

Given: tensor X, target rank r “ pr1, . . . , rN q
1. Factors. For n P rN s, compute the top rn left singular vectors Un of Xpnq.
2. Core. Contract these with X to form the core

G “ Xˆ1 U
T
1 ¨ ¨ ¨ ˆN UT

N .

Return: Tucker approximation X\mathrm{H}\mathrm{O}\mathrm{S}\mathrm{V}\mathrm{D} “ JG;U1, . . . ,UN K

The HOSVD can be computed in two passes over the tensor [43, 7]. We describe this
method briefly here and in more detail in the next section. In the first pass, sketch each
matricization Xpnq, n P rN s, and use randomized linear algebra (e.g., the randomized range
finder of [16]) to (approximately) recover its range Un. To form the core Xˆ1 U

T
1 ¨ ¨ ¨ ˆN UT

N

requires a second pass over X, since the factor matrices Un depend on X. The main algorithmic
contribution of this paper is to develop a method to approximate both the factor matrices and
the core in just one pass over X.

It is possible to improve the accuracy of the resulting approximation. The higher order
orthogonal iteration (HOOI) [11], for example, uses the HOSVD to initialize an alternating
minimization method and sequentially minimizes over each of the factor matrices and the core
tensor. However, this method is rarely used in practice due to the memory and computation
required.

2.2.2. ST-HOSVD. The sequentially truncated higher order singular value decomposition
(ST-HOSVD) modifies the HOSVD to reduce the computational burden [38]. This method
compresses the target tensor after extracting each factor matrix. The resulting algorithm can
be accelerated using randomized matrix approximations [27] but seems to require N passes
over the tensor. Hence the method is difficult to implement when the data is too large to store
locally.

2.2.3. Quasi-optimality. A method for tensor approximation is called quasi-optimal if the
error of the resulting approximation is comparable to the best possible: more precisely, we say
an approximation method is quasi-optimal with factor d if for any X and any multilinear rankD
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Algorithm 2.2. Sequentially truncated HOSVD (ST-HOSVD) [38].

Given: tensor X, target rank r “ pr1, . . . , rN q
1. G “ X

2. For n “ 1 to N
‚ Compute a best rank rn approximation of the mode n unfolding of G:

Un,\Sigma n,Vn “ TruncatedSVDpGpnq, rnq.

‚ Form the updated tensor G from its mode n unfolding Gpnq Ð \Sigma nV
J
n .

Return: Tucker approximation X\mathrm{S}\mathrm{T}-\mathrm{H}\mathrm{O}\mathrm{S}\mathrm{V}\mathrm{D} “ JG;U1, . . . ,UN K

r, the rank-r approximation \^X produced by the method satisfies

}X´ \^X}F ď d}X´ JXK\bfr }F .

We call a randomized tensor approximation method quasi-optimal if this inequality holds in
expectation. This definition shows the advantage of a quasi-optimal approximation method:
the method finds a good approximation of the tensor whenever a good rank-r approximation
exists. Moreover, it exactly recovers a rank-r decomposition of a tensor that is exactly rank r.

Both the HOSVD and the ST-HOSVD are quasi-optimal with factor
?
N [38, 15, 13]. This

paper demonstrates the first known quasi-optimal streaming Tucker approximations.

2.3. Previous work. The only previous work on streaming Tucker approximation is [26],
which develops a streaming method called Tucker TensorSketch (T.-TS) [26, Algorithm 2].
T.-TS improves on the HOOI by sketching the data matrix in the least squares problems.
However, the success of the approach depends on the quality of the initial core and factor
matrices, and the alternating least squares algorithm takes several iterations to converge.

In contrast, our work is motivated by the HOSVD (not HOOI) and requires no initialization
or iteration. We treat the tensor as a multilinear operator. The sketch identifies a low-
dimensional subspace for each mode of the tensor that captures the action of the operator
along that mode. The reconstruction produces a low-Tucker-rank multilinear operator with the
same action on this low-dimensional tensor product space. This linear algebraic view allows us
to develop the first guarantees on approximation error for this class of problems.1 Moreover,
we show numerically that our algorithm achieves a better approximation of the original tensor
given the same storage budget.

More generally, there is a large literature on randomized algorithms for matrix factorizations
and for solving optimization problems; for example, see the review articles [16, 41]. In particular,
our method is strongly motivated by the recent papers [34, 35], which provide methods for
one-pass matrix approximation. The novelty of this paper is in our design of a core sketch (and
reconstruction) for the Tucker decomposition, together with provable performance guarantees.

1The guarantees in [26] hold only when a new sketch is applied for each subsequent least squares solve; the
resulting algorithm cannot be used in a streaming setting. In contrast, the practical streaming method T.-TS
fixes the sketch for each mode and so has no known guarantees. Interestingly, experiments in [26] show that
the method achieves lower error using a fixed sketch (with no guarantees) than using fresh sketches at each
iteration.D
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The proof requires a careful accounting of the errors resulting from the factor sketches and
from the core sketch. The structure of the Tucker sketch guarantees that these errors are
independent.

Many researchers have used randomized algorithms to compute tensor decompositions.
For example, the authors of [40, 6] apply sketching techniques to the CP decomposition,
while the author of [36] suggests sparsifying the tensor. Several papers aim to make Tucker
decomposition efficient in the limited-memory or distributed settings [5, 43, 3, 19, 24, 7].

3. Dimension reduction maps. In this section, we first introduce some commonly used
randomized dimension reduction maps together with some mathematical background, and we
explain how to calculate and update sketches.

3.1. Dimension reduction map. Dimension reduction maps (DRMs) take a collection of
high-dimensional objects to a lower-dimensional space while maintaining certain geometric
properties [29]. For example, we may wish to preserve the pairwise distances between vectors
or to preserve the column space of matrices. We call the output of a DRM on an object x a
sketch of x.

Common DRMs include matrices with i.i.d. Gaussian entries or i.i.d. Rademacher entries
(uniform on t˘1u). The scrambled subsampled randomized Fourier transform (SSRFT) [42] and
sparse random projections [1, 25] can achieve similar performance with fewer computational
and storage requirements; see the supplementary materials, linked from the main article
webpage, for details.

Our theoretical bounds rely on properties of the Gaussian DRM. However, our numeri-
cal experiments indicate that many other DRMs yield qualitatively similar results; see the
supplementary materials for details.

3.2. Tensor random projection. Here we present a strategy for reducing the storage of
the random map that makes use of the tensor random projection (TRP), an extremely low
storage structured dimension reduction map proposed in [32]. The TRP \Omega :

śN
n“1 In Ñ Rk is

defined as the iterated Khatri--Rao product of DRMs An P RInˆk, n P rN s:

(3.1) \Omega “ A1 d ¨ ¨ ¨ dAN .

Each An P RInˆk can be a Gaussian map, a Rademacher matrix, an SSRFT, etc. The number
of constituent maps N and their dimensions In for n P rN s are parameters of the TRP and
control the quality of the map; see [32] for details. The TRP map is a row-product random
matrix, which behaves like a Gaussian map in many respects [30]. Our experimental results
confirm this behavior.

For simplicity, suppose In is the same for each n P rN s. Then the TRP can be formed
(and stored) using only kNI random variables, while standard dimension reduction maps use
randomness (and storage) that grows as IN when applied to a generic (dense) tensor. Table 1
compares the computational and storage costs for different DRMs.

We do not need to explicitly form or store the TRP map \Omega . Instead, we can store the
constituent DRMs A1, . . . ,AN and compute the action of the map on the matricized tensor
using the definition of the TRP. The additional computation required is minimal, and it
empirically incurs almost no performance loss.D
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Table 1
Performance of different dimension reduction maps: We compare the storage and the computational cost of

applying a DRM mapping RIN to Rk to a dense tensor in RIN . Here \mu is the fraction of nonzero entries in the
sparse DRMs. The TRP considered here is composed of Gaussian DRMs.

DRM Storage Computation

Gaussian kIN kIN

Sparse \mu kIN \mu kIN

SSRFT IN logpkqIN

TRP kNI kIN

4. Algorithms for Tucker approximation. In this section, we present our proposed tensor
sketch and our algorithms for one- and two-pass Tucker approximation, and we discuss the
computational complexity and storage required for both sparse and dense input tensors. We
present guarantees for these methods in section 5.

4.1. Tensor compression via sketching. Our Tucker sketch generalizes the matrix sketch
of [35] to higher order tensors. To compute a Tucker sketch for tensor X P RI1ˆ¨¨¨ˆIN with
sketch size parameters k and s, draw independent, random DRMs

(4.1) \Omega 1,\Omega 2, . . . ,\Omega N and \Phi 1,\Phi 2, . . . ,\Phi N ,

with \Omega n P RIp´nqˆkn and \Phi n P RInˆsn for n P rN s. Use these DRMs to compute

Vn “ Xpnq\Omega n PRInˆkn , n P rN s,

H “ Xˆ1 \Phi 
J
1 ¨ ¨ ¨ ˆN \Phi JN PRs1ˆ¨¨¨ˆsN .

The factor sketch Vn captures the span of the mode-n fibers of X for each n P rN s, while
the core sketch H contains information about the interaction between different modes. See
Algorithm 4.1 for pseudocode.

To produce a rank r “ tr1, . . . , rNu Tucker approximation of X, choose sketch size param-
eters k “ pk1, . . . , kN q ľ r and s “ ps1, . . . , sN q ľ k. (Vector inequalities hold elementwise.)
Our approximation guarantees depend closely on the parameters k and s. As a rule of thumb,
we suggest selecting s “ 2k ` 1, as the theory requires s ą 2k, and choosing k as large as
possible given storage limitations.

The sketches Vn and H are linear functions of the original tensor X and so can be computed
in a single pass over X. Linearity enables easy computation of the sketch even in the streaming
model or distributed model (see the supplementary materials for details). Storing the sketches
requires memory

řN
n“1 In ¨ kn `\Pi N

i“1sn: much less than the full tensor.

Remark 4.1. The DRMs \Omega n P RIp´nqˆkn are large---much larger than the size of the Tucker
factorization we seek! Even using a low memory mapping such as the SSRFT and sparse
random map, the storage required grows as \scrO pIp´nqq. However, we do not need to store theseD
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Algorithm 4.1. Tucker sketch.

Given: RDRM (a function that generates a random DRM)

1: function TuckerSketch(X;k, s)
2: Form DRMs \Omega n “ RDRMpIp´nq, knq and \Phi n “ RDRMpIn, snq, n P rN s

3: Compute factor sketches Vn “ Xpnq\Omega n, n P rN s
4: Compute core sketch H “ Xˆ1 \Phi 

J
1 ˆ ¨ ¨ ¨ ˆN \Phi JN

5: return pH,V1, . . . ,VN , t\Phi n,\Omega nunPrNsq

6: end function

matrices. Instead, we can generate (and regenerate) them as needed using a (stored) random
seed.2

Remark 4.2. Alternatively, the TRP (subsection 3.2) can be used to limit the storage
required for \Omega n. The Khatri--Rao structure in the sketch need not match the structure in
the matricized tensor. However, we can take advantage of the structure of our problem
to reduce storage even further. We generate DRMs An P RInˆk for n P rN s and define
\Omega n “ A1 d ¨ ¨ ¨An´1 d An`1 d ¨ ¨ ¨ d AN for each n P rN s. Hence we need not store the
maps \Omega n but only the small matrices An. The storage required is thereby reduced from
\scrO pNpśN

n“1 Inqkq to \scrO ppřN
n“1 Inqkq, while the approximation error is essentially unchanged.

We use this method in our experiments.

4.2. Low-rank approximation. Now we explain how to construct a Tucker decomposition
of X with target multilinear rank k from the factor and core sketches.

We first present a simple two-pass algorithm, Algorithm 4.2, that uses only the factor
sketches by projecting the unfolded matrix of original tensor X to the column space of each
factor sketch. (Notice that Algorithm 4.2 does not use the core sketch, so the core sketch
parameter s of the Tucker sketch is set to 0.)

To project to the column space of each factor matrix, we calculate the QR decomposition
of each factor sketch:

(4.2) Vn “ QnRn for n P rN s,

where Qn P RInˆkn has orthonormal columns and Rn P Rknˆkn is upper triangular. Consider
the tensor approximation

(4.3) \^X2 “ Xˆ1 Q1Q
J
1 ˆ2 ¨ ¨ ¨ ˆN QNQJN .

This approximation admits the guarantees stated in Theorem 5.1. Using the commutativity of
the mode product between different modes, we can rewrite \~X as

(4.4) \^X2 “
“

XˆQJ1 ˆ2 ¨ ¨ ¨ ˆN QJN
‰

looooooooooooooomooooooooooooooon

W2

ˆ1Q1 ˆ2 ¨ ¨ ¨ ˆN QN “ JW2;Q1, . . . ,QN K,

2Our theory assumes the DRMs are random, whereas our experiments use pseudorandom numbers. In
fact, for many pseudorandom number generators it is NP-hard to determine whether the output is random or
pseudorandom [2]. In particular, we expect both to perform similarly for tensor approximation.D
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which gives an explicit Tucker approximation \~X of our original tensor. The core approximation
W2 P Rk1ˆ¨¨¨ˆkN is much smaller than the original tensor X. To compute this approximation,
we need access to X twice: once to compute Q1, . . . ,QN , and again to apply them to X in
order to form W2.

Algorithm 4.2. Two-pass sketch and low-rank recovery.

Given: tensor X, sketch parameters k
1. Sketch.

`

H,V1, . . . ,VN , t\Phi n,\Omega nunPrNs
˘

“ TuckerSketch pX;k, 0q
2. Recover factor matrices. For n P rN s, pQn,„q “ QRpV\mathrm{n}q

3. Recover core. W2 “ Xˆ1 Q1 ¨ ¨ ¨ ˆN QN

Return: Tucker approximation \^X2 “ JW2;Q1, . . . ,QN K with rank ĺ k

This two-pass algorithm, Algorithm 4.2, has a simple motivation. In the first step of
the HOSVD, Algorithm 2.1, we approximately compute the top rn eigenvectors of each
matricization Xpnq using the randomized SVD [16]. Indeed, the same idea was proposed
in concurrent work [27], which extends the idea to the ST-HOSVD and provides an error
analysis. The error analyses of the two papers essentially coincide for Algorithm 4.2. One
major difference is that the authors of [27] focus on the computational benefits gained using
the randomized SVD, while here we focus primarily on the benefits due to reduced storage.

To find an algorithm for streaming data, when it is impossible to store the full tensor, we
require a one-pass algorithm.

One-pass approximation. To develop a one-pass method, we must use the core sketch H (the
compression of X using the random projections \Phi n) to approximate W2 (the compression of
X using the random projections Qn). To develop intuition, consider the following calculation:
if the factor matrix approximations Qn capture the range of X well, then projection onto their
ranges in each mode approximately preserves the action of X:

X « Xˆ1 Q1Q
J
1 ˆ ¨ ¨ ¨ ˆN QNQJN .

Recall that for tensor A and matrices B and C with compatible sizes, A ˆn pBCq “
pAˆn Cq ˆn B. Use this rule to recognize the two-pass core approximation W2:

X «
`

Xˆ1 Q
J
1 ˆ ¨ ¨ ¨ ˆN QJN

˘

ˆ1 Q1 ¨ ¨ ¨ ˆN QN “W2 ˆ1 Q1 ¨ ¨ ¨ ˆN QN .

Now contract both sides of this approximate equality with the DRMs \Phi n to identify the core
sketch H:

H :“ Xˆ1 \Phi 
J
1 ¨ ¨ ¨ ˆN \Phi JN «W2 ˆ1 \Phi 

J
1 Q1 ˆ ¨ ¨ ¨ ˆN \Phi JNQN .

We have chosen s ą k so that each \Phi JnQn has a left inverse with high probability. Hence we
can solve the approximate equality for W2:

W2 «Hˆ1 p\Phi 
J
1 Q1q

: ˆ ¨ ¨ ¨ ˆN p\Phi 
J
NQN q

: “: W1.

The right-hand side of the approximation defines the one-pass core approximation W1.
Lemma A.2 controls the error in this approximation.D
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Algorithm 4.3. One-pass sketch and low-rank recovery.

Given: tensor X, sketch parameters k and s ą k
1. Sketch.

`

H,V1, . . . ,VN , t\Phi n,\Omega nunPrNs
˘

“ TuckerSketch pX;k, sq
2. Recover factor matrices. For n P rN s, pQn,„q “ QRpV\mathrm{n}q

3. Recover core. W1 “Hˆ1 p\Phi 
J
1 Q1q

: ˆ ¨ ¨ ¨ ˆN p\Phi 
J
NQN q

:

Return: Tucker approximation \^X1 “ JW1;Q1, . . . ,QN K with rank ď k

Algorithm 4.3 summarizes the resulting one-pass algorithm. One (streaming) pass over
the tensor can be used to sketch the tensor; to recover the tensor, we only access the sketches.
Theorem 5.3 (below) bounds the overall quality of the approximation.

The computational complexity and storage required by Algorithm 4.3 is presented in
Table 2. These requirements compare favorably to the only previous method for streaming
Tucker approximation [26]; see the supplementary materials for details.

Table 2
Computational complexity of one-pass approximation (Algorithm 4.3) on tensor X P RIˆ¨¨¨ˆI with parameters

pk, sq using a TRP composed of Gaussian DRMs inside the Tucker sketch. Most of the time is spent sketching
the tensor X.

Stage Computation Storage

Sketching \scrO ppp1´ ps{IqN q{p1´ ps{Iqq `NkqIN q

Recovery \scrO ppk2sN p1´ pk{sqN qq{p1´ k{sq ` k2NIq kNI ` sN

Total \scrO pppsp1´ ps{IqN qq{p1´ s{Iq `NkqIN q

4.3. Fixed-rank approximation. The low-rank approximation methods Algorithms 4.2
and 4.3 of the previous section produce approximations with rank no more than k. It is often
valuable to truncate this approximation to a user-specified target rank r ď k [35, Figure 4].
Increasing k relative to r can improve the quality of the final approximation by using more
intermediate storage without changing the storage requirements of the final approximation to
X. In this section, we introduce a few methods to compute fixed-rank approximations with
rank no more than r by way of a sketch with parameter k ľ r.

4.3.1. Truncated QR. One simple fix to Algorithms 4.2 and 4.3 results in a final approxi-
mation with rank r rather than k: simply replace the QR decomposition with a truncated
QR decomposition [14]. Indeed, we will show that this simple change results in a one-pass
algorithm that achieves quasi-optimality with factor 2

?
N , nearly matching the guarantee for

the HOSVD and ST-HOSVD. This approach is best for tensors with many modes that are
(almost) exactly rank r. However, for tensors with few modes and slower spectral decay, a
more sophisticated fixed-rank approximation method outperforms this naive approach.

4.3.2. Optimal fixed-rank approximation. For tensors with few modes, we recommend
computing a rank-r approximation to X by forming an initial approximation with rank k ľ r
using a randomized method such as Algorithm 4.3 or Algorithm 4.2 and then truncating it to
rank r using a deterministic method such as ST-HOSVD. In previous work, we have found
that rank truncation is essential to ensure that the final approximation is fully reliable: forD
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matrices, we find that the top singular values and vectors of the approximation are accurate
when k Ç 4r [35]. Rank truncation can also be used to choose the final size of the Tucker
decomposition adaptively to achieve a desired approximation quality.

For moderate k, it is computationally easy to truncate an initial rank-k approximation to
rank r, thanks to the following lemma.

Lemma 4.1 (core truncation). Let W P Rk1ˆ¨¨¨ˆkN be a tensor with k ľ r, and let
Qn P RInˆkn be orthogonal matrices for each n P rN s. Then

JWˆ1 Q1 ¨ ¨ ¨ ˆN QN K\bfr “ JWK\bfr ˆ1 Q1 ¨ ¨ ¨ ˆN QN .

Lemma 4.1 shows that we can compute the optimal rank-r approximation of the (large)
tensor \^X “Wˆ1Q1 ¨ ¨ ¨ˆN QN by calculating the optimal rank-r approximation of the (small)
core W. Interestingly, the same result holds if we replace the best rank-r Tucker approximation
J¨K by the HOOI [8, Lemma A.1].

Proof of Lemma 4.1. The target tensor to be approximated, Wˆ1 Q1 ¨ ¨ ¨ ˆN QN , lies in
the subspace spanned by the Qn, tX : Xpnq P rangepQnqu. By the Pythagorean theorem, any
optimal Tucker decomposition also lies in this subspace.

Suppose JW1;V1, . . . ,VN K is an optimal Tucker decomposition. Since its nth unfolding
is in rangepQnq, each Vn can be written as QnUn for some orthogonal Un P Rknˆrn . Then,
using the orthogonal invariance of the Frobenius norm,

}Wˆ1 Q1 ˆ ¨ ¨ ¨ ˆN QN ´W1 ˆ1 Q1U1 ˆ ¨ ¨ ¨ ˆN QNUN}F

“ }W´W1 ˆ1 U1 ˆ ¨ ¨ ¨ ˆN UN}F ě }W´ JWK\bfr }F
“ }Wˆ1 Q1 ˆ ¨ ¨ ¨ ˆN QN ´ JWK\bfr ˆ1 Q1 ˆ ¨ ¨ ¨ ˆN QN}F .

Motivated by this lemma, to produce a fixed rank-r approximation of X, we compress the
core tensor approximation from Algorithm 4.2 or Algorithm 4.3 to rank r. This compression is
cheap because the core approximation W P Rk1ˆ¨¨¨ˆkN is small.

Algorithm 4.4. Fixed-rank approximation.

Given: Tucker approximation JW;Q1, . . . ,QN K of tensor X, rank target r, algorithm \scrA pW, rq
to compute rank r approximation to W (e.g., ST-HOSVD).

1. Approximate core with fixed rank. G,U1, . . . ,UN “ \scrA pW, rq
2. Compute factor matrices. For n P rN s, Pn “ QnUn

Return: Tucker approximation \^X\bfr “ JG;P1, . . . ,PN K with rank ď r

We present this method (using ST-HOSVD as the compression algorithm) as Algorithm 4.4.
One convenient aspect of this scheme is that the rank-k approximation can be stored in
memory, allowing users to experiment with different desired final ranks r and with different
algorithms \scrA to compress the core to rank r. Reasonable choices to compress the core include
the HOSVD, the ST-HOSVD, or TTHRESH [4]. It is possible to use these strategies to
adaptively compute a core approximation that achieves some target approximation error.
For example, for the HOSVD, one can successively truncate the core of the HOSVD (using
the ordering property [10, Theorem 2]); for the ST-HOSVD, one can use the error toleranceD
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strategy of [38]; and the iterative strategy of TTHRESH naturally terminates upon reaching
a target error approximation. Both HOSVD and ST-HOSVD are quasi-optimal [38], while
ST-HOSVD requires less storage and computation.

5. Guarantees. In this section, we present probabilistic guarantees on the preceding
algorithms. We show that the approximation error for the one-pass algorithm is the sum of the
error from the two-pass algorithm and the error resulting from the core approximation. We
present most of the proofs in this section and defer some more technical parts to Appendix A.

5.1. Low-rank approximation. Theorem 5.1 guarantees the performance of the two-pass
method (Algorithm 4.2).

Theorem 5.1 (two-pass low-rank approximation). Sketch the tensor X using a Tucker sketch
with parameters k using DRMs with i.i.d. standard normal entries. Then the approximation
\^X2 computed by the two-pass method (Algorithm 4.2) satisfies

E}X´ \^X2}
2
F ď min

1ĺ\rho ĺk´1

N
ÿ

n“1

ˆ

1`
\rho n

kn ´ \rho n ´ 1

˙

p\tau pnq\rho n q
2.

This theorem shows that the proposed randomized tensor approximation works best for
tensors whose unfoldings exhibit spectral decay. As a simple consequence, we see that the
two-pass method with k ą r` 1 perfectly recovers a tensor with exact (multilinear) rank r,

since in that case \tau 
pnq
rn “ 0 for each n P rN s. However, the theorem states a stronger bound:

the method exploits decay in the spectrum wherever (in the first kn singular values of each
mode n unfolding) it occurs.

Another useful consequence shows that the rank-k approximation computed with this
two-pass method competes with the best rank-r approximation.

Corollary 5.2. Suppose k ľ 2r` 1. Then the approximation \^X2 computed by the two-pass
method (Algorithm 4.2) satisfies

E}X´ \^X2}
2
F ď 2

N
ÿ

n“1

p\tau pnqrn q
2 ď 2N}X´ JXKr}2F .

Proof of Theorem 5.1. Suppose \^X2 is the low-rank approximation from Algorithm 4.2. Use
the definition of the mode-n product and the commutativity of the mode product between
different modes to see that

\^X2 “
“

Xˆ1 Q
J
1 ˆ2 ¨ ¨ ¨ ˆN QJN

‰

ˆ1 Q1 ˆ1 ¨ ¨ ¨ ˆN QN

“ Xˆ1 Q1Q
J
1 ˆ2 ¨ ¨ ¨ ˆN QNQJN .

Here we see that \^X2 is a multilinear orthogonal projection of X onto the subspace spanned by
the Qn, tX : Xpnq P rangepQnqu “ tJW;Q1, . . . ,QN K : W P Rk1ˆ¨¨¨ˆkN u. (See [12] for more
background on multilinear orthogonal projection.) As in [38, Theorem 5.1], we sequentially
apply the Pythagorean theorem to each mode to show that

(5.1) } \^X2 ´X}2F ď

N
ÿ

n“1

›

›

›
pI´QnQ

J
n qX

pnq
›

›

›

2

F
.
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We then take the expectation over Qn for each term in the sum and use Corollary B.3 to show
this expectation is bounded by the corresponding tail energy,

E
›

›

›
pI´QnQ

J
n qX

pnq
›

›

›

2

F
ď min

1ď\rho nďkn´1

ˆ

1`
\rho n

kn ´ \rho n ´ 1

˙

p\tau pnq\rho n q
2.

Theorem 5.3 guarantees the performance of the one-pass method Algorithm 4.3.

Theorem 5.3 (one-pass low-rank approximation). Sketch the tensor X using a Tucker sketch
with parameters k and s ľ 2k using DRMs with i.i.d. standard normal entries. Then the
approximation \^X1 computed with the one-pass method (Algorithm 4.3) satisfies the bound

E}X´ \^X1}
2
F ď p1`\Delta q min

1ĺ\rho ĺk´1

N
ÿ

n“1

ˆ

1`
\rho n

kn ´ \rho n ´ 1

˙

p\tau pnq\rho n q
2,

where \Delta :“ maxNn“1 kn{psn ´ kn ´ 1q.

The resulting rank-k approximation, computed in a single pass, is nearly optimal.

Corollary 5.4. Suppose k ľ 2r` 1 and s ľ 2k. Then the approximation \^X2 computed by
the one-pass method (Algorithm 4.3) satisfies

E}X´ \^X1}
2
F ď 4

N
ÿ

n“1

p\tau pnqrn q
2 ď 4N}X´ JXKr}2F .

Proof of Theorem 5.3. We decompose the approximation error into the error due to the
factor matrix approximations and the error due to the core approximation. Recall that \^X1 is
the one-pass approximation from Algorithm 4.3 and

\^X2 “ Xˆ1 Q1Q
J
1 ˆ2 ¨ ¨ ¨ ˆN QNQJN

is the two-pass approximation from Algorithm 4.2. The one-pass and two-pass approximations
differ only in the core approximation:

(5.2) \^X1 ´
\^X2 “ pW´Xˆ1 Q

J
1 ˆ2 ¨ ¨ ¨ ˆN QJn q ˆ1 Q1 ¨ ¨ ¨ ˆN QN .

Thus \^X1 ´
\^X2 is in the subspace spanned by the Qn, tX : Xpnq P rangepQnqu, while \^X2 ´X

is orthogonal to that subspace. Therefore,

x \^X1 ´
\^X2, \^X2 ´Xy “ 0.

Now use the Pythagorean theorem to bound the error of the one-pass approximation:

(5.3) } \^X1 ´X}2F “ }
\^X1 ´

\^X2}
2
F ` }

\^X2 ´X}2F .

Consider the first term. Using (5.2), we see that

} \^X1 ´
\^X2}

2
F “ }pW1 ´Xˆ1 Q

J
1 ¨ ¨ ¨ ˆN QJN q ˆ1 Q1 ¨ ¨ ¨ ˆN QN}

2
F

“ }pW1 ´Xˆ1 Q
J
1 ¨ ¨ ¨ ˆN QJN q}

2
F ,D
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where we use the orthogonal invariance of the Frobenius norm for the second equality. Next,
we use Lemma A.2 to bound the expected error from the core approximation as

E} \^X1 ´
\^X2}

2
F ď \Delta }X´ \^X2}.

Taking the expectation of (5.3) and using this bound on the core error, we find that

E}X´ \^X1}
2
F ď p1`\Delta qE}X´ \^X2}

2
F .

Finally, we use the two-pass approximation error bound Theorem 5.1:

E} \^X2 ´X}2F ď min
1ď\rho năkn´1

«

N
ÿ

n“1

ˆ

1`
\rho n

kn ´ \rho n ´ 1

˙

p\tau pnq\rho n q
2

ff

.

We see that the additional error due to sketching the core is a multiplicative factor \Delta more
than the error due to sketching the factor matrices. This factor \Delta decreases as the size of the
core sketch s increases.

Theorem 5.3 also offers guidance on how to select the sketch size parameters s and k. In
particular, suppose that the mode-n unfolding has a good rank rn approximation for each
mode n. Then the choices kn “ 2rn ` 1 and sn “ 2kn ` 1 ensure that

E}X´ \^X1}
2
F ď 4

N
ÿ

n“1

p\tau pnqrn q
2.

More generally, as kn{rn and sn{kn increase, the leading constant in the approximation error
tends to one.

5.2. Fixed-rank approximation. We now present bounds on the error of the fixed rank-r
approximations produced either using the truncated QR method in Algorithms 4.2 and 4.3 or
by using the fixed-rank approximation on the output of Algorithms 4.2 and 4.3. The former
method produces algorithms that are quasi-optimal with factor

?
2N (two-pass) or 2

?
N

(one-pass), matching the rate of the HOSVD and the ST-HOSVD. The latter method produces
algorithms that are quasi-optimal with a factor that grows linearly in the number of modes N
but which adapts better to spectral decay. For tensors with few modes and high dimension,
such as those that appear in our numerical experiments, the latter methods substantially
outperform the former.

The resulting bounds show that the best rank-r approximation of the output from the one-
or two-pass algorithms is comparable in quality to a true best rank-r approximation of the
input tensor. An important insight is that the sketch size parameters s and k that guarantee
a good low-rank approximation also guarantee a good fixed-rank approximation: the error due
to sketching depends only on the sketch size parameters k and s, and not on the target rank r.

5.2.1. Truncated QR. We can modify the argument in the proofs of Theorems 5.1 and 5.3
to provide an error bound for the rank-r approximation obtained by truncating the QR
decomposition in Algorithms 4.2 and 4.3 to rank r as in subsection 4.3.1. This bound will
allow us to show the quasi-optimality of the resulting algorithm.D
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Theorem 5.5 (fixed-rank approximation via truncated QR). Sketch the tensor X using a
Tucker sketch with parameters k using DRMs with i.i.d. standard normal entries. The rank-r
approximation \^X2 computed with the two-pass method (Algorithm 4.2), using a rank-r truncated
QR in step 2 of the algorithm, satisfies

E}X´ \^X2}
2
F ď

N
ÿ

n“1

ˆ

1`
rn

kn ´ rn ´ 1

˙

p\tau pnqrn q
2.

Similarly, the rank-r approximation \^X1 computed with the one-pass method (Algorithm 4.3),
using a rank-r truncated QR in step 2 of the algorithm, satisfies

E}X´ \^X1}
2
F ď p1`\Delta q

N
ÿ

n“1

ˆ

1`
rn

kn ´ rn ´ 1

˙

p\tau pnqrn q
2,

where \Delta :“ maxNn“1 rn{psn ´ rn ´ 1q.

Proof. For the two-pass error, in the proof of Theorem 5.1 use the tail bound from
Lemma B.2 to bound the error when Qn P RInˆrn is chosen by the truncated QR algorithm
[14]. For the one-pass error, use Lemma A.2 to show that the error can be no more than a
factor p1`\Delta q times the error bound for the two-pass approximation with truncated QR, where
\Delta :“ maxNn“1 rn{psn ´ rn ´ 1q.

Corollary 5.6 (quasi-optimality with truncated QR). For a given target rank r, choose the
sketch size parameters k “ 2r` 1 and s “ 2r` 1. Replace step 2 of Algorithms 4.2 and 4.3 by
a rank-r truncated QR. The resulting algorithms produce quasi-optimal rank-r approximations.
Specifically, the two-pass approximation (Algorithm 4.2) with truncated QR is quasi-optimal
with factor

?
2N and the one-pass approximation (Algorithm 4.3) with truncated QR is quasi-

optimal with factor 2
?
N .

In simultaneous work, the authors of [27] also prove that the two-pass approximation with
truncated QR is quasi-optimal.

5.2.2. Optimal fixed-rank approximation. We now bound the error induced by applying
the fixed-rank approximation method Algorithm 4.4 to a given (random) low-rank approxima-
tion.

Recall that JXKr returns a best rank-r approximation to X.

Lemma 5.7. For any tensor X and random approximation \^X of the same size,

E}X´ J \^XK\bfr }F ď }X´ JXK\bfr }F ` 2

b

E}X´ \^X}2F .

Proof of Lemma 5.7. Our argument follows the proof of [33, Proposition 6.1]:

}X´ J \^XK\bfr }F ď }X´ \^X}F ` } \^X´ J \^XK\bfr }F
ď }X´ \^X}F ` } \^X´ JXK\bfr }F
ď }X´ \^X}F ` } \^X´X`X´ JXK\bfr }F
ď 2}X´ \^X}F ` }X´ JXK\bfr }F .D
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The first and the third lines use the triangle inequality, and the second line follows from
the definition of the best rank-r approximation. Take the expectation and use Lyapunov's
inequality to finish the proof.

Corollary 5.8 (quasi-optimality with truncated core). Suppose k ľ 2r` 1 and s ľ 2k and
the core approximation \scrA in Algorithm 4.4 computes an optimal rank-r approximation to its
input W. That is, \scrA pW, rq “ JWKr. Then the rank-r approximation algorithm produced by
composing the two-pass approximation (Algorithm 4.2), resp., the one-pass approximation
(Algorithm 4.3), with Algorithm 4.4 is quasi-optimal with factor

?
2N , resp., 2

?
N , for one

pass.

Proof. Use Lemma 5.7 together with Corollary 5.2 or Corollary 5.4.

Of course, in general it is not possible to compute an optimal rank-r approximation for
the core. We can still bound the error of the resulting approximation if the approximation
algorithm \scrA is quasi-optimal using the following lemma.

Lemma 5.9. Suppose the tensor X and random approximation \^X satisfy

E}X´ \^X}F ď CpNq}X´ JXK\bfr }F .

Further suppose algorithm \scrA pW, rq computes a quasi-optimal rank-r approximation to W with
factor C 1pNq. Then

(5.4) E}X´\scrA p \^X, rq}F ď pCpNqC
1pNq ` CpNq ` C 1pNqq}X´ JXK\bfr }F .

Proof. We calculate that

E}X´\scrA p \^X, rq}F ď E
”

}X´ \^X}F ` }\^X´\scrA p \^X, rq}F

ı

ď CpNq}X´ JXK\bfr }F ` C 1pNqE}\^X´ J \^XK\bfr }F
ď CpNq}X´ JXK\bfr }F ` C 1pNqE}\^X´ JXK\bfr }F

ď CpNq}X´ JXK\bfr }F ` C 1pNqE
´

}X´ \^X}F ` }X´ JXK\bfr }F
¯

ď pC 1pNq ` CpNq ` C 1pNqCpNqq}X´ JXK\bfr }F .

Corollary 5.10. Suppose k ľ 2r ` 1 and s ľ 2k and the core approximation \scrA in Al-
gorithm 4.4 is quasi-optimal with factor

?
N (such as the ST-HOSVD). Then the rank-r

approximation algorithm produced by composing the two-pass approximation (Algorithm 4.2),
resp., the one-pass approximation (Algorithm 4.3), with Algorithm 4.4 is quasi-optimal with
factor p1`

?
2q
?
N `

?
2N , resp., 2N ` 3

?
N for one pass.

Proof. Use Lemma 5.7 together with Corollary 5.2 or Corollary 5.4.

6. Numerical experiments. In this section, we study the performance of our streaming
Tucker approximation methods. We compare the performance using various different DRMs,
including the TRP. We also compare our method with the algorithm proposed in [26] to show
that, for the same storage budget, our method produces better approximations. Our two-pass
algorithm outperforms the one-pass version, as expected. (Contrast this to [26], where the
multi-pass method performs less well than the one-pass version.)D
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6.1. Error metrics. We measure the quality of an approximation \^X to the original tensor
X using two different metrics. One is the relative error:

relative error: }X´ \^X}F {}X}F .

However, many tensors are not close to low rank, in which case every low-rank approximation
will incur high relative error.

Our methods cannot solve the problem that many tensors are not low rank; instead,
our goal is just to propose a faster, cheaper, more memory-efficient method to compute
a low-rank approximation to the tensor that is almost as good as one computed using a
more expensive method like the HOOI, HOSVD, or ST-HOSVD. To facilitate comparisons
among approximation algorithms, we define another metric that we call regret. We found that
the HOOI performs marginally better than the ST-HOSVD approximation on the examples
featured in this section. To simplify plots and interpretations, we treat the HOOI as the gold
standard, and we define the regret of an approximation relative to the HOOI as

´

}X´ \^X}F ´ }X´X\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{I}}F

¯

{}X}F .

The regret measures the increase in error incurred by using the approximation \^X rather than
X\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{I}. The regret of HOOI is 0. An approximation with a regret of .01 is only 1\% worse than
HOOI, relative to the norm of the target tensor X.

6.2. Computational platform. We ran all experiments on a server with 128 Intel Xeon E7-
4850 v4 2.10GHz CPU cores and 1056GB memory. All experiments are implemented in Python.
We use the default implementations available in the Python package tensorly [22] for tensor
algorithms such as the HOOI and ST-HOSVD. Code for the one- and two-pass approximation
algorithms is available on Github at https://github.com/udellgroup/tensorsketch, as is the
code that generates the experiments in this paper.

6.3. Synthetic experiments. All synthetic experiments use an input tensor with equal
side lengths I. We consider three different data generation schemes:

‚ Low-rank noise. Generate a core tensor C P RrN with entries drawn i.i.d. from
the uniform distribution Up0, 1q. Generate N random matrices B1, . . . ,BN P RrˆI

with i.i.d. \scrN p0, 1q entries, and let A1, . . . ,AN P RrˆI be orthonormal bases for their
respective column spaces. Define X6 “ Cˆ1 A1 ¨ ¨ ¨ ˆN AN and the noise parameter
\gamma ą 0. Generate an input tensor as X “ X6 ` p\gamma }X6}F {I

N{2q\bfitepsilon , where the noise \bfitepsilon has
i.i.d. \scrN p0, 1q entries.

‚ Sparse low-rank noise. We construct the input tensor X as above (low-rank noise) but
with sparse factor matrices An: If \delta n is the sparsity (proportion of nonzero elements)
of An, then the sparsity of the true signal X6 scales as rN

śN
n“1 \delta n. We use \delta n “ 0.2

unless otherwise specified.
‚ Polynomial decay. We construct the input tensor X as

X “ superdiagp1, . . . , 1, 2´t, 3´t, . . . , pI ´ rq´tq.

The first r entries are 1. Recall that superdiag converts a vector to an N -dimensional
superdiagonal tensor. Our experiments use t “ 1.D

ow
nl

oa
de

d 
07

/3
0/

21
 to

 1
57

.1
31

.1
01

.1
06

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

https://github.com/udellgroup/tensorsketch


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOW-RANK TUCKER APPROXIMATION FROM STREAMING DATA 1141

0.0 0.2 0.4
k/I

10−4

10−3

10−2

10−1

100
R
eg
re
t

Low Rank (γ = 0.01)

0.025 0.050 0.075 0.100
k/I

10−3

10−2

10−1

100

R
eg

re
t

Sparse Low Rank (γ = 0.01)

0.00 0.05 0.10 0.15
k/I

10−3

10−2

10−1

100

101

R
eg

re
t

Polynomial Decay

0.0 0.2 0.4
k/I

10−3

10−2

10−1

100

101

R
eg

re
t

Low Rank (γ = 0.1)

0.0 0.2 0.4
k/I

10−2

10−1

100

101

R
eg

re
t

Low Rank (γ = 1)

Gaussian

SSRFT

Gaussian TRP

Sparse TRP

Figure 1. Different DRMs perform similarly. We approximate three-dimensional synthetic tensors (see
subsection 6.3) with I “ 600, using our one-pass algorithm with r “ 5 and varying k (s “ 2k ` 1), and using
different DRMs in the Tucker sketch.
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Figure 2. Two-pass improves on one-pass. We approximate three-dimensional synthetic tensors (see
subsection 6.3) with I “ 600, using our one-pass and two-pass algorithms with r “ 5 and varying k (s “ 2k` 1),
and using the Gaussian TRP in the Tucker sketch.

Our goal in including the polynomial and sparse setups is to demonstrate that the method
performs robustly and reliably even when the distribution of the data is far from ideal for
the method. In the polynomial decay setup, the original tensor is not particularly low rank,
so even a rather expensive and accurate method (the HOOI) cannot achieve low error; yet
Figures 1 to 3 tell us that the penalty from using our cheaper methods is essentially the same
regardless of the data distribution.D
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Figure 3. Approximations improve with more memory: synthetic data. We approximate three-dimensional
synthetic tensors (see subsection 6.3) with I “ 300 using T.-TS and our one-pass and two-pass algorithms
with the Gaussian TRP to produce approximations with equal ranks r “ 10. Notice every marker on the plot
corresponds to a 2700ˆ compression!

6.3.1. Different dimension reduction maps perform similarly. We first investigate the
performance of our one-pass fixed-rank algorithm as the sketch size (hence the required storage)
varies for several types of dimension reduction maps. We generate synthetic data as described
above with r “ p5, 5, 5q, I “ 600. Figure 1 shows the error of the rank-r approximation
as a function of the compression factor k{I. (Results for other input tensors appear in the
supplementary materials.) In general, the performance for different maps are similar, although
our theory only guarantees results for the Gaussian map. We see that for all input tensors, the
performance of our one-pass algorithm converges to that of HOOI as k increases.

6.3.2. A second pass reduces error. The second experiment compares our two-pass and
one-pass algorithms. The design is similar to the first experiment. Figure 2 shows that the
two-pass algorithm typically outperforms the one-pass algorithm, especially in the high-noise,
sparse, or rank-decay case. Both converge at the same asymptotic rate. (Results for other
input tensors are available in the supplementary materials.)

6.3.3. Improvement on state-of-the-art. The third experiment compares the performance
of our two-pass and one-pass algorithms and Tucker TensorSketch (T.-TS), as described in [26],
the only extant one-pass algorithm. For a fair comparison, we allocate the same storage budget
to each algorithm and compare the relative error of the resulting fixed-rank approximations. We
approximate synthetic three-dimensional tensors with equal side lengths I1 “ I2 “ I3 “ I “ 300
and of equal multilinear rank r “ pr, r, rq with r “ 10. We use the suggested parameter settings
for each algorithm: k “ 2r ` 1 and s “ 2k ` 1 for our methods; K “ 10 for T.-TS. Our
one-pass algorithm (with the Gaussian TRP) uses pp4k ` 3qN ` p2r ` 1qINq storage, whereas
T.-TS uses pKr2N `Kr2N´2q storage (see the supplementary materials).

Figure 3 shows that our algorithms generally perform as well as T.-TS and dramatically
outperform for small storage budgets. One nice property of our method is that the regretD
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consistently decreases with increasing storage. In contrast, the tensor sketch method behaves
unpredictably as storage increases: there are wide plateaus where increasing storage hardly
helps at all, and occasionally, increasing storage hurts performance. The performance of
T.-TS is comparable with that of the algorithms presented in this paper only when the storage
budget is large.

Remark 6.1. The paper [26] proposes a multi-pass method, Tucker Tensor-Times-Matrix-
TensorSketch (TTMTS), that is dominated by the one-pass method Tucker TensorSketch
(T.-TS) in all numerical experiments; hence we compare only with T.-TS.

6.4. Applications. We also apply our method to datasets drawn from three application
domains: climate, combustion, and video.

‚ Climate data. We consider global climate simulation datasets from the Community
Earth System Model (CESM) Community Atmosphere Model (CAM) 5.0 [17, 18]. The
dataset on aerosol absorption has four dimensions: times, altitudes, longitudes, and
latitudes (240ˆ 30ˆ 192ˆ 288). The data on net radiative flux at surface and dust
aerosol burden have three dimensions: times, longitudes, and latitudes (1200ˆ192ˆ288).
Each of these quantitives has a strong impact on the absorption of solar radiation and
on cloud formation.

‚ Combustion data. We consider combustion simulation data from [23]. The data consists
of three measured quantities (pressure, CO concentration, and temperature), each
observed on a 1408ˆ 128ˆ 128 spatial grid.

‚ Video data. Consider the three-dimensional tensor from [26]: each slice of the tensor is
a video frame. A low frame rate camera is mounted in a fixed position as people walk
by to form the video, which consists of 2493 frames, each of size 1080 by 1980. Stored
as a numpy.array, the video data is 41.4 GB in total.

6.4.1. Data compression. We show that our proposed algorithms are able to successfully
compress climate and combustion data even when the full data does not fit in memory. Since
the multilinear rank of the original tensor is unknown, we perform experiments for three
different target ranks. In this experiment, we hope to understand the effect of different choices
of storage budget k to achieve the same compression ratio. We define the compression ratio
as the ratio in size between the original input tensor and the output Tucker factors, i.e.,

śN
i“1 Ii

řN
i“1 riIi`

śN
i“1 ri

. As in our experiments on simulated data, Figure 4 shows that the two-pass

algorithm outperforms the one-pass algorithm, as expected. However, as the storage budget
k increases, both methods converge to the performance of HOOI. The rate of convergence is
faster for smaller target ranks. Performance of our algorithms on the combustion simulation is
qualitatively similar but converges faster to the performance of HOOI. Figure 5 visualizes the
recovery of the temperature data in combustion simulation for a slice along the first dimension.
We observe that the recovery for both the two-pass and one-pass algorithms approximates the
recovery from HOOI. Similar results on other datasets appear in the supplementary materials.

6.4.2. Video scene classification. We show how to use our single-pass method to classify
scenes in the video data described above. The goal is to identify frames in which people appear.
We remove the first 100 frames and last 193 frames where the camera setup happened, as in
[26]. We stream over the tensor and sketch it using parameters k “ 300, s “ 601. Finally,D
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Figure 4. Approximations improve with more memory: real data. We approximate aerosol absorption
and combustion data using our one-pass and two-pass algorithms with the Gaussian TRP. We compare three
target ranks (r{I “ 0.125, 0.1, 0.067) for the former and use the same target rank (r{I “ 0.1) for each measured
quantity in the combustion dataset. Notice that r{I “ 0.1 gives a hundred-fold compression. For reference, on
the aerosol data, the HOOI gives an approximation with relative errors .23, .26, and .33 for each of the three
ranks, respectively; on the combusion data, the relative error of HOOI is .0063, .032, and .28 for temperature,
CO, and pressure, respectively.
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Figure 5. Visualizing combustion simulation: All four figures show a slice of the temperature data along
the first dimension. The approximation uses \bfr “ p281, 25, 25q, \bfk “ p562, 50, 50q, \bfs “ p1125, 101, 101q, with the
Gaussian TRP in the Tucker sketch.

we compute a fixed-rank approximation with r “ p10, 10, 10q and p20, 20, 20q. We apply
K-means clustering to the resulting 10- or 20-dimensional vectors corresponding to each of the
remaining 2200 frames.

We experimented with clustering vectors found in three ways: from the unfolding along
the time dimension after two-pass or one-pass Tucker approximations, or directly from the
factor sketch along the time dimension, which we call the linear sketch. In Figure 6, comparing
the video frames with the classification results, we can see that the background lighting is
relatively dark at the beginning, and initial frames are classified into Class 0. After a change
in the background lighting, most other frames of the video are classified into Class 1. When a
person passes by the camera, the frames are classified into Class 2. Right after the personD
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Linear Sketch (k = 20)

Two-Pass Tucker (k = 20, r = 10)

One-Pass Tucker (k = 20, r = 10)
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Figure 6. Video scene classification (2200ˆ 1080ˆ 1980): We classify frames from the video data from [26]
(collected as a third order tensor with size 2200ˆ 1080ˆ 1980) using K-means with K=3 on vectors computed
using four different methods. s “ 2k ` 1 throughout. (1) The linear sketch along the time dimension (row 1).
(2--3) the Tucker factor along the time dimension, computed via our two-pass (row 2) and one-pass (row 3)
algorithms. (4) The Tucker factor along the time dimension, computed via our one-pass (row 4) algorithm.
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Figure 7. Visualizing video recovery: Original frame (left); approximation by two-pass sketch (middle);
approximation by one-pass sketch (right).

passes by, the frames are classified into Class 0, the brighter background scene, due to the
light adjustment.

Our classification results (using the linear sketch or approximation) are similar to those in
[26] while using only 1{500 as much storage; the one-pass approximation requires more storage
(but still less than [26]) to achieve similar performance. In particular, using the sketch itself,
rather than the Tucker approximation, to summarize the data enables very efficient video
scene classification. Interestingly, classification works well even though the video is not very
low rank along the spatial dimensions. Figure 7 shows that the scene is poorly approximated
even with s “ 601, 601, 601, k “ p300, 300, 300q, and r “ p50, 50, 50q.

Appendix A. Probabilistic analysis of core sketch error. This section contains the most
technical part of our proof. We provide a probabilistic error bound for the difference between
the two-pass core approximation W2 from Algorithm 4.2 and the one-pass core approximation
W1 from Algorithm 4.3.D
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Introduce for each n P rN s the orthonormal matrix QKn that forms a basis for the subspace
orthogonal to Qn, so that QKn pQ

K
n q
J “ I´QnQ

J
n . Next, define

(A.1) \Phi Q
n “ \Phi JnQn, \Phi QK

n “ \Phi JnQ
K
n .

Recall that the DRMs \Phi n are i.i.d. Gaussian. Thus, conditional on Qn, the random matrices

\Phi Q
n and \Phi QK

n are statistically independent.

A.1. Decomposition of core approximation error. In this section, we characterize the
difference between the one- and two-pass core approximations W1´W2 “W1´Xˆ1Q

J
1 ¨ ¨ ¨ˆN

QJN .

Lemma A.1. Suppose that \Phi n has full column rank for each n P rN s. We define 1a“b “ 1
if a “ b and 0 otherwise. Then

W1 ´W2 “W1 ´Xˆ1 Q
J
1 ¨ ¨ ¨ ˆN QJN “

ÿ

pi1,...,iN qPt0,1uN ,
řN

j“1 ijě1

Yi1...iN ,

where

(A.2)
Yi1...iN “ Xˆ1

´

1i1“0Q
J
1 ` 1i1“1p\Phi 

Q1
1 q

:\Phi 
QK1
1 pQK1 q

J
¯

ˆ2 ¨ ¨ ¨ ˆN

´

1iN“0Q
J
N ` 1i1“1p\Phi 

QN
N q:\Phi 

QKN
N pQKN q

J
¯

.

Proof. Let H be the core sketch from Algorithm 4.1. Write W1 as

W1 “Hˆ1 p\Phi 
J
1 Q1q

: ˆ2 ¨ ¨ ¨ ˆN p\Phi 
J
NQN q

:

“ pX´ \^X2q ˆ1 \Phi 
J
1 ˆ2 ¨ ¨ ¨ ˆN \Phi JN ˆ1 p\Phi 

J
1 Q1q

: ˆ2 ¨ ¨ ¨ ˆN p\Phi 
J
NQN q

:

` \^X2 ˆ1 \Phi 
J
1 ˆ2 ¨ ¨ ¨ ˆN \Phi JN ˆ1 p\Phi 

J
1 Q1q

: ˆ2 ¨ ¨ ¨ ˆN p\Phi 
J
NQN q

:.

Using the fact that p\Phi JnQnq
:p\Phi JnQnq “ I, we can simplify the second term as

\^X2 ˆ1 \Phi 
J
1 ˆ2 ¨ ¨ ¨ ˆN \Phi JN ˆ1 p\Phi 

J
1 Q1q

: ˆ2 ¨ ¨ ¨ ˆN p\Phi 
J
NQN q

:

“ Xˆ1 p\Phi 
J
1 Q1q

:\Phi J1 Q1Q
J
1 ˆ2 ¨ ¨ ¨ ˆN p\Phi 

J
NQN q

:\Phi JNQNQJN

“ Xˆ1 Q
J
1 ˆ2 ¨ ¨ ¨ ˆN QJN ,

which is exactly the two-pass core approximation W2. Therefore,

W1 ´W2 “ pX´ \^X2q ˆ1 \Phi 
J
1 ˆ2 ¨ ¨ ¨ ˆN \Phi JN ˆ1 p\Phi 

J
1 Q1q

: ˆ2 ¨ ¨ ¨ ˆN p\Phi 
J
NQN q

:.

We continue to simplify this difference:

(A.3)

pX´ \~Xq ˆ1 \Phi 
J
1 ˆ2 ¨ ¨ ¨ ˆN \Phi JN ˆ1 p\Phi 

J
1 Q1q

: ˆ2 ¨ ¨ ¨ ˆN p\Phi 
J
NQN q

:

“ pX´ \~Xq ˆ1 p\Phi 
J
1 Q1q

:\Phi J1 ˆ2 ¨ ¨ ¨ ˆN p\Phi 
J
NQN q

:\Phi JN

“ pX´ \~Xq ˆ1 p\Phi 
J
1 Q1q

:\Phi J1 pQ1Q
J
1 `QK1 pQ

K
1 q
Jq . . .

ˆN p\Phi 
J
NQN q

:\Phi JN pQNQJN `QKN pQ
K
N q
Jq

“ pX´ \~Xq ˆ1 pQ
J
1 ` p\Phi 

Q
1 q
:\Phi QK

1 pQK1 q
Jq ˆ2 . . .

ˆN pQ
J
N ` p\Phi 

QN
N q:\Phi 

QKN
N pQKN q

Jq.

Many terms in this sum are zero. We use the following two facts:D
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1. pX´ \~Xq ˆ1 Q
J
1 ¨ ¨ ¨ ˆN QJN “ 0.

2. For each n P rN s, \~Xˆn p\Phi 
Qn
n q:\Phi 

QKn
n pQKn q

J “ 0.
Here 0 denotes a tensor with all zero elements. These facts can be obtained from the exchange
rule of the mode product and the orthogonality between QKn and Qn. Using these two facts,
we find that only the terms Yi1...iN (defined in (A.2)) remain in the expression. Therefore, to
complete the proof, we write (A.3) as

ÿ

pi1,...,iN qPt0,1uN ,
řN

n“1 in‰0

Yi1...iN .

A.2. Probabilistic core error bound. In this section, we derive a probabilistic error bound
based on the core error decomposition from Lemma A.1.

Lemma A.2. Sketch the tensor X using a Tucker sketch with parameters k and s ą 2k with
i.i.d. Gaussian \scrN p0, 1q DRMs. Define \Delta “ maxNn“1

kn
sn´kn´1

. Let \^X2 be the output from the
two-pass low-rank approximation method (Algorithm 4.2). Then

(A.4) E}W1 ´Xˆ1 Q
J
1 ¨ ¨ ¨ ˆN QJN}

2
F ď \Delta }X´ \^X2}.

Proof. We use the fact that the core DRMs t\Omega nunPrNs are independent of the factor matrix
DRMs t\Phi nunPrNs and that the randomness in each factor matrix approximation Qn comes
solely from \Omega n.

For i P t0, 1uN , define

Bi1...iN “ Xˆ1 p1i1“0Q1Q
J
1 ` 1i1“1Q

K
1 pQ

K
1 q
Jq ¨ ¨ ¨ ˆN p1iN“0QNQJN ` 1iN“1Q

K
N pQ

K
N q
Jq.

Lemma A.1 decomposes the core error as the sum of Yi1¨¨¨in , where
řN

n“1 in ě 1. Applying
Lemma B.1 and using the orthogonal invariance of the Frobenius norm, we observe that

E
“

}Yi1...iN }
2
F | \Omega 1 ¨ ¨ ¨\Omega N

‰

“

˜

N
ź

n“1

\Delta in
n

¸

}Bi1...iN }
2
F ď \Delta }Bi1...iN }

2
F

when
řN

n“1 in ě 1, where \Delta n “
kn

sn´kn´1
ă 1 and \Delta “ maxNn“1\Delta n.

Suppose q1,q2 P t0, 1u
N are index (binary) vectors of length N . For different indices q1

and q2, there exists some 1 ď r ď N such that their rth element is different. Without loss of
generality, assume q1prq “ 0 and q2prq “ 1 to see that

(A.5) xBq1 ,Bq2y “ x. . .Q
J
r Q

K
r . . . y “ 0.

Similarly, we can show that the inner product between Yq1 and Yq2 is zero with different q1,q2.

Noticing that B0,...,0 “
\^X2, we have

}X´ \^X2}
2
F “

›

›

›

›

›

›

ÿ

pi1,...,iN qPt0,1uN ,
řN

n“1 ině1

Bi1...iN

›

›

›

›

›

›

2

F

“
ÿ

pi1,...,iN qPt0,1u
N ,

řN
n“1 ině1

}Bi1...iN }
2
F .
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Put these together and use the Pythagorean theorem to finish the proof:

E
“

}W´Xˆ1 Q
J
1 ¨ ¨ ¨ ˆN QJN}

2
F | \Omega 1, ¨ ¨ ¨ ,\Omega N

‰

“
ÿ

pi1,...,iN qPt0,1uN ,
řN

n“1 ině1

E
“

}Yi1...iN }
2
F | \Omega \bfone , . . . ,\Omega N

‰

ď \Delta 

¨

˝

ÿ

pi1,...,iN qPt0,1uN ,
řN

n“1 ině1

}Bi1...iN }
2
F

˛

‚“ \Delta }X´ \^X2}
2
F .

Appendix B. Random matrix projections. Proofs for the lemmas in this section can be
found in [16, sections 9 and 10].

Lemma B.1. Assume that t ą q. Suppose G1 P Rtˆq and G2 P Rtˆp have i.i.d. standard
normal entries. For any matrix B with conforming dimensions,

E}G:
1G2B}

2
F “

q

t´ q ´ 1
}B}2F .

Lemma B.2. Given a fixed A P Rmˆn and random \Omega P Rnˆk with i.i.d. standard normal
entries, let Q\rho “ TruncatedQRpA\Omega , \rho q PP Rnˆ\rho for \rho ă k ´ 1 [14]. Then

(B.1) E}pI´Q\rho Q
J
\rho qA}

2
F ď

\rho 

k ´ \rho ´ 1
\tau \rho .

Corollary B.3. Under the same conditions as in Lemma B.2, suppose Q “ QRpA\Omega q is an
orthogonal matrix spanning the column space of A\Omega . Then

(B.2) E}pI´QQJqA}2F ď min
1ď\rho ăk´1

\rho 

k ´ \rho ´ 1
\tau \rho .

Proof. For each \rho ă k ´ 1,

}pI´Q\rho Q
J
\rho qA}

2
F ď }pI´Q\rho Q

J
\rho qA}

2
F ď

r

k ´ \rho ´ 1
\tau \rho ,

using (B.1) for the second inequality. Minimize over \rho ă k ´ 1 to reach the result.

Acknowledgments. The authors wish to thank Osman Asif Malik and Stephen Becker for
their help in understanding and implementing Tucker TensorSketch, and Tamara Kolda for
insightful comments on an early draft.

REFERENCES

[1] D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss with binary coins, J.
Comput. System Sci., 66 (2003), pp. 671--687.

[2] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press,
Cambridge, UK, 2009.

[3] W. Austin, G. Ballard, and T. G. Kolda, Parallel tensor compression for large-scale scientific
data, in Proceedings of the 30th IEEE International Parallel and Distributed Processing Symposium
(PDPS'16), 2016, pp. 912--922.D

ow
nl

oa
de

d 
07

/3
0/

21
 to

 1
57

.1
31

.1
01

.1
06

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOW-RANK TUCKER APPROXIMATION FROM STREAMING DATA 1149

[4] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, TTHRESH: Tensor compression for multidi-
mensional visual data, IEEE Trans. Vis. Comput. Graph., 26 (2020), pp. 2891--2903.

[5] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, Efficient and scalable computations with
sparse tensors, in Proceedings of the IEEE Conference on High Performance Extreme Computing
(HPEC'12), 2012, pp. 1--6.

[6] C. Battaglino, G. Ballard, and T. G. Kolda, A practical randomized CP tensor decomposition,
SIAM J. Matrix Anal. Appl., 39 (2018), pp. 876--901, https://doi.org/10.1137/17M1112303.

[7] C. Battaglino, G. Ballard, and T. G. Kolda, Faster Parallel Tucker Tensor Decomposition Using
Randomization, manuscript, 2019.

[8] P. Breiding and N. Vannieuwenhoven, A Riemannian trust region method for the canonical tensor
rank approximation problem, SIAM J. Optim., 28 (2018), pp. 2435--2465, https://doi.org/10.1137/
17M114618X.

[9] A. Cichocki, Tensor Decompositions: A New Concept in Brain Data Analysis?, preprint, https://arxiv.
org/abs/1305.0395, 2013.

[10] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition,
SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253--1278, https://doi.org/10.1137/S0895479896305696.

[11] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank-pR1, R2,. . . ,
Rnq approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324--1342,
https://doi.org/10.1137/S0895479898346995.

[12] V. de Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem,
SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1084--1127, https://doi.org/10.1137/06066518X.

[13] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl., 31
(2010), pp. 2029--2054, https://doi.org/10.1137/090764189.

[14] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization,
SIAM J. Sci. Comput., 17 (1996), pp. 848--869, https://doi.org/10.1137/0917055.

[15] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Ser. Comput. Math. 42, Springer,
Heidelberg, 2012.

[16] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217--288,
https://doi.org/10.1137/090771806.

[17] J. W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J. Kushner, J.-F. Lamarque,
W. G. Large, D. Lawrence, K. Lindsay, W. H. Lipscomb, M. C. Long, N. Mahowald, D.
R. Marsh, R. B. Neale, P. Rasch, S. Vavrus, M. Vertenstein, D. Bader, W. D. Collins,
J. J. Hack, J. Kiehl, and S. Marshall, The community earth system model: A framework for
collaborative research, Bull. Am. Meteorol. Soc., 94 (2013), pp. 1339--1360.

[18] J. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. Arblaster, S. Bates, G. Dan-
abasoglu, J. Edwards, M. Holland, P. Kushner, J.-F. Lamarque, D. Lawrence, K. Lindsay,
A. Middleton, E. Munoz, R. Neale, K. Oleson, L. Polvani, and M. Vertenstein, The
community earth system model (CESM) large ensemble project: A community resource for studying
climate change in the presence of internal climate variability, Bull. Am. Meteorol. Soc., 96 (2015),
pp. 1333--1349.

[19] O. Kaya and B. U\c car, High performance parallel algorithms for the Tucker decomposition of sparse
tensors, in Proceedings of the 45th International IEEE Conference on Parallel Processing (ICPP'16),
2016, pp. 103--112.

[20] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009),
pp. 455--500, https://doi.org/10.1137/07070111X.

[21] T. G. Kolda and J. Sun, Scalable tensor decompositions for multi-aspect data mining, in Proceedings of
the Eighth International IEEE Conference on Data Mining, 2008, pp. 363--372.

[22] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic, TensorLy: Tensor learning in Python,
J. Mach. Learn. Res., 20 (2019), pp. 925--930.

[23] S. Lapointe, B. Savard, and G. Blanquart, Differential diffusion effects, distributed burning, and
local extinctions in high Karlovitz premixed flames, Combustion and Flame, 162 (2015), pp. 3341--3355.

[24] J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc, An input-adaptive and in-place approach to
dense tensor-times-matrix multiply, in Proceedings of the SC-International IEEE Conference on HighD

ow
nl

oa
de

d 
07

/3
0/

21
 to

 1
57

.1
31

.1
01

.1
06

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/17M1112303
https://doi.org/10.1137/17M114618X
https://doi.org/10.1137/17M114618X
https://arxiv.org/abs/1305.0395
https://arxiv.org/abs/1305.0395
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1137/06066518X
https://doi.org/10.1137/090764189
https://doi.org/10.1137/0917055
https://doi.org/10.1137/090771806
https://doi.org/10.1137/07070111X


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1150 Y. SUN, Y. GUO, C. LUO, J. TROPP, AND M. UDELL

Performance Computing, Networking, Storage and Analysis, 2015, pp. 1--12.
[25] P. Li, T. J. Hastie, and K. W. Church, Very sparse random projections, in Proceedings of the 12th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, pp. 287--296.
[26] O. A. Malik and S. Becker, Low-rank Tucker decomposition of large tensors using TensorSketch, in

Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2018, pp. 10116--
10126.

[27] R. Minster, A. K. Saibaba, and M. E. Kilmer, Randomized algorithms for low-rank tensor de-
compositions in the Tucker format, SIAM J. Math. Data Sci., 2 (2020), pp. 189--215, https:
//doi.org/10.1137/19M1261043.

[28] S. Muthukrishnan, Data streams: Algorithms and applications, Found. Trends Theor. Comput. Sci., 1
(2005), pp. 117--236.

[29] S. Oymak and J. A. Tropp, Universality laws for randomized dimension reduction, with applications,
Inf. Inference, 7 (2018), pp. 337--446.

[30] M. Rudelson, Row products of random matrices, Adv. Math., 231 (2012), pp. 3199--3231.
[31] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, Incremental tensor analysis: Theory

and applications, ACM Trans. Knowl. Discov. Data, 2 (2008), 11.
[32] Y. Sun, Y. Guo, J. A. Tropp, and M. Udell, Tensor random projection for low memory dimension

reduction, in Proceedings of the 32nd Conference on Neural Information Processing Systems (NIPS'18),
2018.

[33] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for low-rank
matrix approximation, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1454--1485, https://doi.org/10.
1137/17M1111590.

[34] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, More Practical Sketching Algorithms for
Low-Rank Matrix Approximation, Tech. Report 2018-01, California Institute of Technology, Pasadena,
CA, 2018.

[35] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Streaming low-rank matrix approximation
with an application to scientific simulation, SIAM J. Sci. Comput., 41 (2019), pp. A2430--A2463,
https://doi.org/10.1137/18M1201068.

[36] C. E. Tsourakakis, MACH: Fast randomized tensor decompositions, in Proceedings of the 2010 SIAM
International Conference on Data Mining, SIAM, 2010, pp. 689--700, https://doi.org/10.1137/1.
9781611972801.60.

[37] L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966),
pp. 279--311.

[38] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, A new truncation strategy for the
higher-order singular value decomposition, SIAM J. Sci. Comput., 34 (2012), pp. A1027--A1052,
https://doi.org/10.1137/110836067.

[39] M. A. O. Vasilescu and D. Terzopoulos, Multilinear analysis of image ensembles: TensorFaces, in
Proceedings of the European Conference on Computer Vision (ECCV'02), Springer, Berlin, Heidelberg,
2002, pp. 447--460.

[40] Y. Wang, H.-Y. Tung, A. J. Smola, and A. Anandkumar, Fast and guaranteed tensor decomposition
via sketching, in Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA,
2015, pp. 991--999.

[41] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor. Comput. Sci.,
10 (2014), pp. 1--157.

[42] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for the approxima-
tion of matrices, Appl. Comput. Harmon. Anal., 25 (2008), pp. 335--366.

[43] G. Zhou, A. Cichocki, and S. Xie, Decomposition of Big Tensors with Low Multilinear Rank, preprint,
https://arxiv.org/abs/1412.1885, 2014.

D
ow

nl
oa

de
d 

07
/3

0/
21

 to
 1

57
.1

31
.1

01
.1

06
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1261043
https://doi.org/10.1137/19M1261043
https://doi.org/10.1137/17M1111590
https://doi.org/10.1137/17M1111590
https://doi.org/10.1137/18M1201068
https://doi.org/10.1137/1.9781611972801.60
https://doi.org/10.1137/1.9781611972801.60
https://doi.org/10.1137/110836067
https://arxiv.org/abs/1412.1885

	Introduction
	Background and related work
	Notation
	Kronecker and Khatri–Rao product
	Tensor basics
	Tensor unfoldings
	Mode n-rank of a tensor
	Tensor contractions
	Tail energy

	Tucker approximation
	HOSVD
	ST-HOSVD
	Quasi-optimality

	Previous work

	Dimension reduction maps
	Dimension reduction map
	Tensor random projection

	Algorithms for Tucker approximation
	Tensor compression via sketching
	Low-rank approximation
	Fixed-rank approximation
	Truncated QR
	Optimal fixed-rank approximation


	Guarantees
	Low-rank approximation
	Fixed-rank approximation
	Truncated QR
	Optimal fixed-rank approximation


	Numerical experiments
	Error metrics
	Computational platform
	Synthetic experiments
	Different dimension reduction maps perform similarly
	A second pass reduces error
	Improvement on state-of-the-art

	Applications
	Data compression
	Video scene classification


	Appendix A. Probabilistic analysis of core sketch error
	Decomposition of core approximation error
	Probabilistic core error bound

	Appendix B. Random matrix projections

