
CANopen Robot Controller (CORC): An open software stack for

human robot interaction development

Justin Fong*, Emek Barış Küçüktabak$†, Vincent Crocher*, Ying Tan*, Kevin M. Lynch$,

Jose L. Pons$†, Denny Oetomo*

Abstract— Interest in the investigation of novel software and
control algorithms for wearable robotics is growing. However,
entry into this field requires a significant investment in a testing
platform. This work introduces CANopen Robot Controller
(CORC) — an open source software stack designed to accelerate
the development of robot software and control algorithms —
justifying its choice of platform, describing its overall structure,
and demonstrating its viability on two distinct platforms.

I. INTRODUCTION

The rapid progression of actuation, power and processing

technologies has significantly improved the capabilities and

possible applications of exoskeleton and wearable robotic

devices. With these developments, interest in developing

controllers and control algorithms for gait trajectory planning

and human-robot interactions strategies has risen, with this

field being recently identified as a key developmental oppor-

tunity for improving exoskeleton performance [1]. However,

a key challenge in the pursuit of this field is the development

of tools for testing said algorithms. This is particularly true

for wearable devices, which see large variations in actuator

and sensor configurations and designs.

The present work introduces the CANopen Robot Con-

troller (CORC) — an open source software stack designed

to accelerate the development of robotic devices based on

CANopen hardware. CORC allows modular hardware use by

leveraging the CANopen standardisation while providing a

real-time system meeting the safety requirements of wearable

devices. Within this work, the design and architecture of

CORC is introduced, and the viability of the the stack is

demonstrated through measurement of control loop period

jitter on two CORC implementations running respectively

on the Fourier Intelligence X2 exoskeleton [2] and the EMU

upper-limb manipulandum [3].

II. MATERIALS AND METHODS

A. Goals and Objectives

CORC was developed as a common development platform

for robots which primarily use CANOpen devices. CANOpen

has a 25+ year history as a communications protocol in

industrial automation, and is commonly used in robotic

devices. Therefore, the objectives of CORC are to provide a

*University of Melbourne and Fourier Intelligence Joint Laboratory, the
University of Melbourne. $McCormick School of Engineering, Northwest-
ern University †Legs + Walking Lab, Shirley Ryan Ability Lab

Correspondence: {fong.j, vincent.crocher,

yingt, doetomo}@unimelb.edu.au,
baris.kucuktabak@u.northwestern.edu,

kmlynch@northwestern.edu, jpons@sralab.org

flexible, modular architecture for different applications and

devices, with a loop rate of at least 200Hz with low jitter.

B. Platform

Two major decision points were made for the platform of

the CORC software stack — the operating system and the

programming language.

1) Operating System - Linux-based: Linux-based oper-

ating systems presented themselves as the obvious choice,

primarily due to their open and stable nature, as well as

their ability to be run with a real time kernel — which can

be critical in human-robot interactions. Furthermore, Linux

is well-supported on the larger range of hardware platforms.

2) Programming Language - C/C++: For efficiency rea-

sons, C is used for the critical sections of the software and

C++ at the higher level to take advantage of the Object Ori-

ented Programming design without sacrificing performance.

C. Software Architecture

CORC software stack is divided into three distinct layers

to enable flexible implementations on different platforms.

1) CANopen Layer: The CANopen layer handles the

application layer transfer of CAN messages, including poll-

response (Service Data Object, SDO) and streamed (Pro-

cess Data Object, PDO) protocols. This layer is based on

CANopenSocket [4], and licensed under the Apache License,

Version 2.0. Limited changes are required to this layer to

develop using CORC.

2) Robot Layer: The robot layer describes the robotic

structure, and links it with the input (e.g. sensors) and

output devices (e.g. motor drives). It acts as an abstraction

between the control algorithms and the hardware, allowing

implementation of kinematic and/or dynamic models. CORC

also contains base classes according to CAN in Automation

(CiA) standards. This layer is designed to be modified only

when new hardware is added to the robotic device.

3) Application Layer: The application layer implements

overall program logic and control algorithms. In CORC,

each application is a dedicated state machine, derived from a

common class. This architecture encourages safe execution

while leaving complete freedom for logic implementation.

Specific ad hoc libraries can be used at this level to ex-

tend capabilities such as providing Robot Operating System

(ROS) node capabilities to the application. Given an existing

robot implementation, only the application layer modification

is required to perform research into novel control strategies.

With this approach, a CORC application can also be used

[3] Fong, J, et al. ”EMU: A transparent 3D robotic manipulandum for
upper-limb rehabilitation.” 2017 IEEE International Conference on
Rehabilitation Robotics (ICORR). pp. 771-776

[4] CANopenSocket https://github.com/CANopenNode/CANopenSocket
[5] PEAK-System, PCAN-USB https://www.peak-system.com

