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We study the dynamic wetting of a self-propelled viscous droplet using the
time-dependent lubrication equation on a conical-shaped substrate for different cone radii,
cone angles and slip lengths. The droplet velocity is found to increase with the cone angle
and the slip length, but decrease with the cone radius. We show that a film is formed at
the receding part of the droplet, much like the classical Landau–Levich–Derjaguin film.
The film thickness hf is found to decrease with the slip length λ. By using the approach
of matching asymptotic profiles in the film region and the quasi-static droplet, we obtain
the same film thickness as the results from the lubrication approach for all slip lengths.
We identify two scaling laws for the asymptotic regimes: hf h′′

o ∼ Ca2/3 for λ� hf and
hf h′′3

o ∼ (Ca/λ)2 for λ� hf ; here, 1/h′′
o is a characteristic length at the receding contact

line and Ca is the capillary number. We compare the position and the shape of the droplet
predicted from our continuum theory with molecular dynamics simulations, which are
in close agreement. Our results show that manipulating the droplet size, the cone angle
and the slip length provides different schemes for guiding droplet motion and coating the
substrate with a film.

Key words: drops, thin films, lubrication theory

1. Introduction

Coating a film onto a substrate as a liquid is forced to move along it is a technique
used in painting and industrial applications such as lithography, which has been studied
since the early twentieth century (Quéré 1999). Dip coating is one way to coat a plate
as it is withdrawn from a liquid reservoir above a critical plate velocity (Snoeijer et al.
2006; Maleki et al. 2011; Gao et al. 2016). A mathematical model describing this film
coating was developed in the seminal works by Landau & Levich (1942) and Derjaguin
(1943). These theoretical works sparked a great interest in film coating, later adopted for
a range of solid geometries, e.g. cylindrical fibres (White & Tallmadge 1966; Wilson
1988; De Ryck & Quéré 1996), coating by rollers (Taylor 1963; Wilson 1982) and
coating the inner surface of a channel/tube (Bretherton 1961; Tabeling & Libchaber 1986).

† Email addresses for correspondence: taksc@math.uio.no, acarlson@math.uio.no
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Some studies have focused on how other physical effects influence the film deposition such
as gravity (Derjaguin 1943; Snoeijer et al. 2008), inertia (De Ryck & Quéré 1996; Orsini &
Tricoli 2017), surfactants (Carroll & Lucassen 1973), particles on the interface (Colosqui,
Morris & Stone 2013; Dixit & Homsy 2013a,b), van der Waals forces for deposited films
of nanometric scales (Quéré, di Meglio & Brochard-Wyart 1989) as well as effects of
substrate roughness (Krechetnikov & Homsy 2005) and confinement due to the reservoir
(Kim & Nam 2017). Much of the extensive literature on the film deposition dynamics
has been summarized in several review articles (Ruschak 1985; Quéré 1999; Weinstein &
Ruschak 2004; Rio & Boulogne 2017).
The classical theory by Landau & Levich (1942) and Derjaguin (1943) gives a

fundamental description of thin film coating, where the deposited film thickness is so thin
that gravity can be neglected. The flow inside the film region is maintained by the balance
of capillarity, characterized by the liquid/air surface tension coefficient γ , and the viscous
forces, characterized by the liquid viscosity η. The film region is connected to a quasi-static
liquid reservoir of a length scale that is much larger than the thickness of the deposited
film. When a plate is withdrawn from a reservoir, this length is set by the capillary
length �c ≡ (γ /ρg)1/2, with ρ the liquid density and g the gravitational acceleration. By
using the method of asymptotic matching, the thickness of the film hf , denoted as the
Landau–Levich–Derjaguin (LLD) film, is shown to have a universal scaling with respect
to the plate velocity U as hf /�c ∼ Ca2/3, where the capillary number Ca ≡ ηU/γ is the
ratio between the viscous and the surface tension forces. Remarkably, this Ca2/3 power law
has been demonstrated to be a robust relation in many different systems when a fluid film
is deposited. The only required change in the scaling relation is to replace the capillary
length by the corresponding characteristic length of the system. For example, the film
thickness is rescaled by the fibre radius for the case when a cylindrical fibre is withdrawn
from a bath (White & Tallmadge 1966; James 1973; Wilson 1988); while in the case of
a long bubble moving in a tube, also known as Bretherton’s problem, the corresponding
length is the tube radius (Bretherton 1961).
Common to fluid coating processes is that they often require an external driving force

to displace the fluid. However, when a droplet with a size smaller than the capillary length
comes in contact with a conical fibre, it moves spontaneously from the tip to the base of
the cone due to capillarity (Lorenceau & Quéré 2004; Li & Thoroddsen 2013). In nature,
this self-propelled mechanism has been exploited by plants (Liu et al. 2015) and animals
(Zheng et al. 2010; Wang et al. 2015) to facilitate water transport at small scales. When
a droplet is translating above a critical velocity, a layer of liquid film is expected to be
deposited on the conical surface at the receding part of the droplet. It has been discovered
recently on the trichome of the Sarrancenia that the deposited film provides a wetted
surface, enabling later water droplets to be transported at a velocity several orders of
magnitude larger than found in other plants (Chen et al. 2018). Despite the importance
of understanding the film deposition and potential implications for biological evolution
in plants and giving a path to very fast droplet transport, the film deposition has not
been studied before on conical geometries. Previous fluid coating studies have assumed
a no-slip condition at the fluid–solid boundary, i.e. no relative motion between the fluid
and the solid boundary. Interestingly, slip lengths have been reported to be as large as
a few micrometres for fluids such as polymer melts (Bäumchen, Fetzer & Jacobs 2009)
and for superhydrophobic surfaces (Rothstein 2010). When the droplet size is decreased
to a few micrometres or below, effects due to the fluid slip on solid surface may become
significant, as demonstrated in dynamical fluidic systems (Lauga, Brenner & Stone 2007;
Bocquet & Charlaix 2009) such as the dewetting of microdroplets (McGraw et al. 2016;
Chan et al. 2017) and of liquid films (Fetzer et al. 2005). However, the influence of slip on

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 6
7.

24
3.

19
3.

22
, o

n 
25

 N
ov

 2
02

0 
at

 1
5:

24
:4

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

83
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.834
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the droplet dynamics and film deposition is not known for the directional droplet motion on
a cone.
Although conical solid structures are common in nature and appear as a component in

industrial processes, modelling of the droplet fluid flow on such geometries is lacking.
In our recent article (Chan, Yang & Carlson 2020), we provide a physical picture of the
spontaneous motion of the droplet based on the mismatch between the equilibrium contact
angle and the apparent contact angles. This generates flow in the contact line regions and
maintains the droplet motion. In this study, we implement the time-dependent lubrication
equation developed in Chan et al. (2020) to investigate the evolution of the liquid–air
interface of the capillary driven droplet motion on a smooth conical fibre. The properties
of a deposited film generated by a self-propelled droplet are studied for small cone angles
and for a wide range of slip lengths. Apart from the continuum approach, the simple
geometry of a conical shape allows us to study fluid flow using molecular dynamics (MD)
simulations. Results from the MD simulations will be used as a verification for the droplet
shape predicted by the lubrication model. In fact, the approach of MD simulations has
previously been implemented to study the wetting dynamics at the nanoscale (Nakamura
et al. 2013), the slip condition at a contact line region (Qian, Wang & Sheng 2003), the
frictional force on a sliding droplet (Koplik 2019) and the influence of physico-chemistry
of the water/substrate interface on the droplet dynamics (Johansson, Carlson &Hess 2015).

2. Mathematical formulation

An axisymmetric viscous droplet with a volume V is placed in contact with a wetted
surface of a conical fibre with a cone angle α � 1, see figure 1(a). We consider a fibre
surface prewetted with a thin layer of the same fluid of thickness ε. The prewetted layer
can be deposited or interpreted as a microscopic precursor film for a perfectly wetting
droplet, i.e. equilibrium contact angle θe = 0◦. The profile of the liquid–air interface is
described by h(r, t), the distance between the interface and the substrate, as a function of
the distance from the vertex of the cone along its surface r and time t. For droplets with a
Bond number Bo ≡ ρgV2/3/γ � 1, gravitational effects can be ignored. We consider the
Reynolds number Re ≡ ρUV1/3/η � 1 and the flow inside the droplet is described by the
Stokes equations and the continuity equation.

2.1. Lubrication approximation on a cone (LAC)
Consider the flow in the droplet as u(r, θ), here θ is the polar angle measured from the
axis of rotation. Supposing the polar angle of the free surface of the droplet is very small,
the flow is primarily in the radial direction. By using these approximations, the Stokes
equations reduce to the lubrication equations here given in spherical coordinates (Chan
et al. 2020),

∂p
∂r

= η

r2θ
∂

∂θ

(
θ

∂u
∂θ

)
, (2.1)

∂p
∂θ

= 0, (2.2)

where p is the pressure and u is the radial velocity inside the droplet/film.
To describe the fluid flow (2.1) and (2.2) need to be accompanied by several boundary

conditions. At the liquid–air surface, the tangential stress is zero as we neglect viscous
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FIGURE 1. (a) A description of the system at study, where a droplet is moving across (from left
to right) a conically shaped fibre (grey shaded region). Droplet profiles h(r, t) are shown at three
different times on the fibre with a cone angle α. From t = 0 to t = 0.89, there is a fast relaxation
of the droplet before it slowly spreads across the fibre. (b) The centre of mass of the droplet xc
plotted as a function of time. The diamond markers correspond to the two profiles shown in (a),
with a cone angle α = 0.01 rad, a prewetted film thickness ε = 10−3 and a slip length λ = 0.

effects in the air
∂u
∂θ

= 0 at θ = α + φ. (2.3)

At the wetted substrate, the normal velocity is zero and we assume a radial velocity
described by the Navier-slip condition (Lauga, Brenner & Stone 2008)

u
λ

= 1
r

∂u
∂θ

at θ = α, (2.4)

where λ is the slip length.
Solving (2.1) and (2.2) with the boundary conditions (2.3) and (2.4) gives the velocity,

and by imposing mass conservation of the liquid we get

∂h
∂t

+ 1
rα + h

∂

∂r

[
r4α4

2η
∂p
∂r

{
1
8

[
3
(
1 + h

rα

)4

− 4
(
1 + h

rα

)2

+ 1

]

− 1
2

(
1 + h

rα

)4

ln
(
1 + h

rα

)
− λh2

2r3α3

(
2 + h

rα

)2
}]

= 0. (2.5)
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Film coating by a self-propelled droplet on a conical fibre 907 A29-5

The pressure gradient inside the liquid is generated by the Laplace pressure p = −γ κ
where κ is the curvature of the liquid–air interface, which for α � 1 simplifies as

κ = h′′(
1 + h′2

)3/2 − 1 − αh′

(rα + h)
(
1 + h′2)1/2 , (2.6)

with ()′ ≡ ∂()/∂r. The second term of the curvature is derived by using a rotation
matrix with the cone angle α � 1. We keep the h′ terms as the interface slope is not
always small at the droplet scale. We will see in § 3.1 that the viscous effect is weak
in the droplet and it quickly adopts a quasi-static shape at the leading order, which is
determined by the uniform pressure condition i.e. κ = constant. Although the flow field
computed from the lubrication equation is inaccurate at the droplet scale, the correct
quasi-static shape determines the flows in the contact line regions where lubrication
approximation does work. Hence, (2.5) is still valid for computing the evolution of the
interface.

2.2. Finite element method
We solve a coupled system of equations consisting of (2.5) and the Laplace pressure
equation p = −γ κ numerically by using the finite element method. For the pressure
equation, we split it into the two following equations:

p = −γ

[
q′(

1 + h′2
)3/2 − 1 − αh′

(rα + h)
(
1 + h′2)1/2

]
(2.7)

and

q = h′. (2.8)

The variables we solve for are h(r, t), p(r, t) and q(r, t). These fields are discretized
with linear elements and solved as a coupled equation set by using Newton’s method
in the FEniCS library (Logg, Mardal & Wells 2012). We use both an adaptive time
stepping routine and an adaptive spatial discretization to refine the spatial resolution
around the receding tail and the advancing front of the droplet with a resolution of
�r = 10−4V1/3; here, �r is the difference of r between two nodal points. The numerical
simulations are initialized with the initial profile h(r, t = 0) = ε + A[1 − tanh(r − ri)2]
where A determines the volume of the droplet and ri determines the initial position
of the droplet’s geometric centre. The simulations are insensitive to the initial droplet
shape after a very short initial relaxation, see figure 1 and appendix B. Further, we
impose the following boundary conditions at the boundary ∂Ω of the numerical domain:
p(r = ∂Ω, t) = p(r = ∂Ω, t = 0) and ∂h(r = ∂Ω, t)/∂r = 0.

2.3. Molecular dynamics simulations
We can test our hydrodynamic model by means of a ‘numerical experiment’ – a classical
MD simulation of a liquid drop placed on a solid cone, based on standard methods (Frenkel
& Smit 2002). We consider a generic viscous liquid consisting of spherically symmetric
atoms with a Lennard–Jones (LJ) interaction, bound into linear tetramer molecules by a

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 6
7.

24
3.

19
3.

22
, o

n 
25

 N
ov

 2
02

0 
at

 1
5:

24
:4

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

83
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.834


907 A29-6 T. S. Chan, C. Pedersen, J. Koplik and A. Carlson

Case x1 x2 Rout N

A 30 40 75 117 880
B 30 45 70 164 120
C 30 45 70 280 280

TABLE 1. Initial geometry of the drops.

FENE (finitely extensible nonlinear elastic) potential

VLJ(X ) = 4E

[(X
σ

)−12

−
(X

σ

)−6
]

VFENE(X ) = −1
2
kFX 2

0 ln
(
1 − X 2

X 2
0

)
, (2.9a,b)

where X is the separation between the centre of mass of two atoms. The LJ potential
acts between all pairs of atoms within a cutoff distance 2.5σ , and is shifted by a linear
term so that the force vanishes at the cutoff. The FENE interaction (with parameters kF =
30E/σ 2 and X0 = 1.5σ ), following Grest & Kremer (1986) acts between adjacent atoms
on the chain. The advantage of a molecular rather than a monatomic liquid is that the
vapour pressure is very low and the liquid/vapour interface is relatively sharp and easy to
visualize. The solid is a conical section of a regular lattice whose atoms are mobile but
bound to their lattice sites by linear springs with stiffness 100E/σ 2. The simulations are
conducted in a canonical/NVT ensemble, where the temperature is fixed at 0.8E/kB using a
Nosé–Hoover thermostat. This particular solid/liquid system has been used in a number of
previous simulations (Busic, Koplik & Banavar 2003; Koplik et al. 2006; Koplik & Zhang
2013; Koplik & Maldarelli 2017), and its properties are well characterized. The liquid has
bulk number density 0.857σ−3, viscosity 5.18m/(στ) and liquid–vapour surface tension
0.668E/σ 2, wherem is the mass of the liquid atoms and τ = σ(m/E)1/2 is the natural time
scale based on the LJ parameters. Furthermore, the liquid is completely wetting: a drop
placed on flat solid surface with the same density and interactions spreads completely into
a thin film.
The simulation begins with all atoms on face-centred cubic (fcc) lattice sites, within

a rectangular box of length 256.5σ and sides 171σ , with repulsive confining walls in the
long (x) direction and periodic boundary conditions on the sides. For the cone we select all
atoms in an fcc lattice of number density 1.06σ−3 within a radius Rco(x) = 3 + x tanα (in
the unit of σ ) of the central axis, which runs in the x-direction through the centre of the
box, and where α = 0.1 rad. The resulting solid has 74,362 atoms. The liquid initially
occupies a disc-shaped region near the left edge, x1 < x < x2 and Rco(x) < R < Rout
consisting of all atoms outside the cone but inside an outer radius Rout. We have studied
two cases (A, B) where the remaining cone surface is initially dry and one case (C) where
there is also a liquid (prewetting) film of thickness 4σ . The parameters for the various cases
and the number of fluid atoms N is given in table 1. The simulation temperature starts at
a low value in the solid phase and increases linearly to the final value, 0.2 → 0.8E/kB
over 250τ , to prevent the liquid atoms from leaving the cone, and subsequently the drop is
allowed to evolve freely at the final temperature.
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3. Results and discussions

3.1. Numerical solutions of the LAC
We first present numerical simulation results for the typical evolution of the droplet profile
obtained from the lubrication approximation on a cone. In the following, all lengths are
rescaled by V1/3 and time is rescaled by V1/3η/γ . The dimensionless parameters are the
cone angle α, the thickness of the prewetted layer ε and the slip length λ.
A typical dynamical process is shown in figure 1(a). First the droplet relaxes from an

initial shape (t = 0) to a quasi-static shape (t = 0.89) in a short time. At t = 0, the initial
shape gives a non-uniform curvature and hence a non-uniform pressure inside the whole
droplet region. The pressure gradient generates flow inside the droplet. At t = 0.89, a
nearly uniform pressure distribution is achieved in the bulk of the droplet, but a large
pressure gradient is created at the two edges of the droplet, which are commonly referred
to as the ‘contact line regions’, see figure 2(b) for the pressure distribution at t = 256.
A concentration of stresses at the contact line would be expected (Huh & Scriven 1971).
After the quick initial relaxation, the droplet starts to propagate toward the thicker part of
the cone. The position of the droplet is described by the centre of mass of the droplet, for
α � 1, defined as

xc = π

∫ ra

rr

h(h + 2αr)r dr, (3.1)

which is plotted as a function of time in figure 1(b). Here rr is the apparent receding
and ra is the apparent advancing contact line positions, which are defined in appendix A.
The numerical simulations suggest that the droplet adopts a quasi-static shape during
the directional spreading. For example, the profile for t = 256 is plotted as the black
solid line in figure 2(a), and the pressure distribution is shown in figure 2(b). Given
the uniform pressure/curvature condition, one can solve for a static droplet profile, see
the details of the computation in § 3.5. The static profile obtained in this way is plotted
as the red dashed curve in figure 2(a) for the same droplet position as obtained from
the LAC at t = 256. The agreement between the two profiles again demonstrates that
the droplet profile is quasi-static on the droplet scale. As the droplet shape appears
more round than flat, it may affect the validity of the lubrication approximation in the
contact line regions where the viscous effects are significant. We zoom into the advancing
and receding contact line regions and compute the pressure gradient p′ rescaled by its
maximum magnitude and the interfacial slope h′, which are shown in figures 2(c) and
2(d). We observe that when approaching the contact line regions, the pressure gradient p′

increases from almost zero in the bulk of the droplet, and along with it the interface slope
decreases. The maximum magnitude of the pressure gradient in both the receding and the
advancing regions corresponds to an interfacial slope of magnitude < 0.1 rad (5.7◦) which
presumably fulfils the small slope assumption.
As shown in figures 2(c) and 2(d), the pressure gradients at the receding and the

advancing contact line regions are large. By zooming into these regions of the droplet
(see figure 3) at early times, we observe large interface curvatures, consistent with what
one would expect from the results of a large pressure gradient. We want to highlight that
as the droplet starts to move across the cone, a film is formed at the receding region. Since
the later self-propelling state is independent of the initial conditions, the droplet properties
such as the deposited film thickness and the droplet velocity are a function of the droplet
position on the cone.
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FIGURE 2. (a) Solid line: droplet shape on a conical fibre (grey shaded region) with a cone
angle α = 0.01 rad at t = 256 obtained from a numerical solution of the LAC with ε = 10−3

and λ = 0. Red dashed line: static droplet shape obtained from solving the uniform curvature
condition κ = constant. (b) Solid line: the Laplace pressure p as a function x obtained from LAC.
Red dashed line: the Laplace pressure of a static droplet, where the domain of the static droplet is
between x = 3.36 and x = 4.83. In (c,d) the pressure gradient is rescaled by its maximum value,
denoted as p̄′ and the interface slope h′ in the receding region in (c) and the advancing region
in (d).
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FIGURE 3. (a) Interface dynamics at the receding region of the droplet, showing the formation
of a deposited film from t > 2.18. (b) The interface dynamics at the advancing region of the
droplet. The far field conditions of the profiles at both ends match to a constant prewetted fluid
layer of thickness h = ε = 10−3 and we have α = 0.01 rad and λ = 0.

3.2. Comparison of the numerical solutions of the LAC with molecular dynamics
simulations

We compare the results for the case of cone angle α = 0.1 rad from the numerical solutions
of the LAC and the MD simulations. The comparison serves also as a verification of our
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FIGURE 4. (a) The centre of mass of the droplet xc as a function of time t obtained from theMD
simulations (symbols) for three different cases and the numerical solutions of the LAC (lines)
for λ = 0 and α = 0.1 rad. The red circles are results obtained by multiplying the time in case
C with a prefactor 2.8. (b–d) Comparison between droplet profiles obtained from the LAC and
the MD simulations. For each comparison, the profiles are chosen such that xc is the same. Both
(b,c) are for the case C of the MD simulations (wetted substrate) but at two different droplet
positions; (d) is for case A (dry substrate) of the MD simulations. Red dashed curves: profiles
from LAC. Green dots: liquid molecules of the droplet. Pink colour: the cone substrate.

lubrication model and can help reveal nanoscopic physical effects. We first compare the
centre of mass of the droplet xc as a function of time in figure 4(a). For the LAC, we
have used two different values of prewetted layer thickness, i.e. ε = 10−4 and 10−3, to
highlight their weak influence on the results. We have three cases for the MD simulations.
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We see that droplets on the dry surface (case A and case B) move slower than the droplet
on the wet surface (case C, with the rescaled thickness of the prewetted layer = 0.065).
This is consistent with the expectation that the wetted layer reduces the frictional force
between the droplet and the substrate. When comparing with the LAC results, we find
that the results from the MD simulation (for both the dry surface and wet surface cases)
have a larger non-dimensional velocity. When we multiply the time scale in MD by a
prefactor of 2.8 for case C (with a wetted layer), we effectively shift the data from MD
horizontally to the right and obtain the results represented by red circles, which makes
the two models give the same results. The difference in time scale is equivalent to the
difference in drop velocity, and this is related to the strength of the ‘driving force’. In
the MD calculation the liquid/solid interaction strength controls the speed of the drop
(as well as the slip length), but this parameter does not appear directly in the continuum
calculations. Indeed, in continuum calculations of wetting usually the contact angle (for
partially wetting cases) and the van der Waals interaction (for the completely wetting
case) controls the motion. Here, the prewetting film thickness and the assumption that
it is asymptotically constant indirectly incorporate this information. There is no obvious
way to match this aspect of the molecular and continuum calculations in advance and it is
no surprise that they differ. Furthermore, the presence of slip in the simulations is rather
unclear because the translation velocity of the drop is much smaller than the thermal
velocity of the atoms, by a factor of 10−3 or less, and it is not possible to resolve the
flow field inside the drop. However, simulations of the same liquid in shear flow along a
planar solid of the same structure as the cone, under otherwise identical conditions, have
a velocity field which extrapolates to zero roughly halfway between the innermost liquid
and outermost solid atoms. If one (naturally) identifies the latter point as the liquid/solid
boundary then the slip length is at most a small fraction of an atomic diameter, which is
essentially zero. The shapes of the droplet are shown in figure 4(b–d), where the same
droplet shapes are predicted by the LAC and the MD when comparing for the same centre
of mass of the droplet. However, no deposited film is observed for all cases in the MD
simulations.
The effects of the thin prewetted layer are illustrated when comparing a drop advancing

on a cone at the same centre of mass position (xc = 3.45) for the wetted case in figure 4(c)
with the dry case in figure 4(d). The lighter colouring of the liquid region as compared
to figure 4(b,c) reflects the fact that there are fewer liquid molecules present in the dry
case. For the dry case, the advancing meniscus of the drop is irregular at molecular scales,
corresponding to individual molecules hopping to attractive sites on the surface, which is
also the case for wetting drops advancing on a dry flat surface (D’Ortona et al. 1996). The
receding meniscus region is an uneven film as well, zero to two molecules in thickness, and
this behaviour is also present in the prewetted case. The absence of a continuous trailing
film for these drops is surprising because one would expect a completely wetting liquid
to remain in contact with a solid unless removed by an external force, and the lubrication
calculations in this paper incorporate this assumption. One possible explanation is the
finite size of the simulated droplets, which may not have enough molecules to exhibit
all features of continuum behaviour. A second, more specific explanation involves the
curvature of the surface. Liquid adjacent to a flat surface tends to form pronounced
layers and, at least for a crystalline solid, there is an ordered structure in each layer
because the molecules favour positions in register with the lattice. High curvature disrupts
the usual lattice structure and could thereby weaken the liquid-solid attraction. In this
vein, it is known that solid curvature has a significant effect on slip lengths, which
are controlled by the same interaction (Chen, Zhang & Koplik 2014; Guo, Chen &
Robbins 2016).
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FIGURE 5. Lines: the capillary number Ca as a function of the centre of mass of the droplet xc
obtained from LAC. Symbols: the relation given by (3.3) with different values of c. The cone
angle is α = 0.01.

3.3. Droplet velocity
We consider here only cases in which the prewetted layer is much thinner than the
droplet, i.e. ε ∈ [10−4, 10−3], but we vary the slip length across a wide range λ ∈ [0, 20].
When the prewetted layer is thick, e.g. ε > 10−2, it becomes unstable quickly due to
Rayleigh–Plateau instability (Eggers & Villermaux 2008). To investigate the droplet
dynamics, we define the capillary number as the dimensionless velocity of the droplet,
namely

Ca ≡ dxc
dt

. (3.2)

3.3.1. Dependence of droplet velocity on the thickness of the prewetted layer and the slip
length

We start by looking at cases when both the prewetted layer and the slip length are
small, i.e. ε � 1 and λ� 1. In models of dynamical wetting (Bonn et al. 2009; Snoeijer
& Andreotti 2013), these microscopic lengths act as a cutoff length scale for moving
contact line singularity and the length scales appear in a logarithmic term of the viscous
dissipation. In Chan et al. (2020), by using asymptotic matching, it is shown that the
capillary number scales as Ca = θ 3

a /9 ln(c/λ), where θa is the advancing apparent contact
angle of the corresponding static droplet and c is a fitting parameter. We here propose a
similar relation but include the prewetted layer thickness ε as

Ca = θ 3
a

9 ln(c/[λ+ ε])
. (3.3)

With an adjustment of the fitting parameter c, this relation describes well the results from
the LAC as shown in figure 5, but gradually becomes invalid when λ is no longer small.
When exploring a wider range of slip length λ, one expects a change in the flow profile

inside the droplet, from a Poiseuille flow for the case of no-slip to a plug flow as we
approach free slip (Münch, Wagner & Witelski 2005). Figure 6(a) shows Ca as a function
of xc for different slip lengths, where droplets move faster for larger slip lengths as the
viscous dissipation is decreased. At large slip lengths, it is expected that the term with the
slip length in the governing equation (2.5) dominates over the other terms, thus λ can be
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FIGURE 6. (a) The capillary number Ca plotted as a function of the centre of mass of the
droplet xc for different slip lengths. (b) The rescaled Ca by λ as a function of xc. Parameters:
ε = 10−3 and α = 0.01 rad. We rescale the data in (a) as Ca/λ, which collapses the data onto a
single curve for λ > 1.

scaled out from the equation by defining t̄ ≡ λt. This implies Ca scales linearly with λ.
We plot Ca rescaled by λ in figure 6(b), and find that Ca/λ collapse onto a single curve for
λ > 1, consistent with our expectation. An alternative derivation can also be made based
on a balance between the rate of change of capillary energy and the viscous dissipation.
The viscous stress scales as ∼ ηU/λ, giving a bulk dissipation ∼ ηVU2/λ2, which is much
smaller than the dissipation due to friction at the substrate ∼ ηAwU2/λ; here, Aw is the
wetted area. By balancing the dominant viscous dissipation with the rate of change of the
surface energy ∂(γAw)/∂t ∼ γ xcαU gives U ∼ λ.

3.3.2. Dependence of droplet velocity on the cone angle and the droplet position
As there is no directional spreading when α = 0, it is natural to expect that a droplet

moves faster at larger cone angles. This is true when comparing Ca at the same cone
radius, as shown in figure 7(a) in which Ca is plotted as a function of Rc ≡ xc tanα. The
results from the LAC agree nicely with the matching results of (3.3) for the three different
values of α using the same value of c = 2. Remarkably, the agreement is good even when
the apparent contact angle is as large as θa ≈ 1 rad, for example when Rc ≈ 0.06 and
α = 0.03 rad. Another feature we observe is that Ca decreases when the droplet is at a
position of larger cone radius for a fixed cone angle, namely the droplet slows down when
moving to the thicker part of the cone. When plotting Ca rescaled by α in figure 7(b), the
results for the three different cone angles nearly collapse onto a single curve.
We have shown that the cone angle and the cone radius give opposite effects to the

droplet velocity. It might be interesting to see how the droplet velocity depends on the
distance from the tip of the cone, particularly the length of a fibre can be a more important
parameter for certain functionality. In figure 7(c), we showCa as a function of the droplet’s
centre of mass xc. Remarkably, a non-monotonic behaviour is observed. In the limit of
large distances from the tip, droplets on cones with smaller cone angles move faster when
comparing at the same xc. When decreasing xc, there are changes of relative strength
of Ca. For example, at xc = 2.3, Ca for α = 0.03 rad is even higher than that for α =
0.01 rad. The reason for the non-monotonic behaviour is that two factors are playing roles
when comparing at the same xc, namely α and Rc. The influence of the cone radius Rc is
dominant over the cone angle effect when xc is large, thus droplets move faster at smaller α.
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FIGURE 7. Lines: results from LAC. Symbols: the relation given by (3.3) with c = 2. The
droplet capillary number Ca plotted as a function of Rc ≡ xc tanα in (a), and as a function
of the centre of mass of the droplet xc in (c), whereas in (b) Ca is rescaled by α plotted as a
function of Rc. Parameters: ε = 10−3 and λ = 0.

The cone angle effect becomes more important when xc is small. Our results demonstrate
that a sensitive control of the geometrical factors such as α and Rc is necessary for optimal
droplet transport on these structures.

3.4. Film deposition
A film is formed at the receding region of the droplet when the droplet moves to the thicker
part of the cone, as already shown in figure 3(a). We refer to the region that connects the
prewetted layer and the deposited film as the film edge region. One can observe from
figure 3(a) that the film edge region (around r = 1) propagates much slower than the
motion of the droplet. Hence a long deposited film is generated and the film profile is
found to remain steady within the simulated time. However, the film would eventually
become unstable due to the Rayleigh–Plateau instability, but the time scale for the growth
of the disturbance is here greater than the time for the droplet to spread across the cone.
For films of nanometric thickness, they can be stabilized by intermolecular forces (Quéré,
di Meglio & Brochard-Wyart 1990).

3.4.1. Dependence of the deposited film on the cone angle
We first consider cases of no slip (λ = 0). The profiles of the deposited films are shown

in figure 8(a) for α = [0.01, 0.03, 0.05] rad. It is found that the film thickness increases
with both α and r. It is also important to understand the influence of the cone angle on the
film thickness when comparing at the same cone radius. We hence plot in figure 8(b) the
profiles of the films as a function of R ≡ r sinα. The film is thicker for larger cone angles.
As will be explained in § 3.5, this is mainly due to the larger capillary number for larger
cone angles.

3.4.2. Dependence of the deposited film on the slip length
As droplets move faster at larger slip lengths, one may expect that a thicker film is

deposited according to the LLD model. However, our analysis shows the opposite results
(figure 9) with α = 0.01 rad and ε = 10−3. The film thickness decreases with the slip
length. We find two asymptotic film profiles. One is for the limit of small slip length (λ <
10−4). Another one is for the limit of large slip length (λ > 1), which can be understood by
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FIGURE 8. (a) The profiles of the deposited film h plotted as a function of the distance from the
tip of the cone r for α = [0.01, 0.03, 0.05] rad. (b) The profiles of the deposited film h plotted
as a function of the cone radius R. Parameters: ε = 10−3 and λ = 0.
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FIGURE 9. The profiles of the deposited film h plotted as a function of the distance from the
tip of the cone r for different slip lengths. Parameters: ε = 10−3 and α = 0.01 rad.

the argument that the slip length is absorbed into the time variable t̄ as explained in § 3.3.
Hence, the droplet profile and the deposited film thickness become independent of the slip
length. A dramatic change of film thickness appears for slip length in between 10−4 and 1.
The difference of film thickness between these two limits is of two orders of magnitude.
Our results show that when the droplet size is too small, film deposition is not possible
as the film thickness computed from our model can be of sub-molecular size. This is
particularly relevant for large slip lengths, for which the deposited film is much thinner
and the large slip regime can be realized usually for droplet size of micrometres or below.

3.5. Asymptotic matching
Although we have shown the interface profiles h(r) of the deposited films (figures 8
and 9), it is not clear yet how a particular film thickness is related to the capillary number.
For droplets spreading on a cone, the motion of the droplet is self-propelled, and the
capillary number is a function of the droplet position xc (or time t). Nevertheless, at
each moment in time, the droplet deposits a portion of film with a particular thickness
hf = hf (xc). Hence, we can link a particular film thickness to the corresponding Ca at
each droplet position on the cone. The procedure of determining hf is given in appendix A.
A natural way to rescale the film thickness hf is by using the corresponding cone radius
Rf ≡ rr sinα where the film is deposited. The rescaled hf /Rf is plotted as a function of Ca
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FIGURE 10. (a) The rescaled film thickness hf /Rf as a function of the capillary number Ca for
different slip lengths. Lines: results from the lubrication approach (LAC). Parameters: ε = 10−3

and α = 0.01 rad. Squares: results from the asymptotic matching (AM). The grey dashed line
indicates a scaling Ca2/3. (b) Solid line: the second derivative at the apparent receding contact
line of a static droplet h′′

o ≡ h′′
s (r = rr) as a function of the cone radius of a deposited film Rf .

The dashed line represents the asymptotic relation h′′
o = 1/Rf when Rf � 1. (c) The value of a2

obtained from the two-dimensional lubrication equation for the film region as a function of the
rescaled slip length λ̄ ≡ λ/hf .

for a wide range of slip length λ in figure 10(a) with log–log axes. First, the 2/3 scaling is
not observed for any cases, even for the no-slip case which we would expect from the LLD
model. Second, the local slope (in log scales) decreases with the slip length, and becomes
negative when the slip length > 10−2.
To understand better the numerical solutions of the LAC, we revisit the approach of

asymptotic matching. We consider two regions of the liquid–air interface profile: the film
region and the static droplet region, which are described by two different force balance
equations. We then match the asymptotic profiles of these two regions to determine the
deposited film thickness.
As the film thickness is much smaller than the cone radius, we propose that the profile in

the film region locally is described by a steady solution h = h2d(x) of the two-dimensional
lubrication equation. In the droplet frame, translating with a non-dimensional velocity
Ca, the rescaled liquid–air interfacial profile H(ξ) = h2d/hf , here ξ = xCa1/3/hf , follows
(Snoeijer et al. 2008)

∂3H
∂ξ 3

= 3
H

(
H + 3λ̄

) (
1 − 1

H

)
, (3.4)
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FIGURE 11. (a,c,e) The interfacial profile h as a function of the shifted radial coordinate r − ro
obtained from LAC in the region connecting the flat film and the droplet for different slip lengths
λ and droplet positions (characterized by rr in b,d, f ). The parameters are the cone angle α =
0.01 rad and the prewetted layer thickness ε = 0.001. (b,d, f ) The rescaled profiles h/hf as a
function of (r − ro)Ca1/3/hf . The solid lines are the numerical solution of (3.4) with values of
λ̄ ≡ λ/hf computed by the corresponding values of λ and hf from the LAC.

where λ̄ ≡ λ/hf . We impose a flat film boundary condition H(ξ → −∞) = 1, and hence
close to the flat film, we can write H = 1 + δ exp[31/3ξ/(1 + 3λ̄)1/3], with δ � 1 (Oron,
Davis & Bankoff 1997). The value of δ is arbitrary due to the translational invariance of
(3.4). Here, we set δ = 5 × 10−7 when ξ = 0. When ξ → ∞, the profile of the film has
to match to the droplet shape at the receding region, thus H tends to ∞, the asymptotic
solution of (3.4) is described byH = a1ξ + a2ξ 2. The value of a1 and a2 are determined by
the numerical solution of (3.4). A comparison between the similarity profile H(ξ) and the
rescaled profiles from LAC in the region connecting the flat film and the droplet is given
in figure 11 for three different slip lengths: λ = 0, 10−2 and 7. The profiles from LAC are
shifted manually by ro so that they match the best with the solution of (3.4). The value of
ro is close to rr (difference within 2%). Note that for non-zero slip lengths, as hf varies
with droplet positions, λ̄ has different values at different droplet positions even though λ
is the same. We can see in figure 11 that the similarity profiles describe well the profiles
from the LAC particularly at the region closer to the flat film. Away from the flat film, the
profiles from the LAC bend to match the droplet shape.
In the static droplet region, the profile hs(r) is determined by the static equation of

uniform curvature κs obtained by substituting hs(r) = h(r) into (2.6), with a magnitude of
κs that depends on the droplet position on the cone. The problem is closed by including
the boundary conditions hs(r = rr) = 0 and h′

s(r = rr) = 0 at the substrate.
Now we are in a position of matching the two asymptotic profiles in the overlapping

region. As we already impose the condition h′
s(r = rr) = 0 for the droplet region. A natural
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matching condition is equating the second derivatives of the asymptotic profiles. In the
film region,

h′′
2d(ξ → ∞) = 2a2Ca2/3/hf . (3.5)

Matching h′′
2d(ξ → ∞) to the second derivative h′′

o ≡ h′′
s (r = rr) in the static droplet region

gives the film thickness

hf = 2a2(λ̄)
h′′
o(Rf )

Ca2/3. (3.6)

Importantly, as all the cone angles are small, h′′
o is independent of α but only a function

of the cone radius Rf , which is plotted in figure 10(b) in log scales. Note also that a2 is
determined from (3.4) and a function of λ̄ ≡ λ/hf , which is plotted in figure 10(c). We
note that h′′

o = 1/Rf + κs, and thus h′′
o ≈ 1/Rf when Rf � 1, which is represented by the

dashed line in figure 10(b). With the computed values of h′′
o and a2, and using the values

of Ca for each droplet position obtained from LAC, we plot hf /Rf computed from (3.6)
in figure 10(a) as square markers. Remarkably, the results from the asymptotic matching
agree with the numerical results for all slip lengths. Provided the excellent agreement
between the two approaches, we can understand our results in terms of the flow inside the
film and the geometry of the droplet, and hence provide a better picture of the physical
mechanism of film deposition by a droplet moving on a cone.
We first look at the no-slip case. When λ̄ = 0, a2 = 0.669, which is the same value

as obtained from previous studies (Rio & Boulogne 2017). The description of the film
region is the same as, for example, the dip-coating cases. Then why is the 2/3 scaling not
obtained when plotting hf /Rf as a function of Ca? One important aspect in our problem is
that the droplets have a finite size. Hence, there are two length scales: the cone radius and
the droplet radius. In terms of rescaled quantities, this means that the second derivative
h′′
o is not a linear function of 1/Rf , except when Rf � 1, which is already demonstrated in

figure 10(b). When we rescale the results of hf obtained from the LAC by 1/h′′
o and plot

it as a function of Ca in figure 12(a) for three different cone angles. The scaling Ca2/3
is recovered and agrees well with the prediction from asymptotic matching especially for
smaller cone angles.
Next we look at the slip dependence. From figure 10(c), we see a2 is independent of λ̄

when λ̄� 1. Hence for λ� hf , the film thickness becomes independent of λ. As the
typical order of magnitude of hf for a no-slip case is 10−3, hf starts to depend on λ
significantly when λ > 10−3. This is consistent with our numerical results. For λ̄� 1,
we find that a2 = 0.771λ̄−2/3. Substituting this expression of a2 into (3.6), we obtain

hf = 3.667
h′′3
o

(
Ca
λ

)2

. (3.7)

This expression is in perfect agreement with our numerical results from the LAC for λ�
hf in figure 12(b). For droplets moving on a conical fibre, we show already that Ca ∼ λ
when λ� 1, (3.7) then suggests hf is independent of the slip length as shown in figure 9
for λ� 1.
One may expect that the droplet profile does not maintain a quasi-static shape when the

slip length is not small due to significant viscous effects in the entire droplet. However,
the excellent agreement between the results from the lubrication equation on a cone and
the approach of asymptotic matching suggests that the quasi-static assumption is still
valid. The reason might be the large length separation between the deposited film and
the droplet height maintaining a very large difference in time scales, as one can observe
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FIGURE 12. (a) The film thickness hf rescaled by 1/h′′
o as a function of Ca for λ = 0. Symbols

are results from LAC for three different cone angles. The prewetted layer thickness ε = 10−3.
The dashed line is the result from AM: hf h′′

o = 1.34Ca2/3. (b) The film thickness hf rescaled by
1/h′′3

o as a function of Ca/λ for three different slip lengths λ� hf . Symbols are results from
LAC. The dashed line is the result from AM: hf h′′3

o = 3.667(Ca/λ)2.

from the mobility term which scales as ∼ λh2. Thus there is sufficient time for the droplet
to relax to a quasi-static shape when the apparent contact lines move. For the large slip
length regime, elongational flow has been proposed to appear and dominate the viscous
dissipation (Münch et al. 2005), which has been observed for dewetting droplets (McGraw
et al. 2016; Chan et al. 2017). The large slip regime in our model, assuming Poiseuille
flow as the dominating flow structure, is considered as the intermediate slip regime in the
analysis of Münch et al. (2005). For a translating droplet, the effect of elongational flow is
unclear, which requires additional experimental and theoretical studies.
For partially wetting surfaces, the droplet dynamics is the same as for the perfectly

wetting cases if the prewetted layer is thick enough so that van der Waals forces between
the liquid–air and the solid–liquid interfaces can be neglected. A partially wetting droplet
moving on a cone without a prewetted layer will also deposit a film if it moves with a
velocity above a critical value. The properties of the film are expected to be similar to
the wetting cases, namely following the asymptotic relation (3.6), as long as the droplet
maintains an axisymmetric shape.

4. Conclusions

The directional spreading of a viscous droplet on a conical fibre due to capillarity is
investigated for small cone angles and for a wide range of slip lengths by using the
lubrication equation on a cone. The droplet velocity increases with the cone angle and
the slip length, but decreases as the cone radius becomes larger. At the receding part
of the droplet, a film is deposited on the cone surface while the droplet is moving.
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When comparing with our MD simulations, we find that the droplet shapes obtained from
these two approaches are the same. The velocity also shows a similar trend. However, no
deposited film is observed in the MD simulations, which might be due to the nanoscopic
size of the droplet.
The thickness of the deposited film observed in the LAC decreases from hf ≈ 10−3

for the no-slip case (λ = 0) to hf ≈ 10−5 for λ > 1. We show that the film thickness
obtained from the lubrication model can be understood by a similar approach of asymptotic
matching used in the LLD model. For the no-slip limit, the standard Ca2/3 scaling is
recovered only when the length scale is given by 1/h′′

o in the re-scaling. In the limit
of λ� hf , we find another asymptotic regime in which the film thickness scales as
hf h′′3

o ∼ (Ca/λ)2. For the problem we study here, the cross-over of these two regimes
occurs at λ ≈ 10−4 − 10−1. Our results show that manipulating the droplet size, the cone
angle and the slip length provides different schemes for guiding droplet motion and coating
the substrate with a film.
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Appendix A. Determination of rr, ra, hf and Rf

Since the liquid–air interface of the droplet is continually connected to the liquid–air
interface of the prewetted layer/LLD film, we define the domain of the droplet as
follows. We denote the boundaries of the droplet in the receding and the advancing
regions respectively as r = rr and r = ra. We first compute the second derivative of the
profile h′′(r) at a certain time, which is shown in figures 13(a) and 13(b) respectively
in the receding and the advancing regions. The second derivative drops to zero when
approaching the film regions. Since h′′ is non-negative in the receding region, the droplet
boundary r = rr is defined as the position at which h′′(r) drops to below 0.01, i.e.
h′′(r = rr) = 0.01. In the advancing region, r = ra is defined as the position at which h′′(r)
vanishes, i.e. h′′(r = ra) = 0. The thickness of the deposited film at that particular time is
defined as hf (t) = h(r = rr, t) and the corresponding cone radius Rf (t) = rrα. Hence we
can link the film thickness hf to the capillary number Ca at each time.

Appendix B. Dependence on the initial profile

To investigate how the droplet dynamics depends on the initial profile of the droplet,
we here compare the dynamics of two droplets with different initial profiles. The initial
profiles of the two droplets are described in § 2.2 with different values of A and ri, see
figure 14(a). We compare the capillary number as a function of the droplet position in
figure 14(b). We can see after an initial quick relaxation, the later dynamics is independent
of the initial profiles.
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FIGURE 13. (a) The second derivative h′′(r) of the liquid–air interfacial profile at the receding
region of the droplet that connects to the LLD film at t = 309. (b) The second derivative h′′(r)
of the liquid–air interfacial profile at the advancing region of the droplet that connects to the
prewetted liquid layer at t = 309. (c) The liquid–air interfacial profile h(r) at the same range of
r as (a). (d) The liquid–air interfacial profile h(r) at the same range of r as (b). Parameters: the
cone angle α = 0.01 rad, the prewetted layer thickness ε = 10−3 and the slip length λ = 0.
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FIGURE 14. (a) Two different initial droplet profiles. The droplets profiles are described in § 2.2
with ε = 10−3. Droplet 1: A = 0.87 and ri = 1.7. Droplet 2: A = 0.85 and ri = 3.5. (b) The
capillary number Ca as a function of the droplet position xc. Red solid line: droplet 1. Black
dashed line: droplet 2. Parameters: α = 0.01 rad and λ = 0.
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