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a b s t r a c t 

The lattice Boltzmann method has been widely used in curved and moving boundary fluid simulations. 

Both explicit and implicit treatments are studied to recover proper boundary conditions on Cartesian 

grids. These methods can describe curved boundaries more accurately and more smoothly than the stair- 

case approximation. However, to improve the order of accuracy and to reduce the fluctuation of force, 

complicated modifications have been applied to the collision step of lattice Boltzmann equation. In this 

study, a new boundary scheme based on diffuse geometry is proposed for lattice Boltzmann method. 

The scheme is derived by directly incorporating the bounce back condition into the weak form of the 

streaming step of discretized Boltzmann equation. The new method does not change the collision oper- 

ator. Therefore it can be easily combined with complex collision models. Although diffuse boundary is 

introduced, this scheme recovers exact bounce back condition at sharp boundary limit, regardless of the 

shapes and motions of the boundaries. Numerical tests show that the accuracy of this method is second 

order and depends on the boundary thickness and several other factors. In moving boundary problems, 

the fluctuation of force can be largely reduced compared to popular sharp boundary conditions because 

it does not require extrapolation to fulfil the unknown information of the newly generated fluid nodes 

around the boundaries. In this paper the detailed derivation for the new scheme is explained and the 

benchmark problems are solved to test its accuracy and the effect of different parameters. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The lattice Boltzmann method (LBM) has become very pop- 

lar in simulating fluids. However, the original LBM is imple- 

ented on uniform Cartesian grids and hence naturally weak in 

olving curved boundary and moving boundary problems. These 

roblems are interesting to researchers since fluid-solid interac- 

ion and the dynamics of suspension are commonly seen in fluid 

imulations. 

Bounce back is the most popular and typical explicit bound- 

ry condition for no-slip boundaries in LBM, however it can only 

eal with straight boundaries that are parallel to the grid lines. 

n early simulations curved boundaries are represented by stair- 

ases so that simple bounce back can be applied. The stair- 

ases not only bring inaccuracy into the system, but also gener- 

te small vortices when Reynolds number is large. A variety of 

ethods have been investigated to recover curved boundaries in 

BM. These methods in general can be classified into interpolated 

chemes, diffuse schemes and immersed boundary schemes (a spe- 

ial case of diffuse schemes). Filippova-Hänel scheme [1,2] is one 
∗ Corresponding author. 
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f the first interpolated boundary schemes. It constructs a vir- 

ual equilibrium probability distribution function (PDF), and cal- 

ulates the incoming PDFs with extrapolation. In 2001, Bouzidi 

t al. [3] combined the basic halfway linking bounce back con- 

ition with interpolation. Lallemand and Luo [4] further extend 

he scheme to moving boundary cases. These and most other in- 

erpolated schemes can recover sharp boundaries, yet they have 

pparent weaknesses. Besides the numerical instability introduced 

y the interpolation schemes, the force fluctuation is obvious 

5,6] . 

Inspired by Peskin [7,8] and many others, the Immersed Bound- 

ry Method (IBM) has been applied to LBM [9–12] . Although IBM 

as invented to solve membrane problems, it can tackle with rigid 

ody problems if the stiffness of the boundary is increased to 

 large value. The original Immersed Boundary lattice Boltzmann 

ethod (IB-LBM) [9] was based on penalty force model directly 

nherited from Navier-Stokes governed IBM. Later it was discov- 

red that the enforcement for boundary can be recovered by di- 

ectly taking the momentum exchange in LBM [11,12] . This devel- 

pment eliminated the need of user defined penalty parameters. 

namuro further extended the method to two phase flow prob- 

ems [13] . IB-LBM avoids interpolation in moving boundary prob- 

ems and it reduces the fluctuation of force and velocity. How- 

ver, the IB-LBM approaches usually require a set of Lagrangian 

https://doi.org/10.1016/j.compfluid.2021.104884
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.104884&domain=pdf
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Fig. 1. D2Q9 model. 

2

e

i

i

t

t

i

r

a

b

2

p

t

i

s

w

v

c

b

d

r

a

w  

c  

v  

fl

n

f

c  

n

s

t

d

oundary nodes independent of the Eulerian grid, while the 

rder of their accuracies remains the same as other diffuse bound- 

ry conditions. 

Like in IBM, normal diffuse boundary conditions also describe 

he geometry with a smooth order parameter. Partially Saturated 

ethod (PSM) [14] , as one kind of implicit boundary condition, al- 

ows for smooth shift from pure fluid to solid obstacles by intro- 

ucing a partially saturated collision operator. The nature of PSM 

s to add penalty force to the distributions, which comes out to 

e the same idea as some porous media models. One benefit of 

mooth shift is that no extrapolations are required for the mov- 

ng boundary problems. However, according to the model of Noble 

t al., the no-slip condition cannot be perfectly recovered, what 

hey recover at sharp boundary limit is actually Zou-He Dirichlet 

oundary condition [15] . More recently, Krause et al. proposed a 

omogenised scheme [16] . In Krause’s model, the penalty force is 

eplaced with additional momentum generated by direct combi- 

ation of local fluid velocity and no-slip boundary condition on 

he basis of partially saturated parameter. In this way the bound- 

ry velocity converge to the imposed condition at sharp bound- 

ry limit. The boundary force in implicit models can in general 

e calculated by taking the first moment of the extra momentum. 

part from the advantages, both methods has only one order pa- 

ameter that controls the behaviors of all the directions on the 

oundary node. This treatment does not distinguish the distribu- 

ions by the angles formed by their directions and the local bound- 

ry normal vector. In the directions that are close to the tangent 

irection of the boundary, more streaming should be allowed. The 

odification for collision step should be carefully associated with 

ther models when applied to complex problems. Like most dif- 

use methods, the above two boundary conditions are first order 

ccurate. 

It is difficult to get rid of all the listed flaws of different meth- 

ds at the same time. In this paper a new diffuse boundary con- 

ition for LBM is proposed. Although penetration cannot be com- 

letely avoided, diffuse methods can be easily applied to curved 

nd moving boundary problems. The derivation of this method 

s inspired by Li et al.’s derivation [17] and Aland et al.’s work 

18] . In their work diffuse geometries are introduced and bound- 

ry conditions are incorporated into the governing equations. Un- 

ike in [18] where the Navier-Stokes equation is combined with 

o slip condition, the associated boundary condition for LBM is 

odal bounce back. The reason why halfway linking bounce back 

s selected is that in the derivation boundary conditions should 

e applied exactly to the boundary positions. The new method is 

amed Diffuse Bounce Back-Lattice Boltzmann Method (DBB-LBM). 

t sharp boundary limit DBB-LBM recovers the bounce back con- 

ition. Like other implicit schemes, DBB-LBM has a smooth bound- 

ry and can simulate curved boundary problems without employ- 

ng interpolation or extrapolation. In moving boundary problems 

olved with DBB-LBM, the force fluctuation caused by discontinu- 

ty can also be significantly reduced if the scheme is applied prop- 

rly. More importantly, DBB-LBM is a modification of propagation 

tep. Different collision models for complex physics can be directly 

nserted into the solver because collision does not affect the incor- 

orated boundary condition. 

In the following sections, DBB-LBM is introduced and tested 

n detail. Section 2 explains how DBB-LBM is derived and dis- 

retized. In Section 3 , the new scheme is validated by several 

enchmark problems. The convergence of the fluid field and the 

ffect of some parameters are discussed with a Taylor Couette 

ow example. The force evaluation is validated with a 2D cylin- 

er flow problem. The example of impulsively started cylinder in 

 channel shows Galilean invariance and how DBB-LBM manages 

he boundary force fluctuation. Section 4 concludes the features of 

BB-LBM. 
2 
. Derivation of the diffuse bounce back lattice Boltzmann 

quations 

The DBB-LBM is derived from discretizing the bounce-back- 

ncorporated discrete Boltzmann equations (DBEs). The process of 

nserting the bounce back boundary condition and the discretiza- 

ion of the DBE are explained in this section. While LBM consists of 

wo major steps, collision and streaming, The boundary condition 

s only applied to the streaming process because collision algo- 

ithm is usually local. The extra momentum caused by the bound- 

ry condition is also an important ingredient for evaluating the 

oundary forces. 

.1. Lattice Boltzmann equation 

The lattice Boltzmann method simulates fluids by iteratively re- 

eating the collision and streaming of particle distribution func- 

ions (PDFs). The collision and streaming steps for force free fluid 

n their general forms [19] can be written as 

collision: f ∗ = f − M 
−1 SM (f − f eq ) , 

treaming: f α(x , t) = f ∗α(x − e αδt , t − δt ) 

in � for α = 0 , 1 , . . . , N α − 1 , (1) 

here f is the vector form of PDFs, f eq is the equilibrium PDF 

ector that can be defined by specific LB models, f ∗ is the post- 

ollision PDF vector. M is the matrix that transforms the distri- 

utions to the moment space where collision is defined, and the 

iagonal matrix S is the relaxation frequency matrix. If the single- 

elaxation-time (SRT) collision model [20] is employed, the relax- 

tion frequencies are related to the kinematic viscosity in the same 

ay s = δt / (ν/c 2 s + 0 . 5 δt ) , where ν is the kinematic viscosity, and

 s is the speed of sound. f α is the PDF in the direction of the lattice

elocity e α, x is the position of a certain node in the discretized

uid domain, t is the time and δt is the time increment. N α is the 

umber of lattice velocities, and � is the fluid domain. Note that 

or convenience f α(x , t) is denoted by f α| t x hereafter. 
The most typical 2-dimension-9-velocity model (D2Q9) of LBM 

an be depicted by Fig. 1 [21] . N α in this case is 9. On the fluid

ode A, the collision step is executed locally and in the streaming 

tep, the red neighboring distributions are advected to node A in 

he corresponding directions. 

According to the incompressible model [22–24] , the equilibrium 

istribution f 
eq 
α is expressed by 

f eq α = t α

[
p 

c 2 s 
+ ρ0 

(
e α · u 

c 2 s 
+ 

( e α · u ) 
2 

2 c 4 s 
− u · u 

2 c 2 s 

)]
, (2) 



G. Liu and T. Lee Computers and Fluids 220 (2021) 104884 

Fig. 2. The diffuse geometry of �. 
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Fig. 3. Setup of Taylor Couette flow. 
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here ρ0 is density, u is velocity, p is pressure, t α is the corre- 

ponding weight and c s = δx / ( 
√ 

3 δt ) , δx is the grid size. The macro-

copic physical properties of the fluid can be recovered by taking 

he moments of the PDFs, 

p = c 2 s 

N α−1 ∑ 

α=0 

f α, ρ0 u = 

N α−1 ∑ 

α=0 

e α f α. (3) 

The DBE is the continuous form of lattice Boltzmann equation. 

ccording to the Strang splitting [25,26] technique, the DBE in a 

iscrete time step can be described by the following equation 

f n +1 
α = C(δt / 2) ◦ S(δt ) ◦C(δt / 2) f n α, (4) 

here the elapsed time between f n α and f n +1 
α is δt , C is the col- 

ision operator in Eq. (1) and S is the streaming operator with 

oundary condition. To be more specific, S is the operator for nu- 

erically solving the following partial differential equation 

∂ f α

∂t 
+ ∇ · ( e α f α) = 0 . (5) 

Besides Eq. (5) , another important ingredient for deriving the 

BB-LBM is the bounce back boundary condition. Bounce back for 

traight no-slip boundaries is also shown in Fig. 1 . On node B, the

utgoing distributions are in dashed lines. The result of bounce 

ack is that an outgoing PDF is reflected to the corresponding in- 

oming PDF with the same color in solid line. The bounce back 

rocess can be mathematically expressed by 

f α = f ̄α + 2 t αρ0 (e α · u b ) /c 
2 
s , (6) 

here f ᾱ and f α are in opposite directions and u b is imposed 

oundary velocity. 

.2. Derivation of diffuse bounce back discrete Boltzmann equation 

The derivation of DBB-DBE starts from taking the weak form of 

q. (5) 

 

�
λ

[
∂ f α

∂t 
+ ∇ · ( e α f α) 

]
dx = 0 , (7) 

here λ is an arbitrary function. Applying integration by parts to 

q. (7) , we have 
 

λ f α( e α · n ) dx −
∫ 

( ∇λ · e α) f αdx = −
∫ 

λ
∂ f α

∂t 
dx , (8) 
∂� � �

3 
here ∂� is the boundary of � and n is the unit normal vector. 

fter the bounce back boundary condition Eq. (6) is incorporated, 

he following equation should hold 
 

∂�
λ( f ̄α + ηα) ( e α · n ) d x −

∫ 
�

( ∇λ · e α ) f αd x = −
∫ 
�

λ
∂ f α

∂t 
dx , (9) 

here ηα denotes the imposed boundary velocity term 2 t αρ0 (e α ·
 b ) /c 

2 
s for convenience. 

The geometry of � is described by a smooth phase order pa- 

ameter ψ in the perspective of a larger domain �′ that contains 
( Fig. 2 ). 

The profile of ψ is also shown in Fig. 2 , it behaves like a switch

or fluid and solid domains. Ideally ψ is 1 in the fluid phase and 

s 0 in the solid phase. However, a ∇ψ related parameter χ is re- 

uired for identifying the boundary of �, a smooth profile for ψ
hould be used in practice. With ψ and χ the integrating domain 

f Eq. (9) can be changed to �′ by multiplying activating parame- 
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Fig. 4. Transient solutions for Taylor Couette flow velocity. IE1, IE2 and IE3 are Im- 

plicit Euler schemes, and CN is Crank Nicolson scheme. IE1, IE2 and IE3 corresponds 

to analytical ζ , biased difference ζ and central difference ζ respectively. The dashed 

lines are analytical solutions. Red, blue and magenta colors represent solutions at 

T = 0 . 01 , T = 0 . 1 and T = 1 . r is the distance to the circle center. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
ers to the integrant, 
 

�′ 
χλ( f ̄α + ηα) ( e α · n ) d x −

∫ 
�′ 

ψ f α( ∇λ · e α) d x 

= −
∫ 
�′ 

ψλ
∂ f α

∂t 
dx . (10) 

yperbolic tangent function is a popular model for smooth bound- 

ry order parameters, because it is smooth and its derivative is 

ood representation of boundary. So ψ and χ are expressed as 

 = 

1 + tanh (2 l/ε) 

2 
, χn = −∇ψ, (11) 

here l is the distance to boundary, ε is the diffuse boundary 

hickness. Theoretically there is no sharp transition in both ψ and 

, so the force fluctuations in the moving boundary cases can be 

educed. Other non-differentiable profiles may still have disconti- 

uity in high order derivatives. 

Since ψ goes to zero on ∂�′ , by applying integration by parts 
o Eq. (10) , the integral form of the diffuse bounce back advection 

quation is obtained 

 

�′ 
λ

[
∇ · ( ψe α f α) + ψ 

∂ f α

∂t 
− ( f ̄α + ηα) ( e α · ∇ψ ) 

]
dx = 0 . (12) 

s defined λ is an arbitrary function, therefore the rest part of the 

ntegrant should be zero. 

∂ f α

∂t 
+ ∇ · ( e α f α) = 

∇ψ · e α
ψ 

( f ̄α − f α + ηα) . (13) 

he above equation is valid in the large computational domain �′ . 
Derived from Eq. (11) , the gradient of order parameter should 

e expressed by 

ψ = 

4 ψ ( 1 − ψ ) 

ε
n , (14) 

ence Eq. (13) can be rewritten as 

∂ f α

∂t 
+ ∇ · ( e α f α) = 

4 ( 1 − ψ ) 

ε
( n · e α) ( f ̄α − f α + ηα) . (15) 

n direction α, such as the directions of f 3 , f 4 , f 6 and f 7 shown

n Fig. 2 , where n · e α � 0 , the boundary conditions are applied as

hey should be. However, bounce back is not applied to their op- 

osite directions in the bulk of solid. In direction α where ( n · e α) 
s smaller than 0, ζα should not function, therefore the product 

 n · e α) in this direction is set to 0. n · e α in Eq. (15) must be re-

laced by the maximum of n · e α and 0. 

∂ f α

∂t 
+ ∇ · ( e α f α) = 

4 ( 1 − ψ ) 

ε
max ( n · e α, 0 ) ( f ̄α − f α + ηα) . (16) 

enoting 4 ( 1 − ψ ) max ( n · e α, 0 ) /ε by ζα, the diffuse bounce back 

dvection equation ( Eq. (17) ) can be obtained. 

∂ f α

∂t 
+ ∇ · ( e α f α) = ζα( f ̄α − f α + ηα) . (17) 

ote that ζα varies with the distribution directions. This makes the 

enalty effect dependant on the directions. The propagation of in- 

oming distributions in the boundary tangent line directions is de- 

enerated to traditional lattice Boltzmann propagation, and the ex- 

ra term for recovering bounce-back condition is applied to normal 

irections the most. 

.3. Discretization of the diffuse bounce back propagation equation 

To discretize Eq. (17) , both sides of the equation are integrated 

ver time period [ t − δt , t] with coupled space integration limits 

 x − e αδt , x ] , 

f α| t x − f α| t−δt 
x −e αδt 

= 

∫ t 
t−δ

ζα( f ̄α − f α + ηα) dt. (18) 

t 

4 
he right hand side of the Eq. (18) is numerically evaluated, 

f α| t x − f α| t−δt 
x −e αδt 

= δt 

[ 
θ ζα| t x ( f ̄α − f α + ηα) | t x + (1 − θ ) ζα| t−δt 

x −e αδt 
( f ̄α − f α + ηα) | t−δt 

x −e αδt 

] 
. 

(19) 

he parameter θ suggests different numerical schemes. θ = 0 . 5 

eans Crank-Nicolson scheme and θ = 1 implies implicit Euler 

cheme. 

Eq. (19) is coupled with the same equation in the opposite di- 

ection. By decoupling the two equations, the discretized propaga- 

ion step for DBB-LBM is obtained as 

f α| t x = f α| t−δt 
x −e αδt 

+ 

c 1 
c 0 

(
f ̄α| t−δt 

x + e αδt 
− f α| t−δt 

x −e αδt 
+ ηα| t x 

)
+ 

(1 + c 2 ) c 3 
c 0 

( f ̄α − f α + ηα) | t−δt 
x −e αδt 

− c 1 c 4 
c 0 

( f ̄α − f α + ηα) | t−δt 
x + e αδt 

, (20) 

here the c 0 to c 4 are coefficients related to ζ

 0 = 1 + c 1 + c 2 , c 1 = δt θ ζα| t x , c 2 = δt θ ζᾱ| t x 
 3 = δt (1 − θ ) ζα| t−δt 

x −e α
, c 4 = δt (1 − θ ) ζᾱ| t−δt 

x + e α . (21) 

In the implicit Euler case, the DBB-LBM propagation has a sim- 

le form, 

f α| t x = f α| t−δt 
x −e αδt 

+ 

c 1 
c 0 

(
f ̄α| t−δt 

x + e αδt 
− f α| t−δt 

x −e αδt 
+ ηα| t x 

)
. (22) 

t is interesting to note that Eq. (22) can be separated into two 

teps, the normal propagation step and a local operation. 

f ∗∗
α | t x = f ∗α| t−δt 

x −e αδt 
, 

f α = f ∗∗
α + 

c 1 
c 0 

(
− f ∗∗

α + f ∗∗
ᾱ + ηα

)
. (23) 
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Fig. 5. Total fluid bulk PDF conservation. IE1, IE2, IE3 and CN are the same meaning as in Fig. 4 . 
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. Validation and application 

In this section, test cases are solved with DBB-LBM. The Tay- 

or Couette flow example is a validation for the accuracy of ve- 

ocity. The accuracy not only depends on the resolution, but also 

he boundary thickness and how the DBE is discretized. The results 

an suggest how to choose the scheme and parameters. The drag 

oefficient of cylinder flow is then studied to test the validity of 

orce calculation. An unsteady cylinder flow is employed to test the 

alilean invariance feature of DBB-LBM. This simulation is imple- 

ented in two ways, moving frame and stationary frame. Ideally, 
Fig. 6. Convergence tests fo

5 
he results of the two cases should be identical. Like other implicit 

oundary conditions, DBB-LBM can largely reduce the force noise 

n the stationary frame case if applied properly. 

.1. Taylor Couette flow 

The setup of Taylor Couette flow is depicted in Fig. 3 . The com-

utational domain is a square with side length a, and the fluid do- 

ain is between the two concentric circles. The diameters of the 

ircles are D 1 = 25 a/ 64 and D 2 = 2 D 1 . The characteristic length is

he difference between the radii of outer and inner circles. The 
r DBB-LBM schemes. 



G. Liu and T. Lee Computers and Fluids 220 (2021) 104884 

Fig. 7. Setup of 2D cylinder flow. 
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uter circle rotates with an angular velocity ω 2 while the in- 

er wall remains stationary. The Reynolds number is 45. At this 

eynolds number, SRT collision model works well, hence the relax- 

tion frequencies in matrix S are set to the same value. The kine- 

atic viscosity ν is 0.032, and the initial angular velocity for the 

uter circle is ω 2 = 4 νRe / (D 2 − D 1 ) /D 2 . The boundary thickness ε
s 1 in lattice unit. 

Since the outer circle rotates with a constant angular velocity, 

he direction of the imposed velocity varies along the boundary. 

n this case the exact value of the imposed velocity at the nodes 

ff the ψ = 0 . 5 contour line cannot be determined without a rea-

onable definition. The one way to define imposed velocity for the 

ff boundary nodes is to copy the imposed wall velocity in or op- 

osite to the normal direction of the current node. This treatment 

ssumes that the gradient of the imposed velocity in the normal 

irection is 0. The gradient has a significant impact on the bound- 

ry vicinity solutions. Unless the expected solution for velocity is 

lso gradient free on the boundary, the preceding definition should 

enerate a non-negligible boundary error. What’s more, an incon- 

istency of this definition is that it does not satisfy the contin- 

um equation. Although the imposed velocities on off boundary 

odes contribute more to the boundary velocity than the bulk ve- 

ocity, such inconsistency had better be avoided. Fortunately there 

s a simpler definition that can fix the defects. Since the effect of 

ocal imposed velocity to the boundary condition is weakened as 

he inspected node gets farther away from the boundary, non-zero 
Fig. 8. Setup of moving frame and st

6 
oundary velocities are only required in a relatively narrow band 

round the outer circle. Inside this band the local imposed veloc- 

ty can be expressed by u b = (x − x c , y − y c ) ω 2 , where (x, y ) is the

osition of the node and (x c , y c ) is the center of circle, meaning

hat a fixed angular velocity is imposed around the boundary. The 

agnitude of the imposed velocity varies in the radial direction, 

ut the difference can be neglected since the boundary band is 

arrow. This definition looks like treating the boundary band as 

 rigid body, yet it is not true because the imposed velocities in- 

ide the band contribute more to the real boundary, instead of its 

eighborhood. 

In this test case, the propagation step is discretized with both 

rank-Nicolson scheme and Implicit Euler scheme. In the Implicit 

uler scheme, the coefficient ζα can be obtained in three ways, an- 

lytical solution, biased difference and central difference. The de- 

ailed expressions are as follows, 

nalytical solution: ζα| x = 

4 ( 1 − ψ | x ) 
ε

max ( n · e α, 0 ) , (24) 

iased difference: ζα| x = 

max ( ψ | x + e αδt 
− ψ | x , 0) 

δx ψ | x , (25) 

entral difference: ζα| x = 

max ( ψ | x + e αδt 
− ψ | x −e αδt 

, 0) 

2 δx ψ | x . (26) 

he performance of these schemes are shown in Fig. 4 . The tran- 

ient solutions for the magnitude of velocity along the radial direc- 

ion are plotted. The characteristic length is L = (D 2 − D 1 ) / 2 = 50 .

he transient solutions for T = 0 . 01 , T = 0 . 1 and T = 1 are plotted

n the graph, while T = νt/L 2 is the normalised time. At T = 1 , the

olutions are close to steady state solution. From Fig. 4 , we see that

he Implicit Euler DBB-LBM scheme works better than the Crank 

icolson scheme. The Implicit Euler scheme imitates the fact that 

ounce back condition is usually applied after the streaming step. 

mong the Implicit Euler schemes, ζα evaluated by taking the bi- 

sed difference generates more accurate solutions, because in this 

ase both the evaluation of ζα and the application of bounce back 

ake place halfway along the characteristics. 

In Fig. 4 , the DBB-LBM are further compared with the Bouzidi 

ethod [3] . As Bouzidi is sharp boundary condition, the numeri- 

al solutions generated by this method agree very well with the 

nalytical solution. On the other hand, in DBB-LBM, as explained 

reviously, the errors in the neighborhood of the boundary are de- 

endent to the gradient of the imposed velocity. For T = 0 . 01 , the

xpected gradient of velocity near the outer circle is larger than 

he gradient of imposed velocity; while for T = 1 , the expected 
ationary frame cylinder flows. 
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Fig. 9. Time evolutions of streamlines at Re = 550 for moving frame and stationary 

frame cases using biased difference ζα and boundary thickness ε = 1 . (a) T = 1 , 

moving frame (upper half), stationary frame (lower half); (b) T = 3 , moving frame 

(upper half), stationary frame (lower half); (c) T = 5 , moving frame (upper half), 

stationary frame (lower half). 
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radient near the inner circle is also larger than the imposed 

radient, which is 0. Such errors are commonly seen in diffuse 

oundary methods and can be avoided to a decent extent by ad- 

usting the imposed boundary velocity distribution or refining the 

esh. 

Although as a diffuse boundary approach, DBB-LBM does not 

ecover sharp boundary perfectly, it still inherits the features of 

ounce back boundary condition, and conserves the total PDFs 

n the fluid bulk much better than the Interpolated Bounce Back 

ethod like Bouzidi condition ( Fig. 5 ). In Fig. 5 , the change rates of

otal fluid bulk PDF for DBB-LBM schemes are smaller than that for 

he Bouzidi method. Analytical ζ performs the best in conserving 

he total fluid bulk PDF. Although Crank Nicolson scheme may in- 

roduce additional PDFs to the system, it came out to have slightly 

etter conservation feature. 

The influence of boundary thickness ε to the solution is im- 

ortant for diffuse boundary methods. For DBB-LBM we study this 

nfluence with the Taylor Couette flow application on a 512 by 512 

rid, i.e. the characteristic length L is 100 in lattice unit. The steady 

tate numerical solutions are assessed by taking the L-2 relative er- 

or e L 2 defined in the following way, 

 L 2 = 

√ ∑ 

(i, j) ∈ � ( u n (i, j) − u t (i, j) ) 
2 

N 

, (27) 

here (i, j) represents the grid point, N is the number of grid 

oints in the fluid bulk, u n is the numerical solution for normalised 

elocity magnitude and u t is the true value for the normalised ve- 

ocity magnitude. For Taylor Couette flow, there is analytical solu- 

ion for the normalised velocity magnitude, 

 t (r ) = 

r /D 1 − (4 r /D 1 ) 
−1 

1 − (D 2 /D 1 ) −2 
, (28) 

here u t is expressed as a function of radius r and D 1 / 2 � r �
 2 / 2 . The effects of boundary thickness for different schemes are 

hown in Fig. 6 a. The orders of convergence for most DBB-LBM 

chemes lie in between first order and second order. The behavior 

f Implicit Euler scheme with central difference ζ becomes worse 

s the boundary thickness get smaller. This caused by the failure of 

ecovering the gradient of ψ when the thickness ε is comparable 

r smaller than the grid size. 

The quantified error analysis is further extended to its de- 

endence on the resolution. The boundary thickness is fixed 

o 1, and the velocity errors under different resolutions ( L = 

0 , 10 0 , 20 0 , 40 0 ) are plotted in Fig. 6 b. The convergence rates

or all DBB-LBM schemes in the inspected range are second order. 

mplicit Euler scheme with biased difference ζ produces the small- 

st absolute error. The schemes are also compared with Bouzidi 

ethod. Although Bouzidi method as a sharp boundary method is 

ore accurate, the convergence rate can be reduced to first order 

s the mesh is refined to L = 400 . 

.2. 2D cylinder flow 

The boundary force can be evaluated by momentum exchange. 

n this section, the 2D cylinder flow is solved with DBB-LBM to test 
Table 1 

Drag coefficient C D obtained with DBB-LBM under different resolutio

ε in lattice unit 1 2 3 4 

D = 16, analytical ζα 2.5109 2.0455 1.8520 1.7

D = 32, analytical ζα 2.5315 2.0880 1.8987 1.7

D = 64, analytical ζα 2.5526 2.1059 1.9171 1.8

D = 16, biased difference ζα 2.2367 1.9562 1.7998 1.6

D = 32, biased difference ζα 2.3045 2.0038 1.8465 1.7

D = 64, biased difference ζα 2.3360 2.0292 1.8705 1.7

a AE/CI, CFL = 0.5 

7 
he behavior of drag coefficient. The setup is depicted by Fig. 7 . D

s the diameter of the cylinder at the center of the square domain, 

nd D = a/ 16 . Upper,lower and right walls of the domain are open

oundaries. The profile of incoming flow velocity U is uniform and 

he pressure distribution on the left boundary is also fixed. The 

ylinder flow is simulated at Reynolds number Re = 20 , and the 
ns and boundary thicknesses. 

Authors Reported C D values 

260 Tritton [27] 2.22 

840 Fornberg [28] 2.00 

044 Calhoun [29] 2.19 

932 Nieuwstadt and Keller [30] 2.053 

476 He and Doolen [31] 2.152 

719 Lee and Lin [32] a 2.086 
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inematic viscosity ν is 0.184752, meaning the Mach number is 

.1 when a = 1024 . The kinematic viscosity remains unchanged for 

ifferent resolutions. And the initial state of the flow is defined as 

nviscid solution. 

The normalized drag force C D can be expressed by 

 D = 

2 F D 
ρ0 U 

2 D 

(29) 

here F D is the horizontal component of total force F , which can 

e achieved by evaluating the spatial integral of weighted momen- 

um exchange, 

 = 

∑ 

x 

[∑ 

α

ψζαe α( f α + f ̄α) 

]
δ3 
x , (30) 

ollowing the experience in Section 3.1 that ζα calculated by bi- 

sed difference has the best convergence performance and that the 

nalytical ζα has the best conservation feature, here we take these 

wo cases and only consider the Implicit Euler scheme. When ζα

s a result of biased difference ( Eq. (25) ), the corresponding coeffi- 
Fig. 10. Force history of impulsively started cylinder in a channel. The solid black

8 
ient in Eq. (30) should be treated the same way: 

 δt = 

∑ 

x 

[ ∑ 

ζα> 0 

( ψ(x + e αδt ) − ψ(x ) ) e α( f α + f ̄α) 

] 

δ3 
x . (31) 

ccording to numerical tests, diffuse bounce back schemes may 

ead to spatial fluctuations of the tangential component of the 

oundary force field in the solid bulk, and this can be the main 

ource of error for momentum exchange force model. To avoid this 

henomenon, a modified relaxation time is introduced to the sys- 

em: 

1 

τ ′ = 

1 

τ
+ ψ 

(
1 

τs 
− 1 

τ

)
, (32) 

here τ = ν/ (c 2 s δt ) is the original relaxation time, τs is 0.5 and 
s applied to the solid material, τ ′ is the mixed relaxation time, 

nd the applied relaxation frequency is s = 1 / (τ ′ + 0 . 5) . With this

odification the physical feature of fluid is not changed, however, 

he collision step in the solid parts is reduced to equilibrium dis- 

ributions, and this helps to weaken the spatial fluctuation effect 

n the solid. 
 lines are the results obtained by Koumoutsakos and Leonard in 1995 [33] .. 
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The following table shows the steady state C D calculated DBB- 

BM under different boundary thicknesses and resolutions. 

Relevant published numerical and experimental data are also 

isted in the above Table 1 . The results show that in most cases

BB-LBM can recover reasonable drag coefficients. From the re- 

ults we see the drag coefficient at steady sate in general converges 

hen boundary thickness is decreased. However, when boundary 

hickness is 1, the C D value is a bit off the expectation. This can 

e caused by the lack of boundary nodes for integration. The drag 

oefficient value also converges as mesh is refined. Biased differ- 

nce ζα as expected produces results closer to the reported data. 

lthough open boundaries are employed to reduce the force fluc- 

uations, inlet and outlet boundary effects can still be detected in 

he C D history. 

.3. Flow past a impulsively started cylinder in a channel 

This simulation is inspired by applications by Lallemand and 

uo [4] and Lee and Lin [32] . The purpose of this simulation is

o show the Galilean Invariance of DBB-LBM. The setup is simi- 

ar to the 2D cylinder flow. Reynolds number here is 550. Time is 

ormalised by �T = D/ (2 U) . Different boundary thicknesses ( ε = 

 , 2 , 3 ) are applied to this application. The resolution is 4096 by

096 and the characteristic length remains 64, so that force fluc- 

uations caused by wall effects would not appear in the early time 

f simulation. In this application we consider two cases, moving 

rame and stationary frame. Left and right boundaries are periodic 

n both cases. In moving frame case, upper and lower walls moves 

o the right with a speed of U, and the cylinder is fixed at the

enter of the domain ( Fig. 8 a). In the stationary frame case, the

alls are stationary, and starting from the center of the domain 

he cylinder moves to the left with a speed of U ( Fig. 8 b). 

In this application we consider the transient solution for rel- 

tively high Reynolds number fluid. Since the distance from the 

ylinder to the inlet is changing for the stationary frame case, it 

s not mathematically perfectly identical to the moving frame case. 

herefore we only consider the period T = [0 , 5] so that the inlet

oes not bring in too much boundary effect. Below are the stream- 

ines when T is 1, 3 and 5. The upper halves are the moving frame

olutions and the lower haves are the stationary frame solutions. 

 Fig. 9 .) 

As Lallemand and Luo have indicated in [4] , the moving frame 

ase and the stationary frame case should be decently identi- 

al. Fig. 9 shows such agreement for different stages of the evo- 

ution. The Galilean Invariance feature is also reflected by the 

rag coefficient. Fig. 10 shows the behavior of C D for different 

ases. 

Fig. 10 a tracks the history of drag force in both stationary frame 

nd moving frame cases with analytical ζα . For each boundary 

hickness, the evolutions of moving frame and stationary frame 

ases in general agree with each other. Obvious fluctuations can 

e detected in the stationary frame cases when boundary thick- 

ess is 1. This is typical sharp boundary effect and can be re- 

uced by increasing the boundary thickness. At sharp boundary 

imit when real bounce back is recovered, the force fluctuation 

ecomes prominent. An explanation of the fluctuation is that the 

hysical properties of newly generated fluid nodes caused by par- 

icle motion are not correctly recovered. Although force fluctua- 

ions of the stationary frame case are not completely removed for 

arrow boundary cases, it is almost neglegible compared to force 

ehaviors in [4] . Fig. 10 b shows the drag force histories obtained 

y biased difference ζα . It is interesting to note that biased differ- 

nce ζα not only produces more accurate physical properties, but 

lso significantly mutes the noises when boundary is close to sharp 

imit. 
9 
. Conclusions 

The DBB-LBM proposed in this work is an implicit boundary 

cheme for LBM. It is inspired by the work of Li et al. [17] and

land et al. [18] . The derivation starts from incorporating the 

ounce back boundary condition into the weak form of DBE. The 

erived equation is in continuous form and can be discretized 

nto Implicit Euler and Crank-Nicolson schemes. Both schemes are 

ndependent of the collision process. This feature makes it eas- 

er to combine DBB-LBM with different collision models. Unlike 

any implicit boundary conditions, this new scheme is second or- 

er convergence. The accuracy is tested with Taylor-Couette flow 

enchmark problem. The accuracy of drag force is validated in 

D cylinder flow problem. Force accuracy also depends on the 

oundary thickness. We suggest that the boundary thickness be as 

mall as possible, as far as the interface profile remains smooth. 

arge boundary thickness can make the boundary effect spread and 

herefore decrease the force accuracy. For implicit Euler case, our 

ecommendation for the thickness value is 1 in lattice unit, and 

or Crank Nicolson case, it should be at least 2 for numerical sta- 

ility reasons. Another benchmark problem of impulsively started 

ylinder flow inspired by Lallemand and Luo [4] is implemented 

o study the Galilean invariance error and the fluctuations caused 

y moving boundaries. The force fluctuation with DBB-LBM can be 

ell controlled by applying diffuse boundary method. 
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