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Abstract: Inertial navigation systems generally consist of timing, acceleration, and orientation
measurement units. Although much progress has been made towards developing primary timing
sources such as atomic clocks, acceleration and orientation measurement units often require calibration.
Nuclear Magnetic Resonance (NMR) gyroscopes, which rely on continuous measurement of the
simultaneous Larmor precession of two co-located polarized noble gases, can be configured to have
scale factors that depend to first order only on fundamental constants. The noble gases are polarized
by spin-exchange collisions with co-located optically pumped alkali-metal atoms. The alkali-metal
atoms are also used to detect the phase of precession of the polarized noble gas nuclei. Here we present
a version of an NMR gyroscope designed to suppress systematic errors from the alkali-metal atoms.
We demonstrate rotation rate angle random walk (ARW) sensitivity of 16 µHz/

p
Hz and bias

instability of ⇠800 nHz.

Keywords: nondestructive; NMR; gyroscope

1. Introduction

Spin-exchange pumped NMR gyroscopes [1–6] use the precession of spin-polarized nuclei to
measure rotation. A vapor cell contains one or more isotopes of noble gas atoms and an alkali-metal vapor.
The alkali-metal vapor is optically pumped using circularly polarized near-infrared laser light.
Spin-exchange collisions between the polarized alkali-metal and noble gas atoms polarize the noble
gas nuclei. When subject to a magnetic (or “bias”) field, the polarized species undergo Larmor
precession. By simultaneously measuring the Larmor precession of each entity, magnetic field correlations
can be removed, thereby increasing sensitivity to non-magnetic spin-dependent phenomena, such as
inertial rotation.

The precession of a polarized gas about a constant bias field constitutes an inertial reference frame,
i.e., the gas has (ideally) no way of knowing whether or not its container is rotating. If the precession of
the polarized gas is measured relative to a fixed point in the laboratory frame, such as with a pick-up coil,
then rotation of the pick-up coil about the bias field will change the measured rate of precession of the
polarized gas.

The application of polarized gases as inertial sensors is promising because of their low
intrinsic noise, miniaturize-ability, low power consumption, insensitivity to acceleration, and intrinsic
scaling from experimental observable to rotation that is independent of experimental parameters [7,8].
Interest in novel navigation systems which operate in global positioning system (GPS) denied
environments has increased as of late. To date, the United States, Russia, China, and India have
successfully demonstrated the capability to destroy their own satellites [9]. Such capability could
potentially be used to remove GPS satellites. Other GPS denied environments include subterranean
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and submarine travel. One obstacle to harnessing geothermal energy resources is the limited “in-hole”
navigation of horizontal drilling rigs. The future development of autonomous vehicles also relies on
robust navigation, including in GPS denied environments. NMR gyroscopes will likely first be used to
provide long-term corrections to another miniaturized gyroscope whose short term noise performance
is superior but whose long term drift is inferior to the NMR gyroscope. A proof-of-concept experiment
along these lines was recently performed using a classical and quantum accelerometer [10].

Important sources of systematic errors in spin-exchange pumped NMR gyroscopes are
longitudinal (i.e., parallel to the bias field) spin-exchange fields produced by polarized alkali-metal
atoms or noble gas nuclei [1,3,11]. Such longitudinal spin-exchange fields are not identical for all
noble gas species, and therefore cannot be removed in the same way as classical magnetic field
correlations. Longitudinal spin-exchange fields are well suppressed by synchronous spin-exchange
optical pumping [1,12], wherein the alkali-metal vapor is optically pumped transverse to a low duty
cycle pulsed bias field. Each bias field pulse produces 2p precession of the alkali-metal atoms such that,
despite having a gyromagnetic ratio in excess of 103x that of the noble gas nuclei, the alkali-metal
atoms can effectively co-precess with the noble gas nuclei.

This manuscript describes a 131Xe-129Xe synchronous spin-exchange optically pumped NMR
gyroscope which uses modulation of the alkali-metal (85Rb) polarization to drive both Xe isotopes’
NMR simultaneously. The Rb is also used as an embedded magnetometer to detect the Xe precession.
Compared to our recent work [1,2] describingNMR excitation bymodulating the bias field, polarization
modulation (PM) further suppresses the influence of time-averaged longitudinal Rb spin-exchange
fields [12] by moving such fields from DC to AC. We study how modulation of the embedded Rb
magnetometer causes signal mixing on our detection which leads to an effective change in scale
factor [13].

1.1. Bloch Equation

The spin dynamics of the polarized noble gas transverse (K+ = Kx + iKy) and longitudinal (Kz)
spins are described by the Bloch equations

dK+

dt
= �(⌥iWK

z + G2)K+ + GK
S S+ +⌥iWK

+Kz, (1a)

dKz
dt

= ⌥(WK
y Kx � WK

x Ky)� G1Kz, (1b)

where WK is the Xe resonance frequency arising from both the Larmor precession gK
B and from

rotation wR
ẑ, G1 (G2) is the longitudinal (transverse) relaxation rate, S is the Rb polarization, and GK

S
is the spin-exchange rate constant. Let superscript a represent 129Xe and superscript b represent
131Xe. Since ga < 0 and gb > 0 we find it useful to write the gyromagnetic ratio g (and hence W) as
a positive value. The sign is written explicitly out front (top sign is for a, bottom sign is for b).

We null the transverse fields experienced by the Xe, including the spin-exchange field bKS S+
(where bKS is the spin-exchange coefficient characterizing the influence of the Rb polarization on
the Xe) [12]. This suppresses Kz such that K+ is much more sensitive to WK

z than WK
+. Assuming

our transverse optical pumping produces negligible Sz, the Xe resonance frequencies are then
WK

z = gK(Bz0 + Bp) ⌥ wR, where Bz0 is the stray field inside our magnetic shields and Bp is the
field from the bias pulses. Since the Xe precess on the order of only 2p/103 radians per pulse,
the pulsed field can be approximated as a continuous field with Bp = wp/gS for pulsing frequency wp.

The transverse Rb polarization (S+) is used to polarize the Xe via spin-exchange optical pumping,
and the longitudinal Rb polarization (Sz) is used to detect the Xe precession. For small Rb precession
(WS << G0), the time-average solution to the Bloch equation for the Rb polarization can be expanded as

S =
R

G0 +
WS ⇥ R

G02 +
WS ⇥ WS ⇥ R

G03 + ..., (2)
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where R =
R
dnF(n)s(n)p/A is the pumping rate, s(n) is the cross section of the atomic transition,R

dnF(n) = P/hn is the total photon flux for a beam of power P incident on area A, p is the photon spin,
G0 is the total relaxation rate (including pumping), and WS = gS(B0+ bSaKa+ bSbK

b). Themagnetic field
experienced by the Rb includes the stray fields B0 and the spin-exchange fields (bSK is the spin-exchange
coefficient characterizing the influence of the Xe polarization on the Rb), but it does not include the
bias field. This is because the bias field is applied as a sequence of low duty cycle pulses, the area
of which correspond to 2p precession of the Rb atom. These equations assume negligible back
polarization from the Xe to the Rb [14], and that K precesses slowly such that Sz responds adiabatically.
We optically pump along x̂ such that R = R(t)x̂, and the solution to Equation (2) is

S+ =
R(t)

G0 + i
R(t)WS

z
G02 =

R(t)
G0 eiez , (3a)

Sz = �R(t)
G02 (WS

y �
WS

z
G0 WS

x) =
�R(t)

G02 Im[gSbSKK+e�iez ], (3b)

where
ez = tan�1(

Sy
Sx

) ⌘ tan�1(
Bz0
Bw

) << 1 (4)

is the magnetometer phase shift. Bw = G0/gS is the magnetic width of the magnetometer. A stray Bz
effectively rotates the quantization axis of the Rb magnetometer thus causing a phase shift (ez) in the
measurement of a rotating B?.

The Xe NMR can be driven by modulating the transverse Rb polarization near each isotope’s
resonance frequency while the bias pulsing frequency is kept fixed. Such an excitation scheme is
desirable as it effectively AC couples Sz. Hence, we Fourier expand the Rb polarization as S+(t) =
eiez Âp,q spqei(pw1+qw2)t where spq is the Fourier coefficient of S+ at pw1 + qw2. With the substitution
K+ = K?e±i(wdt+d), where d is the phase shift of the Xe relative to the phase of S+ and wd is the
drive frequency, we find the real part of Equation (1a) to be

dK?
dt

= �G2K? + GK
S Â

p,q
spq cos[(wd + pw1 + qw2)t+ d ± ez]. (5)

The steady state solution of this equation is K? = GK
S spq/G2 when wd is chosen to satisfy the

resonance condition wd = �p0w1 � q0w2 for some p0 and q0 and when d, ez << 1. Similarly,
the imaginary part of Equation (1a) (once again for d, ez << 1) is

dd

dt
= �D � G2(d ⌥ ez), (6)

where D = wd � gBz ± wR. The sign in front of ez is isotope dependent because the Xe isotopes
precess in opposite directions. We can solve this equation in the Fourier domain to find

d̃ = � D̃ ⌥ G2ẽz
G2 + iw

, (7)

where the notation f̃ = f (w) is used.
By monitoring Sz, we can obtain measurements of d for each Xe species. These measurements of d

are used to extract the Xe resonance frequencies. We perform comagnetometry using these Xe resonance
frequencies to remove magnetic field correlations and arrive at a measurement of inertial rotation.
In Section 2 we detail the implementation of our Xe excitation scheme, and in Section 3 we demonstrate
the performance of our system.
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2. Materials and Methods

An 8 mm inner diameter cubic Pyrex cell filled with 68 Torr enriched Xe and 85 Torr N2 with
a hydride coating [15] is mounted in a ceramic housing with holes for laser light to enter the cell.
The ceramic housing has four symmetric faces which fit together like a jigsaw puzzle (and so we
call these “jig” heaters). On each face are printed conductive traces through which AC current at
⇠150 kHz is passed to heat the ceramic. The conductive traces are arranged to produce minimal
stray magnetic fields including gradient magnetic fields. The ⇠1 mm gap between the vapor cell
and ceramic heating jig is shimmed with a 1.5 mm thermally conductive and slightly compressible
gap fill (model: TG 977, manufacturer: T-Global Technology, see Figure 1). The ceramic is wrapped
with aerogel (a high temperature insulating material) and secured with Kapton tape and then fitted
into a 3D printed (high temperature nylon) cartridge with holes to allow laser light to enter the cell.
The compressible nature of the aerogel produces a friction fit keeping the ceramic jig structure fixed
within the cartridge. The cartridge itself is mounted in a 3D printed (ABS plastic) rig. This rig has
support arms which extend out three of the magnetic shield portholes described below. These support
arms are secured directly to an optical table on which the entire apparatus is mounted.

a)
b)

c)

d)
e)

Figure 1. Vapor cell heater and cartridge mount photographs. (a) Four ceramic jig heater sides with
aerogel pillows attached to outer faces. AC power enters via MMCX connectors at the bottom of each
jig heater. (b) 1 cm3 vapor cell with stem tucked into fiberglass insulation. A temperature sensor sits
between the insulation and outer cell wall. (c) Cartridge with cell installed. (d) Gap fill shim on one jig
heater face. (e) View looking into the jig heater with the cell installed. Note the four pieces of gap fill
between each outer cell wall and the jig heater inner faces.

The three layer µ-magnetic shield we use is cylindrical with eight access ports (two along the
axis of symmetry and six oriented tangentially). Since the tangential access ports are not located
halfway between the two ends of the cylindrical shields, and since pump laser light must enter through
the ports, we must place our cell such that it is not equidistant from the end caps. The asymmetry
in distance to end caps informs the design of our bias pulsing coil set. To minimize coupling to the
shield end caps and maximize uniformity across the volume of the cell, the pulsing coil set consists of
two pairs of square Helmholtz coils with differing side lengths wound in series with opposite polarity.
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The purpose of the ancillary counter wound coils is to suppress the field produced by the coil set at the
nearest end cap. See [16] for specific design details.

The bias field requires short pulses (<5 µs) of ⇠1 Ampere peak current. The circuit used to drive
the pulsing coil was custom-made and is described in [16]. The circuit used to drive the shim coils was
also custom-made and is described in [17].

To perform optical pumping of the Rb, the outputs of two distributed feedback laser diodes tuned
near the Rb D1 transition (one on either side of resonance) are overlapped (see Figure 2). This is
accomplished by polarizing pump A so that it is mostly transmitted by a polarizing beam splitter (PBS)
and pump B so that it is mostly reflected by the same PBS. The combined beam is then sent through
a quarter wave plate and then separated into two beams using a PBS once again. The orientation
of the quarter wave plate is chosen such that both pump A and pump B have half their power in
each output beam. A telescope is used to couple the beams into individual EOMs. Prior to each
EOM is a polarizer and half wave plate. The polarizer ensures that the light incident to the EOM
crystal is purely linear. The half wave plate is used to align the light polarization relative to the
EOM crystal axis. The maximum and minimum voltages of the EOM drive waveform are chosen
to produce ±l/2 retardance. The quarter wave plate at the output of the EOM converts the EOM
output at Vmax(Vmin) to be s+(s�). The collimated output of each EOM is coupled into the vapor
cell from opposing directions. The overall beam resizing is set to somewhat overfill the aperture of
the ceramic heater. Fine tuning of each pump beam’s pointing is controlled using long focal length
lenses mounted on two axis translation stages just outside the magnetic shield. The position of each
steering lens is chosen to optimize the magnetometer gain. The power and detuning of each pump
laser is chosen to approximately cancel the AC Stark effect. While we could also suppress the AC Stark
effect by pumping with a single laser tuned on resonance, we would not get good spatial uniformity of
the Rb polarization without significantly increasing our laser power due to optical thickness effects.
To detect Sz, approximately one mW of linearly polarized light from the output of a third distributed
feedback laser diode, tuned near the Rb D2 line, is directed through the center of the cell and parallel
to ẑ onto a balanced Faraday detector.

subtraction Pre-amp DAQ

WP

Probe Pump A Pump B

Beam Dump

PBS

PD

HWP
Pol

EOM 1

EOM 2

cell

Magnetic shields

DM

QWP

Lens

TS

Figure 2. Experimental setup for PM excitation (not to scale). DM: dichroic mirror, Pol: polarizer,
HWP: half wave plate, QWP: quarter wave plate, PBS: polarizing beam splitter, WP: Wollaston prism,
PD: photodiode, EOM: electro-optic modulator, TS: two-axis translation stage with lens. The three-axis
magnetic shim and pulsing coils are not shown. The setup fits on a four foot square optical table.
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We choose to modulate the Rb polarization by switching between just two polarization states, s±.
We modulate the x-component of R according to

R(t) = R0 sign[cos

 
wa

d + wb
d

2
t+ 2 cos(

wa
d � wb

d
2

t)

!
]. (8)

This waveform is advantageous in that the smallest separation between reversals is larger than
the finite response times of the EOMs and of the optical pumping of the Rb atoms. Modulating the
polarization as a sum of two sine waves would also keep the modulations within the bandwidth
of the EOMs and the Rb magnetometer, but we find that producing such a PM waveform in our
optically thick vapor cell is very challenging. We use the same modulated cosine waveform to apply
a compensation field, the amplitude of which is set to cancel the spin-exchange field experienced by
the Xe from the Rb. Doing so suppresses the production of Kz and narrows the NMR linewidths,
G2 [12].

From Equation (3) we find that the detected longitudinal Rb polarization Sz is

Sz = �R(t)
G02 [bSa K

a
? sin(da + aa � ez) + bSbK

b
? sin(db + ab + ez)], (9)

where d = f � a is the difference between the drive phase a =
R
dtwd and the Xe precession phase f

for each isotope, ez is the magnetometer phase shift, and R ⇠ S+ is the optical pumping rate of the
Rb. Although lock-in detection can be accomplished on Sz as it appears in Equation (9), the phase
sensitivity is diminished due to the presence of R(t) which effectively mixes some Xe signal to DC. A
more effective approach is to “rectify” the Sz signal such that R(t) is removed. This is accomplished
by multiplying Sz by R�1(t). The resulting signal is then sent into two separate lock-in amplifiers,
each referenced to a different isotope’s drive frequency. From these demodulations, we arrive at the
measured phases da � ez and db + ez.

3. Results

3.1. NMR Excitation and Detection

Figure 3 shows the time series of the measured Sz with and without rectification when we drive
both isotopes near resonance simultaneously using S+. We see that rectification reveals the sinusoidal
precession of each isotope. The outlying data on the rectified signal, which occur when the polarization
is reversed, are due to the finite response time of the Rb magnetometer. Although rectification collects
the many Xe signal sidebands into the two Xe carrier frequencies (see power spectrum on right),
it also maps 1/ f detection noise on Sz to the carrier frequencies. The mapping of low-frequency Sz
noise to the carrier frequencies can be prevented by high-pass filtering Sz with a 1 Hz corner prior
to rectification.

Figure 4 shows the detected NMR signals for each isotope. These data were acquired by driving
one isotope on resonance while varying the other isotope’s drive frequency and recording its Kx and
Ky derived using demodulation. We see that the lineshapes are nearly Lorentzian with linewidths
(half-width at half-max) of ⇠15 mHz and amplitudes of approximately 60 µG. The on-resonance
amplitudes are in agreement with estimates similar to those outlined in [3]. The implied Ta

2 , T
b
2 from

the fits are in good agreement with independent measurements of each isotope’s T1. The ⇠15 mHz
linewidths are only possible because of two features of our experiment; (i) the use of a Rb hydride
cell coating (without which Tb

2 would be substantially shorter and Ta
2 much longer) [15], and (ii) the

application of a magnetic compensation field Bx that cancels the Rb spin-exchange field experienced
by the Xe.
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Figure 3. Measured square wave PM signals. Top: S+(t). Middle: Sz(t). Bottom: Rectified Sz(t).
The plot on the right shows the amplitude spectral density with (red) and without (blue) rectification.

Figure 4. Measured NMR lineshapes of each species. Filled circles are Kx, open circles are Ky, and lines
are Lorentzian fits.

Figure 5 demonstrates the amplitude spectral density of the phase noise measured for each isotope
under simultaneous resonant excitation conditions. We see that for frequencies less than 1 Hz the
spectra are dominated by 1/ f noise which is about r = ga/gb greater for isotope a (black traces)
than for isotope b (red traces) suggesting the dominant source of 1/ f noise is magnetic in nature.
Also shown is the phase noise measured when the Xe isotopes are driven off resonance (not excited)
and a so-called “artificial” Xe signal is applied as an AC field, By. The amplitudes of this signal
Aa sin(wa

dt)+ Ab sin(wb
dt) are chosen to produce the same size magnetometer signal as real Xe. We note

that this artificial Xe signal is planar, unlike the real Xe signal which rotates. The artificial signal allows
us to measure the signal-to-noise ratio (SNR) of the Rb magnetometer. These signals do not show 1/ f
dependence because, unlike the real Xe phase, the SNR of the magnetometer does not depend on the
bias magnetic field to first order. The detection phase noise from each artificial Xe measurement is
uncorrelated and limits the possible field suppression when performing comagnetometry. The SNR
for each isotope is ⇠5000

p
Hz. While the detection of artificial Xe is insensitive to 1/ f bias magnetic

field noise, 1/ f Sz noise can still be mapped to the artificial Xe frequencies via rectification, and so the
addition of a 1 Hz high-pass filter prior to rectification was essential for realizing such an SNR.
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Figure 5. Measured phase noise of each species. Traces labeled “Real” are recorded when the Xe
isotopes are excited on resonance. Traces labeled “Artificial” are recorded when the Xe isotopes
are both driven off resonance (not excited) and an AC By is applied to the magnetometer at the
off-resonance drive frequencies.

3.2. Comagnetometry

We perform comagnetometry by subtracting magnetic field correlations between the two isotope’s
precession frequencies. Since our device measures phase, we need to know or measure the transfer
function from phase to frequency. In Section 1.1 we derived the transfer function (see Equation (7)).
We measured the transfer function of each isotope by recording the response of the measured phase d

to sinusoidal modulation of Bz. Figure 6 shows the measured transfer function for isotope a. We use
a chirp waveform to modulate the bias field Bmod

z (t) = B0 sin(2p[et/T2 � 1 � t/T2]) (where T2 =
1/2pG2), the time series of which is shown in the inset of Figure 6. This modulation waveform allows
us to measure the transfer function from 0.002 to 0.1 Hz with good SNR in a single data acquisition.
The transfer function is the ratio gKB̃mod

z /d̃. We fit the data according to Equation (7) and find excellent
agreement with the linewidth derived from the fits in Figure 4.

Although conversion from phase to frequency for the measured Xe phases is possible using
a measured transfer function, feedback is desirable because (in the high gain limit) the performance of
the comagnetometry becomes insensitive to changes in the transfer function. We used the measured
precession phase of isotope a to stabilize the bias field and the measured transfer function of isotope
b to convert its measured phase noise to frequency noise. Under such conditions the frequency noise
of isotope b is proportional to rotation. We apply a feedback field, Bf , to hold the measured phase of
isotope a, (da � ez), equal to zero. The field stabilization can then be written B̃ f = G̃(d̃a � ẽz). In the
high gain limit, this becomes

lim
G!•

B̃tot =
1

ga (w̃
R + iwẽz), (10)

where Btot = Bz0 + Bp + Bf , and where we made substitutions using Equation (7) and D̃a = �gaB̃z �
w̃R (since wa

d is held constant). The measured phase of isotope b, (db + ez), converted to frequency is

w̃b ⌘ (d̃b + ẽz)(Gb
2 + iw) = (r�1 + 1)(w̃R + iwẽz). (11)

We see that in the high gain limit, when correcting the bias field to keep the measured phase of
isotope a equal to zero, the rotation is simply w̃R = r w̃b/(1+ r) assuming ẽz is negligible.

The best performance we observed with bias field feedback activated is shown in Figure 7.
The feedback consisted of two analog inverted zero gain stages. The influence of bias field feedback
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is dramatic from 0.1 to 200 mHz. The servo suppresses w̃a to below 1 µHz/
p
Hz at low frequency,

which is nearly 104x less than the open loop noise. Because magnetic noise dominates each isotope’s
precession, servoing the measured phase of isotope a also greatly suppresses w̃b. We observe at least
100⇥ improvement in w̃b due to feedback. The modified Allan deviation [18] suggests a rotation
ARW sensitivity of

p
2 15 µHz/

p
Hz r

1+r ⇠ 16 µHz/
p
Hz and a rotation bias instability of 1 µHz

r
1+r ⇠ 800 nHz. The size of ARW is within a factor of 3 of the ratio of the measured linewidths divided
by the SNRs (shown in Figure 5). The peaks in the Allan deviation at 15 and 100 s of integration
are due to low-frequency narrow-band large-amplitude noise peaks in w̃b which we attribute to the
PM waveform. The bias instability is limited by t1/2 trending noise of unknown origin. We find that
feedback causes the measured phase of isotope b to trend linearly in time. The source of this frequency
bias is uncertain. Although the trend is very stable over the course of a data run, the trend is not
consistent between data runs. The bias instability demonstrated in Figure 7 was difficult to reproduce.
Typically, the bias instability we measured was a few µHz.

Figure 6. Transfer function of 129Xe. Inset depicts the normalized chirp waveform used to modulate

the bias field. Black crosses are measured data, while the blue line is a fit of the form
q
(Ga

2)
2 + f 2.

Figure 7. Measured comagnetometry noise and stability. Left: the amplitude spectral density of
frequency noise. The cross marks indicate open loop frequency noise. The solid lines are frequency
noise when the measured phase noise of isotope a is used to stabilize bias field. Right: modified Allan
deviation of wb. Filled circles are measured data. Solid line shows the quadrature sum of 7⇥ 10�5t�1,
15 µHz/

p
Hzt�1/2, and 30 nHz

p
Hzt1/2 trends.
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3.3. Cross Talk

Once we measured the stability of the PM comagnetometer, we desired to know the fidelity with
which our detection separated signals from the two Xe isotopes. It is possible that the detection channel
designed to measure isotope a’s phase was really measuring a linear combination of isotope a and
b’s phases. If such “cross talk” were present then the scale factor (or how we convert the measured
precession frequencies to rotation) would change [13]. Suppose there exists cross talk in both channels
such that wa = gaBz + bwb � wR and wb = gbBz + b0wa + wR where b and b0 represent the cross talk
between detection channels. Solving for wR we find

wR =
wb(r + b0)� wa(rb + 1)

1+ r
, (12)

where if b = b0 = 0 we return to the expected expression for rotation without cross talk. Non-zero
cross talk is undesirable because the accuracy with which it is known (or measured) limits the
accuracy of conversion from measured precession frequencies to rotation (or any other non-magnetic
spin-dependent interaction). A measurement of cross talk is vital since an important alleged feature of
our comagnetometer is that it has a scale factor which is determined solely by r.

We characterize the cross talk present in our detection channels by looking for changes in the
detected signal for one isotope when the drive of the other isotope is changed. We do this by
detuning one isotope’s drive frequency by ⇠ 300 mHz and then scanning the bias pulse repetition rate.
The effective resonance frequency of each Xe isotope depends on the pulsing frequency (w2p) as
wK = w2pgK/gS. The 300 mHz detuning ensures that both isotopes are not simultaneously on
resonance for a given pulsing frequency. When a Xe isotope is far from resonance, we expect the
measured signals for that isotope’s detection channel to be relatively flat if there is no cross talk.
Cross talk manifests if the signals from the off-resonanct isotope are not flat when the other isotope is
scanned through resonance. Figure 8 shows a phase sensitive measurement of cross talk. When isotope
a is excited and isotope b is not, isotope b’s detection channel exhibits non-zero signal, and vice versa.
We estimate b = Qb

pp/Qa
pp = 0.17 (when isotope a is on resonance) and b0 = Qa

pp/Qb
pp = 0.07 (when

isotope b is on resonance), where QK
pp is the peak-to-peak quadrature signal of isotope K.

Figure 8. Measurement of cross talk for detection with rectification. The Xe drive frequencies are set
such that the two isotopes are not driven on resonance at the same effective bias field magnitude.
The in-phase (filled symbols) and out-of-phase (un-filled symbols) components of each isotope’s
detection channel (black and red correspond to isotopes a and b, respectively) are shown as the bias
pulsing frequency is varied. We see that when isotope a is resonant ( f2p ⇠ 15.8 kHz) the signal on
isotope b’s detection channel is not flat despite isotope b being driven many linewidths off resonance.
Similarly, when isotope b is resonant ( f2p ⇠ 16 kHz) the signal on isotope a’s detection channel is not
flat despite isotope a being driven many linewidths off resonance.
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We observe cross talk on our detection channels even when Xe is not excited and artificial Xe
signals are applied, suggesting that our observed cross talk is not due to physical interactions between
Xe isotopes. We believe the measured cross talk stems from imperfect rectification of Sz due to optical
pumping transients (i.e., gain reversals) and unaccounted-for phase shifts from high-pass filtering
prior to rectifying. The optical pumping transients stem from the few ms finite response time of the
magnetometer. Indeed, by implementing a sample-and-hold algorithm to ignore data acquired during
optical pumping transients, the cross talk is suppressed. The cross talk is further suppressed when the
high-pass filter is removed. Doing so, however, reduces the detection SNR by an order of magnitude
since rectification maps 1/ f Sz noise to the Xe carrier frequencies.

4. Discussion

We demonstrated a novel spin-exchange pumped 131Xe-129Xe NMR gyroscope. The production of
longitudinal spin-exchange fields and the systematic uncertainty inherent to them is greatly suppressed
by synchronous spin-exchange optical pumping. The simultaneous precession of each transversely
polarized noble gas is continuously monitored using the optically pumped Rb atoms. The measured
Larmor resonance frequencies are highly correlated with bias magnetic field fluctuations.

Computing the stationary sensor’s perceived inertial rotation when oriented East-West and
assuming a scale factor determined solely by r allows for an ARW sensitivity of ⇠16 µHz/

p
Hz and

bias instability of ⇠800 nHz. The finite short term sensitivity appears limited by the detection SNR.
What limits the SNR is not known. The photon shot noise limited magnetometer performance should
support an SNR more than 100x greater than we measure. It is possible that fluctuations in pump
frequency and intensity could limit our SNR by producing noise in the AC Stark shift and the Rb
polarization. We confirmed that the fidelity of modulation produced by the EOMs is sufficient to
support 4x the measured SNR. The source of drift which limits the bias instability is also unknown.
Cell temperature, which was not stabilized during these measurements, could be an important
contribution to long term stability. We see no direct indications of first order quadrupole from 131Xe
interactions with electric field gradients at the cell walls. We showed that cross talk exists between
phase sensitive detection channels for each noble gas. Such cross talk influences the device’s effective
scale factor. Future work will include detecting Sz in a way such that gain modulation is suppressed as
demonstrated in [1,2]. This device’s scale factor can be verified by orienting its sensitive axis along
North-South and measuring Earth’s rate of rotation.
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Abbreviations

The following abbreviations are used in this manuscript:

ARW angle random walk
EOM electro-optic modulator
GPS global positioning system
NMR nuclear magnetic resonance
PBS polarizing beam splitter
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PM polarization modulation
SNR signal-to-noise ratio
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