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ABSTRACT
In this paper, we consider a status update system, in which update

packets are sent to the destination via a wireless medium that allows

for multiple rates, where a higher rate also naturally corresponds

to a higher error probability. The data freshness is measured using

age of information, which is defined as the age of the recent update

at the destination. A packet that is transmitted with a higher rate,

will encounter a shorter delay and a higher error probability. Thus,

the choice of the transmission rate affects the age at the destination.

In this paper, we design a low-complexity scheduler that selects

between two different transmission rate and error probability pairs

to be used at each transmission epoch. This problem can be cast as

a Markov Decision Process. We show that there exists a threshold-

type policy that is age-optimal. More importantly, we show that

the objective function is quasi-convex or non-decreasing in the

threshold, based on the system parameters values. This enables us to

devise a low-complexity algorithm to minimize the age. These results

reveal an interesting phenomenon: While choosing the rate with

minimum mean delay is delay-optimal, this does not necessarily

minimize the age.
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1 INTRODUCTION
Age of information is a new metric that has attracted significant

recent attention [3, 4, 10, 19]. This concept has been motivated by
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the rapid growth of real-time applications, e.g., health monitoring,

automatic driving system, and agriculture automation, etc. For

such applications, freshness of information updates is of utmost

importance. However, traditional metric like delay cannot fully

characterize the freshness of information updates. For example, if

information is updated infrequently, then the updates are not fresh

even though the delay is small. To this end, age of information,

or simply the age, was proposed in [11] as a measure of the data

freshness. Specifically, age of information is defined as the time

elapsed since the generation of the most recently received status

update.

There exist many works dealing with the age minimization prob-

lem. One class of works have focused on investigating optimal

sampling and updating policy to minimize age of information. In

[16], authors study the updating policy to minimize age in the

presence of queuing delay. In [1, 7, 17, 20], sampling and updating

polices are studied under energy constraint. In [1, 17], the authors

assume that the channel is noiseless while in [20], authors assume

that channel state is known a priori and updating cost is a func-

tion of channel state to ensure successful transmission. In [7], the

authors consider transmission failure and investigate optimal sam-

pling policy for age minimization under energy constraint. These

works consider the effects of queueing delay, channel state, energy

supply and minimize the age of information by controlling sam-

pling and updating times, in which case they assume that there is

only one transmission mode to transmit updates. However, in real

systems, updates can be sent to a destination using heterogenous

transmissions in terms of transmission delay and error probability.

Two examples are provided as follows:

Error rate control: Error rate control scheme is managed at phys-

ical layer. In particular, the transmission rate is often adapted via

modulation and coding scheme to meet a fixed target error rate

[9]. It is known that choosing a lower target error rate corresponds

to a lower transmission rate, and hence a longer transmission de-

lay. On the other hand, a higher transmission rate (i.e., a shorter

transmission delay) also corresponds to a higher transmission error

probability of information delivery. Thus, there is a tradeoff be-

tween transmission delay and transmission error probability, both

of which are affected by the target error rate.

Scheduling over channels in different frequencies: It is common

that a device can access channels in different frequencies. For ex-

ample, cellphones can access WiFi (high frequency) and LTE (low

frequency). If updates are transmitted over such devices, then the

age of information may experience different transmission proper-

ties based on the carrier frequency. In particular, it is known that it is

hard for radio waves to distract obstacles that are in same or larger

size than their wavelength. Thus, low-frequency radios (longer

wavelength) are less vulnerable to blockage than high-frequency
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radios, which implies that low frequency channels are more reliable

than their high frequency counterparts. Of course, the higher fre-

quency channels allow for higher rate (shorter delay) transmissions,

resulting in a similar tradeoff between the transmission delay and

transmission error probability.

The above examples clearly indicate that, transmission of updates

can experience different transmission delays and error probabilities

based on the choice of either target error rate or carrier frequency.

In particular, a decrease in the transmission error probability will

increase the chances of a successful update delivery (decrease age)

while an increase in the transmission delay will increase the inter-

delivery time (increase age). That is, the delay and error probability

of a transmission mode affect the age in opposite direction. Thus,

the key questions are: when is it optimal to use the lower transmis-
sion rate with a lower error probability? ; which variable plays a more
important role in determining the optimal actions?. To address these

questions, we begin by investigating a status update system with

two heterogenous transmissions and obtain the optimal transmis-

sion selection policy to minimize the average age. Studying the

two-rate scenario provides us with some insights in the optimal

policy for a more general multi-rate (multi-error probability) sce-

nario, which is discussed in Section 5, and provides basis for our

future work. Specifically, our contributions are outlined as follows:

• We investigate the optimal trade-off between transmission

delay and error probability for minimizing the age. We show

that there exists a stationary deterministic optimal transmis-

sion selection policy. Moreover, we show that the optimal

transmission selection policy is of threshold-type in terms

of the age (Theorem 4.1). In particular, we show that the

optimal action is a non-increasing (non-decreasing) function

of the age if the mean delay of the low rate transmission is

smaller (larger) than that of the high rate transmission. This

result was not anticipated: For example, in [8, 12], it was

shown that the optimal delay policy chooses the server with

minimummean delay whenever it is available. With this, one

may expect that using the transmission with higher mean

delay would worsen the age performance. Surprisingly, how-

ever, we show that choosing the transmission with higher

mean delay can sometimes improve the age performance.

• We derive the average cost as a function of the threshold

with the aid of the state transition diagram. We then opti-

mize the threshold to minimize the average cost function. In

particular, although the optimization problem is non-convex,

we are able to show that if the mean delay of the low rate

transmission is smaller than that of the high rate transmis-

sion, the objective function is quasi-convex; otherwise, the

optimal policy chooses higher rate transmission (Theorem

4.6). This enables us to devise a low-complexity algorithm

to obtain the optimal policy.

The remainder of this paper is organized as follows. The system

model is introduced in Section 2. In Section 3, we map the problem

to an equivalent problem which can be regarded as an average

cost MDP, and then formulate the MDP problem. In Section 4, we

explore the structure of the optimal policy and properties of average

cost function, and devise an efficient algorithm. In Section 5, we

provide a disscusion on multi-rate scenario. In Section 6, we provide

numerical results to verify our theoretical results.

Source Destination

Low reliability 
Short delay 

High Rate

High reliability 
Long delay 

Low Rate

Transmission 
Controller

Figure 1: Model
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Figure 2: Example of Age Evolution

2 SYSTEM MODEL
We consider a status update system, in which update packets are

sent to the destination via a wireless medium with varying trans-

mission delay and error probability. The update packets are gen-

erated whenever the wireless medium becomes idle. We assume

that there are two heterogenous transmissions available for up-

dating, namely low rate and high rate transmissions. The high

rate transmission offers a shorter transmission delay than low rate

transmission; while low rate transmission offers more reliable trans-

mission than high rate transmission. A decision maker chooses a

transmission mode for each transmission opportunity. We denote

the set of transmission modes as U ≜ {1, 2}, where 1 and 2 de-

note the low rate and high rate transmissions, respectively. We use

P ≜ {pj : 0 < pj < 1, j ∈ U} andD ≜ {dj : 0 < dj < ∞, j ∈ U} to

denote the set of transmission error probabilities and transmission

delays, respectively. Transmission j ∈ U corresponds to transmis-

sion delay dj and transmission error probability pj . We assume that

d1 > d2 and p1 < p2.
We use Yi to denote the transmission delay of packet i , where

Yi ∈ D. Let Di denote the delivery time of packet i . Since updates
are generated whenever the wireless medium becomes idle, Di
equals to the generation time of packet i + 1. Also, we have Di =∑i
j=1 Yj . At any time t , the most recently received update packet is

generated at time

U (t) = max{Di : Di+1 ≤ t}. (1)

Then, the age of information, or simply the age is defined as

∆(t) = t −U (t). (2)

The age ∆(t) is a stochastic process that increases with t between
update packets and is reset to a smaller value upon the successful

delivery of a fresher packet. We suppose that the age ∆(t) is right-
continuous. As shown in Fig. 2, packet 2 is sent at time D1 and its
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delivery time is D2 = D1 + Y2. Since this packet transmission fails,

the age does not reset to a smaller value atD2. Packet 3 transmission

starts at D2, which is successfully delivered at time D3. Thus, the

age increases linearly until it reaches to ∆(D−
3
) = Y1+Y2+Y3 before

packet 3 is successfully sent, and then drops to ∆(D3) = Y3 at D3.

3 OPTIMIZATION PROBLEM
We use ui to denote which transmission mode (low rate or high

rate) is selected to transmit packet i , where ui ∈ U. In particular,

if ui = 1 (or ui = 2), then packet i is transmitted using the low (or

high) rate transmission, encounters transmission delay d1 (or d2),
and is received successfully with probability 1 − p1 (or 1 − p2). A
transmission selection policy π specifies a transmission selection

decision for each stage
1
. For any policy π , we define the total

average age as

∆̄(π ) = lim sup

n→∞

E[
∫ Dn
0

∆(t)dt]

E[Dn ]
. (3)

Our goal is to seek a transmission selection policy that solves

the total average age minimization problem as follows:

∆̄∗ = min

π ∈Π
∆̄(π ), (4)

where ∆̄∗
denotes the optimal total average age. Let Π denote the

set of all causal transmission selection policies, in which the policy

π ∈ Π depends on the history and current system state.

3.1 Equivalent Mapping of Problem (4)

We decompose the area under the curve ∆(t) into a sum of disjoint

geometric parts as shown in Fig. 2. Observing the area in interval

[0,Dn ], the area can be regarded as the concatenation of the areas

Qi . Then, ∫ Dn

0

∆(t)dt =
n−1∑
i=0

[Qi ]. (5)

Let ai denote the age at time Di , i.e., ai = ∆(Di ). Then, Qi can be

expressed as

Qi = aiYi+1 +
1

2

Y 2

i+1. (6)

Recall that Dn =
∑n−1
i=0 Yi+1. With Eq. (5) and Eq. (6), the total

average age is expressed as

lim sup

n→∞

∑n−1
0
E[aiYi+1 +

1

2
Y 2

i+1]∑n−1
i=0 E[Yi+1]

. (7)

With this, the optimal transmission selection problem for mini-

mizing the total average age can be formulated as

∆̄∗ ≜ min

π ∈Π
lim sup

n→∞

∑n−1
0
E[aiYi+1 +

1

2
Y 2

i+1]∑n−1
i=0 E[Yi+1]

. (8)

The problem is hard to solve in current form. Thus, we provide an

equivalent mapping for it. A problem with parameter β is defined

as follows:

p(β) ≜ min

π ∈Π
lim sup

n→∞

1

n

n−1∑
0

E[(ai − β)Yi+1 +
1

2

Y 2

i+1]. (9)

1
Stage i corresponds to the duration from Di−1 to Di .

Lemma 3.1. The following statements are true:
(i) ∆̄∗ ⪌ β if and only if p(β) ⪌ 0;
(ii) If p(β) = 0, then the optimal transmission selection policies that
solve (8) and (9) are identical.

Proof. The proof is similar to that of Lemma 3.5 in [2]. The

difference is that we use the boundedness of transmission delay

while in [2], the boundedness of inter-sampling time is used. The

detailed proof is provided in our technical report [18]. □

By Lemma 3.1, if β = ∆̄∗
, then the optimal transmission selection

policies that solve (8) and (9) are identical. With this, given β , we
formulate the problem (9) as an infinite horizon average cost per

stage MDP in Section 3.2 and show that the optimal policy for (9)

is of threshold-type in Section 4.1. Since the value of β is arbitrary,

we will be able to conclude that the optimal policy for (8) is of

threshold-type. In addition, in Section 4.2, we are able to devise a

low-complexity algorithm to obtain the optimal threshold.

3.2 The MDP problem of (9)
From [5], given β , problem (9) is equivalent to an average cost

per stage MDP problem. The components of the MDP problem are

described as follows:

• States: The system state at stage i is the age ai . In this paper,

we consider the state space S ≜ {a = ld1 + vd2 : l,v ∈

{0, 1, · · · }}. If the initial state is outside S, then eventually

the state will enter S (with state d1 or d2); otherwise, a suc-
cessful packet transmission never occurs. In fact, the maxi-

mal probability that no transmission succeeds after l stages

is pl
2
, which decreases with number of stages l . After state

enters S, it will stay in S onwards (since transmission delay

is either d1 or d2). Note that S is unbounded since successful

packet transmission happens with certain probabilities.

• Actions: At delivery time Di−1, the action that is chosen for

stage i is ui ∈ U. The action ui determines the transmission

delay. For example, if ui = 1, then the transmission delay at

stage i is d1.
• Transition probabilities: Given the current state ai and
action ui at stage i , the transition probability to the state

ai+1 at the stage i + 1 is defined as

P(ai+1 = a′ |ai = a,ui = u) =


pu if a′ = a + du ,

1 − pu if a′ = du ,

0 otherwise.

(10)

• Costs: Given state ai and action ui at stage i , the cost at the
stage is defined as

C(ai ,ui ) = (ai − β)dui +
1

2

d2ui . (11)

Given β , the average cost per stage under a transmission selection

policy π is given by

J (π , β) ≜ lim sup

n→∞

1

n
Eπ

[n−1∑
i=0

C(ai ,ui )

]
. (12)

Our objective is to find a transmission selection policy π ∈ Π that

minimizes the average cost per stage, which can be formulated as
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Problem 1 (Average cost MDP)

min

π ∈Π
J (π , β). (13)

We say that a transmission selection policy π is average-optimal if
it solves the problem in (13). A transmission selection policy is a

sequence of decision rules, i.e., π = (ζ1, ζ2, · · · ), where a decision
rule ζi maps the history of states and actions, and the current state

to an action. A transmission selection policy is called a stationary
deterministic policy if ui =ζ (ai ) for all i ∈ N

+
, where ζ :S→ U is

a deterministic function. Stationary deterministic policies are the

easiest to be implemented and evaluated. However, there may not

exist a stationary deterministic policy that is average-optimal [5].

Next, we show that there exists a stationary deterministic transmis-

sion selection policy that is average-optimal. Moreover, we show

that the optimal policy is of threshold-type.

4 STRUCTURE OF AVERAGE-OPTIMAL
POLICY AND ALGORITHM DESIGN

In this section, we investigate the structure of the average-optimal

policy and propose an efficient algorithm for the original problem

(8).

4.1 Threshold Structure of Average-Optimal
Policy

4.1.1 Threshold structure: The following theorem states that there

exists a threshold-type stationary deterministic policy that is average-

optimal. In particular, the problem is divided into two cases based

on the relation between d1(1 − p2) and d2(1 − p1). Under these two
cases, the threshold-type average-optimal policy shows opposite

behaviors.

Theorem 4.1. There exists a stationary deterministic average-
optimal transmission selection policy that is of threshold-type. Specif-
ically,
(i) If d1(1 − p2) ≤ d2(1 − p1), then the average-optimal policy is of
the form π∗ = (ζ ∗, ζ ∗, · · · ), where

ζ ∗(a) =

{
2 if 0 ≤ a ≤ a∗

1
,

1 if a∗
1
< a,

(14)

where a∗
1
denotes the age threshold.

(ii) If d1(1 − p2) ≥ d2(1 − p1), then the average-optimal policy is of
the form π∗ = (ζ ∗, ζ ∗, · · · ), where

ζ ∗(a) =

{
1 if 0 ≤ a ≤ a∗

2
,

2 if a∗
2
< a,

(15)

where a∗
2
denotes the age threshold.

Proof. Please see Section 4.1.2. □

Define the mean delay of transmission mode j ∈ U as

¯dj ≜
dj

1 − pj
. (16)

By Theorem 4.1 (i), when the age exceeds a certain threshold, the op-

timal policy chooses the transmission with smaller mean delay. This

result reveals an interesting phenomenon: While the transmission

with minimum mean delay is the optimal decision for minimizing

the average delay, this does not necessarily minimize the age. In

particular, when the age is below a certain threshold, the average

age is reduced by choosing a faster transmission that has a higher

mean delay (i.e., a higher error probability). The reason is that if

successful, the age remains low. If it fails, it provides an opportunity

to generate a later packet that can be transmitted in a shorter period

of time. In Section 4.2, based on Theorem 4.1 (ii), we will show that

the averge-optimal policy under d1(1−p2) ≥ d2(1−p1) is to choose
high rate transmission for each transmission opportunity. This is

reasonable because both the delay and mean delay (including the

impact of the error probability) of high rate transmission is shorter

than that of low rate transmission.

4.1.2 Proof of Theorem 4.1. One way to investigate the average

cost MDPs is to relate them to the discounted cost MDPs. To prove

Theorem 4.1, we (i) address a discounted cost MDP, i.e., establish

the existence of a stationary deterministic policy that solves the

MDP and then study the structure of the optimal policy; and (ii)

extend the results to the average cost MDP problem in (13).

Given an initial state a, the total expected α-discounted cost

under a transmission selection policy π ∈ Π is given by

V α (a;π ) = lim sup

n→∞
E

[n−1∑
i=0

α iC(ai ,ui )

]
, (17)

where 0 < α < 1 is the discount factor. Then, the optimization

problem of minimizing the total expected α-discounted cost can be

cast as

Problem 2 (Discounted cost MDP)

V α (a) ≜ min

π ∈Π
V α (a;π ), (18)

where V α (a) denotes the optimal total expected α-discounted cost.

A transmission selection policy is said to be α-discounted cost op-
timal if it solves the problem in (18). In Proposition 4.2, we show

that there exists a stationary deterministic transmission selection

policy which is α-discounted cost optimal and provide a way to

explore the property of the optimal policy.

Proposition 4.2. (a) The optimal total expected α -discounted cost
V α satisfies the following optimality equation:

V α (a) = min

u ∈U
Qα (a,u), (19)

where

Qα (a,u) = C(a,u) + αpuV
α (a + du ) + α(1 − pu )V

α (du ). (20)

(b) The stationary deterministic policy determined by the right-
hand-side of (19) is α-discounted cost optimal.

(c) LetV α
n (a) be the cost-to-go function such thatV α

0
(a) = d1−d2

α (p2−p1)
a

and for n ≥ 0

V α
n+1(a) = min

u ∈U
Qα
n+1(a,u), (21)

where

Qα
n+1(a,u) = C(a,u) + αpuV

α
n (a + du ) + α(1 − pu )V

α
n (du ). (22)

Then, we have that for each α , V α
n (a) → V α (a) as n → ∞.

Proof. See our technical report [18]. □
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Next, with the optimality equation (19) and value iteration (21),

we show that the optimal policy is of threshold-type in Lemma 4.3.

Lemma 4.3. Given a discount factor α ,
(i) if (1−αp2)d1 ≤ (1−αp1)d2, then the α -discounted cost optimal

policy is of threshold-type, i.e., the optimal action is a non-increasing
function of the age.

(ii) if (1−αp2)d1 ≥ (1−αp1)d2, then the α -discounted cost optimal
policy is of threshold-type, i.e., the optimal action is a non-decreasing
function of the age.

Proof. Please see Appendix A □

This lemma proves that the α-discounted cost optimal policy

is of threshold-type. Next, we extend the results to average cost

MDP and show that there exists a stationary deterministic average-

optimal policy which is of threshold-type. Based on the results in

[15], we have the following lemma, which provides a candidate for

average-optimal policy.

Lemma 4.4. (i) Let αn be any sequence of discount factors con-
verging to 1 with αn -discounted cost optimal stationary deterministic
policy παn . There exists a subsequence γn and a stationary policy π∗

that is a limit point of πγn .
(ii) If d1(1 − p2) ≤ d2(1 − p1), π∗ is of threshold-type in (14); if

d1(1 − p2) ≥ d2(1 − p1), π∗ is of threshold-type in (15).

Proof. See our technical report [18]. □

By [15], under certain conditions (A proof of these conditions

verification is provided in our technical report [18]), π∗
is average-

optimal.

4.2 Algorithm Design
Recall that if p(β) = 0, then the optimal transmission selection

policies that solve (8) and (9) are identical. Given β , the optimal

policy that solves (9) is of threshold-type by Theorem 4.1 and then

(9) can be re-expressed as

p(β) =


min

π ∈Π1

J (π , β), if d1(1 − p2) < d2(1 − p1) (23)

min

π ∈Π2

J (π , β), if d1(1 − p2) ≥ d2(1 − p1) (24)

where Π1 and Π2 denote the sets of threshold-type policies in (14)

and (15), respectively. Thus, the optimal policy that solves (8) can

be obtained with two steps:

• Step (i): For each β , find the β-associated average-optimal

policy π∗
β such that p(β) = J (π∗

β , β).

• Step (ii): Find β∗ such thatp(β∗) = 0. This implies π∗
β ∗ solves

(8).

To narrow our searching range in (ii), in Lemma 4.5, we provide a

lower bound βmin and an upper bound βmax of β
∗
. Then, for (i), we

only need to pay attention to p(β) for β ∈ [βmin, βmax].

In particular, within the range of β , we show that J in (23) is

quasi-convex in a threshold related variable, which enables us to

devise a low-complexity algorithm based on golden section search.

Moreover, we show that π∗
β that solves (24) always chooses u = 2,

which allows us to get the optimal policy for (8) directly.

Lemma 4.5. The parameter β∗ is lower bounded by βmin ≜ 1.5d2

and upper bounded by βmax ≜ min

{
( 1

1−p1 + 0.5)d1, (
1

1−p2 + 0.5)d2
}
.

Proof. See our technical report [18]. □

In the following content, we provide a theoretical analysis step

by step for our algorithm design in Algorithm 1, which returns the

optimal threshold and optimal average age for (8).

Algorithm 1: Threshold-based Age-Optimal Policy

1 given d1 , d2 , p1 , p2 ,τ = (
√
5 − 1)/2, tolerance ϵ1 , ϵ2 , l = βmin , r = βmax ;

2 while r − l > ϵ1 do
3 β = r+l

2
;

4 if d1(1 − p2) ≥ d2(1 − p1) then
5 m = 0, k = 0, J ∗ = J2(0, 0, β );
6 else
7 kmax = ⌊

d
1

d
2

⌋, J ∗ = f (1, 0, β );
8 foreach k1 ∈ {0, 1, · · · , kmax } do
9 if ∂ J

1
(y ,k

1
,β )

∂y |y=1 < 0 then
10 m = 0;

11 else
12 y0 = 0, y1 = 1, y2 = y1 − (y1 − y0)τ ,

y3 = y0 + (y1 − y0)τ ;
13 while p2y1 ≥ y0 and y1 − y0 > ϵ2 do
14 if J1(y2, k1, β ) > J1(y3, k1, β ) then
15 y0 = y2 ;
16 else
17 y1 = y3 ;
18 end
19 y2 = y1 − (y1 − y0)τ , y3 = y0 + (y1 − y0)τ ;
20 end
21 t1 = ⌊logp

2

y0 ⌋, t2 = ⌈logp
2

y1 ⌉;
22 m = argminm∈{t

1
,t
2
} J1(p2

m
;k , β );

23 end
24 if J1(pm

2
, k1, β ) ≤ J ∗ then

25 J ∗ = J1(pm
2
, k1, β );

26 end
27 end
28 end
29 if J ∗ ≥ 0 then
30 l = β ;
31 else
32 r = β ;
33 end
34 end

Step (i): Find the optimal policy π∗
β : Note that both of the

threshold-type policies defined in (14) and (15) result in a Markov

chain with a single positive recurrent class. Thus, given threshold

a∗
1
in (14) or a∗

2
in (15), we can obtain the expression of average cost

under the corresponding threshold-type policy with aid of state

transition diagram. With this, we obtain some nice properties of

average cost function in Theorem 4.6, which enables us to get a low-

complexity algorithm. Before providing the result, we define the

integer threshold which will be used in the theorem and algorithm.

Recall that age a ∈ S is expressed as the sum of multiple d1’s and
d2’s. Note that under the threshold-type policy in (14), if a ≤ a∗

1
,

ζ (a) = 2. This implies that if a ≤ a∗
1
, a is in the form a = dj +ld2, j ∈

U, l ∈ N. Thus, it is sufficient to use the following integer threshold

to represent the threshold-type policy in (14).

m1 ≜ min

{
l : d1 + ld2 > a∗

1
, l ∈ N

}
, (25)

n1 ≜ min

{
l : d2 + ld2 > a∗

1
, l ∈ N

}
. (26)
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Table 1: Notations

A1 = p
k
1

2

(
d2(1 − p1) − d1(1 − p2)

) (
d2(k1 + 1) − d1

)
B1 = −A2 + p

k
1

2
(1 − p2)(0.5d2

1
− βd1 +

d2
1

1−p
1

) + (1 − p1)(βd2 − 0.5d2

2
−

d2
2

1−p
2

)

C1 = (1 − p1)(0.5d2

2
− βd2 + 1

1−p
2

)d2

2

D1 =
(
d1(1 − p2) − d2(1 − p1)

)
d2p

k
1

2

A2 = p
k
2

1

(
d1(1 − p2) − d2(1 − p1)

) (
d1(1 − k2) − d2

)
B2 = −pk2

1
(1 − p2)(0.5d2

1
− βd1 +

d2
1

1−p
1

) + (1 − p1)(0.5d2

2
− βd2 +

d2
2

1−p
2

)

−
(
d1(1 − p2) − d2(1 − p1)

)
(d1 − d2)

C2 = (1 − p2)(0.5d2

1
− βd1 +

d2
1

1−p
1

)

D2 =
(
d2(1 − p1) − d1(1 − p2)

)
d1

With this, the threshold policy in (14) is rewritten as

ζ ∗(a) =

{
2 if a < d1 +m1d2 and a < d2 + n1d2,

1 if a ≥ d1 +m1d2 or a ≥ d2 + n1d2.
(27)

Similarly, the policy in (15) can be rewritten as

ζ ∗(a) =

{
1 if a < d1 +m2d1 and a < d2 + n2d1,

2 if a ≥ d1 +m2d1 or a ≥ d2 + n2d1,
(28)

where

m2 ≜ min

{
l : d1 + ld1 > a∗

2
, l ∈ N

}
, (29)

n2 ≜ min

{
l : d2 + ld1 > a∗

2
, l ∈ N

}
. (30)

Based on the analysis, (23) and (24) can be re-expressed as

p(β) =


min

m1,k1
J1(m1,k1, β), if d1(1 − p2)<d2(1 − p1) (31)

min

m2,k2
J2(m2,k2, β), if d1(1 − p2)≥d2(1 − p1) (32)

where k1 = n1−m1 and k2 = n2−m2. Also, we use J1(m1,k1, β) and
J2(m2,k2, β) to denote the average cost under the policies in (27)

and (28), respectively. We have k2 ∈ K2 ≜ {0, 1} and k1 ∈ K1 ≜{
0, · · · , ⌊ d1d2

⌋
}
. In particular, according to the definition ofm2 and

n2, we have (m2 + 1)d1 > a∗
2
≥ d2 + (n2 − 1)d1 and d2 + n2d1 >

a∗
2
≥ m2d1. Substitute k2 = n2 −m2 into these two inequalities, we

get k2 ∈ K2. Similarly, we have k1 ∈ K1.

In Theorem 4.6, we provide some nice properties for J1 and J2,
which enables us to develop a low-complexity algorithm. To this

end, we make a change of variable in Theorem 4.6 (i), i.e., m1 is

replaced with logp2 (y) in J1, where y ∈ (0, 1]. Some notations used

in this theorem are defined in Table 1.

Theorem 4.6. Given β ∈ [βmin, βmax],
(i) if d1(1 − p2) < d2(1 − p1), then the average cost is given by

J1(y,k1, β) =
A1y

2 + B1y +C1 + D1y logp2 (y)

1 − p1 + (−1 + p1 + p
k1
2
(1 − p2))y

, (33)

where y ≜ pm1

2
. Moreover, J1(y,k1, β) is quasi-convex in y for 0 <

y ≤ 1, given k1 ∈ K1.

(ii) if d1(1 − p2) ≥ d2(1 − p1), then optimal average cost is given
by

J2(0, 0, β) =
A2 + B2 +C2

1 − p1
. (34)

Moreover, the average-optimal policy chooses u = 2 at every trans-
mission opportunity.

Proof. Proof of part (i) is provided in Appendix B. For part

(ii), the key idea is to show that for all m2, J2(m2,k2, β) is non-
decreasing ink2 ∈ K2, and then J2(m2, 0, β) is non-decreasing inm2.

This implies that the optimal decision is u = 2 at each transmission

opportunity. Due to the space limitation, detailed proof is provided

in our technical report [18]. □

With the property in Theorem 4.6 (i), we are able to use golden

section search [14] to find the optimal value of y under condi-

tion d1(1 − p2) < d2(1 − p1). The details are provided in Algo-

rithm 1 (Line 12-20). Note that logp2 (·) is one-to-one functions.

Thus, after obtaining the optimal y that minimizes J1, the corre-
sponding optimal thresholdm1 can be easily obtained by compar-

ing J1(p2
⌊logp

2

(y)⌋
,k1, β) and J1(p2

⌈logp
2

(y)⌉
,k1, β)). The details are

provided in Algorithm 1 (Line 21-22). Till now, we have solved

minm1
J1(m1,k1, β) given k1 and β . Note that k1 ∈ K1 has finite

and countable values. Then, we can easily solve (31) under condi-

tion d1(1 − p2) < d2(1 − p1) by searching for the optimal k1 in the

finite set K1.

Note that Theorem 4.6 (ii) applies to all β ∈ [βmin,βmax] includ-

ing β∗. Thus, the optimal policy for (8) is to take u = 2 at every

transmission opportunity, which is returned directly in Algorithm

1 (Line 4-5). Under this condition, the step (ii) is only used to find

optimal average cost β∗ for (8).
Moreover, in Line 9-10, we add a judgement sentence, i.e., if

the condition
∂ J1(y,k1,β )

∂y |y=1 < 0 is satisfied, then we can directly

obtain the optimalm1 without running golden section method. This

further reduces the algorithm complexity. The judgement is based

on the fact that limy→0

∂ J1(y,k1,β )
∂y < 0 (this is proved in the proof

of Theorem 4.6 in Appendix B) and J1 is quasi-convex. Thus, if

∂ J1(y,k1,β )
∂y |y=1 < 0, then J1 is non-increasing in y.

Step (ii): Find β∗: By Lemma 3.1, if p(β) > 0, then β < β∗; if
p(β) < 0, then β > β∗. Thus, we can use bisection method to search

for β∗. The details are provided in Algorithm 1 (Line 2-3 and Line

29-33).

5 A DISCUSSION ON THE GENERAL
MULTI-RATE TRANSMISSION SELECTION
PROBLEM

For the multi-rate transmission selection (from more than two-rate)

problem, we assume that there are N ∈ N+ transmission modes for

selection such that transmission delays and error probabilities sat-

isfy dj > dj+1 and pj < pj+1, for j ∈ {1, 2, · · · ,N − 1}, respectively.

Since the transmission delays and transmission error probabilities

affect the age in opposite direction, it is difficult to determine the

optimal policy. Thanks to the results obtained for the two-rate

transmission selection problem, we obtain some useful insights for

the general multi-rate transmission selection.
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Table 2: Optimal threshold versus delay

d1=1.5d2 d1=1.7d2 d1=1.9d2 d1=2.1d2 d1=2.3d2
d2=1 (0,0) (0,0) (1,2) (3,4) (15,16)

d2=5 (0,1) (0,1) (1,2) (3,4) (15,16)

d2=9 (0,1) (0,1) (1,2) (3,4) (15,16)

In particular, for the two-rate transmission selection problem,

the optimal action is a non-increasing function of age under condi-

tion
¯d1 ≤ ¯d2 and a non-decreasing function of age under condition

¯d1 ≥ ¯d2, where ¯d1 and ¯d2 are mean delays of low and high rate trans-

missions, respectively, as defined in (16). With this, we can infer

that for N > 2, the optimal policy will have following properties:

• (i) if
¯d1 ≤ ¯d2 ≤ · · · ≤ ¯dN , then the optimal action will be a

non-increasing function of the age,

• (ii) if
¯d1 ≥ ¯d2 ≥ · · · ≥ ¯dN , then the optimal action will be a

non-decreasing function of the age.

For the cases that are not covered in (i) and (ii), we need more

investigation on the property of the optimal policy. In addition,

if we can show that the optimal policy for the general multi-rate

problem is of threshold-type, then machine learning algorithms

can be used to determine the optimal threshold. For example, if

we regard each threshold-type policy with a certain threshold as a

bandit, then basic bandit algorithms like UCB can be exploited to

find the optimal threshold [13].

6 NUMERICAL RESULTS
In this section, we present some numerical results to explore the

performance of the threshold-based age-optimal policy and verify

our theoretical results.

First, we consider an update system, in which p1 = 0.4 and

p2 = 0.75. Table. 2 illustrates the relation between the optimal

threshold versus the transmission delay d2 and the delay ratio
d1
d2

under condition d2(1 − p1) > d1(1 − p2). The threshold (m1,n1) in
the table is obtained by Algorithm 1. We observe that the threshold

increases with either d2 or the delay ratio
d1
d2
. Note that when

the age is below the threshold, transmission mode 2 is selected.

Thus, this observation implies that transmission mode 2 becomes

more preferable either when d2 increases with fixed
d1
d2

or when
d1
d2

increases with fixed d2.
In Fig. 3, we consider an update system, in which the transmis-

sion delays are d1 = 10 and d2 = 8. We use “Delay-Optimal” to

denote the optimal policy that minimizes the average updating

delay by always choosing the transmission mode with minimum

mean delay [8, 12]. Moreover, we use “Age-Optimal” to denote the

optimal policy that is obtained from Algorithm 1. We use “Random

p” to denote the policy that chooses u = 1 with probability p. We

compare our threshold-based “Age-Optimal” policy with “Random

p” policies and the “Delay-Optimal” policy, where p ∈ {0.25, 0.5}.

Fig. 3a (3b) illustrates the total average age in (7) versus transmis-

sion error probability p1 (p2) given p2 = 0.5 (p1 = 0.5). The dashed

line in the figure marks the point at which d1(1 − p2) = d2(1 − p1).
The left and right (right and left) of the line corresponds to condi-

tions d1(1 − p2) < d2(1 − p1) and d1(1 − p2) > d2(1 − p1) in Fig. 3a

(in Fig. 3b), respectively. As we can observe, the age-optimal policy
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Figure 3: Total average age versus transmission error proba-
bility

outperforms other plotted policies. This agrees with Theorem 4.1.

Moreover, the results confirm that the delay-optimal policy does

not necessarily minimize the age. In particular, the gap between

delay-optimal and age-optimal policy becomes larger as p1 (p2) ap-
proaches to the left side (right side) of the dashed line in Fig. 3a (Fig.

3b). The jump in the curve of the delay-optimal policy is incurred

by the switch between two transmission modes. For example, in

Fig. 3a, delay-optimal policy chooses u = 1 on the left side of the

dashed line, while chooses u = 2 on the right side. This is because

transmission mode 1 has smaller mean delay on the left side while

transmission mode 2 has smaller mean delay on the right side.

7 CONCLUSION
In this paper, we studied the transmission selection problem for

minimizing age of information in information update system with

heterogenous transmissions. We assume that there are two different

transmissions with varying delay and error probability. We showed

that there exists a stationary deterministic optimal transmission se-

lection policy which is of threshold-type in age (Theorem 4.1). This

result reveals an interesting phenomenon: If the mean delay of the

low rate transmission is smaller than that of high rate transmission,

then the optimal action chooses the one with higher mean delay

when age is smaller than a certain threshold. This is in contrary

with the delay-optimal policy that always chooses the transmission

with lower mean delay. In addition, we showed that if the mean

delay of the low rate transmission is smaller than that of high rate

transmission, the average cost is quasi-convex in a threshold re-

lated variable; otherwise, the optimal policy chooses u = 2 for each

transmission opportunity (Theorem 4.6). This enabled us to design

a low-complexity algorithm to obtain the optimal policy (Algorithm

1). For the future work, we plan to study the multi-rate scenario

with more than two selections of heterogenous transmissions based

on the insights discussed in Section 5.
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A PROOF OF LEMMA 4.3
(i) To show that the optimal action is a non-increasing function

of age, we will show that if the optimal action is u = 1 at certain

age, then for the age larger than this age, the optimal action is still

u = 1. Let a1 and a2 be ages such that a1 ≤ a2. In particular, we will

show that if Qα (a1, 1) ≤ Qα (a1, 2), then Qα (a2, 1) ≤ Qα (a2, 2). It
suffices to show that Qα (a, 1) −Qα (a, 2) decreases with age a, i.e.,

Qα (a1, 1) −Qα (a1, 2) ≥ Qα (a2, 1) −Qα (a2, 2). (35)

By Proposition 4.2, we only need to show that for n ∈ N,

Qα
n+1(a1, 1) −Qα

n+1(a1, 2) ≥ Qα
n+1(a2, 1) −Qα

n+1(a2, 2) (36)

⇔C(a1, 1) + αp1V
α
n (a1 + d1) + α(1 − p1)V

α
n (d1)

−C(a1, 2) − αp2V
α
n (a1 + d2) − α(1 − p2)V

α
n (d2)

≥ C(a2, 1) + αp1V
α
n (a2 + d1) + α(1 − p1)V

α
n (d1)

−C(a2, 2) − αp2V
α
n (a2 + d2) − α(1 − p2)V

α
n (d2) (37)

⇔(a1 − a2)(d1 − d2) + αp1V
α
n (a1 + d1) − αp1V

α
n (a2 + d1)

+ αp2V
α
n (a2 + d2) − αp2V

α
n (a1 + d2) ≥ 0. (38)

We show (38) by induction. When n = 0, substitute V α
0
(a) =

d1−d2
α (p2−p1)

a into the left-hand-side of (38) with n replaced with 0

and we have

(a1 − a2)(d1 − d2) + αp1V
α
0
(a1 + d1) − αp1V

α
0
(a2 + d1)

+ αp2V
α
0
(a2 + d2) − αp2V

α
0
(a1 + d2) = 0 (39)

Hence, (38) holds when n = 0. Suppose (38) holds for n, we will
show that it holds for n + 1. Let u1,u2,u3,u4 be the optimal actions

in state a1 + d1,a2 + d1,a2 + d2,a1 + d2, respectively. Specifically,
V α
n+1(a1+d1) = Q

α
n+1(a1+d1,u1),V

α
n+1(a2+d1) = Q

α
n+1(a2+d1,u2),

V α
n+1(a2 + d2) = Qα

n+1(a2 + d2,u3) and V
α
n+1(a1 + d2) = Qα

n+1(a1 +
d2,u4). Then, the left-hand-side of (38) is

(a1 − a2)(d1 − d2)

+ αp1Q
α
n+1(a1 + d1,u1) − αp1Q

α
n+1(a2 + d1,u2)

+ αp2Q
α
n+1(a2 + d2,u3) − αp2Q

α
n+1(a1 + d2,u4)

=(a1 − a2)(d1 − d2)

+ αp1Q
α
n+1(a1 + d1,u1) − αp1Q

α
n+1(a2 + d1,u1)︸                                                      ︷︷                                                      ︸

A

+ αp1Q
α
n+1(a2 + d1,u1) − αp1Q

α
n+1(a2 + d1,u2)︸                                                      ︷︷                                                      ︸

≥0 (By optimality of action u2)

−
(
αp2Q

α
n+1(a1 + d2,u3) − αp2Q

α
n+1(a2 + d2,u3)︸                                                        ︷︷                                                        ︸

B

)
+ αp2Q

α
n+1(a1 + d2,u3) − αp2Q

α
n+1(a1 + d2,u4)︸                                                      ︷︷                                                      ︸

≥0 (By optimality of action u4)

. (40)

By induction hypothesis, we have

A ≥αp1 min

u1∈{1,2}

{
(a1 − a2)du1 + αpu1V

α
n (a1 + d1 + du1 )

− αpu1V
α
n (a2 + d1 + du1 )

}
(41)

=αp1
(
(a1 − a2)d2 + αp2V

α
n (a1 + d1 + d2)

− αp2V
α
n (a2 + d1 + d2)

)
. (42)

Similarly,

B ≤αp2 max

u3∈{1,2}

{
(a1 − a2)du3 + αpu3V

α
n (a1 + d2 + du3 )

− αpu3V
α
n (a2 + d2 + du3 )

}
(43)

=αp2
(
(a1 − a2)d1 + αp1V

α
n (a1 + d2 + d1)

− αp1V
α
n (a2 + d2 + d1)

)
. (44)
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Figure 4: State transition diagram under policy in (14)

Hence, substitute (42) and (44) into (40) and we obtain

(a1 − a2)(d1 − d2)

+ αp1Q
α
n+1(a1 + d1,u1) − αp1Q

α
n+1(a2 + d1,u2)

+ αp2Q
α
n+1(a2 + d2,u3) − αp2Q

α
n+1(a1 + d2,u4)

≥(a1 − a2)(d1 − d2) +A − B (45)

≥(a1 − a2) ((1 − αp2)d1 − (1 − αp1)d2) (46)

≥0, (47)

where (47) holds by the condition (1 − αp2)d1 ≤ (1 − αp1)d2.
(ii) Similar to part (i), it suffices to show that for a1 ≤ a2,

Qα (a1, 1) −Qα (a1, 2) ≤ Qα (a2, 1) −Qα (a2, 2). (48)

The proof is similar to part (i).

B PROOF OF THEOREM 4.6 (I)
We first obtain expression of average cost in (33) with aid of state

transition diagram. The state transition diagram under the policy

in (14) is given in Fig. 4. Define the state steady probabilities xl , x
′
l ,

zl and z
′
l under policy in (14) as

xl ≜ P(a = d2 + ld2), 0 ≤ l ≤ m1 + k1, (49)

x ′l ≜ P(a = d2 + (m1 + k1)d2 + ld1), l ≥ 0, (50)

zl ≜ P(a = d1 + ld2), 0 ≤ l ≤ m1, (51)

z′l ≜ P(a = d1 +m1d2 + ld1), l ≥ 0. (52)

Based on the state transition diagram, balance equations can be

obtained as follows:

x0 = (1 − p2)
©­«
m1−1∑
l=0

zl +

m1+k1−1∑
l=0

xl
ª®¬ , (53)

p2xl = xl+1, l ∈ {0, 1 · · ·m1 + k1 − 1}, (54)

p2zl = zl+1, l ∈ {0, 1 · · ·m1 − 1}, (55)

p1x
′
l = x ′l+1, l ∈ {0, 1 · · · }, (56)

p1zl = z′l+1, l ∈ {0, 1 · · · }. (57)

Solving the equations (53)-(57), we obtain the expressions of xl , x
′
l ,

zl and z
′
l in terms of x0 as follows:

xl = p
l
2
x0, l ∈ {0, 1 · · ·m1 + k1}, (58)

zl =
pm1+k1
2

pl
2

1 − pm1

2

x0, l ∈ {0, 1 · · ·m1}, (59)

x ′l = p
m1+k1
2

pl
1
x0, l ∈ {0, 1 · · · }, (60)

z′l =
p2m1+k1
2

pl
1

1 − pm1

2

x0, l ∈ {0, 1 · · · }. (61)

Substituting (58)-(61) into

∑m1+k1
l=0 xl+

∑m1

l=0 zl+
∑∞
l=1 x

′
l +

∑∞
l=1 z

′
l =

1, we obtain x0 as

x0 =
(1 − p1)(1 − p2)(1 − pm1

2
)

1 − p1 + p
m1

2
(p1 − 1) + pm1+k1

2
(1 − p2)

. (62)

The average cost J1(m1,k1, β) is expressed as

J1(m1,k1, β) =

m1+k1−1∑
l=0

C(d2 + ld2, 2)xl +

m1−1∑
l=0

C(d1 + ld2, 2)zl

+

∞∑
l=0

C(d2 + (m1 + k1)d2 + ld1, 1)x
′
l

+

∞∑
l=0

C(d1 +m1d2 + ld1, 1)z
′
l . (63)

whereC(·, ·) is the cost function defined in (11). Substitute (58)-(61)

and (62) into (63). After some algebraic manipulation and change

of variable (pm1

2
is replaced by y), we obtain (33).

Next, we show that J1 is quasi-convex. By definition of quasi-

convex, it suffices to show that its first derivative
∂ J1(y,k1,β )

∂y with

respect to y satisfies at least one of the following conditions [6]:

•
∂ J1(y,k1,β )

∂y ≥ 0

•
∂ J1(y,k1,β )

∂y ≤ 0

• there exists a point y0 ∈ (0, 1] such that for 0 < y ≤ y0,
∂ J1(y,k1,β )

∂y ≤ 0, and for 1 ≥ y ≥ y0,
∂ J1(y,k1,β )

∂y ≥ 0

After some algebraic manipulation,
∂ J1(y,k1,β )

∂y is expressed as

∂J1(y,k1, β)

∂y
=

h(y,k1, β)

(1 − p1 + ry)2
(64)

where r = −1 + p1 + p
k1
2
(1 − p2) and h(y,k1, β) is given by

h(y,k1, β)≜
(
A1y

2+
D2y

lnp2
−C1

)
r

+
(
B1+2A1y+

D1(1+lny)

lnp2

)
(1−p2) (65)

Note that the denominator of the (64) is positive. Thus, to show

that at least one of the conditions above holds, it suffices to show

that h(y,k1, β) satisfies at least one of the following conditions:

• B1: h(y,k1, β) ≥ 0;

• B2: h(y,k1, β) ≤ 0;

• B3: ∃y0 ∈ (0, 1] such that for 0 < y ≤ y0, h(y,k1, β) ≤ 0, and

for 1 ≥ y ≥ y0, h(y,k1, β) ≥ 0.

In fact, the first derivative of h(y,k1, β) with respect to y is

∂h(y,k1, β)

∂y

=

(
2(d2(k1 + 1)−d1)y −

d2
lnp2

)
︸                               ︷︷                               ︸

G(y)

(ry + 1− p1)︸         ︷︷         ︸
H (y)

pk1
2
W

y
(66)
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whereW = d2(1−p1)−d1(1−p2). By conditiond2(1−p1) > d1(1−p2),
W > 0. Note that r ≤ −1 + p1 + (1 − p2) = p1 − p2 < 0 since

0 < p1 < p2 < 1. Thus, H (y) ≥ r + 1 − p1 = pk1
2
(1 − p2) > 0, for

0 < y ≤ 1. Hence,
∂h(y,k1,β )

∂y is positive (negative) if and only if

G(y) is positive (negative). Next, we will show our finial result by

analyzing two different cases.

Case 1: If d2(k1 + 1) − d1 ≥ 0, then G(y) ≥ −
d2
lnp2

> 0, for 0 <

y ≤ 1. In this case,
∂h(y,k1,β )

∂y > 0, for 0 < y ≤ 1. Thus, h(y,k1, β)

is increasing in y, for 0 < y ≤ 1. Note that since D1 < 0 (by

condition d2(1 − p1) > d1(1 − p2)) and p2 < 1, limy→0 h(y,k1, β) =

−C1r+
(
B1+

D1

lnp2
+limy→0

D1lny
lnp2

)
(1−p2) < 0. Thus, ifh(1,k1, β) ≤ 0,

then B2 holds; if h(1,k1, β) > 0, then B3 holds.

Case 2: If d2(k1 + 1) − d1 < 0, then G(y) is decreasing in y and

y1 =
d2

2(d2(k1+1)−d1) lnp2
> 0 is a turning point such that G(y) > 0

when y < y1 and G(y) < 0 when y > y1.

If y1 ≥ 1, then G(y) ≥ 0 for 0 < y ≤ 1. Thus,
∂h(y,k1,β )

∂y ≥ 0,

which implies thath(y,k1, β) is increasing iny for 0 < y ≤ 1. Hence,

B2 or B3 holds as explained in case 1.

If y1 < 1, then G(y) > 0 when y < y1 and G(y) < 0 when 1 >

y > y1, which implies h(y,k1, β) first increases and then decreases

for 0 < y ≤ 1. We claim that if y1 < 1, then h(1,k1, β) ≥ 0 for

β ∈ [βmin, βmax] and k1 ∈ K1. Recall that limy→0 h(y,k1, β) < 0.

With this, the claim implies thath(y,k1, β) starts with some negative

value and increases to zero at some point y′ and after h(y,k1, β)
becomes positive, it will keep positive for y′ < y ≤ 1 (B3 holds). It

remains to show that our claim holds.

Since y1 =
d2

2(d2(k1+1)−d1) lnp2
< 1, we have

d1
d2
> k1 + 1 −

1

2 lnp2
(67)

After some algebraic manipulation and simplification, h(1,k1, β)
is expressed as

h(1,k1, β)

=p2k1
2

W

(
d2(k1 + 1) − d1 −

d2
lnp2

)
(1 − p2)

+ pk1
2
(1 − p2)(1 − p1)

(
(

1

1 − p1
+ 0.5)d2

1
− (

1

1 − p2
+ 0.5)d2

2

)
+ pk1

2
(d2 − d1)(1 − p1)(1 − p2)β (68)

Since pk1
2
(d2 − d1)(1 − p1)(1 − p2) < 0, h(1,k1, β) is decreasing in

β and thus h(1,k1, β) ≥ h(1,k1, βmax) ≥ h(1,k1, (
1

1−p1 + 0.5)d1). It

remains to show that h(1,k1, (
1

1−p1 + 0.5)d1) ≥ 0. It is equivalent

to show that

h(1,k1,( 1

1−p
1

+0.5)d1)

d2

2

≥ 0 since d2
2
≥ 0. Let z = d1

d2
,

substitute this into

h(1,k1,( 1

1−p
1

+0.5)d1)

d2

2

and obtain a function of z

denoted byw(z). By (67), the first derivative ofw(z) satisfies

w ′(z) =2p2k1
2

(1 − p2)
2z + pk1

2
(1 − p2)(

1

1 − p1
+ 0.5)(1 − p1)

+ p2k1
2

(1 − p2)

(
1 − p2
lnp2

− (1 − p2)(k1 + 1) − (1−p1)

)
(69)

≥w ′(k1 + 1 −
1

2 lnp2
) (70)

=pk1
2
(1 − p2)

(
pk1
2
(1 − p2)(k1 + 1) +

1 − p1
2

)

)
+ pk1

2
(1−p2)

(
1 − pk1

2
(1−p1)

)
> 0 (71)

The second inequality in (71) holds since 0 < p1 < p2 < 1. Thus,

w(z) is increasing and we have

w(z) ≥w(k1 + 1 −
1

2 lnp2
) (72)

=pk1
2
(1 − p2)︸       ︷︷       ︸
>0

(
pk1
2
(1 − p2) + lnp2

)
︸                    ︷︷                    ︸

≤1−p2+lnp2≤0

(
k1

2 lnp2
−

1

4(lnp2)2

)
︸                     ︷︷                     ︸

<0

+
pk1
2

2 lnp2
γ (p1,p2,k1) (73)

where

γ (p1,p2,k1) =(p1 − p2)(1 − p2)p
k1
2
+ 2(p1 − p2) lnp2

+ 2k1(1 − 0.5p2)(1 − p2) lnp2 + (1 − p2)(0.5p1 − 1)

To showw(z) ≥ 0, we only need to show γ (p1,p2,k1) ≤ 0. Actually,

∂γ (p1,p2,k1)

∂p2

= (p1 − p2)(1 − p2)p
k1
2

lnp2 + k1(2 − p1)(
1

p2
− 1 − lnp2)︸                                                                  ︷︷                                                                  ︸

>0 by 0<p1<p2<1

+ pk1
2
(2p2 − 1 − p1) +

2p1
p2

− 1 −
p1
2

− 2 lnp2︸                                                  ︷︷                                                  ︸
θ (p1,p2,k1)

≥ 0 (74)

where the inequality holds since θ (p1,p2,k1) decreases with p2 and
θ (p1,1,k1) = 0.5p1 > 0. Actually,

∂θ (p1,p2,k1)

∂p2
= (2p2 − 1 − p1)p

k1
2

lnp2 + 2p
k1
2

− 2

p1

p2
2

−
2

p2
(75)

< (p2 − 1)pk1
2

lnp2 + 2p
k1
2

− 2

p1

p2
2

−
2

p2
(76)

≤ −(p2 − 1)pk1
2

1

2p2
+ 2pk1

2
− 2

p1

p2
2

−
2

p2
(77)

≤ −(p2 − 1)
1

2p2
+ 2 − 2

p1

p2
2

−
2

p2
(78)

< 0 (79)

where (76) holds since p2 − p1 > 0 and lnp2 < 0; (77) holds by

s(x) ≜ 1

x + 2 lnx ≥ 0 for 0 < x ≤ 1; (78) holds since pk1
2

≤ 1;

(78) holds since p2 < 1. In particular, the first derivative of s(x)
is s ′(x) = − 1

x 2
+ 2

x . Thus, s(x) decreases when x ≤ 0.5 (since

s ′(x) ≤ 0 when x ≤ 0.5) and then increases when x ≥ 0.5 (since

s ′(x) ≥ 0 when x ≥ 0.5). Thus, s(x) ≥ s(0.5) = 0.2213 > 0. By

(74), γ increases with p2 and γ (p1,p2,k1) ≤ γ (p1, 1,k1) = 0. This

completes our proof.
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