Rigidity of a thin domain depends on the curvature,
width, and boundary conditions
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Abstract

This paper is concerned with the study of linear geometric rigidity of shallow thin
domains under zero Dirichlet boundary conditions on the displacement field on the
thin edge of the domain. A shallow thin domain is a thin domain that has in-plane
dimensions of order O(1) and €, where € € (h, 1) is a parameter (here A is the thickness
of the shell). The problem has been solved in [8,10] for the case e = 1, with the outcome
of the optimal constant C' ~ h=3/2, C ~ h=*3 and C' ~ h~! for parabolic, hyperbolic
and elliptic thin domains respectively. We prove in the present work that in fact there
are two distinctive scaling regimes € € (h, \/E] and € € (\/E, 1), such that in each of
which the thin domain rigidity is given by a certain formula in A and €. An interesting
new phenomenon is that in the first (small parameter) regime e € (h, V/h], the rigidity
does not depend on the curvature of the thin domain mid-surface.
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1 Introduction

Given a small parameter h > 0, a shell of thickness h in the theory of elasticity is the
h—neighborhood (in the normal direction) of the a smooth enough connected and compact
surface S C R®. Denoting the normal vector (note that the orientation does not matter
here) by m(x) for any point z € S, and assuming that the family of Lipschitz functions
gi(z), gh(x): S — (0, 00) satisfy the uniform conditions

h < g{‘(z),gé‘(z) < ¢ h, and |Vg{‘(:£)| + |Vg§(x)| < cyh, forall ze€lS, (1.1)

one defines a thin domain around S and having thickness of order h, to be the set " =
{x+tn(x) : v €8, t e (—gh(x),gk(x))}. The problem of determining the rigidity of a given
shell or thin domain is one of the main challenges in the theories of linear and nonlinear
elasticity. A mathematical definition of the geometric rigidity of a shell is formulated by
means of the the geometric rigidity estimate of Friesecke, James and Miiller [2,3], which
reads as follows: Let Q C R?® be open bounded connected and Lipschitz. There exists a
constant C = C(§) such that for every vector field w € H'(Q) there exists a constant
rotation R € SO(3), such that

| Ve~ R|2.q) < C / dist?(Vu(z), SO(3))dx. (12)
Q

It is a well-known fact in elasticity theory that for thin domains €2, the constant C' in (1.2)
blows up as the thickness h of the domain 2 goes to zero. The optimal constant in (1.2)
then determines the rigidity of €2, the bigger the constant C' is the less rigid the domain (2
is. It turns out that this mathematical definition goes well hand-in-hand with the physical
understanding of rigidity, namely, typically mathematically more rigid thin domains handle
higher compressive loads before buckling. The form (1.2) comes from nonlinear elasticity,
where the energy well is the group of proper rotations SO(3). It is usually assumed in
the study of shells in nonlinear elasticity that the elastic energy density W satisfies the
lower bound W (F) > ¢ - dist*>(F,SO(3)) for some ¢ > 0 and all F € R¥>3.If Q" is a
family of thin domains of thickness of order h, the for low-energy! (small enough energies)
displacements u”, the estimate (1.2) will imply relative weak compactness of the displacement
family {u"} in H', and strong compactness of a subsequence of {1} in L2 This being said,
the derivation of shell theories from three dimensional elasticity is basically based on the
geometric rigidity estimate (1.2). Hence, in that analysis the asymptotics of the optimal
constant C' in (1.2) becomes crucial, as it identifies the energy scaling ranges (in terms of h)
for the dimension reduction theory to hold. This is addressed as the shell rigidity problem.
As the tangent space to the manifold SO(3) at the identity matrix I is the vector space of
skew-symmetric matrices, the linearization of (1.2) around I is exactly classical Korn’s first
inequality without boundary conditions [18,19,1,14|, which reads as follows: Let Q@ C R"
be open bounded connected and Lipschitz. There exists a constant C; = C1(2), depending
only on €, such that for every vector field w € H'(Q) there exists a skew-symmetric matriz
A € R™™™ such that

Ve — A2y < Calle(w) e, (1.3)

'Low means asymptotically small as h — 0.



where e(u) = 3(Vu + Vu®) is the symmetric part of the gradient (the strain in linear
elasticity). It is known that if in addition one imposes Dirichlet type boundary condition on
the displacement field w on some positive Hausdorff H2-measure part of the boundary 05
then one can choose A = 0 in (1.3). This version of (1.3) plays a crucial role in the study of
critical buckling loads for shells (and thin structures in general) under compression [9,5,6,7].
In particular, the authors in [6,7] prove a buckling load formula for slender structures under
compression under some stability conditions on the deformation, where the formula involves
the "best"? constant C in (1.3), see [7, Theorem 2.6]. In this work we will be studying (1.3),
namely the asymptotics of the optimal constant C'; under zero Dirichlet boundary conditions
on u over the thin edge of 9. This problem has been solved in [8] and [11] for parabolic and
elliptic, and hyperbolic shells respectively, in the case when the thin domain €2 has in-plane
dimensions of order one in booth principal directions on the mid-surface S. In this paper we
will consider the case when S has width of order one in one principal direction 6, and of order
€ > 0 in the other principal direction z, where € € [h, 1] is a parameter. We call this kind of
thin domains shallow. Interestingly enough, we discover that there are two scaling regimes
with a crossover h = v/h distinguishing between the formulae for the "best" constant O}
in (1.3) for all three kinds of shells, parabolic, hyperbolic, and elliptic. In the first regime
¢ € [k, Vh] the formula for C; does not depend on the Gaussian curvature of S and is given
by C; ~ ¢2h™2, see Theorem 2.1. In the second regime e € [V/h, 1] the "best" constant
C, does in contrast depend on the Gaussian curvature of S and is given by Cy ~ eh™/2,
Cy ~ e*3h=43 and C; ~ h~! for parabolic, hyperbolic and elliptic shells respectively, see
Theorem 2.2. These recover the results in [8,11] taking e = 1. Another interesting physical
phenomenon is that in the case of elliptic shells, the entire range € € [\/E, 1] gives the same
scaling O} ~ h™!. Also, we will prove that when the zero boundary conditions are removed,
the in the regime € € [h, \/ﬁ] the rigidity drops to =2 in some cases. This observation reveals
the (explicit) dependence of the rigidity on the size, curvature, and boundary conditions.

2 Main results

In this section we will introduce the main notation, definitions, and formulate the main
results of the paper. First of all we will assume that the mid-surface S C R? is a compact,
connected, regular C® surface with nonempty relative interior, that can be given by a single
patch parametrization » = 7(6,z) in the principal variables 6 and z, where we assume
0 € [0,1] and z € [z1(0), 22(0)] for every 6 € [0,1]. Let E denote the patch: E = {(6, 2)

0 € [0,1] z € [21(0), 22(0)]}. In order for S to have roughly size € in the z—direction, we
impose the below condition on z;(f) and 25(0) :

0<2z(0), €<2z(0)—2(0) <ce foral 6e]l0,1], (2.1)

for some constant c3 > 1. Let now n(6, z) be the unit normal® to S at (6, z), and let ¢ denote
the normal variable. One then naturally has a parametrization of the thin domain Q"€ given

2"Best" meaning asymptocically optimal as h — 0.
3The surface S need not be orientable hare, as the choice of n or —n does not affect the presentation.



by R(t,0,2) = r(z,0)+tn(z,0), where (0,2) € E and t € [—g}(0, 2), g(0, 2)], where gi(0, z)
and g} (0, z) are given as right before (1.1) and fulfill (1.1). Denote A, = |9%|, Ay = || the
two nonzero (as S is regular) components of the metric tensor on S and denote k, and kg
the two principal curvatures. Recall that in the orthonormal basis (n, ey, e,) the gradient
of any vector field w = (us, ug,u,) € H' (", R?) on the thin domain Q"¢ is given by the

formula [21],

VU = U/@ﬂg

uz,t

Ut — Apkoug
Ag(l + tlig)
Aug g+ A, Apkou + Ag u,

AZAg(l + tlig)

Azuzﬂ - AG,ZUG
AZAg(l + t%e)

ut,z - Azﬁzuz
A (1+tk,)

Aﬂue,z - Azﬂuz
AZAg(l + t:‘iz)

Aﬂuz,z + AerKzut + AZ,GUG

AZAg(l + tl*{,z)

(2.2)

The norm || f[[z2(qn.) then comes from the inner product of two functions f, g: Qe - R,
given by (f,g)ane = Jon. AzAgf(t,0,2)g(t,0,z)d0dzdt (recall that Ay and A, are strictly
positive and thus apart from zero on F). Following [11,12,13|, we introduce the thin domain
O(1) parameters that are the quantities ¢, ¢9, ¢3,a, A, k, and K, some of which defined below
(note that K is defined later in Theorem 2.2) satisfy the conditions

a = mbin(Ag, Az) > O, A= ||A0||W2°°(E) + ||Az||W2°°(E) < 00, (23)

k= ||H9||W1,00(E) + ||’£Z||W1'°°(E) < 0.

due to the fact that C' is regular, compact and of class C®. The constants c;, ¢; are introduced
in (1.1) and ¢z is introduced in (2.1). The constants hg > 0 and C' > 0 in the below
theorems will depend only on the quantities a, A, k, ¢, ¢2, c3 and the constant K defined in
Theorem 2.2. Finally, we introduce the vector space V"¢ of displacements satisfying zero
Dirichlet boundary condition on the thin part of the boundary of Q€. To that end denote
that thin part

D = {(£,0,2) € O+ 00 — 1)(2 — 21(0))(2 — 2(0)) = O}.

Then the vector space is

Ve = {uec HY(Q" R : w(t,0,2) =0 for (t,0,z) € 9sQ"<}. (2.4)

We are ready to formulate the main results of the paper.

THEOREM 2.1 (Korn’s first inequality for shallow thin domains). Let S C R? be a con-
nected, compact, reqular C3 surface with nonempty relative interior satisfying (2.1) (with the
parametrization r = r(0, 2), (0, 2) € E), and let the thin domain Q¢ around S be given as in
the next two lines of (1.1) with the barrier functions gt and g satisfying (1.1). If e € [h,/h],
then there exists constants hg,C' > 0, depending only on the thin domain O(1) parameters,
such that Korn’s first inequality holds (regardless of the Gaussian curvature sign):

2 Ce 2
IVullzaone < 5 lle(w)[Zaqne, (2.5)
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for all h € (0, hg) and u € V", Moreover, the constant in (2.5) is optimal, i.e, there exists
a sequence of displacements u»¢ € V"¢ realizing the asymptotics of h and € in (2.5) as
h,e — 0.

The next theorem is concerned with the second regime.

THEOREM 2.2 (Korn’s first inequality). Let S C R3 be a connected, compact, regular
C3 surface with nonempty relative interior satisfying (2.1) (with the parametrization r =
r(0,2),(0,2) € E), and let the thin domain Q™ around S be given as in the next two lines
of (1.1) with the barrier functions g and gi satisfying (1.1). Denote the Gaussian curvature
of S by K¢ = kgk,. If € € [V'h,1], then there exists constants hy, C' > 0 depending only on
the thin domain O(1) parameters, such that in each of the situations Korn’s first inequality
holds:

1(a). If Kg > 0, then then there exists a constant €y > 0, depending only on the parameters
of S, such that
2 c 2
IVallzaaney < Slle(w)[Taqne, (2.6)

for all h € (0, hy), all € € (h,€), and all w € V. Here K = ming(|rg|, |k.|).

1(b). If K¢ < 0,
062/3
IVulZe@n < =5 le@lZagno: 2.7)

for all h € (0, hg), and all w € V", Here K = ming(|kql, |k.|).
1(c). If Kg =0, with k, =0 and K = ming |kg| > 0, then

Ce
IVl 22 gne < Wﬂe(u)ﬂizmh,e), (2.8)

for all h € (0, ho), and all w € V<.

Moreover the constants in (2.6)-(2.8) are optimal, i.e, there exists sequences of displacements
ulc € Vi< (in each situation) realizing the asymptotics of h and € in (2.6)-(2.8) as h,e — 0.

Remark 2.3. Both Theorems 2.1 and 2.2 clearly reveal the dependence of the optimal con-
stant i Korn’s first inequality on the thin domain width. In fact, in the absence of zero
Dirichlet boundary conditions on the thin part of 00, the optimal constant in both (1.3) and
(1.2) drop to h=2 in the shallow domain regime ¢ € [h,\/h]. This will be addresses later in
Section 5.

3 Preliminary

In the proof of Theorems 2.1 and 2.2 we adopt the overall strategies developed in [5,10,8,11].
At its core is the reduction of 3D inequalities to 2D ones, which are then proven by the use
of several key lemmas that provide inequalities with sharp constants for harmonic functions

bt



in thin domains. A 3D estimate that already plays a key role in the business of sharp
Korn’s inequality is the so-called Korn interpolation inequality for shells, introduced first for
cylindrical shells in [5]. Another simple but important component of the analysis is the fact
that if one has a Korn’s first inequality (1.3) or a geometric rigidity estimate (1.2) in the
shell S™< with thickness h around S defined by

She = [(1,0,2) €R® : (0,2) € B, t € (—h,h)}, (3.1)

then in fact the same inequality with a comparable constant to C} (or to C') follows for
the thin domain Q€. This passage is carried out via a localization argument by Kohn and
Vogelius [15]; the detailes will be provided in Section 3.4. We formulate below the Korn
interpolation inequality.

LEMMA 3.1. Let the surface S C R® be as in Theorem 2.1, and let the shell S"¢ and the
vector space V' be defined as in (3.1) and (2.4) respectively. Then there exists constant
C, hg, depending only on a, A, k and cs, such that

||utHL2(5h,s) e(u)HLQ(Sh’E)

for all w € V< all h € (0,hy), and all € € [h, 1].

It is worth mentioning that slightly stronger versions inequality (3.2) have been proven in
[8, Theorem 3.1] and in [11, Theorem 3.2] for the case € = O(1). Also, the same version has
been proven in [12, Theorem 3.1] (see also [13]) without assuming any boundary condition
on u. Note that after dividing S™*€ into roughly 1/e parts in the 6 direction, variable rescale
x’ = ex and application of (3.2) (with no boundary conditions on u) one would deduce the
estimate

e(u)HLQ(S’%E) HUH%Q(Sh,e)

||utHL2(Sh,s)
HVUHi%sh,e) <cC < h + 2 + ||€(U)H%2(sh»e) ) (3.3)

for all u € H'(S™¢,R?). It will be seen later that (3.3) is not good enough for the purpose
of Theorems 2.1 and 2.2 for the full range € € [h,1] and all cases (2.5)-(2.8). This being
said we will need the validity of (3.2) for the full range € € [h, 1]. As already mentioned, the
structure of the current paper will be quite similar to the ones in [8,11], thus we will skip
some straightforward steps in the proof referring to that previous works, and at the same
time trying to keep the current paper as self-contained as possible without major repetitions.
Note that both Theorems 2.1 and 2.2 claim Ansatz-free lower bounds and their sharpness,
where the sharpness part will be proven by providing an Ansatz that makes the inequality
an asymptotic equality as h,e — 0. We start with the Ansatz-free lower bounds past.

3.1 Ansatz-free lower bounds: Interpolation inequalities

In the sequel the || - || norm will be the L? norm || - ||z2(gne), and the constants C, hy will
depend only on a, A, k, and c3 throughout Section 3 unless specified otherwise. The proof is
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performed by sequential freeze of the acting variables t, 6, 2z to reduce the 3D inequality of
the corresponding block of the gradient w to a 2D inequality. Before doing that, we make
the following (again adopted in [8,11]) simplification to Vu by removing the txg and tk,

parts in the denominators of the second and third columns respectively. Namely, setting

[ up — Agkgty Uy — Ak, |
u e — —
b AG Az
Azugp + A Agkgus + Ag 2us Agug . — Az pu.
B = ’ ’ ’ ’ 3.4
o AZAG AZAG ( )
Azuz,e - A@,zuﬁ Aﬂuz,z + AZAGK'zut + Az,euﬁ
Uy
L A4y A4 _
we first aim at the simplified version of (3.2), which reads as
[ [[| B> sym
g1 < o (P e 4 o) (35)

where BV = %(B + B7T) is the symmetric part of the matrix B. The later passage from
(3.5) to (3.2) will then be quite straightforward taking into account the smallness of ¢ and
thus the omitted terms.

Proof of (3.5). Consider the blocks t = const, § = const, and z = const separately.
The block t = const. There exists a constant C' > 0 such that
| Bas||* + | Baal|* < C([|ul® + [ B*™|1%), (3.6)

for all h € (0,1) and u € Ve,

Proof. The analysis for this block is the simplest. For functions f, g € L*(E,R) define the
inner product (f,g)p = [, ApA.fgdfdz. Hence we have on one hand by Fubini’s theorem
and integrating by parts,

Az U, AG 2Ug /
B —— B : == zUWy
( 23 T Ap A 32 + AeAz)E Eue,u,e

- / Ug ol z-
E

Az,eue
Bssz — K up — A A )
041z /g

On the other hand we have

- AG,zuz
UggU, , = | Bag — Koy — T
FE 041z

thus recalling the equalities By = By, Bss = Biy', and Bsy = 2B55" — B3, we obtain
from the last two equalities the bound

|(Bas, Bag)p| < C(|(B™™, B*¥™) | + |(u, u)g|),

7



which then integrating in ¢t € (—h, h) we discover
1Bas]” < Cllull® + 1B ). (3.7)

Consequently taking into account one more time the equality Bss = 2B54"" — Bas, we obtain
the estimate (3.6) from (3.7) by the triangle inequality.

Ul
The block 6 = const. There exists a constant C' > 0, such that one has the estimate
w ||| B5Y™ 1
1Bl + 1Bl < € (PUEL e s oyl + o). o)

or a € (0,1), all u e V" and all 0 € (0,1).
for all h € (0,1), all Vv dall o € (0,1

Proof of (3.8). The proof for this block is based on several lemmas proven in [5,10,12], and
their modifications that we will formulate and prove when necessary. A main lemma is
Lemma 5.1 from [12], which is not directly applicable to the situation ¢ << 1 that falls into
the full range [h, 1]. This is due to the fact that the constants in the targeted inequality may
depend on ¢, which may mishandle the final constants we get. Therefore, we aim to prove
the following modification applicable to all values of € € [h, 1].

LEMMA 3.2. For parameters 0 < h < € < 1 denote the two dimensional rectangle R =
(0,h) x (0,¢€). Given a displacement field U = (u(x,y),v(z,y)) € H'(R,R?), vector fields
a, B € WHe (R, R?), and a function w € H*(R,R), denote

0w Opu+oa-U

M = O,v Ou+pB-U+w|’

(3.9)

Then for any displacement field U € H*(R,R?) satisfying the Dirichlet boundary conditions
U(z,0)=U(x,e) =0, forall z¢€(0,h)

in the trace sense, the following interpolation inequality holds:

¢

h

IM 72 ry < 7 llllzzgry - M| 2y + | M| Tory (3.10)

1
+ (54 1) 10T + 0+ )0l + sl
for all 5 € (0,1), h € (0,h). Here the constants C,h > 0 (the existence of which is claimed)

depend only on the quantities ||cl|wreo(ry, ||B|lwioe(r)-

Proof of Lemma 3.2. We will adopt the method of harmonic projections, following the proof
of the similar lemma in [12] with necessary modifications. In the proof of the lemma the
constant C' may depend only on the norms ||a|yi. ||B][w1e. Also, for simplicity we will



write || - || instead of || - ||z2(r). By density we can assume without loss of generality that
U € C*(R). For functions ¢, ¢ € H'(R,R) introduce the perturbed gradient

0 ¢ Oyt Oyu+ ¢
Mo [0 F] - [ Bl -

Let the function u; be the unique solution to the Dirichlet boundary value problem

Auy =0 in R
o " (3.12)
U =u on OR.
First of all Poincaré inequality in the horizontal direction implies the bound
[ — || < B)|O (v — ua) || < BV (1w = ud)]] (3.13)

Next, from the harmonicity of u; we have the obvious identity with a divergence form right-

hand side:

8 Msym _ Msym a 2M8ym
A —uy) = Au = (M) = (My7)2) + @M,y e + By — D1,
ox dy
thus standard elliptic estimates together with (3.13) yield the bound
IV (u —wr)l| < C (M + R0y + 110:4])] - (3.14)

Estimates (3.14) and (3.13) will allow us to replace u by u; in the targeted estimates, thus
proving them under the additional condition that u was harmonic in R. Next we recall
lemma 4.3 from [5].

LEMMA 3.3. Suppose h,p > 0 and w € H*(T,R) is harmonic and satisfies the boundary
condition w(z,0) = w(x,p) = 0 in the sense of traces, where T = (0, h) x (0,p). Then

2V/3

0,03y < S 00l llwll oy + 105wl (3.15)

We now make use of the fact that w; is in fact harmonic. To that end we first replace u
by w1 through the bounds (3.13) and (3.14). Namely we have by the triangle inequality and
by (3.14),

10,1+ l1* < 4(|0yur ] + 110y (u — ur)l* + llol*) (3.16)
< Cloyu|* + IV (w = u) [I* + llell*)
< Cloyu]l* + llell* + 1 M2 + hllloy | + llél).

On the other hand we have for the summand ||0,u:||* by Lemma 3.3,

2f
2f
2f

10, ur]* < ==l 0z [[[[uall + | Ozur * (3.17)

| /\

——(10:(ur = w)ll + l0sul) (lull + lur = ull) + (10s(ur — W) + [|0zu]])?

——(IV(ur = )| + 10sull) ([l + lus = wll) + (1V (w1 = w)]| + [[Ozul))*.



Recall that that 0,u is the 11 entry of M"", thus putting together (3.16) and (3.17), and
taking into account the bounds (3.13) and (3 14) we arrive at the estimate

A 1 sym sym
18,u +¢]* < C (ﬁIIUII M|+ fll|® + M52 + ||s0||2) (3.18)
+ C([lull (10,1 + 10221 + B> ([0, 211> + 0a011%)).-

Consequently, for the case f = a-U and g = 3 - U + w we have the obvious bounds

19,2l < ClIUNarrry < CUAMZT T+ 1T + [lwl]), (3.19)
10411 < ClU 2y + 10zl < CUMZ | + U] + [|0w])).

Finally, applying the bounds (3.19) to the right-hand side of (3.18) and estimating the
product term [|ul|(||0,| + [|8:¢])) by |ull® + 6([|0y¢l + |0:4])?, we obtain the estimate
(3.10) for d,u + ¢ in place of M on the left. The additional 21 entry d,v of M is then
estimated in terms of d,u + ¢ and M*¥™ via triangle inequality. This completes the proof
of the lemma.

0

Now the bound (3.8) is obtained by a clever choice of the fields U, a, § and the function
w in Lemma 3.2, which was originally done in [12]. We recall the formulae here leaving
the details to the reader. A working choice turns out to be U = (u, A,u,), a = (0, —k,),
B = (A2%k., —’if:) and the function w = AZX‘Z 2ug in the variables t and z. Indeed, we have
by straightforward calculation

Mll = Ut,t, M12 = Utz — Azf{'zuz (320)
AA,
M21 - Azuz,tv M22 = Azuz,z + Agfizut + A 0 Ug,
0
AzAz 0
D = 22
tW A, Ug ¢

thus taking into account the form of the matrix B in (3.4) we have
M™ = Biy",  MY" = A.By", M" = ATBE™, (3.21)
w| < Clul,  |gw| < C(|Bis| + |u]).

Now (3.8) follows from plugging in the forms (3.20) and (3.21) in (3.10) and integrating the
obtained estimate in 6 € [0, 1].
U

For the block z = const we get the analogous inequality (by symmetry) through the same
analysis.

10



The block z = const. There exists a constant C' > 0, such that one has the estimate

w ||| BsY™ 1
| Bl + | Ba|* < € (M +

T S+ 8Bl 1B (32

for all h € (0,1), all w € V" and all 6 € (0,1). Finally putting together the estimates
(3.6), (3.8) and (3.22) we obtain the bound

By 1

T S+ S1BIE + B (3.23)

Thus choosing the parameter 6 > 0 small enough (i.e., Cd = 1/2) we obtain (3.5). This
completes the proof of the modified estimate (3.5).
0

Although the inequality (3.5) will be the one (and not Lemma 3.1) frequently used in our
analysis, let us mention how Lemma 3.1 follows from (3.5), which is quite straightforward.
Indeed, it is done via the obvious estimates

IVu = B[l < Chl[Vaul, [le(u) = B¥™"|| < Ch|[Vul| (3.24)

by Cauchy inequality applied to the product term || B||||u|| in the form ab < §a® 4 1b?, with
the parameter 6 > 0 chosen sufficiently small.

3.2 Ansatz-free lower bound: Theorem 2.1

We start with the regime e € [, v/h], which is the easier one. We have from the Poincaré
inequality in the 6 direction that
[u]l < Cel|Fpul]

From the form of the matrix B we have
[Opul| < C(| B + [[ul]),

thus we have
u|| < Ce(|| B + [Jul])

which for sufficiently small i (depending on the constant C' right above) implies, taking into
account the bound e < \/ﬁ,
[ull < Cel[ B (3.25)

Consequently combining (3.25) and (3.5) we have for small enough h the bound
Ce\ s
1Bl < —=IIB>™ (3.26)

regardless of the curvature of S. Now, as in the case of (3.5) and Lemma 3.1 discussed
above, the estimate (2.5) with S™¢ in place of Q"¢ follows from (3.26) and (3.24). As
already mentioned below, the passage from S™¢ to Q€ in the estimates (2.5)-(2.8) will be
demonstrated later in Section 3.4.
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3.3 Ansatz-free lower bounds: Theorem 2.2

This corresponds to the regime € € (v, 1] and the curvature matters here as noted in
Theorem 2.2, thus we will consider each case separately. But before getting into each case,
we we start by some preliminary calculation following [11]. The idea is to first eliminate
the component wu; from the 22 and 33 entries of the matrix B, where at the same time
utilizing the 23 and 32 entries of B, we end up with an equality involving only the in-
plane components ug, u, and the symmetric part B®*¥™, which, roughly speaking, will in
tern provide us with a Carleman-like estimate for the operator e(u). Let A > 0 be a large
parameter to be determined later. Like in Section 3.1 we will be working with the inner
product (f, g)g. We have that

(Bs3™, e’\zmzuz)E = /
E

e’\ZAZ/@Zuzugﬂ + /

6)\ZA9AZ/€9KJZUZUt+/ e’\ZAgJKJZuz,
E

FE
and
By™ Az _ )\ZA )\ZA A AZA
(B33", eV Rrou,)p = | e Aprgusu, , + [ eV AgAkoruu + | €A, pRougu,
FE FE E

thus we can eliminate the u; term on the right to get

(B3Y™ M k) p — (B, eMkou,) g (3.27)

:/e)‘ZAZ/-fzuzue,gjL/e’\ZAg,Z/-fzug—/e’\zAgnguzum—/e)‘ZAz,g/ﬁgueuz.
E E E E

The second and the fourth summands on the right of (3.27) appear in the desired form, while
the first and the third do not. For the third summand we have integrating by parts and
utilizing the zero Dirichlet boundary conditions,

— / 6)\ZA9KJ9’UZUZ,Z = / A Agkg)ul. (3.28)
) 0z
while the adjustment of the first summand is more involved, indeed we have
0
/ VA K uug g = / —(eM ALk, ugu, — / M ALK ugl, 4. (3.29)
E 7 p 00 E ’

The second summand in (3.29) still does not have the required "good" form, thus we modify
it as follows. Recall the below equality coming from the 23 and 32 terms of the matrix B :

Auyg=2A9A,Boy" + Agug + A, gu, — Agug .

hence we can calculate integrating by parts in 6 as follows:

/ (€M ALK )ugu..g (3.30)
E

:2/6 "k, AgA, B3y ue+/e KZAQZUG_‘_/QAZKZAZﬂUQUZ_/e “kAguguyg
E E E E

1 0
= 2/ eA%ZAgAZngmug +/ Mk, Ay g +/ MK, A, gugu, + —/ —(e’\zfizAg)ug
E E ’ E 7 2 Jg 0z
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Consequently combining equalities (3.27)-(3.30) we arrive at the key idntity
Fug,u.) = (B3™, e r.u)p — (B3, e kous) g + 2(Bad™, e kug) p (3.31)

where the quadratic form F'(ug, u,) is given by

o 1 a Az Az 2 / Az 1 8 Az 2
F(UQ, uz) = /E (2 az (6 HZAQ) +e IizAaz) Ug -+ . e AQ’ZFLZ + 5 az (6 Aglig) u,
(3.32)

— / <6)‘ZAZ o(Kg + K,) + g(eAZAz/{z)) UgU 5.
5 ’ 00

Now having (3.31) and (3.32) in hand we can proceed with each case separately.

Nagative Gaussian curvature: Kg < 0.

Proof. The purpose of introduction of the function e** into the analysis and the magic
followed by it is as follows. Note that there is a z derivative in both of the coefficients of u
and v? in the quadratic form F, while there is only a 6 derivative in the coefficient of the
product term wugu,. This means that the coefficients of ug and ui can be made arbitrarily
large compared to the coefficient of ugu,, by choosing the constant A large enough, thus
making the quadratic form F positive or negative definite provided the coefficients of u2
and u? have the same constant sign, which is exactly the case of hyperbolic mid-surface S. If
A > 0 is a big enough constant, then according to the bounds (2.3) and the condition Kg < 0
on E, we have that the leading term of the coefficient of ug and u? in I are %)\6)\2149!{9 and
—%)\eAZA(mZ respectively, thus there exists constants C, ¢ > 0 (the constant ¢ depends only
on the domain O(1) parameters too) such that we have

|F(ug, uz)] = CA(Ile ugll2agpy + le* uall?am), forall A>ec. (3.33)
We have on the other hand from (3.31) by the Schwartz inequality that
|F(ug, uz)| < Clles B¥™| 2y (e upllr2ey + ll€® uall2m), forall A>0.  (3.34)

Combining now (3.33) and (3.34) we obtain the Carleman estimate

C
A
We can now make the choice A = ¢ which clearly satisfies the inequality A > c. Also note

that one has the obvious bounds cle(@ < Az < @ + ce3 for any (0, z) € E, thus we get
from (3.35),

||6%u6||L2(E) + ||e%uz||L2(E) S ||6%Bsym||L2(E) for all A 2 C. (335)

uollL2(e) + [[u.l|L2e) < Cel| B¥™ || L2k (3.36)

Consequently, upon squaring and integrating the last inequality in ¢ € (—h, h) we discover
the key inequality
lusllZ2sny + l1uzlZz(sney < CENBY™ || pasne. (3.37)

13



We now turn our attention to the estimation of the out-of-plane u; component. To that end
we multiply the equality

1
By = — (Auugy + Agus).

by AgA.u, and integrate the obtained identity over S™¢, where we throw the 6 derivative of
the summand wg g over u; by integration by parts. Keeping in mind the bound (3.37), this
leads to the estimate

luellZ2smey < CIUB™™ | asney (luell asne) + ellurollzz(sne)) (3.38)

Next we have from the 12 component of the matrix B, and from (3.36), that

[urollzaisney < CUIBI L2(sme) + €l B || 2(sne), (3.39)
hence we get combining (3.38) and (3.39) the bound
el Zagsney < CIB™™ | pa(she (el Bllasne) + 1B*™ | r2gsney). (3.40)
In conclusion we combine (3.40), (3.37) and (3.5) to arrive at the desired estimate
ces o
I1Blaisny < S| B sy (3.41)

The bound (2.7) with S€ in place of Q"¢ now follows from (3.41) via the well-known manner
through the bounds (3.24). The proof for the negative curvature shell case is finished. [

Positive Gaussian curvature: Kg > 0.

Proof. The proof of this case consists of several observations. The first observation comes
again from the identities (3.31) and (3.32), where it is clear that by choosing the constant
A > 0 big enough, we achieve the existence of a constant C' > 0 such that

HueHiz(sh) < Cece(H“zH%%shﬁ”BsymH%z(sh))v HquiQ(sh) < Cece(HueHiz(sh)JFHBsymH(%z(sh%)-

3.42
In the the second step we bound the component u,. We have for a fixed t € (—h, h), and the
positivity rgk, > 0 that

(B3 — Koy, BE™ — tizur)p > Cl[uel|* — | B™]]%), (3.43)

for some constant C' > 0. On the other hand recalling the form of the matrix B, we have
integrating by parts

(ngm — RoUy, ngm - "{zut)E (344)

Ap . A
:/E<ue,9+A—euz) (uz,z+A—zu9)
B Ap A g Ap . A
= /Eue,euz,zﬂL/E AA. uzue+/EA—€Uzuz,z+/E A Uglg, o
:/W " €+/ AG’ZAZ’Gugu _1/2(149,2) u2—1/3<AZ’9)u2.
g g AgA. T 2 )02\ Ay ) 7 2 )p00 \ A )
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Note that the righthand side of (3.44) is a quadratic form in (ug,u,) modulo the first sum-
mand. Also, that first summand occurs from the following multiplication when integrating
by parts some of the occurring summands to make them a quadratic:

sym A Az
(B23,2B53" — Bas)p = /E (Uze - A—Gue) <U9,z - A—’guz) (3.45)

_/u " +/MM+1/3 Ao u2+1/g A o
= Ee),z z,0 p AgAz zWo 9 Eaz Ao 0 9 E(‘)@ Az 2

Thus putting together (3.44) and (3.45) we obtain
sym sym sym 0 Ae,z 0 Az,G
(B2 —Féeut,ng —K Up)p = (323,232%,’ —B23)E—/E <& < A, ) + 9 < A )) (u§+u§)
(3.46)

Utilizing the obvious quadratic form estimate (Bas, 2B " — Bas)p < (Byi", Byy" )k, and
invoking (3.43), we discover from (3.46) the key estimate (after an integration int € (—h, h)),

luellZosney < C(BEToney + ol Zagsney + l1usll?) r2sne)- (3.47)
Next, Poincaré inequality in the z direction implies that
T2 (sne) < C€luz sl 7asne- (3.48)

for some constant C' > 0. Consequently combining the bounds (3.42), (3.47), and (3.48) we
arrive at the key inequality

[l 7o sney < CE(IBY™ || Z2(sney + sl Zagsney)- (3.49)

It is clear that if € is small enough, such that Ce?e® < 1, then (3.49) implies the bound
|2z L2(sney < C||B*Y™| r2(gh.e), which in turn would imply the similar bounds ||ugl| 2 (gn.e) <
C||B*¥™(| p2sney and [Jug| p2(gney < C[| BV 12(gne) due to (3.42) and (3.47). We have thus
obtained the following: There exists g > 0 depending on the parameters of S, such that one
has

||utHL2(5h,s) + HU9HL2(S}L,5) + HUZHLQ(S}L,E) S CHBSymHLQ(Sh,e) (350)
for all e € (0, ¢). Finally we combine (3.50) with (3.5) to get (2.6) with S in place of Q<.
0

Zero Gaussian curvature: k, =0, |kg| > K > 0.

Proof. We using the Gauss-Codazzi relations [21, Section 1.1| one can obtain a rather explicit
form for the metric tensor components Ay and A, as well as for the nonzero curvature rg.
Indeed, taking into account the equality x, = 0, the Gauss-Codazzi relations

0,%2 o 8/19 . AG,Z

09 _( ) az - ('%Z "{9) A@ ’ (351)
0 0. 0

& ( ) 8_ ) — A, Agk Ky,




reduce to

) Ap. O (Ag.
Ao =0, 2=k —( 9’):0,

solving which we get the explicit forms

c(0)

A, = B'(2), Ay = a(f)B(z) + b(0), Ro =4

(3.52)

where the functions A,, Ay and ¢(f) are strictly positive on E. Thus we get the following
forms for the gradient and the matrix B :

-u U — c(0)ug (. -u Uy — c(0)ug (.
bt Ay + te(6) A, bt Ay A,
B up g+ c(@)u + a(@)u, ug, B upg + c(@)ur + a(@)u, g,
V= o Ay + tc(0) A |0 BT e Ay A,
" w9 — a(f)ug Uy, u Uy — a(f)ug Us
| Ap + te(0) A, ] ! Ay A(Zg_53)

Note first that by Poincaré inequality we can bound in this case,
w172 gsne) < €tz zlF2isne) < CENB™ [ 22(m. (3.54)

as u,, = A,B33". We have on the other hand integrating by parts

(Bas, Bs2)p = / up 2 (usp — a(0)ug) (3.55)
E
- / Up Uz, z-
E
We have further
(BY™, BSI™) s — / s - (g0 + c(0)us + a(6)u.), (3.56)
E

thus combining (3.55) and (3.56) and taking into account the equality Bss = 285" — Bas,
we obtain
(Bas, 2By — Bas)p = (Byg™, Byy " — c(0)ue — a(f)uz),

which yields the estimate (upon integration in t € (—h, h)),
| Basl 2(sney < CB*™ || p2ggne) (|1 B™™ || p2(sme) + [|uel L2ggney + lluzl| L2(sme))- (3.57)
Note next that an application of (3.54) simplifies (3.57) to the form

||B23||2L2(Sh’€) < Ol B*™|| L2(gney ([ B*™ || L2(gm.e) + [|ug] L2(sm.e))- (3.58)
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Next we estimate the component uy by noting that Poincaré inequality gives on one hand
the bound

||U6||%2(Sh,e) < €2||U6,z||%2(5h,5),

and on the other hand we have ug, = A, Bss, thus taking into account the estimate (3.58)
we get
[uollZ2(sn.e) < CENB™™ || Laggney (1 B*™ | L2 (sme) + [[uel| L2(sme))- (3.59)

In order to estimate the out-of-plane u; component we calculate the inner product by inte-
gration by parts:

(Z_i, ngm)E = [E ui(ug g + c(0)us + a(B)u.) (3.60)

:/umgu@—i-/c(@)\ut|2+/a(9)uzut.
E E E

Integrating (3.60) in t € (—h, h) and applying the Schwartz inequality to the product terms
we get

||Ut||i2(sms) < Ollue]| p2(gmey (|1 B*¥™ || L2 (smey + [[uz| n2gsmey) + [luoll 2(smellusoll 2(sney- (3.61)

Next we have u; g = AgBia + c(0)ug, thus we have
[ueollLzsney < CUBllL2(sney + [luollL2(sne))- (3.62)

It is now easy to see that putting together the estimates (3.5), (3.54), (3.59), (3.61), and
(3.62) we discover

Ce
||U/tHL2(Sh,€) S EHB Yy ||L2(Sh,s). (363)
finally we combine (3.5), (3.54), (3.59), and (3.63) to get the estimate
Ce \\ oum
IB1Eesne) < 2B ey (3.64)
As already understood before, the inequality (2.8) (with S™€ in place of Q"€) follows from
the similar estimate (3.64) through the bounds (3.24). O

3.4 Passage from S"¢ to Q"¢ in Theorems 2.1 and 2.2

The passage from the shell S"€ to the thin domain Q€ is done in a well-known fashion
through a localization argument. The idea is based on the fact that if the domain 2 has
comparable dimensions in three mutually orthogonal directions, then the constant C} in (1.3)
depends only on the Lipschitz constant of {2 and the constants controlling the size ratio in
that orthogonal directions. We recall the following simple lemma proven in [12, Lemma 5.2|.
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LEMMA 3.4. Assume Dy, C Dy C R? are open bounded connected Lipschitz domains. By
Korn’s first inequality, there exist constants Ky and Ko such that for any vector field U €
Wh2(Dy,R3), there exist skew-symmetric matrices Ay, Ay € M3*3 such that

IVU ~ Ay < Kalle@) 2oy VU = Asllizon < Kolle() |2y (3.65)

The assertion is that there exists a constant C' > 0 depending only on the quantities K1, Ks
and 22k such that for any vector field U € WY2(Dy, R"™) one has

|D1]”
IVU||2(p,) < CUIVU || 2Dy + [1e(U) || L2 (0))- (3.66)

In order to utilize the lemma, we divide €2 into small parts with size of order h and extend
the existing local estimate on all smaller parts in the normal to S direction to the bigger
(but still of order h) parts containing it. Let w = (@, 4, u3) be w in Cartesian coordinates
x = (11,72, 73), and let Du denote the Cartesian gradient. We divide the domains Q¢ into
small pieces of order h by dividing each parameter range # and z into small intervals of order
h. We will then get roughly % -+ = 7z small domains of order i with comparable size in the

directions t, 0, z and with uniform Lipschitz constants. Denote the small domains by Q?’E,
where i = 1,2,..., N, where N = O(53) and set Sie — §he QM We have by the lemma

||Dﬁ’||L2(Qi_L’E) < C(HD'&’HB(SZ?L»E) + ||e(’a>HL2(Q?'€))7 i=1,2,...,N, (3-67)
with a uniform constant C' depending only on the thin domain O(1) parameters. Conse-
quently, summing the estimates (3.67) ini =1,2,..., N we discover

D@l 2oy < Ol D@l 2(sme) + [le(@)][L2(ne)- (3.68)

Finally, combining (3.68) with the versions of (2.5)-(2.8) with S™< in place of Q"¢ we obtain
the original versions of (2.5)-(2.8).

4 Ansatze realizing the upper bounds

4.1 The regime € € [h, Vh]

In this regime the construction of the Ansatz is based on an observation made in [8,11].
Namely, one assumes first that the displacement w is smooth and depends on the normal
variable ¢ linearly, i.e., u(t,0, 2) = u1(0, 2) + tus(0, z). This leads to the equality

e(u) = Ai(ug, us) + tAs(uq, us)

for the symmetrized gradient, where A; and A, are 3 X 3 matrices depending on u; and
us. The next hypothesis is to choose the displacements w; and us such that 11, 12 and 13
components of the summand Al(wui, us) vanish. An easy analysis of the occurring PDEs
leads to the following form
Uy = w,
w g

UQ:’U—T,<A—’0—I<L9U), (4.1)
uZ:s—t<A’:—/~€zs>,
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where w, v and s are smooth functions in # and z. Next we choose v = s = 0 and the function
w having an oscillation in € as follows:

u =W (%,z) . Ug = —AG;\/EW,Q (%,z) . Uy = _ALZW’Z (%,z) ; (4.2)

where W = W (0, z): R? — R is a smooth function compactly supported on the set F and
satisfying the conditions:

W|~1, [W.~et and |[W..|~e? (4.3)

Moreover, the above estimates also hold if we replace W by its first and second order 6-
derivatives. We get by straightforward calculations that

6(’(1,)11 = 6(“)12 = 6(“)13 = 0,

moreover
e(u) - AzAgI{gW — tAgAQ,sz + th_%AzAQﬂWQ — th_lAzAQWQQ
2= AZAY(T + tr) |
th™2(2 + tkg + tk.)
= hA, gAgW , + A, (Ag Wy — AW a.) |,
e(u)as D2AZAZ(1 + trg) (1 + 11,) [f 0 AW+ A, (Ag Wy oW2)
A2 (A3, W 4+ tA, W] —th 2 A2A, )Wy — tA AZW ..
6(“)33 = .

ASAZ(1 + tk,)

Therefore, we have that

€

3/2
le(u)]| < C - max {(he)l/z, (ﬁ) 61%} : (4.4)

Next, it is easy to compute
W

Vu) = ——, Vu)i; = —2=,
(V) A (V)i

1/2
V| > C - max { (%) ,61/2} | (4.5)

and hence

Thus, in the regime ¢ € [h,v/h] from (4.4) and (4.5) we find that [[e(u)|| < C (%)3/2 and
|Vul| > C (%)1/2 so that
Ch?
Jew)? < S0 vul?, (46)

which holds true no matter whether the Gaussian curvature of the shell is positive, negative
Or Zero.
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4.2 The regime ¢ € [V/h, 1]

Positive Gaussian curvature: Kg > 0. It is easy to see that in this case too the Ansatz
(4.2) attains the optimal bound. Indeed, from (4.4) and (4.5) we find that ||e(u)| < C(he)'/?
and | Vu| > Ce'/2] so that

le(w)]* < Ch||[Vul.

Negative Gaussian curvature: K < 0. In this case the Ansatz comes from a modification
of an Ansatz constructed by Tovstik and Smirnov in [21] for negative curvature shells in the
regime € ~ 1. The first construction steps are the same, i.e., let u be above, satisfying (4.1)
and let W: R? — R be a smooth function compactly supported on F satisfying (4.3) and
the analogous conditions for its first and second 6 derivatives. For n = (eh)_% make the
choice

w =nW(0,z)sin (nf(6,z))

v = Agkg W((G )) cos (nf(6,z)) (4.7)
s = A.k, ((Z )) cos (nf(6,z)),
where f solves the transport equation

Ko R
Eﬁ+gﬁ:a (4.8)

Again all the entries in the first row of e(u) are zero and one can show by direct calculation

that
B /2 B 12
||e<u>22||sc(;) . and He(u)&%HSC(E) | (4.9)

We have further,

2 ARRe + fRAZR sin(n )W 1 fofosin(nf)W o(1)
e(u)y = —n DAy f oL+ tm ) (1 F ) T A Tt T e (4.10)

where o(1) — 0 as h — 0. The fact that f solves the PDE in (4.8) becomes crucial at this
stage to conclude that the first term in (4.10) vanishes and therefore |le(w)q3]] < %1/2 Thus,

we conclude
B\ /2
He(u)HSC(;) | (4.11)

Next we compute

W cos(nf) [nf3 — k§A}] + nWfgsin(nf)
Agfo ’

[Vul =

and hence

C
(he)l/s°

V| > C(he)/*n? =
[Vu| > C(he)
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Combining the latter inequality with (4.11) we obtain the inequality

Ch4/3
e(u)|* < @THVUH%
Zero Gaussian curvature: x, = 0, k9 > 0. The construction in this case is based on the
similar Ansatz constructed in [8], which we modify for any e € [v/h, 1] here. Consider the
vector field u = v(0, z) + tw(6, z), where w = (wy, wy, w,) and v = (v, vy, v,) are expressed
in terms of the last two components of v according to the following formulas

c(0)vg — vy Vs vg.0 + a(0)v,
g O e , = — ) , — _7—’
Wy ) Wy A9 ’ w AZ Ut C(H)
and vy, v, solve the PDE
— A@'Uaz = Az('Uz,G — CL(Q)’UQ), (4.12)

the solvability of which is analyzed below.

Case 1: Assume
A,  H(0)

A G(z)

for some O functions H and G.

It is easy to see that this condition is equivalent to the functions a(6) and b(f) in (3.52)
being linearly dependent, i.e. there exists a constant scalar Ay such that b(0) = Aa(6) (or
a(f) = A\ob(#) which can be analyzed analogously). Under this assumption, the PDE in
(4.12) has a general solution

v, = AgGH¢ ., vg = —AgH?¢ g,

where ¢ is an arbitrary smooth function compactly supported on E. Let us now make the
choice

(0, z) = D(nb, 2) with — n=e 2h™1,

where ®(0, z) is a smooth, l-periodic function in 6 that satisfies the same estimates as W
in (4.3), moreover the estimates also hold for up to the third order #-derivatives of ®. The
entries in the first row of e(u) are zero and direct calculations lead to the scaling estimate

Ch1/2
[e(u)]| < e R (4.13)

Next we can compute

Yl = — o

a?cezh1  €2h
and therefore "
C'(he
[Vul > 72 )g : (4.14)
c2h1
Putting together (4.13) and (4.14) we conclude
Ch>
Jew) | < 2 vl (1.15)
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Case 2: Assume there exists an interval I C (0,p), such that a # 0 and p' # 0 on I, where
p(0) = b(0)/a(8).
In this case we find
1 9 ( ¢ v = B'(2)oe + p'(0)9,: — (B(2) + p(6))90:
o B (2)7(0) ’

where we take

»(0,2) =n(0,2)P(nb, 2)

with 7 a smooth p-periodic function supported on the set £y, = {(0,2) : 0 € I, z(0) <
2z < z(0)}, and ® and n are as in Case 1. In this case too one can show that the estimates
(4.13) and (4.14) hold true, which then imply (4.15).

5 Rigidity without boundary conditions

In this section we give a briefly discussion on how the rigidity changes if one removes the
zero Dirichlet boundary conditions on the displacement w on the thin part of the boundary
of 9QM<. This is particularly transparent in the regime e € [h, \/E] that we discuss below.
Moreover, it is worth mentioning that we believe, based on the works [2,3,4,20,8,11|, that
rigidity of shells (thin domains) decreases in the regime ¢ << 1 once one removes the bound-
ary conditions, this is task for future analysis.

The regime ¢ € [h,v/h]. Assume S has a constant sign Gaussian curvature, i.e., either
K > 0or K <0 on S". Fix a point p = (6y, 29) € E, and consider the principal curve
[:v(0) = R(0,2) (0 € [0,1]) passing through p. For each point v() € S™¢, denote the
T (9) the tangent plane to S™< at v(0). Because K has a constant sign, the surface S™ will
find itself always on the same side of 7, as the point v(#) moves along the curve I". We
construct a new developable surface S™¢ as follows: For each point (), let 7(8) C T (6) be
the normal to the curve I' (note that n(6, zy) will be the binormal to I'). Next we project
the line [(#) passing through the point p and having the direction of 7(#) onto the (0, z)
plane and denote the intersection of the projection with the parametrization set £ by a(#).
Finally we denote the part of [(0) that projects onto the segment «(6) by £(6) and consider
the union

She = Ugejo,18(8).

From the definition the surface S™¢ apparently is as regular as S™€ and it has zero Gaussian
curvature being a union of straight segments. On the other hand as the principal curva-
tures of S™¢ are bounded in the absolute value by the constant k < oo (see (2.3)), then
the deviation of S™¢ from S™¢ at every point r(0,z) € S will be bounded by Cke? < Ckh
bearing in mind that € € [h, \/E] This being said, the thin domain Q™€ can be embedded in
the shell around S™¢ with thickness C'h for some fixed C' > 0 for small enough k > 0. But
the rigidity of developable shells with thickness of order h is h=2 [20], i.e, both constants
C and (] in (1.2) and (1.3) scale like ch™2, i.e., the result is independent of €, which is in
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contrast to (2.7)-(2.8). Thus the rigidity dropped upon removing the boundary conditions
on u. Note that the same argument works also for developable shells, i.e., in the case of (2.8).

The regime ¢ € [, v/h]. In this regime the picture is rather clear in the situation of (2.8),
i.e., when one has k, = 0 and |kg| > 0 on E. In this case we again have that the rigidity
of Q¢ without boundary conditions on w is h=2 |20], while with boundary conditions it is
eh~3/2_ which is evidently much bigger.
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