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ABSTRACT

In this paper, we consider a status update system, in which update
packets are sent to the destination via a wireless medium that allows
for multiple rates, where a higher rate also naturally corresponds
to a higher error probability. The data freshness is measured using
age of information, which is defined as the age of the recent update
at the destination. A packet that is transmitted with a higher rate,
will encounter a shorter delay and a higher error probability. Thus,
the choice of the transmission rate affects the age at the destination.
In this paper, we design a low-complexity scheduler that selects
between two different transmission rate and error probability pairs
to be used at each transmission epoch. This problem can be cast as
a Markov Decision Process. We show that there exists a threshold-
type policy that is age-optimal. More importantly, we show that
the objective function is quasi-convex or non-decreasing in the
threshold, based on the system parameters values. This enables us to
devise a low-complexity algorithm to minimize the age. These results
reveal an interesting phenomenon: While choosing the rate with
minimum mean delay is delay-optimal, this does not necessarily
minimize the age.
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1 INTRODUCTION

Age of information is a new metric that has attracted significant
recent attention [3, 4, 10, 19]. This concept has been motivated by
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the rapid growth of real-time applications, e.g., health monitoring,
automatic driving system, and agriculture automation, etc. For
such applications, freshness of information updates is of utmost
importance. However, traditional metric like delay cannot fully
characterize the freshness of information updates. For example, if
information is updated infrequently, then the updates are not fresh
even though the delay is small. To this end, age of information,
or simply the age, was proposed in [11] as a measure of the data
freshness. Specifically, age of information is defined as the time
elapsed since the generation of the most recently received status
update.

There exist many works dealing with the age minimization prob-
lem. One class of works have focused on investigating optimal
sampling and updating policy to minimize age of information. In
[16], authors study the updating policy to minimize age in the
presence of queuing delay. In [1, 7, 17, 20], sampling and updating
polices are studied under energy constraint. In [1, 17], the authors
assume that the channel is noiseless while in [20], authors assume
that channel state is known a priori and updating cost is a func-
tion of channel state to ensure successful transmission. In 7], the
authors consider transmission failure and investigate optimal sam-
pling policy for age minimization under energy constraint. These
works consider the effects of queueing delay, channel state, energy
supply and minimize the age of information by controlling sam-
pling and updating times, in which case they assume that there is
only one transmission mode to transmit updates. However, in real
systems, updates can be sent to a destination using heterogenous
transmissions in terms of transmission delay and error probability.
Two examples are provided as follows:

Error rate control: Error rate control scheme is managed at phys-
ical layer. In particular, the transmission rate is often adapted via
modulation and coding scheme to meet a fixed target error rate
[9]. It is known that choosing a lower target error rate corresponds
to a lower transmission rate, and hence a longer transmission de-
lay. On the other hand, a higher transmission rate (i.e., a shorter
transmission delay) also corresponds to a higher transmission error
probability of information delivery. Thus, there is a tradeoff be-
tween transmission delay and transmission error probability, both
of which are affected by the target error rate.

Scheduling over channels in different frequencies: It is common
that a device can access channels in different frequencies. For ex-
ample, cellphones can access WiFi (high frequency) and LTE (low
frequency). If updates are transmitted over such devices, then the
age of information may experience different transmission proper-
ties based on the carrier frequency. In particular, it is known that it is
hard for radio waves to distract obstacles that are in same or larger
size than their wavelength. Thus, low-frequency radios (longer
wavelength) are less vulnerable to blockage than high-frequency
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radios, which implies that low frequency channels are more reliable
than their high frequency counterparts. Of course, the higher fre-
quency channels allow for higher rate (shorter delay) transmissions,
resulting in a similar tradeoff between the transmission delay and
transmission error probability.

The above examples clearly indicate that, transmission of updates
can experience different transmission delays and error probabilities
based on the choice of either target error rate or carrier frequency.
In particular, a decrease in the transmission error probability will
increase the chances of a successful update delivery (decrease age)
while an increase in the transmission delay will increase the inter-
delivery time (increase age). That is, the delay and error probability
of a transmission mode affect the age in opposite direction. Thus,
the key questions are: when is it optimal to use the lower transmis-
sion rate with a lower error probability?; which variable plays a more
important role in determining the optimal actions?. To address these
questions, we begin by investigating a status update system with
two heterogenous transmissions and obtain the optimal transmis-
sion selection policy to minimize the average age. Studying the
two-rate scenario provides us with some insights in the optimal
policy for a more general multi-rate (multi-error probability) sce-
nario, which is discussed in Section 5, and provides basis for our
future work. Specifically, our contributions are outlined as follows:

e We investigate the optimal trade-off between transmission
delay and error probability for minimizing the age. We show
that there exists a stationary deterministic optimal transmis-
sion selection policy. Moreover, we show that the optimal
transmission selection policy is of threshold-type in terms
of the age (Theorem 4.1). In particular, we show that the
optimal action is a non-increasing (non-decreasing) function
of the age if the mean delay of the low rate transmission is
smaller (larger) than that of the high rate transmission. This
result was not anticipated: For example, in [8, 12], it was
shown that the optimal delay policy chooses the server with
minimum mean delay whenever it is available. With this, one
may expect that using the transmission with higher mean
delay would worsen the age performance. Surprisingly, how-
ever, we show that choosing the transmission with higher
mean delay can sometimes improve the age performance.

e We derive the average cost as a function of the threshold
with the aid of the state transition diagram. We then opti-
mize the threshold to minimize the average cost function. In
particular, although the optimization problem is non-convex,
we are able to show that if the mean delay of the low rate
transmission is smaller than that of the high rate transmis-
sion, the objective function is quasi-convex; otherwise, the
optimal policy chooses higher rate transmission (Theorem
4.6). This enables us to devise a low-complexity algorithm
to obtain the optimal policy.

The remainder of this paper is organized as follows. The system
model is introduced in Section 2. In Section 3, we map the problem
to an equivalent problem which can be regarded as an average
cost MDP, and then formulate the MDP problem. In Section 4, we
explore the structure of the optimal policy and properties of average
cost function, and devise an efficient algorithm. In Section 5, we
provide a disscusion on multi-rate scenario. In Section 6, we provide
numerical results to verify our theoretical results.
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2 SYSTEM MODEL

We consider a status update system, in which update packets are
sent to the destination via a wireless medium with varying trans-
mission delay and error probability. The update packets are gen-
erated whenever the wireless medium becomes idle. We assume
that there are two heterogenous transmissions available for up-
dating, namely low rate and high rate transmissions. The high
rate transmission offers a shorter transmission delay than low rate
transmission; while low rate transmission offers more reliable trans-
mission than high rate transmission. A decision maker chooses a
transmission mode for each transmission opportunity. We denote
the set of transmission modes as U = {1, 2}, where 1 and 2 de-
note the low rate and high rate transmissions, respectively. We use
Pa2{pj:0<pj<lLjeUtandD = {dj:0<dj <oo,je U}to
denote the set of transmission error probabilities and transmission
delays, respectively. Transmission j € U corresponds to transmis-
sion delay d; and transmission error probability p;. We assume that
d1 > dz andp1 < p2.

We use Y; to denote the transmission delay of packet i, where
Y; € D. Let D; denote the delivery time of packet i. Since updates
are generated whenever the wireless medium becomes idle, D;
equals to the generation time of packet i + 1. Also, we have D; =
> ;.:1 Y;. At any time ¢, the most recently received update packet is
generated at time

U(t) = max{Dj : Dj+1 < t}. (1)

Then, the age of information, or simply the age is defined as
A(t) =t -U(t). (2)
The age A(t) is a stochastic process that increases with ¢ between
update packets and is reset to a smaller value upon the successful

delivery of a fresher packet. We suppose that the age A(t) is right-
continuous. As shown in Fig. 2, packet 2 is sent at time D; and its
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delivery time is Dy = D1 + Y. Since this packet transmission fails,
the age does not reset to a smaller value at Dy. Packet 3 transmission
starts at Dy, which is successfully delivered at time Ds. Thus, the
age increases linearly until it reaches to A(D3) = Y1 + Y2 + Y3 before
packet 3 is successfully sent, and then drops to A(D3) = Y3 at Ds.

3 OPTIMIZATION PROBLEM

We use u; to denote which transmission mode (low rate or high
rate) is selected to transmit packet i, where u; € U. In particular,
if u; = 1 (or u; = 2), then packet i is transmitted using the low (or
high) rate transmission, encounters transmission delay d; (or dz),
and is received successfully with probability 1 — p; (or 1 — p2). A
transmission selection policy 7 specifies a transmission selection
decision for each stage!. For any policy 7, we define the total
average age as

E[ (7" A)dt]

A(r) = limsu 0
nes E[Dy]

Our goal is to seek a transmission selection policy that solves
the total average age minimization problem as follows:

A = ”mel% A(r), (4)

®)

where A* denotes the optimal total average age. Let IT denote the
set of all causal transmission selection policies, in which the policy
7 € II depends on the history and current system state.

3.1 Equivalent Mapping of Problem (4)

We decompose the area under the curve A(t) into a sum of disjoint
geometric parts as shown in Fig. 2. Observing the area in interval
[0, Dy ], the area can be regarded as the concatenation of the areas

Q;. Then,

Dy, n-1
/0 A(t)dt = Z[Qi]. (5)
i=0

Let a; denote the age at time D;, i.e.,, a; = A(D;). Then, Q; can be
expressed as

1
Qi =a;Yiy + EY,-ZH- (6)

Recall that D, = Z?;OI Yi+1. With Eq. (5) and Eq. (6), the total
average age is expressed as
Yo Ela;iYier + Y2 ]
lim sup P . (7)
n—co 2icg ElYiv]
With this, the optimal transmission selection problem for mini-
mizing the total average age can be formulated as

_ Yo ElaiYier + 3V ] ®)

A* £ min lim sup -
mell p—eo 2icy BlYis]
The problem is hard to solve in current form. Thus, we provide an
equivalent mapping for it. A problem with parameter f is defined
as follows:

= 1
p(f) = ,Teiﬁ hfl_fip " ZO: E[(a;i — B)Yiv1 + EYi2+1]' )

IStage i corresponds to the duration from D;_; to D;.
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LEmMA 3.1. The following statements are true:
() A" Z B if and only if p(p) Z 0;
(ii) If p(B) = 0, then the optimal transmission selection policies that
solve (8) and (9) are identical.

ProoF. The proof is similar to that of Lemma 3.5 in [2]. The
difference is that we use the boundedness of transmission delay
while in [2], the boundedness of inter-sampling time is used. The
detailed proof is provided in our technical report [18]. O

By Lemma 3.1, if § = A*, then the optimal transmission selection
policies that solve (8) and (9) are identical. With this, given f, we
formulate the problem (9) as an infinite horizon average cost per
stage MDP in Section 3.2 and show that the optimal policy for (9)
is of threshold-type in Section 4.1. Since the value of f is arbitrary,
we will be able to conclude that the optimal policy for (8) is of
threshold-type. In addition, in Section 4.2, we are able to devise a
low-complexity algorithm to obtain the optimal threshold.

3.2 The MDP problem of (9)

From [5], given f, problem (9) is equivalent to an average cost
per stage MDP problem. The components of the MDP problem are
described as follows:

o States: The system state at stage i is the age a;. In this paper,
we consider the state space S = {a = ld; + vdy : L,v €
{0, 1, - - - }}. If the initial state is outside S, then eventually
the state will enter S (with state dq or dz); otherwise, a suc-
cessful packet transmission never occurs. In fact, the maxi-
mal probability that no transmission succeeds after [ stages
is pé, which decreases with number of stages I. After state
enters S, it will stay in S onwards (since transmission delay
is either dj or dy). Note that S is unbounded since successful
packet transmission happens with certain probabilities.

e Actions: At delivery time D;_1, the action that is chosen for
stage i is u; € U. The action u; determines the transmission
delay. For example, if u; = 1, then the transmission delay at
stage i is d.

e Transition probabilities: Given the current state a; and
action u; at stage i, the transition probability to the state
aj+1 at the stage i + 1 is defined as

Pu if a’ =a+dy,
P(aiv1 =d'lai =a,ui=u)=41-p, ifa’ =dy (10)
0 otherwise.

e Costs: Given state a; and action u; at stage i, the cost at the
stage is defined as

Cla, ) = (a5 = P)duy + 55, (an

Given f, the average cost per stage under a transmission selection
policy 7 is given by

n-1
> Clas, u»] : (12)
i=0

Our objective is to find a transmission selection policy z € II that
minimizes the average cost per stage, which can be formulated as

1
J(m, B) £ limsup —E
n—oo N
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Problem 1 (Average cost MDP)
min J(z, B). (13)
mell

We say that a transmission selection policy 7 is average-optimal if
it solves the problem in (13). A transmission selection policy is a
sequence of decision rules, i.e., 7 = ({3, {2, - - - ), where a decision
rule {; maps the history of states and actions, and the current state
to an action. A transmission selection policy is called a stationary
deterministic policy if u; ={(a;) for all i € N*, where { :S— U is
a deterministic function. Stationary deterministic policies are the
easiest to be implemented and evaluated. However, there may not
exist a stationary deterministic policy that is average-optimal [5].
Next, we show that there exists a stationary deterministic transmis-
sion selection policy that is average-optimal. Moreover, we show
that the optimal policy is of threshold-type.

4 STRUCTURE OF AVERAGE-OPTIMAL
POLICY AND ALGORITHM DESIGN

In this section, we investigate the structure of the average-optimal
policy and propose an efficient algorithm for the original problem

(3).

4.1 Threshold Structure of Average-Optimal
Policy
4.1.1 Threshold structure: The following theorem states that there
exists a threshold-type stationary deterministic policy that is average-
optimal. In particular, the problem is divided into two cases based
on the relation between dj(1 — p2) and d2(1 — p1). Under these two
cases, the threshold-type average-optimal policy shows opposite
behaviors.

THEOREM 4.1. There exists a stationary deterministic average-
optimal transmission selection policy that is of threshold-type. Specif-
ically,

(1) If d1(1 — p2) < d2(1 — p1), then the average-optimal policy is of
the form =* = ({*, (%, - -), where

*(a) = {2

1 ifa] <a,

if0<a<al,
d ! (14)

where a] denotes the age threshold.
(ii) If d1(1 — p2) = d2(1 — p1), then the average-optimal policy is of
the form n* = ({*,{*,---), where

. *
e e -
where a;, denotes the age threshold.
Proor. Please see Section 4.1.2. ]
Define the mean delay of transmission mode j € U as
i s 4
GETT (16)

By Theorem 4.1 (i), when the age exceeds a certain threshold, the op-
timal policy chooses the transmission with smaller mean delay. This
result reveals an interesting phenomenon: While the transmission
with minimum mean delay is the optimal decision for minimizing
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the average delay, this does not necessarily minimize the age. In
particular, when the age is below a certain threshold, the average
age is reduced by choosing a faster transmission that has a higher
mean delay (i.e., a higher error probability). The reason is that if
successful, the age remains low. If it fails, it provides an opportunity
to generate a later packet that can be transmitted in a shorter period
of time. In Section 4.2, based on Theorem 4.1 (ii), we will show that
the averge-optimal policy under di(1—p2) > da(1—p1) is to choose
high rate transmission for each transmission opportunity. This is
reasonable because both the delay and mean delay (including the
impact of the error probability) of high rate transmission is shorter
than that of low rate transmission.

4.1.2  Proof of Theorem 4.1. One way to investigate the average
cost MDPs is to relate them to the discounted cost MDPs. To prove
Theorem 4.1, we (i) address a discounted cost MDP, i.e., establish
the existence of a stationary deterministic policy that solves the
MDP and then study the structure of the optimal policy; and (ii)
extend the results to the average cost MDP problem in (13).

Given an initial state a, the total expected a-discounted cost
under a transmission selection policy 7 € II is given by

n-1
V¥(a; ) = limsupE Z a'Clai, up)|, (17)
n—oo i=0

where 0 < a < 1 is the discount factor. Then, the optimization
problem of minimizing the total expected a-discounted cost can be
cast as

Problem 2 (Discounted cost MDP)

V%(a) £ min V*(a; ), (18)
mell

where V%(a) denotes the optimal total expected a-discounted cost.
A transmission selection policy is said to be a-discounted cost op-
timal if it solves the problem in (18). In Proposition 4.2, we show
that there exists a stationary deterministic transmission selection
policy which is a-discounted cost optimal and provide a way to
explore the property of the optimal policy.

PROPOSITION 4.2. (a) The optimal total expected a-discounted cost
V¢ satisfies the following optimality equation:

V% (a) = min Q%(a, ), (19)
where
0% a,u) = C(a,u) + ap, V¥(a+dy) + a(1 — p, )V¥(dy). (20)

(b) The stationary deterministic policy determined by the right-
hand-side of (19) is a-discounted cost optimal.

. _ _di—d
(c) Let Vi (a) be the cost-to-go function such that Vi (a) = 05(]172_;1) a
and forn > 0
V() = 11;2111} 07 1(a,u), (21)

where
foﬂ(a, u) = Cla,u) + apy Vi (a + dy) + a(1 — pu)V,¥ (dy).  (22)

Then, we have that for each a, V¥ (a) — V%(a) asn — oo.

PRrOOF. See our technical report [18]. O
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Next, with the optimality equation (19) and value iteration (21),
we show that the optimal policy is of threshold-type in Lemma 4.3.

LEmMMA 4.3. Given a discount factor a,

(i) if (1 — apz)di < (1—ap1)ds, then the a-discounted cost optimal
policy is of threshold-type, i.e., the optimal action is a non-increasing
function of the age.

(ii) if 1—apa)d1 = (1—ap1)da, then the a-discounted cost optimal
policy is of threshold-type, i.e., the optimal action is a non-decreasing
function of the age.

ProoF. Please see Appendix A O

This lemma proves that the a-discounted cost optimal policy
is of threshold-type. Next, we extend the results to average cost
MDP and show that there exists a stationary deterministic average-
optimal policy which is of threshold-type. Based on the results in
[15], we have the following lemma, which provides a candidate for
average-optimal policy.

LEmMA 4.4. (i) Let ap, be any sequence of discount factors con-
verging to 1 with ay-discounted cost optimal stationary deterministic
policy m*n . There exists a subsequence y, and a stationary policy =*
that is a limit point of w¥».

(i) If di(1 — p2) < d2(1 — p1), ©* is of threshold-type in (14); if
d1(1 = p3) > da2(1 = p1), " is of threshold-type in (15).

PRrOOF. See our technical report [18]. O

By [15], under certain conditions (A proof of these conditions
verification is provided in our technical report [18]), #* is average-
optimal.

4.2 Algorithm Design

Recall that if p(f) = 0, then the optimal transmission selection
policies that solve (8) and (9) are identical. Given S, the optimal
policy that solves (9) is of threshold-type by Theorem 4.1 and then
(9) can be re-expressed as

min J(r, §),

elly

frlélnnz J(r, B),

ifdi(1-p2) <d2(1—p1) (23)

P ifdi(1-p2) 2 o1~ pr) (24)
where IT; and ITy denote the sets of threshold-type policies in (14)
and (15), respectively. Thus, the optimal policy that solves (8) can
be obtained with two steps:

e Step (i): For each f, find the f-associated average-optimal
policy 7[;, such that p(f) = ](7{/’;, D).
o Step (ii): Find * such that p(f*) = 0. This implies ”E* solves
(8).
To narrow our searching range in (ii), in Lemma 4.5, we provide a
lower bound S, and an upper bound fmax of f*. Then, for (i), we
only need to pay attention to p(f) for f € [Pmin> Pmax]-

In particular, within the range of f§, we show that J in (23) is
quasi-convex in a threshold related variable, which enables us to
devise a low-complexity algorithm based on golden section search.
Moreover, we show that 7, that solves (24) always chooses u = 2,

which allows us to get the optimal policy for (8) directly.
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LEMMA 4.5. The parameter * is lower bounded by Pmin = 1.5dy
and upper bounded by fmax = min {(# +0.5)d1, (1_—lp2 + O.S)dz}.

PROOF. See our technical report [18]. O

In the following content, we provide a theoretical analysis step
by step for our algorithm design in Algorithm 1, which returns the
optimal threshold and optimal average age for (8).

Algorithm 1: Threshold-based Age-Optimal Policy

1 givend,, dz, p1, p2.T = (\/5— 1)/2, tolerance €1, €2, I = Bmin, I = Pmax;
2 whiler -1 > ¢ do

3 p= VT*I;

4 if di(1 — p2) = dy(1 — py) then

5 | m=0k=07J=(0,0,p)

6 else

7 kmax = LGH) 0" = £1,0, )

F foreach k; € {0,1, -, kpax } do

9 if le:l < 0 then

10 m = 0;

1 else

12 Yo =0,y =L, y2 = y1 — (y1 — yo)7,

Ys = yo + (Y1 — o)

13 while poy; > yo and y; — yo > € do
14 if Ji(yz2, k1, B) > Ji(ys, ki, ) then
15 ‘ Yo = Y23

16 else

17 | vi=ys

18 end

19 Y2 =y1— (1~ 90)7, y3 = Yo + (Y1 — Yo)T;
20 end

21 ty = |log,, yol. t2 = [log,, y11;

22 m = argmin,,c, 4y P25k, B);
23 end

24 if Ji(p}", ki, B) < J* then

25 | T =13 ki, B);

26 end

27 end

28 end

29 if J* > 0 then

30 | I=5;

31 else

32 | r=5;

33 end
3¢ end

Step (i): Find the optimal policy n;;: Note that both of the
threshold-type policies defined in (14) and (15) result in a Markov
chain with a single positive recurrent class. Thus, given threshold
aj in (14) or a; in (15), we can obtain the expression of average cost
under the corresponding threshold-type policy with aid of state
transition diagram. With this, we obtain some nice properties of
average cost function in Theorem 4.6, which enables us to get a low-
complexity algorithm. Before providing the result, we define the
integer threshold which will be used in the theorem and algorithm.

Recall that age a € S is expressed as the sum of multiple d;’s and
d2’s. Note that under the threshold-type policy in (14), if a < a7,
{(a) = 2. This implies that if a < a7, aisinthe forma = dj+Id, j €
U, 1 € N. Thus, it is sufficient to use the following integer threshold
to represent the threshold-type policy in (14).

mi émin{l:d1+ld2 >aT,l€N}, (25)
m émin{l:d2+ld2 >a’{,l€N}. (26)
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Table 1: Notations

A1 = pR (1= p1) = di(1 = p2)) (do(ky + 1) — dy)

By = —As + pil(1 - p2)(0.5d% - fd + %) + (1= p1)(Bdy - 0.5d% %)
Cy =(1-p1)0.5d2 - Bdy + ﬁ)dg
Dy = (di(1 - p2) - do1 - py)op,’
Ay = p (1= pa) = do(1 = p1)) (i (1= ko) — )
By = —pr2(1 - py)(0.5d% — Bdy + %) +(1—p1)(0.5d% - Bdy + %
—(di(1 = p2) = do(1 = p1))(d1 = do)
Cy = (1-p2)(0.5d% — pdy + %)
Dy = (d2(1-p1) = di(1-p))dy
With this, the threshold policy in (14) is rewritten as
ros{l T @
Similarly, the policy in (15) can be rewritten as
JCR RN Rl
where
my £ min {l: dy +1d; > a},1 € N}, (29)
ny 2 min{l:dy +1dy > a3, 1 € N}. (30)

Based on the analysis, (23) and (24) can be re-expressed as
min Ji(my, k1, B), if di(1 - p2)<dal — p1) (31)

my, ki
mif(l Jo(ma, ko, B),  if di(1 = p2)=>da(l — p1) (32)
ma, K2

p(B) =
where k1 = ny—mj and ky = ny —mj. Also, we use J1(mj1, k1, f) and
Jo(m2, ko, ) to denote the average cost under the policies in (27)
and (28), respectively. We have k; € K3 = {0,1} and k1 € K3 =
{O, cee, LZ—:J } In particular, according to the definition of my and
ny, we have (mg + 1)d; > a > dy + (nz — 1)d; and d + n2dy >
a; > mgads. Substitute ky = ny — my into these two inequalities, we
get ky € K. Similarly, we have k1 € K.

In Theorem 4.6, we provide some nice properties for J; and J,
which enables us to develop a low-complexity algorithm. To this
end, we make a change of variable in Theorem 4.6 (i), i.e., mj is
replaced with logpz(y) in J1, where y € (0, 1]. Some notations used
in this theorem are defined in Table 1.

THEOREM 4.6. Given 8 € [Bmin, Pmax>
(i) if di(1 — p2) < d2(1 — p1), then the average cost is given by

A1y2 + B1y + C1 + Dyylog,, (v)
Ji(y. k1. B) = P

. , (33)
1=p1+(=1+p1+p,'(1-p2)ly

where y = p;nl. Moreover, J1(y, k1, B) is quasi-convex iny for 0 <
y <1, givenk; € K.
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(ii) if di(1 = p2) = do(1 — p1), then optimal average cost is given
by
Ay + By +Cy

J2(0,0,8) = o (34)

Moreover, the average-optimal policy chooses u = 2 at every trans-
mission opportunity.

PRrOOF. Proof of part (i) is provided in Appendix B. For part
(ii), the key idea is to show that for all my, Jo(ma, k2, ) is non-
decreasing in ky € K3, and then J»(ms2, 0, §) is non-decreasing in my.
This implies that the optimal decision is u = 2 at each transmission
opportunity. Due to the space limitation, detailed proof is provided
in our technical report [18]. o

With the property in Theorem 4.6 (i), we are able to use golden
section search [14] to find the optimal value of y under condi-
tion di(1 — p2) < d2(1 — p1). The details are provided in Algo-
rithm 1 (Line 12-20). Note that logp2(~) is one-to-one functions.
Thus, after obtaining the optimal y that minimizes J;, the corre-
sponding optimal threshold m; can be easily obtained by compar-

ing J1(p2 Uogl’z(y)J, ki1, p) and Ji(p2 Hog!’z(yﬂ, k1, f)). The details are
provided in Algorithm 1 (Line 21-22). Till now, we have solved
ming,, Ji(m1, k1, f) given ki and f. Note that k; € K has finite
and countable values. Then, we can easily solve (31) under condi-
tion di(1 — p2) < d2(1 — p1) by searching for the optimal k; in the
finite set %K.

Note that Theorem 4.6 (ii) applies to all § € [fmin,fmaxl includ-
ing f*. Thus, the optimal policy for (8) is to take u = 2 at every
transmission opportunity, which is returned directly in Algorithm
1 (Line 4-5). Under this condition, the step (ii) is only used to find
optimal average cost * for (8).

Moreover, in Line 9-10, we add a judgement sentence, i.e., if

the condition %;lﬁ) |y=1 < 0 is satisfied, then we can directly
obtain the optimal m; without running golden section method. This

further reduces the algorithm complexity. The judgement is based

0Ly, k1, B)
]

on the fact that limy— < 0 (this is proved in the proof

of Theorem 4.6 in Appendix B) and J; is quasi-convex. Thus, if
Wb:l < 0, then Jj is non-increasing in y.

Step (ii): Find f*: By Lemma 3.1, if p(8) > 0, then < g% if
p(B) < 0, then § > B*. Thus, we can use bisection method to search
for f*. The details are provided in Algorithm 1 (Line 2-3 and Line
29-33).

5 A DISCUSSION ON THE GENERAL
MULTI-RATE TRANSMISSION SELECTION
PROBLEM

For the multi-rate transmission selection (from more than two-rate)
problem, we assume that there are N € N* transmission modes for
selection such that transmission delays and error probabilities sat-
isfy dj > djy1 and pj < pji1, for j € {1,2,--- , N — 1}, respectively.
Since the transmission delays and transmission error probabilities
affect the age in opposite direction, it is difficult to determine the
optimal policy. Thanks to the results obtained for the two-rate
transmission selection problem, we obtain some useful insights for
the general multi-rate transmission selection.
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Table 2: Optimal threshold versus delay

d1=1.5dy d1=1.7d» d1=1.9d2 di=2.1dy d1=2.3d>
=1 (00) ©0) 12 34 (15.16)
dy=5 (0,1) (0,1) (1,2) (3,4) (15,16)
da=9 (0,1) (0,1) (1,2) (3,4) (15,16)

In particular, for the two-rate transmission selection problem,
the optimal action is a non-increasing function of age under condi-
tion d; < dz and a non-decreasing function of age under condition
d1 > da, where di and d» are mean delays of low and high rate trans-
missions, respectively, as defined in (16). With this, we can infer
that for N > 2, the optimal policy will have following properties:

e (i)ifd; < dy < --- < dy, then the optimal action will be a
non-increasing function of the age,

e (ii)ifd; > dz > --- > dy, then the optimal action will be a
non-decreasing function of the age.

For the cases that are not covered in (i) and (ii), we need more
investigation on the property of the optimal policy. In addition,
if we can show that the optimal policy for the general multi-rate
problem is of threshold-type, then machine learning algorithms
can be used to determine the optimal threshold. For example, if
we regard each threshold-type policy with a certain threshold as a
bandit, then basic bandit algorithms like UCB can be exploited to
find the optimal threshold [13].

6 NUMERICAL RESULTS

In this section, we present some numerical results to explore the
performance of the threshold-based age-optimal policy and verify
our theoretical results.

First, we consider an update system, in which p; = 0.4 and
p2 = 0.75. Table. 2 illustrates the relation between the optimal
threshold versus the transmission delay dz and the delay ratio Z
under condition d(1 — p1) > di(1 — p2). The threshold (my, n1) in
the table is obtained by Algorithm 1. We observe that the threshold
increases with either dz or the delay ratio g—l Note that when
the age is below the threshold, transmission mode 2 is selected.
Thus, this observation implies that transmission mode 2 becomes

or when dl

more preferable either when dy increases with ﬁxed
increases with fixed ds.

In Fig. 3, we consider an update system, in which the transmis-
sion delays are d; = 10 and dy = 8. We use “Delay-Optimal” to
denote the optimal policy that minimizes the average updating
delay by always choosing the transmission mode with minimum
mean delay [8, 12]. Moreover, we use “Age-Optimal” to denote the
optimal policy that is obtained from Algorithm 1. We use “Random
p” to denote the policy that chooses u = 1 with probability p. We
compare our threshold-based “Age-Optimal” policy with “Random
p” policies and the “Delay-Optimal” policy, where p € {0.25,0.5}.
Fig. 3a (3b) illustrates the total average age in (7) versus transmis-
sion error probability p; (p2) given p2 = 0.5 (p1 = 0.5). The dashed
line in the figure marks the point at which di(1 — p2) = d2(1 — p1).
The left and right (right and left) of the line corresponds to condi-
tions dq1(1 — p2) < d2(1 — p1) and dq1(1 — p2) > d2(1 — p1) in Fig. 3a
(in Fig. 3b), respectively. As we can observe, the age-optimal policy
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(a) Average age vs p; given p, = 0.5 (b) Average age vs p; given p; = 0.5
Figure 3: Total average age versus transmission error proba-
bility

outperforms other plotted policies. This agrees with Theorem 4.1.
Moreover, the results confirm that the delay-optimal policy does
not necessarily minimize the age. In particular, the gap between
delay-optimal and age-optimal policy becomes larger as p; (p2) ap-
proaches to the left side (right side) of the dashed line in Fig. 3a (Fig.
3b). The jump in the curve of the delay-optimal policy is incurred
by the switch between two transmission modes. For example, in
Fig. 3a, delay-optimal policy chooses u = 1 on the left side of the
dashed line, while chooses u = 2 on the right side. This is because
transmission mode 1 has smaller mean delay on the left side while
transmission mode 2 has smaller mean delay on the right side.

7 CONCLUSION

In this paper, we studied the transmission selection problem for
minimizing age of information in information update system with
heterogenous transmissions. We assume that there are two different
transmissions with varying delay and error probability. We showed
that there exists a stationary deterministic optimal transmission se-
lection policy which is of threshold-type in age (Theorem 4.1). This
result reveals an interesting phenomenon: If the mean delay of the
low rate transmission is smaller than that of high rate transmission,
then the optimal action chooses the one with higher mean delay
when age is smaller than a certain threshold. This is in contrary
with the delay-optimal policy that always chooses the transmission
with lower mean delay. In addition, we showed that if the mean
delay of the low rate transmission is smaller than that of high rate
transmission, the average cost is quasi-convex in a threshold re-
lated variable; otherwise, the optimal policy chooses u = 2 for each
transmission opportunity (Theorem 4.6). This enabled us to design
alow-complexity algorithm to obtain the optimal policy (Algorithm
1). For the future work, we plan to study the multi-rate scenario
with more than two selections of heterogenous transmissions based
on the insights discussed in Section 5.
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A PROOF OF LEMMA 4.3

(i) To show that the optimal action is a non-increasing function
of age, we will show that if the optimal action is u = 1 at certain
age, then for the age larger than this age, the optimal action is still
u = 1. Let a; and ay be ages such that a; < ay. In particular, we will
show that if 0% (a1, 1) < Q%(ay, 2), then Q%(az, 1) < Q%(az,2). It
suffices to show that Q%(a, 1) — Q%(a, 2) decreases with age q, i.e.,

Q%(a1,1) — Q%(a1,2) 2 Q%(az, 1) - Q%(az, 2). (35)

By Proposition 4.2, we only need to show that for n € N,
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On 1(a1,1) = O 1(a1,2) 2 QF, (a2, 1) — 05, 1(a2,2)  (36)
©Ca, 1) + ap1 Vi (a1 +d1) + a(1 = p)VE(dr)
- C(a1,2) — ap2Vii (a1 + d2) — a(1 = p2)V,¥ (d2)
> Clag, 1) + ap1V (az + d1) + a(1 — p1)V,¥ (dh)
— Claz, 2) — apaVy' (az + dz) — a(1 = p2)Vyy' (d2) (37)
©(a1 = az)(d1 — dz) + ap1Vy (a1 +d1) — ap1Vy' (az + d1)
+ap2Vy (az +dz) — ap2Vy' (a1 +dz) 2 0. (38)
We show (38) by induction. When n = 0, substitute V*(a) =
%a into the left-hand-side of (38) with n replaced with 0
and we have
(a1 — ap)(d1 — d2) + ap1 V¥ (a1 + d1) — ap1Vy* (a2 + d1)
+apaVy' (az + dp) — apz V¥ (a1 +dz) = 0 (39)
Hence, (38) holds when n = 0. Suppose (38) holds for n, we will
show that it holds for n + 1. Let u1, ug, u3, us be the optimal actions
in state a1 + dq, az + di, az + da, a1 + da, respectively. Specifically,
Vi (ar+dr) = Qp (a1+dy,u1), V)7, (az+d1) = Oy, (az+d1, uz),
VI (az +dp) = Q (a2 + dp,u3) and V7, (a1 +d2) = Qpy (a1 +
dy, uq). Then, the left-hand-side of (38) is
(a1 = az)(dy — dz)
+ap105, (a1 +di,ur) — ap10f, 1 (az + d1, uz)
+ap205, 1 (az + dz, u3) — ap205 1 (a1 + da, ug)
=(a1 — az)(d1 — d2)

+ap105, (a1 +di,u1) — ap1Qf, ,(az + d1, u1)

A
+ap105,(az +di,u1) — ap1Q5, (a2 + d1, u2)

>0 (By optimality of action u3)

— (ap205, (a1 + dz, u3) — ap2Q% | (az + do,u3) )

B
+ ang,’fH(al +dy, u3) — aszz+1(a1 +do,uyg). (40)

>0 (By optimality of action uy)
By induction hypothesis, we have
A>ap; ulren{ilr}z} {(a1 — ag)dy, + apy, V(a1 +di + dy,)
= apu, V¥ (az +dy +dy,)} (41)

=ap1 ((a1 — az)dz + asz,f’(al + d1 + dz)

— ang,f‘(ag +d + dz)) (42)
Similarly,
B <ap, max {(a1 — ag)dy, + apu, Vi (a1 + do + dys)
us€{1,2}

— apu, Vi (ag + dz + duy)} (43)
=aps (a1 =~ az)d + ap Vi (@ + dp + )

- ap1V,f‘(a2 +dy + dl)). (44)
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Figure 4: State transition diagram under policy in (14)

Hence, substitute (42) and (44) into (40) and we obtain
(a1 — az)(d1 — dz)
+ap105, (a1 +di,u1) — ap1Qy, (a2 + di, uz)

+ (szQZ(_H(az +dy, u3) — Olngz_H((h +do, u4)

>(a; —az)(dy —dy)+A-B (45)
2(a1 — az) (1 — apz)di — (1 — ap1)dz) (46)
>0, (47)

where (47) holds by the condition (1 — ap)d; < (1 — ap;)da.
(if) Similar to part (i), it suffices to show that for a; < ay,
Qa(al’ 1) - Qa(al’ 2) < Qa(az’ 1) - Qa(az’ 2) (48)

The proof is similar to part (i).

B PROOF OF THEOREM 4.6 (I)

We first obtain expression of average cost in (33) with aid of state
transition diagram. The state transition diagram under the policy
in (14) is given in Fig. 4. Define the state steady probabilities x;, xl’ ,
z; and z; under policy in (14) as

x; £ Pla =dy + Idy), 0<I<m+k, (49)
x] & Ba = dy + (my + ki)ds + 1dy), I>0, (50)
z; £ P(a =dy + ldy), 0<l<m, (51)
2l & P(a=dy +mydy +1dy), I>0. (52)

Based on the state transition diagram, balance equations can be
obtained as follows:

mp—1 my+ki—1
x0=(1—p2)(221+ > xl), (53)

1=0 1=0
poxy =x101, Le{0,1---mg+k —1}, (54)
p2zp =z141, Le{0,1---my—1}, (55)
pix;=xp,, le{o1---}, (56)
pizp =2z, le{o,1---}. (57)

Solving the equations (53)-(57), we obtain the expressions of x, xl' ,
z; and z; in terms of x¢ as follows:

x;=phxo, 1€ {01+ my+ki}, (58)
my+ky, |
z] = pz—nﬁzxo, le {O,l»~-m1}, (59)

l—p2
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x| =pPRipla, le{o1--0), (60)
2my+ky, 1
Z;:le__pm{%xo, lef{o,1---}. (61)
2

Substituting (58)-(61) into Z;Z‘(;rkl xl+2;r:0 Z+ 200, xl’+2‘;‘;1 z; =
1, we obtain xj as

~ (1= p)(1 - p2)(1 - 3™

i —pr+pyt(p1—1) +P£m+k1(1 -p)
The average cost J1(my, k1, B) is expressed as

Xo (62)

my+k;—1 m;—1

Jmi ks, By = D Cldp +1dp,2x, + ) Cldy +1d3, 2z
1=0

+ C(dy + (mq + k1)d2 + ldy, l)xl'

s I0Ms T

+ Z C(dy + mydy + ldy, 1)z]. (63)
1=0
where C(., -) is the cost function defined in (11). Substitute (58)-(61)
and (62) into (63). After some algebraic manipulation and change
of variable (p,"! is replaced by y), we obtain (33).

2
Next, we show that J; is quasi-convex. By definition of quasi-

convex, it suffices to show that its first derivative W with
respect to y satisfies at least one of the following conditions [6]:
o 3]1(%,k1»ﬁ) >0

y
. ajl(lyas:bﬁ) <0
o there exists a point yo € (0,1] such that for 0 < y < yo,

—6]1(%’;1’/;) <0,andfor1 >y > yo, —6]1(%,;1,[3) >0

After some algebraic manipulation, %yklﬁ)
0Ly, k1. B) _ _ h(y ki, p)

dy (1= p1+ryy?

where r = -1+ p; +p§1(1 — p2) and h(y, k1, p) is given by

is expressed as

(64)

D
N O )

Di(1+1ny)
W)(l—m) (65)

Note that the denominator of the (64) is positive. Thus, to show
that at least one of the conditions above holds, it suffices to show
that h(y, k1, B) satisfies at least one of the following conditions:

e B1: h(y, k1, B) > 0;

e B2: h(y, k1, B) < 0;

e B3: 3y € (0, 1] such that for 0 < y < yo, A(y, k1, f) < 0, and

for1 >y > yo, h(y, k1, f) = 0.
In fact, the first derivative of h(y, k1, f) with respect to y is

Oh(y, k1, B)
dy

+(B1 +2A1y+

k
py'W

d:
= 2(d2<k1+1>—d1>y—@ (ry +1-p1) (66)

————
H(y)

G(y)
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where W = d2(1—p1)—d1(1—p2). By condition dy(1-p;) > d1(1-p2),
W > 0. Note that r < =1+ p; + (1 — p2) = p1 — p2 < 0 since

0<p; <p2 <1Thus, Hy) 2r+1-p :pél(l—p2)>0,for

0 < y < 1. Hence, w

is positive (negative) if and only if
G(y) is positive (negative). Next, we will show our finial result by
analyzing two different cases.

Case 1:If da(k1 + 1) —dj > 0, then G(y) > BN 0, for 0 <

Inp,
y < 1. In this case, %}Ijlﬁ) > 0, for 0 < y < 1. Thus, h(y, k1, )
is increasing in y, for 0 < y < 1. Note that since D; < 0 (by
condition da(1 — p1) > di(1 - p2)) and pz < 1, limy—o h(y, k1, §) =
-clr+(Bl+h%+hmy_,O %)(1—1)2) < 0.Thus, if h(1, k1, f) < 0,
then B2 holds; if A(1, k1, ) > 0, then B3 holds.

Case 2:If dy(k1 + 1) — di < 0, then G(y) is decreasing in y and
Yy = m > 0 is a turning point such that G(y) > 0
when y < y; and G(y) < 0 when y > y;.

Ify; > 1, then G(y) > 0 for 0 < y < 1. Thus, %ﬁ‘ﬂ) > 0,
which implies that h(y, k1, f) is increasing in y for 0 < y < 1. Hence,
B2 or B3 holds as explained in case 1.

Ify; < 1, then G(y) > 0 when y < y; and G(y) < 0 when 1 >
y > y1, which implies h(y, k1, f) first increases and then decreases
for 0 < y < 1. We claim that if y; < 1, then h(1,k;, ) > 0 for
B € [Bmin> Pmax] and k1 € K. Recall that limy—0 h(y, k1, f) < 0.
With this, the claim implies that h(y, k1, f) starts with some negative
value and increases to zero at some point y’ and after h(y, k1, f§)
becomes positive, it will keep positive for y’ < y < 1 (B3 holds). It
remains to show that our claim holds.

Since Yy = m < 1, we have
di 1
— >k +1- 67
dy ! 2Inp, ©7)

After some algebraic manipulation and simplification, (1, k1, f)
is expressed as

h(1, k1, B)
:pgklw (dg(kl + 1) —di - 1:%) (1 —pz)
+p§1(1 —p2)(1 - p1) ((1 > + 0.5)df - (1 —lpz + O.S)dg
+ ¥ (dz — di)(1 - p1)(1 - p2) (68)

Since p§1 (d2 —d1)(1 — p1)(1 — p2) < 0, h(1, k1, p) is decreasing in
B and thus h(1, kq, B) = (1, k1, Bmax) = h(1, k1, (# +0.5)d;). It
remains to show that h(1, k1, (1—_1171 +0.5)dq) > 0. It is equivalent

1-p1

h(1,ky, (1257 +0.5)d1)
to show that A L “ > 0since d? > 0.Letz = é,
& 2 @
h(1,k1,(125-+0.5)d1)

substitute this into and obtain a function of z

&

denoted by w(z). By (67), the first derivative of w(z) satisfies
1

1- p1

#2310 =) (2 = paa + 0 - (1p)) @)

w'(z) =2p2F1(1 = p2)*z + 1 (1 - pa)( +0.5)(1 - p1)
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>w/(k; +1— m) (70)
=py'(1-p2) (pé‘l(l ~ po)ky + 1)+ L ))
951 (1=po) (1= (1=p1)) > 0 (71)

The second inequality in (71) holds since 0 < p; < p2 < 1. Thus,
w(z) is increasing and we have

w(z) 2wk +1— ﬁ) (72)

k 1
=P§1(1—p2) (P;cl(l—pz)+lnp2) ( !
[ —

N 2 lnpz - 4(1np2)2

>0

<1-po+Inp, <0 <0
k1

Py
k 73
+ 2Inps y(p1.p2, k1) (73)

where
y(p1, 2, k1) =(p1 — p2)(1 —Pz)P§1 +2(p1 —p2)Inpy
+2k1(1 = 0.5p2)(1 = p2) Inpz + (1 = p2)(0.5p1 = 1)
To show w(z) > 0, we only need to show y(p1, p2, k1) < 0. Actually,

0y (p1, p2, k1)
apz

1
=(p1 - p2)1 —pz)p§‘ Inp; + k1(2 —pl)(p—2 —1-Inpy)

>0by 0<p; <pp<1
2
+p§‘(2p2—1—p1)+%—1—%—21np220 (74)
O(p1.p2.k1)

where the inequality holds since 0(p1,p2,k1) decreases with pp and
0(p1,1,k1) = 0.5p1 > 0. Actually,

90(p1, pa. k1) k kP12
———==(2py—1— 1] 2pt —2—= —— (75
ap2 (2p2 pl)pz npz + 2p, Pg P2 (75)
2
< (p2 - Vp5* Inpy + 2p}" - 2% " (76)
2
1 2
< —(p2 - Dpy! wt 2pk — 2% -2 77)
P
1 P 2
<—(pp-1)—+2-222 2 78
(2 )2pz P, (78)
<0 (79)

where (76) holds since p, — p1 > 0 and Inpz < 0; (77) holds by
s(x) = % +2Ilnx > 0for 0 < x < 1;(78) holds sincepécl <1
(78) holds since p, < 1. In particular, the first derivative of s(x)
is s’(x) = —é + % Thus, s(x) decreases when x < 0.5 (since
s’(x) < 0 when x < 0.5) and then increases when x > 0.5 (since
s’(x) = 0 when x > 0.5). Thus, s(x) > s(0.5) = 0.2213 > 0. By
(74), y increases with py and y(p1, p2, k1) < y(p1,1, k1) = 0. This
completes our proof.
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