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ABSTRACT

The lattice Boltzmann method has been widely used in curved and moving boundary fluid simulations.
Both explicit and implicit treatments are studied to recover proper boundary conditions on Cartesian
grids. These methods can describe curved boundaries more accurately and more smoothly than the stair-
case approximation. However, to improve the order of accuracy and to reduce the fluctuation of force,
complicated modifications have been applied to the collision step of lattice Boltzmann equation. In this
study, a new boundary scheme based on diffuse geometry is proposed for lattice Boltzmann method.
The scheme is derived by directly incorporating the bounce back condition into the weak form of the
streaming step of discretized Boltzmann equation. The new method does not change the collision oper-
ator. Therefore it can be easily combined with complex collision models. Although diffuse boundary is
introduced, this scheme recovers exact bounce back condition at sharp boundary limit, regardless of the
shapes and motions of the boundaries. Numerical tests show that the accuracy of this method is second
order and depends on the boundary thickness and several other factors. In moving boundary problems,
the fluctuation of force can be largely reduced compared to popular sharp boundary conditions because
it does not require extrapolation to fulfil the unknown information of the newly generated fluid nodes
around the boundaries. In this paper the detailed derivation for the new scheme is explained and the

benchmark problems are solved to test its accuracy and the effect of different parameters.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) has become very pop-
ular in simulating fluids. However, the original LBM is imple-
mented on uniform Cartesian grids and hence naturally weak in
solving curved boundary and moving boundary problems. These
problems are interesting to researchers since fluid-solid interac-
tion and the dynamics of suspension are commonly seen in fluid
simulations.

Bounce back is the most popular and typical explicit bound-
ary condition for no-slip boundaries in LBM, however it can only
deal with straight boundaries that are parallel to the grid lines.
In early simulations curved boundaries are represented by stair-
cases so that simple bounce back can be applied. The stair-
cases not only bring inaccuracy into the system, but also gener-
ate small vortices when Reynolds number is large. A variety of
methods have been investigated to recover curved boundaries in
LBM. These methods in general can be classified into interpolated
schemes, diffuse schemes and immersed boundary schemes (a spe-
cial case of diffuse schemes). Filippova-Hdnel scheme [1,2] is one
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of the first interpolated boundary schemes. It constructs a vir-
tual equilibrium probability distribution function (PDF), and cal-
culates the incoming PDFs with extrapolation. In 2001, Bouzidi
et al. [3] combined the basic halfway linking bounce back con-
dition with interpolation. Lallemand and Luo [4] further extend
the scheme to moving boundary cases. These and most other in-
terpolated schemes can recover sharp boundaries, yet they have
apparent weaknesses. Besides the numerical instability introduced
by the interpolation schemes, the force fluctuation is obvious
[5,6].

Inspired by Peskin [7,8] and many others, the Immersed Bound-
ary Method (IBM) has been applied to LBM [9-12]. Although IBM
was invented to solve membrane problems, it can tackle with rigid
body problems if the stiffness of the boundary is increased to
a large value. The original Immersed Boundary lattice Boltzmann
method (IB-LBM) [9] was based on penalty force model directly
inherited from Navier-Stokes governed IBM. Later it was discov-
ered that the enforcement for boundary can be recovered by di-
rectly taking the momentum exchange in LBM [11,12]. This devel-
opment eliminated the need of user defined penalty parameters.
Inamuro further extended the method to two phase flow prob-
lems [13]. IB-LBM avoids interpolation in moving boundary prob-
lems and it reduces the fluctuation of force and velocity. How-
ever, the IB-LBM approaches usually require a set of Lagrangian
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boundary nodes independent of the Eulerian grid, while the
order of their accuracies remains the same as other diffuse bound-
ary conditions.

Like in IBM, normal diffuse boundary conditions also describe
the geometry with a smooth order parameter. Partially Saturated
Method (PSM) [14], as one kind of implicit boundary condition, al-
lows for smooth shift from pure fluid to solid obstacles by intro-
ducing a partially saturated collision operator. The nature of PSM
is to add penalty force to the distributions, which comes out to
be the same idea as some porous media models. One benefit of
smooth shift is that no extrapolations are required for the mov-
ing boundary problems. However, according to the model of Noble
et al,, the no-slip condition cannot be perfectly recovered, what
they recover at sharp boundary limit is actually Zou-He Dirichlet
boundary condition [15]. More recently, Krause et al. proposed a
homogenised scheme [16]. In Krause’s model, the penalty force is
replaced with additional momentum generated by direct combi-
nation of local fluid velocity and no-slip boundary condition on
the basis of partially saturated parameter. In this way the bound-
ary velocity converge to the imposed condition at sharp bound-
ary limit. The boundary force in implicit models can in general
be calculated by taking the first moment of the extra momentum.
Apart from the advantages, both methods has only one order pa-
rameter that controls the behaviors of all the directions on the
boundary node. This treatment does not distinguish the distribu-
tions by the angles formed by their directions and the local bound-
ary normal vector. In the directions that are close to the tangent
direction of the boundary, more streaming should be allowed. The
modification for collision step should be carefully associated with
other models when applied to complex problems. Like most dif-
fuse methods, the above two boundary conditions are first order
accurate.

It is difficult to get rid of all the listed flaws of different meth-
ods at the same time. In this paper a new diffuse boundary con-
dition for LBM is proposed. Although penetration cannot be com-
pletely avoided, diffuse methods can be easily applied to curved
and moving boundary problems. The derivation of this method
is inspired by Li et al’s derivation [17] and Aland et al.’s work
[18]. In their work diffuse geometries are introduced and bound-
ary conditions are incorporated into the governing equations. Un-
like in [18] where the Navier-Stokes equation is combined with
no slip condition, the associated boundary condition for LBM is
nodal bounce back. The reason why halfway linking bounce back
is selected is that in the derivation boundary conditions should
be applied exactly to the boundary positions. The new method is
named Diffuse Bounce Back-Lattice Boltzmann Method (DBB-LBM).
At sharp boundary limit DBB-LBM recovers the bounce back con-
dition. Like other implicit schemes, DBB-LBM has a smooth bound-
ary and can simulate curved boundary problems without employ-
ing interpolation or extrapolation. In moving boundary problems
solved with DBB-LBM, the force fluctuation caused by discontinu-
ity can also be significantly reduced if the scheme is applied prop-
erly. More importantly, DBB-LBM is a modification of propagation
step. Different collision models for complex physics can be directly
inserted into the solver because collision does not affect the incor-
porated boundary condition.

In the following sections, DBB-LBM is introduced and tested
in detail. Section 2 explains how DBB-LBM is derived and dis-
cretized. In Section 3, the new scheme is validated by several
benchmark problems. The convergence of the fluid field and the
effect of some parameters are discussed with a Taylor Couette
flow example. The force evaluation is validated with a 2D cylin-
der flow problem. The example of impulsively started cylinder in
a channel shows Galilean invariance and how DBB-LBM manages
the boundary force fluctuation. Section 4 concludes the features of
DBB-LBM.
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Fig. 1. D2Q9 model.

2. Derivation of the diffuse bounce back lattice Boltzmann
equations

The DBB-LBM is derived from discretizing the bounce-back-
incorporated discrete Boltzmann equations (DBEs). The process of
inserting the bounce back boundary condition and the discretiza-
tion of the DBE are explained in this section. While LBM consists of
two major steps, collision and streaming, The boundary condition
is only applied to the streaming process because collision algo-
rithm is usually local. The extra momentum caused by the bound-
ary condition is also an important ingredient for evaluating the
boundary forces.

2.1. Lattice Boltzmann equation

The lattice Boltzmann method simulates fluids by iteratively re-
peating the collision and streaming of particle distribution func-
tions (PDFs). The collision and streaming steps for force free fluid
in their general forms [19] can be written as

collision: f*=f— M~1SM(f — f°9),
streaming: fo (X, t) = fi(X —eyd;,t — &)
inQfora=0,1,...,Ny, -1, (1)

where f is the vector form of PDFs, f®4 is the equilibrium PDF
vector that can be defined by specific LB models, f* is the post-
collision PDF vector. M is the matrix that transforms the distri-
butions to the moment space where collision is defined, and the
diagonal matrix S is the relaxation frequency matrix. If the single-
relaxation-time (SRT) collision model [20] is employed, the relax-
ation frequencies are related to the kinematic viscosity in the same
way s = &/(v/c? +0.58;), where v is the kinematic viscosity, and
cs is the speed of sound. f, is the PDF in the direction of the lattice
velocity ey, x is the position of a certain node in the discretized
fluid domain, t is the time and &; is the time increment. N, is the
number of lattice velocities, and €2 is the fluid domain. Note that
for convenience f,(x,t) is denoted by fo,|§( hereafter.

The most typical 2-dimension-9-velocity model (D2Q9) of LBM
can be depicted by Fig. 1 [21]. Ny in this case is 9. On the fluid
node A, the collision step is executed locally and in the streaming
step, the red neighboring distributions are advected to node A in
the corresponding directions.

According to the incompressible model [22-24], the equilibrium
distribution f$9 is expressed by

2
g _ P e, -u  (eg-u) _u-u , 2
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Fig. 2. The diffuse geometry of Q.

where pg is density, u is velocity, p is pressure, t, is the corre-
sponding weight and c; = 8x/(+/38;), 8 is the grid size. The macro-
scopic physical properties of the fluid can be recovered by taking
the moments of the PDFs,

Ny —1 Ny—1
p= Csz Z fav Lol = Z eotfa- (3)
a=0 a=0

The DBE is the continuous form of lattice Boltzmann equation.
According to the Strang splitting [25,26] technique, the DBE in a
discrete time step can be described by the following equation

[ =C(8:/2) 0 S(8¢) 0 C(8:/2) f, (4)

where the elapsed time between f? and fI+! is &, C is the col-
lision operator in Eq. (1) and S is the streaming operator with
boundary condition. To be more specific, S is the operator for nu-
merically solving the following partial differential equation

0 fa

W-l-v'(eafa)zo- (5)

Besides Eq. (5), another important ingredient for deriving the
DBB-LBM is the bounce back boundary condition. Bounce back for
straight no-slip boundaries is also shown in Fig. 1. On node B, the
outgoing distributions are in dashed lines. The result of bounce
back is that an outgoing PDF is reflected to the corresponding in-
coming PDF with the same color in solid line. The bounce back
process can be mathematically expressed by

Jo = fa + 2tapo(ey '“b)/cszv (6)

where f; and f, are in opposite directions and u, is imposed
boundary velocity.

2.2. Derivation of diffuse bounce back discrete Boltzmann equation

The derivation of DBB-DBE starts from taking the weak form of
Eq. (5)

/A[?"-i-V-(eafa)}dx:O, (7)
Q t

where A is an arbitrary function. Applying integration by parts to
Eq. (7), we have

_ [0
/mkfa(ea~n)dx7/Q(Vk~ea)fadx_ fﬂx e dx, 8)
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Fig. 3. Setup of Taylor Couette flow.

where 92 is the boundary of Q2 and n is the unit normal vector.
After the bounce back boundary condition Eq. (6) is incorporated,
the following equation should hold

: _ , __ [ ;0
/Bﬂk(fa—i—r)a)(ea-n)dx fQ(VA ey) fudx = fg)» o dx, (9)

where 7, denotes the imposed boundary velocity term 2ty pg(eqy -
uy)/c? for convenience.

The geometry of 2 is described by a smooth phase order pa-
rameter Y in the perspective of a larger domain €’ that contains
Q (Fig. 2).

The profile of ¥ is also shown in Fig. 2, it behaves like a switch
for fluid and solid domains. Ideally v is 1 in the fluid phase and
is 0 in the solid phase. However, a Vi related parameter y is re-
quired for identifying the boundary of €2, a smooth profile for i
should be used in practice. With v and y the integrating domain
of Eq. (9) can be changed to Q" by multiplying activating parame-
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ters to the integrant,
/Q,xufd 0w mdx— [ Yfu(Vien)dx

waf“d

Hyperbollc tangent function is a popular model for smooth bound-
ary order parameters, because it is smooth and its derivative is
good representation of boundary. So ¥ and yx are expressed as
v = 1+tan2h(21/e), xn= -V, (1)
where [ is the distance to boundary, € is the diffuse boundary
thickness. Theoretically there is no sharp transition in both i and
X, so the force fluctuations in the moving boundary cases can be
reduced. Other non-differentiable profiles may still have disconti-
nuity in high order derivatives.

Since Y goes to zero on 92, by applying integration by parts
to Eq. (10), the integral form of the diffuse bounce back advection
equation is obtained

9 fa
L/A[V ' (I/Ieafa)+ww -

As defined A is an arbitrary function, therefore the rest part of the
integrant should be zero.

Bfa Vy -e
2
The above equation is valid in the large computational domain €’.

Derived from Eq. (11), the gradient of order parameter should
be expressed by

(10)

(fa + 7a) (€ - Vl/f)}dx =0. (12)

+V.(exfy) = (fa Jo +1a). (13)

Vi = Mn’ (14)
hence Eq. (13) can be rewritten as
aafa +V.(e utfa)— 1p)(“ ey)(fa — fo +Na). (15)

In direction «, such as the directions of f3, fs, fs and f; shown
in Fig. 2, where n-e, > 0, the boundary conditions are applied as
they should be. However, bounce back is not applied to their op-
posite directions in the bulk of solid. In direction & where (n-ey)
is smaller than 0, ¢, should not function, therefore the product
(n-ey) in this direction is set to 0. n-e, in Eq. (15) must be re-
placed by the maximum of n-e, and 0.

e v eufuy = 20 ~ fu+ 7). (16)
Denotmg 4(1 —y)max(n- ey, 0)/€ by ¢y, the diffuse bounce back
advection equation (Eq. (17)) can be obtained.

3fa

B max(n - eq. 0)(fa

+ V- (eafa) = la(fz — fa +1a). (17)

Note that ¢, varies with the distribution directions. This makes the
penalty effect dependant on the directions. The propagation of in-
coming distributions in the boundary tangent line directions is de-
generated to traditional lattice Boltzmann propagation, and the ex-
tra term for recovering bounce-back condition is applied to normal
directions the most.

2.3. Discretization of the diffuse bounce back propagation equation
To discretize Eq. (17), both sides of the equation are integrated
over time period [t — &, t] with coupled space integration limits

[X - eafst»x],

t
Fule= Joli = [ Gutfa = fuma (18)
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The right hand side of the Eq. (18) is numerically evaluated,
fuly = fuli s

- st[e Call o = fuo +ma) s+ (1= 0) Cal% 5 (S

~fo 0l ]

(19)

The parameter 6 suggests different numerical schemes. 8 = 0.5
means Crank-Nicolson scheme and 6 =1 implies implicit Euler
scheme.

Eq. (19) is coupled with the same equation in the opposite di-
rection. By decoupling the two equations, the discretized propaga-
tion step for DBB-LBM is obtained as

t -5, 1 t-38, =, t
ul =l + 2 (falkahs, = Fal s + nalt)
(1+c)cs -5,
+ D (o)

o X—ey ¢

C C. _
4 (fa fa+77a)|,t(+ae;5[7 (20)

where the ¢y to ¢4 are coefficients related to ¢

c=14+c1+c, 28[9§a|;, C :(Ste{d';
3= 8(1-0)alis. ca=08(1-0)Cal . (21)

In the implicit Euler case, the DBB-LBM propagation has a sim-
ple form,

t -8 G -8 -4 t
fulo= Foliin + 2 (falon = olictn + malk)- @2)

It is interesting to note that Eq. (22) can be separated into two
steps, the normal propagation step and a local operation.

t t=48
o lx = falxe,s0

fo =+ %(—f;* + 5+ ). (23)
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Fig. 4. Transient solutions for Taylor Couette flow velocity. IE1, IE2 and IE3 are Im-
plicit Euler schemes, and CN is Crank Nicolson scheme. IE1, IE2 and IE3 corresponds
to analytical ¢, biased difference ¢ and central difference ¢ respectively. The dashed
lines are analytical solutions. Red, blue and magenta colors represent solutions at
T=0.01,T=0.1and T = 1. r is the distance to the circle center. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 5. Total fluid bulk PDF conservation. IE1, IE2, IE3 and CN are the same meaning as in Fig. 4.

3. Validation and application

In this section, test cases are solved with DBB-LBM. The Tay-
lor Couette flow example is a validation for the accuracy of ve-
locity. The accuracy not only depends on the resolution, but also
the boundary thickness and how the DBE is discretized. The results
can suggest how to choose the scheme and parameters. The drag
coefficient of cylinder flow is then studied to test the validity of
force calculation. An unsteady cylinder flow is employed to test the
Galilean invariance feature of DBB-LBM. This simulation is imple-
mented in two ways, moving frame and stationary frame. Ideally,

1078
104 ¢ 1
wﬁ 105+ i
—&— DBBLBM - IE1
" —o—DBBLBM - IE2
1071 —»—DBBLBM - IE3 E
—+—DBBLBM - CN
2nd order
******* 1st order
10-7 L L L

0.5 1 2 4
Boundary thickness ¢ in lattice unit

(a) Influence of boundary thickness € to different DBB-LBM schemes. IE1,
IE2, IE3 and CN are the same meaning as in Fig. 4.

the results of the two cases should be identical. Like other implicit
boundary conditions, DBB-LBM can largely reduce the force noise
in the stationary frame case if applied properly.

3.1. Taylor Couette flow

The setup of Taylor Couette flow is depicted in Fig. 3. The com-
putational domain is a square with side length a, and the fluid do-
main is between the two concentric circles. The diameters of the
circles are D; = 25a/64 and D, = 2D;. The characteristic length is
the difference between the radii of outer and inner circles. The

—&—DBBLBM - |IE1
—o—DBBLBM - [E2
——DBBLBM - IE3
—+—DBBLBM - CN
Bouzidi

2nd order

1074

10°F

o
m_l 10—6 =

0.125 0.25 0. 1

50/L

(b) Convergence of different DBB-LBM schemes as mesh is refined. IEI,
IE2, IE3 and CN are the same meaning as in Fig. 4.

Fig. 6. Convergence tests for DBB-LBM schemes.
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Fig. 7. Setup of 2D cylinder flow.

outer circle rotates with an angular velocity w, while the in-
ner wall remains stationary. The Reynolds number is 45. At this
Reynolds number, SRT collision model works well, hence the relax-
ation frequencies in matrix S are set to the same value. The kine-
matic viscosity v is 0.032, and the initial angular velocity for the
outer circle is w, = 4vRe/(D, — D1)/D,. The boundary thickness €
is 1 in lattice unit.

Since the outer circle rotates with a constant angular velocity,
the direction of the imposed velocity varies along the boundary.
In this case the exact value of the imposed velocity at the nodes
off the 1 = 0.5 contour line cannot be determined without a rea-
sonable definition. The one way to define imposed velocity for the
off boundary nodes is to copy the imposed wall velocity in or op-
posite to the normal direction of the current node. This treatment
assumes that the gradient of the imposed velocity in the normal
direction is 0. The gradient has a significant impact on the bound-
ary vicinity solutions. Unless the expected solution for velocity is
also gradient free on the boundary, the preceding definition should
generate a non-negligible boundary error. What’s more, an incon-
sistency of this definition is that it does not satisfy the contin-
uum equation. Although the imposed velocities on off boundary
nodes contribute more to the boundary velocity than the bulk ve-
locity, such inconsistency had better be avoided. Fortunately there
is a simpler definition that can fix the defects. Since the effect of
local imposed velocity to the boundary condition is weakened as
the inspected node gets farther away from the boundary, non-zero

U
—

(a) Setup of moving frame flow.
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boundary velocities are only required in a relatively narrow band
around the outer circle. Inside this band the local imposed veloc-
ity can be expressed by u, = (x — x¢,y — yc)w;,, where (x,y) is the
position of the node and (xc,y.) is the center of circle, meaning
that a fixed angular velocity is imposed around the boundary. The
magnitude of the imposed velocity varies in the radial direction,
but the difference can be neglected since the boundary band is
narrow. This definition looks like treating the boundary band as
a rigid body, yet it is not true because the imposed velocities in-
side the band contribute more to the real boundary, instead of its
neighborhood.

In this test case, the propagation step is discretized with both
Crank-Nicolson scheme and Implicit Euler scheme. In the Implicit
Euler scheme, the coefficient ¢, can be obtained in three ways, an-
alytical solution, biased difference and central difference. The de-
tailed expressions are as follows,

Analytical solution: |, = 4(1_fw|")max(n -ey,0), (24)

MaxX(Vlxre,5, ~ ¥lx: 0)

Biased difference: ¢yl, = 5] . (25)
X X
_ 0
Central difference: 4|, = maX(WH;? ¢|1//|X7eu5t )' (26)
X X

The performance of these schemes are shown in Fig. 4. The tran-
sient solutions for the magnitude of velocity along the radial direc-
tion are plotted. The characteristic length is L = (D, — D;)/2 = 50.
The transient solutions for T =0.01, T =0.1 and T =1 are plotted
on the graph, while T = vt/L? is the normalised time. At T = 1, the
solutions are close to steady state solution. From Fig. 4, we see that
the Implicit Euler DBB-LBM scheme works better than the Crank
Nicolson scheme. The Implicit Euler scheme imitates the fact that
bounce back condition is usually applied after the streaming step.
Among the Implicit Euler schemes, ¢, evaluated by taking the bi-
ased difference generates more accurate solutions, because in this
case both the evaluation of ¢, and the application of bounce back
take place halfway along the characteristics.

In Fig. 4, the DBB-LBM are further compared with the Bouzidi
method [3]. As Bouzidi is sharp boundary condition, the numeri-
cal solutions generated by this method agree very well with the
analytical solution. On the other hand, in DBB-LBM, as explained
previously, the errors in the neighborhood of the boundary are de-
pendent to the gradient of the imposed velocity. For T = 0.01, the
expected gradient of velocity near the outer circle is larger than
the gradient of imposed velocity; while for T =1, the expected

D

(b) Setup of stationary frame flow.

Fig. 8. Setup of moving frame and stationary frame cylinder flows.



G. Liu and T. Lee

gradient near the inner circle is also larger than the imposed
gradient, which is 0. Such errors are commonly seen in diffuse
boundary methods and can be avoided to a decent extent by ad-
justing the imposed boundary velocity distribution or refining the
mesh.

Although as a diffuse boundary approach, DBB-LBM does not
recover sharp boundary perfectly, it still inherits the features of
bounce back boundary condition, and conserves the total PDFs
in the fluid bulk much better than the Interpolated Bounce Back
method like Bouzidi condition (Fig. 5). In Fig. 5, the change rates of
total fluid bulk PDF for DBB-LBM schemes are smaller than that for
the Bouzidi method. Analytical ¢ performs the best in conserving
the total fluid bulk PDF. Although Crank Nicolson scheme may in-
troduce additional PDFs to the system, it came out to have slightly
better conservation feature.

The influence of boundary thickness € to the solution is im-
portant for diffuse boundary methods. For DBB-LBM we study this
influence with the Taylor Couette flow application on a 512 by 512
grid, i.e. the characteristic length L is 100 in lattice unit. The steady
state numerical solutions are assessed by taking the L-2 relative er-
ror e;, defined in the following way,

\/Zo:j)eg (un(i. ) = ue(i. j))*

€ = N ,

(27)

where (i, j) represents the grid point, N is the number of grid
points in the fluid bulk, u, is the numerical solution for normalised
velocity magnitude and u; is the true value for the normalised ve-
locity magnitude. For Taylor Couette flow, there is analytical solu-
tion for the normalised velocity magnitude,
r/Dy — (4r/Dy)!
1—(Dy/D1)~2

where u; is expressed as a function of radius r and D{/2 <1 <
D, /2. The effects of boundary thickness for different schemes are
shown in Fig. 6a. The orders of convergence for most DBB-LBM
schemes lie in between first order and second order. The behavior
of Implicit Euler scheme with central difference ¢ becomes worse
as the boundary thickness get smaller. This caused by the failure of
recovering the gradient of i when the thickness € is comparable
or smaller than the grid size.

The quantified error analysis is further extended to its de-
pendence on the resolution. The boundary thickness is fixed
to 1, and the velocity errors under different resolutions (L =
50, 100, 200, 400) are plotted in Fig. 6b. The convergence rates
for all DBB-LBM schemes in the inspected range are second order.
Implicit Euler scheme with biased difference ¢ produces the small-
est absolute error. The schemes are also compared with Bouzidi
method. Although Bouzidi method as a sharp boundary method is
more accurate, the convergence rate can be reduced to first order
as the mesh is refined to L = 400.

ur(r) = (28)

3.2. 2D cylinder flow

The boundary force can be evaluated by momentum exchange.
In this section, the 2D cylinder flow is solved with DBB-LBM to test
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(a) T=1

(b) T=3

(c) T=5

Fig. 9. Time evolutions of streamlines at Re = 550 for moving frame and stationary
frame cases using biased difference ¢, and boundary thickness € =1. (a) T =1,
moving frame (upper half), stationary frame (lower half); (b) T = 3, moving frame
(upper half), stationary frame (lower half); (c) T =5, moving frame (upper half),
stationary frame (lower half).

the behavior of drag coefficient. The setup is depicted by Fig. 7. D
is the diameter of the cylinder at the center of the square domain,
and D = a/16. Upper,lower and right walls of the domain are open
boundaries. The profile of incoming flow velocity U is uniform and
the pressure distribution on the left boundary is also fixed. The
cylinder flow is simulated at Reynolds number Re =20, and the

Table 1
Drag coefficient Cp obtained with DBB-LBM under different resolutions and boundary thicknesses.
€ in lattice unit 1 2 3 4 Authors Reported Cp values
D=16, analytical ¢y 2.5109 2.0455 1.8520 1.7260 Tritton [27] 2.22
D=32, analytical ¢y 2.5315 2.0880 1.8987 1.7840  Fornberg [28] 2.00
D=64, analytical ¢y 2.5526  2.1059 19171 1.8044  Calhoun [29] 2.19
D=16, biased difference ¢y 2.2367 1.9562 1.7998 1.6932 Nieuwstadt and Keller [30] 2.053
D=32, biased difference ¢y 2.3045  2.0038 1.8465 1.7476  He and Doolen [31] 2.152
D=64, biased difference ¢y 2.3360 2.0292 1.8705 1.7719 Lee and Lin [32]? 2.086

2 AE/CI, CFL=0.5



G. Liu and T. Lee

kinematic viscosity v is 0.184752, meaning the Mach number is
0.1 when a = 1024. The kinematic viscosity remains unchanged for
different resolutions. And the initial state of the flow is defined as
inviscid solution.

The normalized drag force Cp can be expressed by

26
~ poU?D

D (29)

where Fp is the horizontal component of total force F, which can
be achieved by evaluating the spatial integral of weighted momen-
tum exchange,

F:Z[Z wgaea(fa+fd)i|337 (30)

Following the experience in Section 3.1 that ¢, calculated by bi-
ased difference has the best convergence performance and that the
analytical ¢, has the best conservation feature, here we take these
two cases and only consider the Implicit Euler scheme. When ¢,
is a result of biased difference (Eq. (25)), the corresponding coeffi-
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cient in Eq. (30) should be treated the same way:

Fo=Y | Y (U (x+ead) — Y (X)ea(fu+fa) |83 (31)

X | >0

According to numerical tests, diffuse bounce back schemes may
lead to spatial fluctuations of the tangential component of the
boundary force field in the solid bulk, and this can be the main
source of error for momentum exchange force model. To avoid this
phenomenon, a modified relaxation time is introduced to the sys-
tem:

S=rtv(2-1) (32)

T T, T

where 7 = v/(cszét) is the original relaxation time, 75 is 0.5 and
is applied to the solid material, / is the mixed relaxation time,
and the applied relaxation frequency is s = 1/(t’ + 0.5). With this
modification the physical feature of fluid is not changed, however,
the collision step in the solid parts is reduced to equilibrium dis-
tributions, and this helps to weaken the spatial fluctuation effect
in the solid.

1.5

Moving Frame, e=1
=  Moving Frame, e=2
Moving Frame, ¢=3

05 - A Stationary Frame, e=1 _
O Stationary Frame, e=2
Stationary Frame, =3
Koumoutsakos and Leonard (1995)
0 | | | |
0 1 2 3 4 5

T

(a) Cp history of moving frame (solid symbols) and stationary frame (hollow symbols) cases with analytical £, under different boundary thicknesses (e = 1,2, 3).

2
15
o 4L
o Moving Frame, e=1
= Moving Frame, e=2
Moving Frame, ¢=3
05 A stationary Frame, e=1 _
O Stationary Frame, e=2
Stationary Frame, =3
Koumoutsakos and Leonard (1995)
0 | | | |
0 1 2 3 4 5

T

(b) Cp history of moving frame (solid markers) and stationary frame (hollow symbols) cases with biased difference ¢, under different boundary thicknesses (e = 1,2, 3).

Fig. 10. Force history of impulsively started cylinder in a channel. The solid black lines are the results obtained by Koumoutsakos and Leonard in 1995 [33]..
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The following table shows the steady state Cp calculated DBB-
LBM under different boundary thicknesses and resolutions.

Relevant published numerical and experimental data are also
listed in the above Table 1. The results show that in most cases
DBB-LBM can recover reasonable drag coefficients. From the re-
sults we see the drag coefficient at steady sate in general converges
when boundary thickness is decreased. However, when boundary
thickness is 1, the Cp value is a bit off the expectation. This can
be caused by the lack of boundary nodes for integration. The drag
coefficient value also converges as mesh is refined. Biased differ-
ence {, as expected produces results closer to the reported data.
Although open boundaries are employed to reduce the force fluc-
tuations, inlet and outlet boundary effects can still be detected in
the Cp history.

3.3. Flow past a impulsively started cylinder in a channel

This simulation is inspired by applications by Lallemand and
Luo [4] and Lee and Lin [32]. The purpose of this simulation is
to show the Galilean Invariance of DBB-LBM. The setup is simi-
lar to the 2D cylinder flow. Reynolds number here is 550. Time is
normalised by AT = D/(2U). Different boundary thicknesses (¢ =
1,2, 3) are applied to this application. The resolution is 4096 by
4096 and the characteristic length remains 64, so that force fluc-
tuations caused by wall effects would not appear in the early time
of simulation. In this application we consider two cases, moving
frame and stationary frame. Left and right boundaries are periodic
in both cases. In moving frame case, upper and lower walls moves
to the right with a speed of U, and the cylinder is fixed at the
center of the domain (Fig. 8a). In the stationary frame case, the
walls are stationary, and starting from the center of the domain
the cylinder moves to the left with a speed of U (Fig. 8b).

In this application we consider the transient solution for rel-
atively high Reynolds number fluid. Since the distance from the
cylinder to the inlet is changing for the stationary frame case, it
is not mathematically perfectly identical to the moving frame case.
Therefore we only consider the period T = [0, 5] so that the inlet
does not bring in too much boundary effect. Below are the stream-
lines when T is 1, 3 and 5. The upper halves are the moving frame
solutions and the lower haves are the stationary frame solutions.
(Fig. 9.)

As Lallemand and Luo have indicated in [4], the moving frame
case and the stationary frame case should be decently identi-
cal. Fig. 9 shows such agreement for different stages of the evo-
lution. The Galilean Invariance feature is also reflected by the
drag coefficient. Fig. 10 shows the behavior of Cp for different
cases.

Fig. 10a tracks the history of drag force in both stationary frame
and moving frame cases with analytical {,. For each boundary
thickness, the evolutions of moving frame and stationary frame
cases in general agree with each other. Obvious fluctuations can
be detected in the stationary frame cases when boundary thick-
ness is 1. This is typical sharp boundary effect and can be re-
duced by increasing the boundary thickness. At sharp boundary
limit when real bounce back is recovered, the force fluctuation
becomes prominent. An explanation of the fluctuation is that the
physical properties of newly generated fluid nodes caused by par-
ticle motion are not correctly recovered. Although force fluctua-
tions of the stationary frame case are not completely removed for
narrow boundary cases, it is almost neglegible compared to force
behaviors in [4]. Fig. 10b shows the drag force histories obtained
by biased difference ¢,. It is interesting to note that biased differ-
ence {, not only produces more accurate physical properties, but
also significantly mutes the noises when boundary is close to sharp
limit.
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4. Conclusions

The DBB-LBM proposed in this work is an implicit boundary
scheme for LBM. It is inspired by the work of Li et al. [17] and
Aland et al. [18]. The derivation starts from incorporating the
bounce back boundary condition into the weak form of DBE. The
derived equation is in continuous form and can be discretized
into Implicit Euler and Crank-Nicolson schemes. Both schemes are
independent of the collision process. This feature makes it eas-
ier to combine DBB-LBM with different collision models. Unlike
many implicit boundary conditions, this new scheme is second or-
der convergence. The accuracy is tested with Taylor-Couette flow
benchmark problem. The accuracy of drag force is validated in
2D cylinder flow problem. Force accuracy also depends on the
boundary thickness. We suggest that the boundary thickness be as
small as possible, as far as the interface profile remains smooth.
Large boundary thickness can make the boundary effect spread and
therefore decrease the force accuracy. For implicit Euler case, our
recommendation for the thickness value is 1 in lattice unit, and
for Crank Nicolson case, it should be at least 2 for numerical sta-
bility reasons. Another benchmark problem of impulsively started
cylinder flow inspired by Lallemand and Luo [4] is implemented
to study the Galilean invariance error and the fluctuations caused
by moving boundaries. The force fluctuation with DBB-LBM can be
well controlled by applying diffuse boundary method.
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