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Abstract

We report on Green Bank Telescope observations of interstellar scintillation from the pulsar B0450−18 at 340 and
825MHz, revealing prominent arcs in the secondary spectra at both frequencies. The arcs are successfully modeled
by one-dimensional angular brightness distributions, estimated by two independent techniques. The distributions
do not follow the expected shape for a Kolmogorov plasma density spectrum, and their overall angular widths
follow a scaling law, versus frequency, that is slightly slower than the inverse square law expected from plasma
dispersion. They also exhibit discrete peaks that are the cause of the occasional reverse sub-arcs. Over a narrow
(5%) frequency range these peaks do not participate in the overall spreading, having angular positions that are fixed
on the sky. However, the peaks do evolve over a wider range of frequencies and cannot be traced from 825 to
340MHz. Our conclusions add further evidence for a widespread distribution of highly localized regions of
interstellar plasma with small-scale structure that is either elongated or flattened.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Interstellar plasma (851); Interstellar
scintillation (855); Radio pulsars (1353)

1. Introduction

We have found prominent scintillation arcs in radio
observations of the pulsar B0450−18, as part of a survey for
arcs in 18 pulsars of low to intermediate dispersion measure
(DM). B0450−18 lies at about 400 pc distance and −34°
Galactic latitude toward the Galactic anti-center (217° long-
itude) and has DM=39.9 pc cm−3. Observations at both 340
and 825MHz show a clear forward arc, which at 825MHz is
modulated by discrete reverse arcs similar to those observed in
B0834+06 and B1737+13 (Stinebring et al. 2001; Walker
et al. 2004; Cordes et al. 2006).
At the time of the discovery of parabolic arcs (Stinebring

et al. 2001), interstellar scintillation (ISS) was well known and
interpreted as due to radio-wave scattering in the interstellar
plasma that became ever-stronger with increasing DM.
Scattering in discrete regions such as the Crab Nebula, the
Vela supernova remnant, and others was well-studied and was
incorporated into Galactic electron density models from the
mid-1980s onward. However, despite this appreciation of
localized scattering, much theoretical and interpretive work
envisioned a volume-filling turbulent plasma, whose density
followed an isotropic Kolmogorov wavenumber spectrum. The
precise parabolic shapes, observed as arcs in the secondary
spectra, upset that paradigm as they can only be understood as
due to a localized concentration of plasma turbulence
occupying only a small fraction of the path from the pulsar.
The key idea is the interference between pairs of scattered rays
with relative differences in delay and Doppler shift. Parabolic
arcs show a quadratic relation between delay and Doppler shift,
which can only happen when the rays are all scattered at a
common distance.

The observed arcs have been successfully modeled by a
phase screen caused by a thin layer of inhomogeneous plasma.
The waves that emerge from a phase screen can be described
by an angular spectrum or in terms of a brightness power
spectrum versus angle. We make use of this concept, which for
a single screen is connected to the secondary spectrum by a

double integral over all possible pairs of interfering angles in
Equation (8) of Cordes et al. (2006). The integral further
collapses to a simple form in the one-dimensional limit of a
highly anisotropic brightness function.
However, there remains an open question as to how to

reconcile the DM-dependent ISS with the discrete regions
implied by arcs. The survey for arcs, mentioned above, is partly
motivated by such a question. To our knowledge there has not
been a published theoretical analysis of the form of the
secondary spectrum expected from scattering that is distributed
uniformly along the propagation path. Nevertheless, it is clear
that the tight quadratic relation between the differential delay
and Doppler shift breaks down for distributed scattering and
one expects contours of power in the secondary spectrum, near
where the delay is zero, to bulge out in Doppler instead of the
narrowing that occurs for a parabolic arc.
In a few nearby pulsars multiple arcs have been observed

(Putney & Stinebring 2006), in which there are two or three
clearly distinguished narrow parabolic arcs with different
curvatures. The theory for such a case has been developed by
Simard et al. (2019), who give an analysis of arcs from two
screens, and applied it to the arc observations of B0834+06 by
Brisken et al. (2010).
In the context of the increasing strength of ISS with DM, the

Galactic distribution of interstellar plasma must include a
widespread distribution of clumps with enhanced plasma
density and turbulence. There are now several models for the
Galactic distribution of plasma density (e.g., Cordes &
Lazio 2003; Yao et al. 2017). These include some discrete
concentrations such as in H II regions and supernova remnants
embedded in a smooth plasma distribution and even occasional
voids like the Local Bubble and regions dominated by very
high-temperature “coronal” plasma. Several authors (e.g.,
Gupta et al. 1999) have speculated that plasma at the boundary
of the Local Bubble (and more typical interstellar medium
conditions) is a potential site for a scattering screen.
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The distance and DM of our pulsar B0450−18 correspond to
a mean density of 0.1 electrons cm−3, which is about five times
that typical on sightlines to nearby pulsars. This suggests a
localized concentration of electrons, and we proceed by
adopting such a thin-screen model for the arcs we report here.

2. Observations, Dynamic and Secondary Spectra

The Green Bank Telescope was used in 2005 to survey
DM<50 pc cm−3 pulsars at frequencies of 340 and 825MHz.
A paper describing the survey and the results is in process (D.
R. Stinebring et al. 2021, in preparation). Here we report
particularly interesting scintillation arcs from pulsar B0450
−18. We used the Spectral Processor backend, which produced
spectral estimates of 1024 channels about every 1 ms. In post-
processing, these spectra were averaged synchronously with
the pulsar period in ON and OFF gates for 10 s, and then an ON
−OFF dynamic spectrum was formed and corrected for
bandpass effects by dividing by the average spectrum over
the observation in a standard fashion (Hill et al. 2005).
Additionally, we performed standard post-detection dispersion
removal and corrected for the full bandwidth modulation due to
intrinsic short-term pulse amplitude variations averaged over
the 10 s sample time. Modest radio-frequency interference in
the dynamic spectrum was removed by inspection and replaced
with adjacent spectral samples.

The pulsar was observed at 340MHz (bandwidth of 5 MHz)
on MJD 53632 and at 825MHz (bandwidth of 40MHz) for
one hour on 53637. The dynamic spectra are displayed in
Figure 1. They have high signal-to-noise ratio and well-
resolved “scintle” structure in frequency and time. As
elaborated upon below, although the field of scintles appears
fairly random in frequency and time, there is an underlying
order to their structure at both frequencies that is indicative of
scattering confined to a thin screen.

We computed the Fourier transforms of the dynamic spectra
over both time and frequency in the usual fashion (e.g.,
Stinebring et al. 2019). The modulus squared of the Fourier
transform gives the secondary spectra S2(τ, fD), where τ is the
delay (conjugate to frequency in the dynamic spectrum) and fD
is the Doppler frequency (conjugate to time in the dynamic

spectrum). Note that the dynamic spectrum is real and soS2(τ,
fD)=S2(−τ, −fD). Figure 2 plots S2 in dB and the overall
shape is emphasized by displaying both positive and negative
delays. Since the power is concentrated near the delay axis, we
expand in Doppler out to ±25 mHz. On the right side we
illustrate how we estimate the parabolic curvature, as described
below.
We also note that the logarithmic display allows one to see a

wide dynamic range and that the arcs are more than 20 dB
below the peak near the origin. This peak would dominate a
linear display, and its half-power widths would describe the
ISS by the reciprocal of the diffractive frequency and
timescales.
The distribution of power in Figure 2 outlines parabolic arcs

at both frequencies with a deep minimum along the delay axis
itself. This is characteristic of very anisotropic scattering.
Accordingly, we have fitted models with a 1D brightness
distribution B(θ) where θ is the scattered angle and
q q y= cosx is the angle projected parallel to the transverse
effective velocity, which defines the x-axis. The transverse
proper motion velocity is measured to be about 26 km s−1,
based on a distance of about 400 pc (Chatterjee et al. 2009;
Jankowski et al. 2019).
We estimated the curvature η of the parabolic arcs, as shown

in the right-hand sub-panels of Figure 2. We searched in 50
equi-spaced logarithmic steps over a 100:1 range in η. At each
step we computed the sum of S2( fD, τ) along the corresponding
parabola. A separate sum was computed from positive and
negative Doppler frequencies and covered a fixed range in
delay; at each delay we interpolated S2 at the Doppler
frequency lying on the parabola. The range in delay, indicated
by the colored rectangles in the left panels, was chosen to
emphasize the low-level arcs, made visible by the logarithmic
grayscale and also to avoid the peak near the origin where the
arc is less well defined. The right-hand panels in Figure 2 show
where the parabolic sums peak, marked by short horizontal
bars. The overall curvature values were estimated from the
average of positive and negative Doppler frequencies: η=6.3
and 0.88 s3 at 340 and 825MHz, respectively. We refined the
curvature estimates during subsequent model fitting and

Figure 1. Dynamic spectrum of interstellar scintillation observed at the Green Bank Telescope from pulsar B0450−18. Left: MJD 53632 at 340 MHz. Right: MJD
53637 at 825 MHz. The grayscale units are linear as a fraction of the mean pulsar flux density.
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adopted the following values: η=4.77 and 0.81 s3, at 340 and
825MHz, respectively.

3. 1D Model for Brightness Distribution

Assuming a 1D brightness distribution, we fitted models to
the secondary spectrum using two methods. The mapping from
the sky coordinates to the secondary spectrum was presented in
Stinebring et al. (2019), and we refer the reader to that paper for
the basic theory. We repeat their Equation (5) below, which
gives S2( fD, τ) as the product of the brightness B(θ) arriving
from the two interfering angles:

( ) ( ) ( ) ∣ ∣ ( )t q q h= + -S f B B f, 2 , 12 D D

( )q b= 
c

D
with

2
, 2

eff

[ ( ) ] ( )b t h h= -  f fand where
1

2
. 3D D

Here we define:

( ) ( )h
n

= = -
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cD

V
D D s s

2
, 1 , 4eff

2 2 eff psr

∣ ∣ ( )y=y VV cos , 5eff

[( ) ] ( )= - + -V V V Vs s sand 1 , 6eff psr obs scr

where s is the distance from pulsar to screen as a fraction of the
distance from pulsar to observer (Dpsr). Vpsr is the proper
motion velocity of the pulsar, Vobs is the observer transverse
velocity, and Vscr is the screen transverse velocity.

3.1. Iterative Least-squares Fitting

In our first method, we specify an initial brightness profile at
a set of discrete angles β, which are related to the observed
angles θ by Equation (2). With this definition the relative delay
at that angle is τ=β2 independent of the radio frequency, so
expressing delay in microseconds makes the units of β the
square root of microseconds. Consider 825MHz: the forward
arc extends to about τmax∼10 μs, and β was fitted over
±βmax, which we set to ±5 μs0.5 extending in delay beyond
τmax to τ=25 μs.
We calculate the model S2( fD, τ) from Equation (1) with the

addition of a constant noise level. We used an iterative non-
linear fitting of the brightness model to minimize the mean-
squared difference between the model and the observation.
Given the exponential distribution expected for the observed
spectral density, the rms fluctuation at each pixel should equal
its mean; consequently we divided the residual by the larger of
the model and the observation.
In Figure 3 we compare the 825MHz observed and model

secondary spectrum and also show the residual fractional

Figure 2. Secondary spectrum S2 (in dB) of interstellar scintillation observed at Green Bank Telescope from pulsar B0450−18. Left: MJD 53632 at 340 MHz. Right:
MJD 53637 at 825 MHz. Since S2 is only significant near the delay axis, we expand the left sub-panels about ±25 mHz (half the Doppler Nyquist frequency). We
include positive and negative delays to reveal the structure near the origin. The right sub-panels plot the parabolic sum of S2 vs. curvature for positive (red) and
negative (blue) fD; the summation is linear and is confined to the areas inside the red and blue rectangles of the S2 plot. The peaks in the sum determine the chosen
curvature, which are marked by a vertical line and a horizontal bar marking where the sum is above 95% of the peak.

Figure 3. Secondary spectrum (in dB) of interstellar scintillation at 825 MHz from B0450-18 on MJD 53637. Left: observation; middle: 1D model; right: normalized
residual=(observation–model)/model.
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difference between them. The reverse sub-arcs observed are
reproduced quite clearly in the model, as evident in the absence
of sub-arc structures in the residual plot. In particular, note the
arclets whose apexes are near 4 μs in delay at both positive and
negative fD.

However, the model does exclude the V-shaped region near
the delay axis and also at large values of fD, as indicated in the
right panel of Figure 3 where the residual is set to zero (green).
The fit is good with low residuals except near the edge of this
V-shaped valley. We note that this valley region is where the
effects of scattering from a 2D brightness distribution would be
first noticeable and do not attempt to widen the 1D fitting range
in β, which would narrow the V-shaped region.

Now consider a 1D model for the 340MHz observations. At
this lower frequency the arc structure comprises a prominent
broad V-shaped forward arc superimposed by a few faint
reverse sub-arcs. We show the observations and fits in the same
format as for 825MHz in Figure 4. The observed forward arc
(left panel) extends out to the Nyquist point in delay
(τnyq=103 μs), and so we must examine the effect of aliasing
from even higher delays.4

Consequently we created model secondary spectrum out to
206 μs—twice the Nyquist delay. We used a range ±βmax with
βmax=20 μs0.5, which would allow for reverse arcs with
apexes to 400 μs. An example is shown in the left panel of
Figure 5. The first alias in delay is a shift to τ−2τnyq which is
negative. Since S2 is Hermitian and we only fit positive delays,
we add its contribution at S2(−τ+2τnyq, −fD). We coded this
into the model computation routine and used it to fit the
observed S2( fD, τ). The overall fitted model and its residuals
are in the middle and right panels of Figure 4.
Close examination of the observation in the left panel shows

broad low-level power at fD=5–10 mHz extending from 0 to
at least 70 μs. This is more obvious at positive than at negative
Doppler frequencies and the middle panel shows that it is
successfully modeled, including the effects of aliasing. We
estimate a reduced χ2=0.83 by summing the squares of the
residuals normalized by the model and dividing by the number
of degrees of freedom (excluding green pixels which are not
reached by the model). This implies that the rms error at each
pixel is somewhat less than the model itself, and we conclude
that the overall fit is satisfactory.
In Figure 6 we overplot the brightness models at both

frequencies with their error bars at ±1σ. As in Stinebring et al.
(2019), we plot brightness versus angle θ. The scaling from β

(units μs0.5) depends on the pulsar distance and s the unknown
fractional screen-to-pulsar distance. With our pulsar at 400 pc
and converting θ into mas the relation becomes

( )q b= -s s1.44 1mas . For simplicity, throughout the rest

Figure 4. Secondary spectrum (in dB) of interstellar scintillation at 340 MHz from B0450−18 on MJD 53632. Left: observation; middle: 1D model including the first
alias in delay; right: normalized residual=(observation–model)/model.

Figure 5. Left panel shows a 1D model for secondary spectrum (in dB) of interstellar scintillation at 340 MHz from B0450−18 calculated out to twice the Nyquist
delay in the observations. The right panel shows S2( fD, τ) without adding the power aliased from above the Nyquist delay. It should be compared to the middle panel
above in Figure 4; notice the somewhat reduced power in the range 5–10 mHz at delays up to 70 μs and on the upper parts of the forward arc.

4 Aliasing occurs when a quantity is measured at a sampling rate that is not
fast enough to capture its rapid variations. Here the sampling was determined
by the frequency and time resolutions in the dynamic spectra. The frequency
resolution in the left panel of Figure 1 was 4.9 kHz, but was insufficient to
resolve the narrowest features in the spectrum. Consequently features in S2 at
delays above the Nyquist delay τnyq (=1/(2–4.9 kHz)=103 μs) will appear
aliased to delays within the range ±103 μs. With our 2D measurement there is
no aliasing in Doppler, for which the Nyquist frequency is 50 mHz.

4

The Astrophysical Journal, 907:49 (10pp), 2021 January 20 Rickett et al.



of the paper we display angular distributions in mas assuming a
mid-placed screen (s=0.5).

Evidently, the profile at 340MHz is much wider than at 825.
At the lower frequency there is a significant offset peak near
+15 mas (β=11 μs0.5), which causes a reverse arclet with an
apex at 5 mHz and 121 μs. Since this is beyond the Nyquist
delay, the apex cannot be seen in the secondary spectrum. It
does, however, account for the bulge in power, mentioned
above, at fD=5–10 mHz and τ≈0–70 μs. Its apex is aliased
to −5 mHz and 86 μs, and so contributes power to the top left
side of the forward arc. Given that we include estimates the
brightness function beyond the Nyquist delay, we note that the
effects of aliasing are significant. However, they are at a low
level as can be seen by comparing the full aliased model in the
middle panel of Figure 4 with the model without the aliased
power in the right panel of Figure 5. Consider, for example, the
faint arclets with apexes 180–200 μs on the right side before
aliasing. They contribute broadening on the left side at delays
of 6–26 μs as the tails of forward parabolic arclets. In summary,
we are confident in identifying the offset peak near 15 mas,
which is significant relative to the errors over about 10 pixels.
However, the lower-level (±1 dB) peaks in brightness in the
entire range between ±20 mas are comparable to the errors.

3.2. θ–θ Mapping Estimate of Brightness Distribution

While the iterative least-squares fitting gives a satisfactory
representation of the secondary spectrum, the technique can
sometimes result in a local chi-squared minimum instead of the
global one. Here, we present a novel estimation technique from
a non-iterative θ–θ mapping (D. Baker et al. 2021, in
preparation; Sprenger et al. 2021) and show the consistency
between the two methods. We map the coordinates from fD, τ
into the sky angles θ±given in Equation (3) as follows:

( ) ( ) ( )q q
l

q q
b b

h
= - =

-y
+ - + -

+ -f
V

, 7D

( ) ( ) ( )t q q q q b b= - = -+ - - + - +
D

c
,

2
. 8eff 2 2 2 2

The resultant mapping is referred to as the θ–θ spectrum
I(θ+, θ−) and is given below, including the Jacobian of the
transformation, with the final form obtained from the model of

Equation (1):

( ) ( )∣ ∣ ( )q q t hº+ -I S f f, , 2 , 9D D2

( ) ( ) ( )q q= + -B B . 10

Note that, by its definition, I(θ+, θ−) is ensured to be
Hermitian. Intuitively, in the regime of 1D scattering, the θ–θ
spectrum encodes the intensity of the interference from all pairs
of subimages, i.e., θ+and θ−. Under such a mapping, an
inverted arclet, formed by one subimage at θ0 interfering with
the rest (Walker et al. 2004; Walker & Stinebring 2005;
Brisken et al. 2010; Simard & Pen 2018), is mapped to two
mutually orthogonal straight lines: θ+=θ0 and θ−=θ0.
The resulting θ–θ spectrum at 825MHz is presented in the

left panel of Figure 7. It defines I(θ+, θ−) in a square region
bounded by q t = c D2max nyq eff , where τnyq=12.8 μs is
the Nyquist value in delay.
Considering a square region as in Figure 7, we can write an

eigenvalue equation for I(θ+, θ−). We solve for B(θ) as its first
eigenvector and show the corresponding model, the outer
product of B(θ) with itself, in the middle panel. Notice that the
noise floor is no longer uniform in the observed θ–θ spectrum
(left panel) because of the extra scaling by the Jacobian through
the mapping Equation (9). So we estimate the noise floor from
a region in the secondary spectrum far from any scintillation
signature and remove it from the observed spectrum before
solving for the eigenvector. The noise floor is then added back
into the model. We then compute the residual difference
between the observed mapping I(θ+, θ−) and this model. The
right panel shows the residual normalized, as in Section 3.1, by
the maximum of the data and model at each pixel.
If the scattered image is truly one-dimensional, then

Equation (10) implies that the θ–θ spectrum becomes the outer
product of the brightness function with itself. Such a spectrum
has only one eigenvector, namely the brightness function
multiplied by a scaling factor. Hence, in the case of highly
anisotropic scattering, the θ–θ estimate becomes uniquely
defined.
In the 825MHz θ–θ spectrum (left panel of Figure 7), notice

that the arclets are not mapped to exactly straight horizontal
and vertical lines: there are some hyperbolic streaks near the
diagonal θ+=θ−. Such streaks are due to the change in pixel
shape through the mapping. A rectangular pixel in the
secondary spectrum is mapped to a region bounded by two
hyperbolas (constant τ) and two lines parallel to the diagonal
θ+=θ−(constant fD), according to Equations (7) and (8),
which makes a highly elongated shape parallel to the diagonal.
However, since we define rectangular pixels in θ–θ space, the
mapping can cause multiple θ–θ pixels to originate from a
single pixel in the secondary spectrum. Consequently, in these
regions θ–θ pixels are not independent of each other, but can be
highly correlated along the diagonal, seen as the streaking.
Fortunately, the streaks are most visible where the scintillation
signal in the secondary spectrum is at a low level, so that they
are not very prominent in the residual plot. Thus they do not
concern us any further in this work.
We also note that near the diagonal θ+=θ−(where |fD| is

small) the θ–θ map extends out to considerably larger θ values
than θmax, which defines the rectangular range plotted in
Figure 7. It is evident that angles larger than θmax map to the
V-shaped region in the secondary spectrum that could not be
modeled by a finite range in angle.

Figure 6. 1D brightness models at 340 MHz and at 825 MHz vs. β with ±1σ
error bars. The 825 MHz model is also stretched in β to 340 MHz by the
wavelength ratio to the power of 1 and 2.
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In Figure 8, we compare the 1D models from the two
methods for the 825MHz data. (We do not apply the θ–θ
mapping to the 340MHz observations because of the
significant aliasing discussed in Section 3.1.) The models are
normalized by their means to best demonstrate the alignment.
The overall agreement between the two models is satisfactory,
except near the origin. By the argument above regarding the
change of pixel shape through the mapping, the effective pixel
shape becomes wider in the θ–θ spectrum near the origin,
which causes the offsets near the origin. Overall, the basic
features of the 1D brightness profiles are reproduced by both
methods, reinforcing our confidence in the modeling.

4. Wavelength Scaling of Brightness Profiles

We now compare the model brightness profiles fitted at 340
and 825MHz. The observations were five days apart, which at
the 26 km s−1 proper motion speed of the pulsar causes an
angular difference of 0.2 mas between the observations. This is
small compared to the 3 mas width in brightness at 825MHz,
and so we assume that there were negligible time variations
over the five days. The profiles are both computed versus
normalized angle β, which does not depend on the central
observing wavelength as defined in Equation (3). In Figure 6
we overplot the 1D fitted brightness profiles from 340MHz in
black and from 825MHz in blue, after scaling β into mas, as
noted above.

If the interstellar scattering region responsible had homo-
geneous random 1D variations in electron density, we would
expect the widths in brightness to scale as λ a with a=2 or 2.2
for a Gaussian or Kolmogorov wavenumber spectrum,
respectively. For comparison we show the 825MHz models
stretched in angle according to linear (green) and square law
(red) wavelength scaling laws.
The 340MHz profile has a relatively flat top dropping

abruptly above +6 and below −5 mas; from here it falls by
about 20 dB to the edge of the modeled range. The comparison
with 825MHz is not consistent with a single scaling exponent
a. Though the central region is also flat at 825 the red (a=2)
scaling makes it wider than at 340MHz. We note also that
a=2 gives an apparent alignment of the red and black peaks
near +15 mas.
We have attempted to both stretch and shift the two profiles

to allow for a plasma refractive shift as well as scatter
broadening, but this does not yield a convincing agreement for
both the flat tops and the 340MHz peak at +15 mas. An
alternative estimate of the width is the equivalent width,
defined as the width of a rectangle with the same area as that
under the fitted brightness: ( )òq q q= B d Bequiv max. At 340 and
825MHz, this gives θequiv=12.1±1 and 2.7±0.3 mas,
respectively. This yields an estimated exponent a=1.7±0.2,
where the error is dominated by uncertainty in Bmax due to the
variations in B near the peak.
It should also be noted that the shapes plotted do not follow

the expectations of a 1D or 2D Kolmogorov spectrum. These
findings follow very similar conclusions to those in our earlier
study of arcs in pulsar B1133+16. Wavelength scaling laws
shallower than expected have been reported in many other
observations of ISS from pulsars (Löhmer et al. 2001, 2004;
Bhat et al. 2004; Geyer & Karastergiou 2016; Lewandowski
et al. 2015). As an alternative to the random interstellar
scattering model for ISS, several authors (Romani et al. 1987;
Pen & Levin 2014; Simard & Pen 2018; Gwinn 2019; Gwinn
& Sosenko 2019) have advanced discrete plasma structures,
often modeled as lenses, as the explanation of scintillation arcs.
Few of these models have included wavelength scaling
predictions, although Simard & Pen (2018) found Gaussian-
profiled lens models that predicted reverse arc locations would
be nearly independent of wavelength.
A more thorough analysis of the 825MHz spectrum shows

evidence for narrow-brightness features whose angular posi-
tions are nearly independent of frequency. In Figure 9, we
analyze the most prominent arclet at around 2.7 mas in the

Figure 7. θ–θ spectrum of interstellar scintillation at 825 MHz from B0450-18 on MJD 53637 in decibel vs. angle in mas. Left: observation; middle: outer product of
the 1D model + mean of noise; right: fractional residual=(observation–model)/max(observation,model).

Figure 8. Two brightness models at 825 MHz overplotted in decibel vs. angle
β scaled to mas assuming a midpoint screen distance.
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825MHz secondary spectrum. The corresponding dynamic
spectrum has a total bandwidth of 40MHz. We divide the
spectrum into four chunks in frequency and estimate the
brightness function using the θ–θ mapping formalism. The
brightness functions centered at four adjacent frequencies are
over-plotted in Figure 9 and compared to theoretical predic-
tions of a λ2 scaling as indicated by the arrows. While the
shape of the 1D brightness profile undergoes substantial
changes even across 40MHz of bandwidth, we see that the
two local maxima, labeled with blue dashed lines, remain in
essentially the same sky position as a function of frequency, in
accord with the similar result in Hill et al. (2005); at the very
least, the arclets do not show evidence of participating in the
predicted λ2 scaling of the overall profile.

In summary, we see dramatically different frequency scaling
in the overall B(θ) profile width compared to the behavior of
discrete, localized maxima.

5. Wavelength Scaling of the Visibility Function

The Fourier transform of B(θ) gives an estimate for the
visibility function of the field as it leaves the scattering screen,
which is where there is a purely phase-modulated wave front.
This quantity Γλ(sd) is a function of the spatial offset (baseline).
In the Appendix we show that for plasma scattering, in the limit
of small spatial offsets, the form of Γλ(sd) is a common
function of the offset times the wavelength (see Equation (A7)).
Note that such a spatial scaling corresponds to λ2 scaling in the
brightness versus angle because the kernel in the transforms,
such as in Equation (A4), is [ ]p q ljsexp 2 d . Figure 6 compares
the brightness estimates at the two frequencies plotted in dB,
which makes the low-level peaks at large angles more visible.
We emphasize such peaks in our discussion. These peaks
contribute to only low-level ripples in the visibility, with spatial
periods smaller than the visibility scale at 50%. Thus they do
not affect our estimates of this scale very much:
σ340=5.3±0.8 and σ825=9.3±1.8 Mm, respectively
(with a constant multiplier that depends on the actual value
of the screen distance parameter s). The ratio of the 50% widths
is significantly less than the inverse of the wavelength ratio,
and in angular widths corresponds to a wavelength exponent
a=1.7±0.2.

6. Discussion

We have observed prominent arcs in the ISS pattern of
pulsar B0450−18 at 340 and 825MHz and have successfully
fitted 1D models of the scattered brightness at each frequency.
The shapes of these brightness functions do not conform to the
predicted ensemble average for a Kolmogorov spectrum of
electron density.

6.1. The Width of Scattered Brightness

We over-plotted the two brightness functions to determine a
wavelength scaling law but found that no single scale factor
matches the shapes accurately. The angular widths defined at,
say, 3 dB below the peaks yielded widths ∝λ a with a
somewhat less than 2; when characterized by an “equivalent
width,” we obtained a=1.7±0.2. An alternative analysis in
the spatial domain reveals a field correlation scale of about 107

m, which scales as λ−0.7 corresponding to an angular width in
brightness that scales as λ1.7. Overall, the comparison confirms
that the arcs are indeed due to a highly localized concentration
of plasma that has very elongated fine structure.
In the Appendix we note that frequency dependence of the

screen phase enters explicitly in the spatial domain. It has been
common in much of the literature to consider frequency scaling
under the hypothesis that an ensemble average will approx-
imate an observed estimate of scattered pulse shape or scattered
brightness function for ISS. An ensemble average of the
visibility function in Equation (A5) is readily obtained under
the reasonable assumption that the screen phase is distributed
as a zero mean random variable with Gaussian statistics. This
leads to the well known result which is noted following the
Equation (A5) in the Appendix. Then the scaling law depends
on the mean-square phase difference (structure function),
which in turn depends on the spatial correlation function of f
(s) or, equivalently, on its wavenumber power spectrum. For
example, under the Kolmogorov spectrum in the limit of small
spatial offsets, the structure function µsd

5 3, from which one
finds that the characteristic scale for the field is proportional to
wavelength to the inverse power 1.2 rather than 1.0 from our
approximation.
The analysis in the Appendix, which assumes the limit of

small spatial offsets, could be applied to a random variable as
well as to a deterministic one and highlights the disagreement
between the two approaches. The disagreement can be traced to
the assumption of ergodicity in the screen phase, which
supposes that a spatial average as in Equation (A5) converges
to the same result as an ensemble average, as the limits of
integration extend to infinity. Narayan & Goodman (1989) and
Johnson & Narayan (2016) discussed various averaging
regimes in VLBI observations. In practice the integration
limits will be determined by the product of the transverse
velocity times the observing time, yielding an “average image”
for typical observing times. Thus short-term average estimators
might be described by wavelength-scaling exponents near to
a=2 even for screens that have underlying phase spectra that
follow a Kolmogorov wavenumber spectrum.
Apart from the different averaging regimes, the underlying

plasma structures may also depart from the Kolmogorov power
law. A simple case is Kolmogorov turbulence with dissipation
at an inner scale linner, which could also lead to a wavelength
exponent a=2 when linner is greater than the half-width of the
visibility function. However, the estimates of linner on lines of

Figure 9. Frequency dependence of the arclets’ position. The arrows show the
expected shifts of the peaks under a λ2 scaling. While the shapes of individual
peaks change significantly, their locations remain nearly independent of
frequency.
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sight to two pulsars by Spangler & Gwinn (1990) and Rickett
et al. (2009) are less than a tenth of our visibility half-widths,
making it unlikely that inner-scale effects play a role here.

Our finding of exponent a even less than 2 requires an
alternative explanation, suggesting the screen truncation
phenomenon, as proposed by Cordes & Lazio (2001). Their
idea is that a limited extent of the scattering region, transverse
to the line of sight (LOS), can restrict the angular width in
scattered brightness. This could be analyzed in the spatial
domain, using the method in the Appendix, with a restricted
range in spatial extent sm of the screen phase variations.

6.2. The Origin of Arclets

The other important feature of the scattered brightness is the
presence of secondary peaks, significantly offset from the
pulsar direction, that cause reverse arclets. The most notable
secondary peak at 340MHz is offset by 15 mas, 5.5 times
further than the most notable one at 825MHz, offset by
2.7 mas. By contrast, in our analysis of four sub-channels over
40MHz bandwidth at 825MHz, the center position of the
arclet remained independent of frequency, although the detailed
shapes changed substantially. Putting these results together
shows that there are localized regions of enhanced scattering
that remain identifiable, and slowly evolve, over a frequency
range of at least 5%. However, they appear to decorrelate over
an octave in frequency. They should be compared with bright
peaks in the discrete reverse arcs of pulsar B0834+06, which
have been observed to follow a precise frequency independence
over a 10% bandwidth near 300MHz (Hill et al. 2005; Brisken
et al. 2010).

Frequency independence of the peaks strongly implies an
origin from a specific location in the scattering region. The
success of thin-screen models for the arcs is evidence for
scattering plasma localized at discrete distance along the LOS;
so, too, can there be enhanced local scattering transverse to the
LOS. This could be due to relatively smooth lens-like plasma
structures or a concentration of turbulent variations (i.e.,
intermittent turbulence). The 1D nature of the scattering
suggests flattened plasma sheets aligned parallel to the LOS;
the alignment would build up strong transverse phase gradients
sufficient to cause lensing behavior or rapidly varying random
phase variations, in either case causing discrete peaks in the
scattered brightness. With local deviations in inclination of the
plasma sheets, enhanced scattering peaks could originate where
the sheets are accurately aligned with the LOS (Romani et al.
1987; Pen & Levin 2014; Simard & Pen 2018).

B0450−18 lies within ≈400 pc of the Earth and, when its
position is plotted on a map of H-α emission, one can see faint
curved structures that suggest nearby intersecting spherical
shells such as the residuals of expanding supernovae. We
suggest that such a shell, whose emission measure may be
below the observable threshold in H-α, could be tangential to
the LOS and cause the 1D arc scattering, and might even be
located where the LOS intersects the plasma shell, thought to
be the boundary of the Local Bubble. The electron density
model of Yao et al. (2017) predicts the screen distance to be
about 250 pc from the Earth.

7. Conclusion

In conclusion, we have observed a new highly anisotropic
plasma condensation that is localized along the path from the

pulsar B0450−18. The frequency-scaling law of the scattered
angular width has an exponent a≈1.7±0.2. It is signifi-
cantly less than a=2.2 expected for scattering from a
Kolmogorov turbulent plasma. In that sense, it is reminiscent
of many other pulsars with slower than expected frequency
scaling in their pulse broadening times.
In its scattered profile, we also find narrower subsidiary

offset peaks that cause discrete reverse arcs at both 340 and
825MHz. The most prominent subsidiary peak at 825MHz is
independent of frequency over a narrow (5%) range, but its
shape does evolve in detail. No prominent peak is observed at
that angle at 340MHz; there is a significant peak scattered at a
5 times greater angle and so cannot originate at the same
physical location. The plasma responsible for the scattering
appears to be localized in a thin “screen” that is highly
anisotropic in its scattering properties.
We have also demonstrated agreement between two different

techniques for estimating the scattered brightness, when the
scattering is highly anisotropic.
Since the pulsar velocity is low, comparable to the Earth’s

velocity, the curvature of the scintillation arcs would show
strong annual variation. We plan follow-up arc observations
over the course of a year, which will make use of the changing
Earth velocity to constrain the screen distance and the
orientation of the scattered image (Stinebring et al. 2005;
Reardon et al. 2020).

We thank Daniel Baker for the development of scinto-
ols.ththmod (D. Baker et al. 2021, in preparation) used in
our analysis. We thank Ue-Li Pen and Marten van Kerkwijk for
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idea from Olaf Wucknitz, developed by Tim Sprenger, Daniel
Baker, and others. Scott Ransom assisted with the observations
and initial data processing, and we appreciate that help. This
material is based upon work supported by the Green Bank
Observatory which is a major facility funded by the National
Science Foundation operated by Associated Universities, Inc.
D.S. and H.Z. were funded by an NSF Physics Frontiers Center
grant (1430284) to NANOGrav; they appreciate the support.

Appendix
Scattering from a Phase Screen

Consider a fixed point source P located at z=−zp and
transverse coordinate sp. The phase screen lies at z=0 and the
observer O at transverse coordinate so is at a further distance
z=zo where zo+zp=L.
The screen introduces a phase change f(s1) at transverse

coordinate s1. Then the Fresnel diffraction integral for the
complex field for an observer at (so,z=zo) can be written as
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where seff is the transverse coordinate where a straight line from
P to O intersects the screen. k=2π/λ is the radio-frequency
propagation constant; ze is defined by 1/ze=1/zo+1/zp; the
factor jk/2πze ensures that the field at the observing plane has
unit average intensity (〈ff

*

〉=1).
The Fresnel integral Equation (A1) is a convolution of the

electric field at the exit plane of the screen f (so,z=0) and the
Fresnel propagator which is quadratic in phase. Thus it can also
be written as a product in the Fourier domain, giving the
angular spectrum of the field F(θ,z=zo) versus the observed
angle of arrival θ:

( ) ( ) [( ) ] ( )q q q= =F z z F jkz, , 0 exp 2: A3o e
2

Here the angular spectrum emerging at the exit plane of the
screen is

( ) [ ( ) · ] ( )òq qf= +s s sF d j jk, 0 exp . A42
1 1 1

Equation (A3) shows that propagation to an observer only
changes the phase of the angular spectrum F, (see, for example,
Ratcliffe 1956). The scattered brightness, introduced earlier,
can be recognized as the squared magnitude of the angular
spectrum F at the observer’s plane. Hence B(θ) is independent
of distance from the screen. The squared magnitude,
Equation (A4), gives a double integral over s1,s2, which can
be re-expressed in terms of mean and difference spatial offsets
sm=(s1+s2)/2 and sd=s1−s2. The result can be rear-
ranged to show the well-known result that B(θ) is the Fourier
transform of the visibility function of the field, where sd is the
baseline. Since this does not depend on the distance to the
observer it is most convenient to write it at the exit plane of the
screen. Hence:

( ) [ ( ) ( )] ( )ò f fG = + - -s s s s s sd j jexp . A5d m m d m d
2

Johnson & Gwinn (2015) identify the the Fourier transform
of Γ(sd) as an “average” scattered image, where the integral is
over a finite spatial range governed by the details of the
observation. It is to be contrasted with an ensemble average,
which leads to the familiar result that

( ) [ ( )]G = - fs sDexp 0.5d d , where Df(sd) is the structure func-
tion of phase—i.e., the mean of the squared phase difference on
baseline sd

Equation (A5) allows us to consider how the scattered
brightness function should scale with observing wavelength λ,
since the screen phase is due to inhomogeneities in plasma
density, whose well-known dispersion law makes the phase
directly proportional to λ. Thus we write
f(sm)=(λ/λ0)f0(sm), where f0 is the screen phase at the
reference wavelength λ0. In Figure 6 we displayed our models
for B(θ) that were fitted to the observations at 340 and
825MHz. We have also computed its Fourier transform to
estimate the visibility functions Γ(sd) at each frequency, as
shown in Figure A1.

Now consider the screen phase f0 as an unknown
deterministic function, such as might apply in a lensing model,
and examine how Γ(sd) might vary with wavelength. In
Equation (A5) we now approximate f0 by a Taylor series to
obtain

( ) [ ( ) · ( ) ( )] ( )ò l l fG =  +l s s s sd j O sexp A6d m d m d
2

0 0
2

( ( )) ( )l l» Gl s . A7d 00

In the final simplified form we only retain the first order in
offset sd and obtain the prediction that Γλ(sd) is a scaled version
of Gl0, where the scaling makes the product sdλ a constant.
Accordingly in the right panel of Figure 6 we have plotted the
real part of Γλ(sd) for 340 (black) and 825MHz (blue) and also
over-plotted (red) 825MHz scaled by the ratio of their
wavelengths. The real part of Γ, which is the transform of
the symmetric part of the brightness, dominates over the
imaginary part. When the baseline scaled by the wavelength
ratio, the scale at 50% for 825MHz is somewhat narrower than
that at 340MHz, and corresponds to a wavelength exponent of
−0.65±0.2. The fluctuations visible in the imaginary part of
Γ provide an estimator for the error in the real part.
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