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ABSTRACT
We consider the 2D incompressible Navier-Stokes equations on T�
R, with initial vorticity that is d close in Hlog

x L2y to �1(the vorticity of

the Couette flow ðy, 0Þ). We prove that if d � �1=2, where � denotes
the viscosity, then the solution of the Navier-Stokes equation
approaches some shear flow which is also close to Couette flow for
time t � ��1=3 by a mixing-enhanced dissipation effect and then
converges back to Couette flow when t ! þ1: In particular, we
show the nonlinear enhanced dissipation and the inviscid damping
results in the almost critical space Hlog

x L2y � L2x, y:
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1. Introduction

In this paper, we consider the 2D incompressible Navier-Stokes equations on T� R :

@tU þ U � rU þrP � �DU ¼ 0,
r � U ¼ 0,
Ujt¼0 ¼ Uinðx, yÞ:

8<: (1.1)

where U ¼ ðU1,U2Þ and P denote the velocity and the pressure of the fluid respectively.
Let X ¼ @xU2 � @yU1 be the vorticity, which satisfies

Xt þ U � rX� �DX ¼ 0: (1.2)

The Couette flow ðy, 0Þ is a steady solution of (1.1) with X ¼ �1:
We introduce the perturbation. Let U ¼ ðy, 0Þ þ V and X ¼ �1þ x, then x satisfies

@txþ y@xx� �Dx ¼ �V � rx,
V ¼ r?ð�DÞ�1x,
xjt¼0 ¼ xinðx, yÞ,

8<: (1.3)
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and V satisfies

@tV þ y@xV � �DV þrp ¼ �V � rV � ðV2, 0Þ,
r � V ¼ 0,
Vjt¼0 ¼ Vinðx, yÞ:

8<: (1.4)

The enstrophy conservation law jjxðtÞjj2L2 þ 2�
Ð t
0 jjrxðsÞjj2L2ds ¼ jjxinjj2L2 implies that

the solution of (1.1) remains d-close in L2 to the Couette flow if the initial vorticity is
d-close in L2 to �1. In this paper, we focus on asymptotic stability of the 2D Couette
flow. For the linearized equation

@txþ y@xx� �Dx ¼ 0,
xjt¼0 ¼ xinðx, yÞ,

�
(1.5)

it is easy to obtain that

jjx6¼jjL2x, y � CjjxinjjL2x, y e
�c�t3 and jjV6¼jjL2t, x, y � CjjxinjjL2x, y , (1.6)

here we use the notation f6¼ðt, x, yÞ ¼ f ðt, x, yÞ � 1
jTj
Ð
T
f ðt, x, yÞdx: The first inequality in

(1.6) is the enhanced dissipation and the second one is the inviscid damping.
However the nonlinear interaction may affect this linear behavior which leads to the

fact that the nonlinear enhanced dissipation and inviscid damping are sensitive to the
regularity of the perturbation and/or its smallness. Then an interesting question can be
proposed in the following two ways:

1. Given a norm jj � jjX(X � L2), determine a b ¼ bðXÞ so that for the initial vorti-
city jjxinjjX � �b and for t > 0,

jjx6¼jjL2x, y � CjjxinjjXe�c�
1
3t and jjV6¼jjL2t, x, y � CjjxinjjX , (1.7)

or the weak enhanced dissipation type estimate

jjx 6¼jjL2t, x, y � C��
1
6jjxinjjX (1.8)

holds for the Navier-Stokes equation (1.3).
2. Given b, is there an optimal function space X � L2 so that if the initial vorticity

satisfies jjxinjjX � �b, then (1.7) or (1.8) hold for the Navier-Stokes equa-
tion (1.3)?

These two problems(find the smallest b or find the largest function space X) are related
to each other, since one can gain regularity in a short time by a standard time-weight
argument if the initial perturbation is small enough.
For b¼ 0, Bedrossian, Masmoudi and Vicol [1, 2] showed that if X is taken as

Gevery-m with m< 2, then (1.8) holds.
For b ¼ 1

2 , Bedrossian, Vicol and Wang [3] proved the nonlinear enhanced dissipa-
tion and inviscid damping for the perturbation of initial vorticity in Hs, s > 1:
Very recently, in [4] we proved that for b ¼ 1

3 , the nonlinear enhanced dissipation
and inviscid damping hold in Sobolev spaces Hs, s > 40:
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The problem is also related to the stability threshold problem for Couette flow.
One may also refer to [5–7] for more details of the 2D case and refer to [8–11] for the
3D case.
Our main goal is to prove that the nonlinear enhanced dissipation and inviscid

damping estimates (1.7) hold for the nonlinear equations if the initial vorticity is

�1=2-close to �1 in Hlog
x L2y ¼defff : jjf jjHlog

x L2y
¼def jj ln ðeþ jDxjÞf jjL2x, y < 1g:

Our main result is:

Theorem 1.1. Let x be a solution of (1.3) with � < 1. Then there exists �0 > 0, such that

if jjVinjjL2x, y þ jjxinjjHlog
x L2y

� �0�
b for b 	 1=2, then

jjx6¼ðtÞjjHlog
x L2y

� Ce�c�1=3tjjxinjjHlog
x L2y

, jjx0ðtÞjjL2y � CjjxinjjL2x, y :

where x0ðt, yÞ ¼ 1
jTj
Ð
T
xðt, x, yÞdx and x6¼ðt, x, yÞ ¼ xðt, x, yÞ � x0ðt, yÞ:

Moreover we have the inviscid damping type estimate,ðþ1

0
jjV2

6¼ðsÞjj2L1x, ydsþ
ðþ1

0
jjjDxj

1
2V2

6¼ðsÞjj2L2xL1y dsþ
ðþ1

0
jj@xV1

6¼ðsÞjj2L2x, yds � Cjjxinjj2Hlog
x L2y

:

The constants c,C are independent of �.

By the same argument, one may also get:

Corollary 1.1. Let x be a solution of (1.3) with � < 1. Then for any � > 0, there exists

�0 > 0, such that if jjVinjjL2x, y þ jjxinjjH�
xL

2
y
� �0�

b for b 	 1=2, then

jjx6¼ðtÞjjH�
xL

2
y
� Ce�c�1=3tjjxinjjH�

xL
2
y
, jjx0ðtÞjjL2y � CjjxinjjL2x, y :

where x0ðt, yÞ ¼ 1
jTj
Ð
T
xðt, x, yÞdx and x6¼ðt, x, yÞ ¼ xðt, x, yÞ � x0ðt, yÞ:

Moreover we have the inviscid damping type estimate,ðþ1

0
jjV2

6¼ðsÞjj2L1x, ydsþ
ðþ1

0
jjjDxj

1
2V2

6¼ðsÞjj2L2xL1y dsþ
ðþ1

0
jj@xV1

6¼ðsÞjj2L2x, yds � Cjjxinjj2H�
xL

2
y
:

The constants c,C are independent of �.

By the time weight argument, one can show that there exists T> 0 independent of �,

such that for jjxinjjL2 � �0�
1
2=j ln �j, jj ln ðjDj þ eÞxðtÞjjL2x, y � C ln ðð�tÞ�1 þ eÞjjxinjjL2

holds for t � T, which gives jj ln ðjDj þ eÞxðTÞjjL2x, y � C ln ðð�TÞ�1 þ eÞjjxinjjL2 �
C�0�

1
2: Details can be found in the appendix. The following corollary can be obtained by

applying Theorem 1.1 for t 	 T:

Corollary 1.2. Let x be a solution of (1.3) with � < 1. Then there exists �0 > 0, such

that if jjVinjjL2x, y þ jjxinjjL2x, y � �0�
1
2j ln �j�1, then

jjx 6¼ðtÞjjL2x, y � Ce�c�1=3tjjxinjjL2x, y , jjx0ðtÞjjL2y � CjjxinjjL2x, y :

where x0ðt, yÞ ¼ 1
jTj
Ð
T
xðt, x, yÞdx and x6¼ðt, x, yÞ ¼ xðt, x, yÞ � x0ðt, yÞ:
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Moreover we have the inviscid damping type estimate,ðþ1

0
jjV2

6¼ðsÞjj2L1x, ydsþ
ðþ1

0
jjjDxj

1
2V2

6¼ðsÞjj2L2xL1y dsþ
ðþ1

0
jj@xV1

6¼ðsÞjj2L2x, yds � Cjjxinjj2L2x, y :

The constants c,C are independent of �.

It also implies that for b > 1=2, the space X can be taken as L2 which is the larg-
est space.
Let us now outline the main idea in the proof of Theorem 1.1. We will show that

there is a time t 
 ��
1
3, such that for any s 	 0 the energy EðsÞ of the nonzero mode

x6¼ satisfies Eðt þ sÞ � 1
2EðsÞ and that there exists C independent of t and s such that

for any s 2 ½s, t þ s�,EðsÞ � CEðsÞ:
Let us start by some heuristic argument. The main difficulty is to control the nonlinear

growth. There are three nonlinear terms V1
0@xx 6¼,V2

6¼@yx0 and V 6¼ � rx 6¼: Formally, for

the first term, due to the fact V1
0 ðsÞ behaves as V1

0 ðsÞ for js� sj � ��
1
3 and @xx 6¼ðsÞ

behaves as ��
1
2ðs� sÞ�3

2x 6¼ðsþ 1Þ for s 2 ½sþ 1, sþ t� (due to the enhanced dissipation),

the effect of the nonlinear interactions from time s to sþ t cause ��
1
2 growth. For the

second term, one can only obtain that jj@yx0ðsÞjjL2ðs, sþtÞL2y � C��
1
2jjxjjL2 due to that fact

that the initial vorticity is in L2y: Thus the effect of the nonlinear interactions also cause ��
1
2

growth. One can use the same argument for the third term. However, since the Sobolev
embedding of H1 in L1 fails in dimension 2, we need to assume that the initial vorticity
has some log -type regularity in the x direction (see (2.7) and (2.10) in Lemma 2.2). Finally

to cancel the ��
1
2 growth, we assume the initial perturbation is �

1
2 small.

Remark 1.2. The log-type regularity in the x direction is not optimal. Actually by the

same argument, one can replace it by ð ln ðeþ jDxjÞÞc or ð ln ðeþ jDxjÞÞ
1
2

ð ln ln ðeþ jDxjÞÞc with c > 1
2 and so on.

2. Linear enhanced dissipation and inviscid damping

We consider the linearized Navier-Stokes around ðy, 0Þ
@txþ y@xx� �Dx ¼ 0,
xjt¼0 ¼ xinðx, yÞ,

�
(2.1)

Taking the Fourier transform in the x direction, we get

@tbx þ iaybx � �ð@2
y � a2Þbx ¼ 0,bxjt¼0 ¼ bxinða, yÞ:

(
(2.2)

Now let us introduce the key lemmas for the linearized system (2.2). The following
lemma shows the enhanced dissipation for the linearized system.

Lemma 2.1. Suppose x is a solution of the linearized Navier Stokes equation (1.5) with
initial data satisfying

Ð
T
xinðx, yÞdx ¼ 0. Then there exist c and C such that for any t 	 0,
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jjxðt, x, yÞjjHlog
x L2y

� Ce�c�
1
3tjjxinðx, yÞjjHlog

x L2y
, (2.3)

jjrxðt, x, yÞjjL2t ðHlog
x L2yÞ � C��

1
2jjxinðx, yÞjjHlog

x L2y
, (2.4)

jj@xxðt, x, yÞjjL1t ðHlog
x L2yÞ � C��

1
2jjxinðx, yÞjjHlog

x L2y
, (2.5)

jj ln ðjDxj þ eÞxðt, x, yÞjjL2t L1x, y � C��
1
2jjxinðx, yÞjjHlog

x L2y
: (2.6)

The inequality (2.3) is the linear enhanced dissipation. The inequalities (2.4) and
(2.6) are the heat dissipation results. The inequality (2.5) is obtained by using both
enhanced dissipation and the heat dissipation.
The next lemma gives the inviscid damping for the linearized system.

Lemma 2.2. Suppose x is a solution of the linearized Navier Stokes equation (1.5) with
initial data satisfying

Ð
T
xinðx, yÞdx ¼ 0. Let w be the stream function so that V ¼

ð@yw, � @xwÞ and �Dw ¼ x, then for any t 	 0,

jj@xwðt, x, yÞjjL2t L1x, y � Cjjxinðx, yÞjjHlog
x L2y

, (2.7)

jjjDxj1=2 ln ðjDxj þ eÞ@xwðt, x, yÞjjL2t L2xL1y � Cjjxinðx, yÞjjHlog
x L2y

, (2.8)

jj@y@xwðt, x, yÞjjL2t ðHlog
x L2yÞ � Cjjxinðx, yÞjjHlog

x L2y
: (2.9)

Moreover the Sobolev embedding theorem gives

jj@ywðt, x, yÞjjL1t L1x, y
� Cjjxinðx, yÞjjHlog

x L2y
: (2.10)

We begin the proof of Lemma 2.1.

Proof. Let exðt, a, gÞ ¼ ÐRbxðt, a, yÞe�igydy be the Fourier transform of bx in y. Let

Wðt, x, yÞ ¼ xðt, x þ yt, yÞ, then bWðt, a, yÞ ¼ bxðt, a, yÞeiayt and eWðt, a, gÞ ¼ ÐRbxðt, a, yÞ
eiayte�igydy ¼ exðt, a, g� atÞ: It is easy to check that

@t eW þ �ða2 þ ðg� atÞ2Þ eW ¼ 0,

thus we obtain that eWðt, a, gÞ ¼ e�� 1
3a

2t3�gat2þg2tþa2tð Þexinða, gÞ, (2.11)

which gives

jexðt, a, gÞj ¼ e�� 1
3a

2t3þgat2þg2tþa2tð Þjexinða, gþ atÞj
¼ e�� 1

21a
2t3þtð

ffiffi
7

p
2
ffiffi
2

p gþ
ffiffi
2

pffiffi
7

p atÞ2þ1
8g

2tþa2t
� �

jexinða, gþ atÞj
� e�

1
21a

2�t3�a2�t�1
8g

2�tjexinða, gþ atÞj:
Thus by using Plancherel’s theorem, we get that

jjbxðt, a, yÞjjL2y � Ce�c�ða2t3þa2tÞjjbxinða, yÞjjL2y ,
and
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jjð@y, aÞbxðt, a, yÞjjL2t L2y � C��
1
2jjbxinða, yÞjjL2y ,

which gives jj ln ðjDxj þ eÞrxðt, x, yÞjjL2t, x, y � C��
1
2jj ln ðjDxj þ eÞxinðx, yÞjjL2x, y :

Next we prove (2.5). We get

jj ln ðjDxj þ eÞ@xxðt, x, yÞjjL1t L2x, y
� C

ðT
0

X
a6¼0

jja ln ðjaj þ eÞbxðt, a, yÞjj2L2y
� �1

2dt

� C
ð1
0

X
a6¼0

jjjaj ln ðjaj þ eÞbxðt, a, yÞjj2L2y
� �1

2dt

þ C
ðT
1

X
a 6¼0

jjjaj ln ðjaj þ eÞbxðt, a, yÞjj2L2y
� �1

2dt

� C
ð1
0

X
a 6¼0

jjjaj ln ðjaj þ eÞbxðt, a, yÞjj2L2y dt
 !1

2

þ
ðT
1

C
t3=2�1=2

X
a 6¼0

jj ln ðjaj þ eÞbxinða, yÞjj2L2y
� �1

2dt

� C��
1
2jj ln ðjaj þ eÞbxinða, yÞjj2l2aL2y :

At last we prove (2.6). Here we will use the Littlewood-Paley theory on T� R which
can be found in Section 4.1.1. Let us recall the notation that

�ju ¼
ð
R

X
a

euða, gÞeUjða, gÞeiaxþigydg ¼ Uj � u:

Recall Wðt, x, yÞ ¼ xðt, x þ yt, yÞ: Then by (4.1) and (4.7), we get that

jjxðt, x, yÞjjL2t L1x, y � jjxðt, xþ yt, yÞjjL2t L1x, y
�
����X

j	0

jj�jWðt, x, yÞjjL1x, y
����
L2t

� C

����X
j	0

2jjj�jWðt, x, yÞjjL2x, y
����
L2t

� C

����X
j	0

2jjj eWðt, a, gÞeUjða, gÞjjl2aL2y
����
L2t

¼ C
ð1
0

X
j0	0

X
j	0

2j
0
2jjj eWðt, a, gÞeUjða, gÞjjl2aL2yðtÞjj eWðt, a, gÞeUj0 ða, gÞjjl2aL2yðtÞdt

 !1
2

� C ��1
X
j	0

X
j0	0

2j2j
0

22j þ 22j
0 jj�jexinjjL2x, y jj�j0 exinjjL2x, y

 !1
2

� C��1=2jjxinjjL2x, y :

The last inequality follows from the fact that the kernel Kðj, j0Þ ¼ 2j2j
0

22jþ22j
0 satisfies the

Schur criterion,
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sup
j0	0

X
j	0

2j2j
0

22j þ 22j
0 þ sup

j	0

X
j0	0

2j2j
0

22j þ 22j
0 � C:

By the same argument, we get

jj ln ðeþ jDxjÞxðt, x, yÞjjL2t L1x, y � C��1=2jj ln ðeþ jDxjÞxinjjL2x, y :

Thus we proved the lemma. w

Next we begin the proof of Lemma 2.2.

Proof. Let us first prove (2.8). By the fact that ewðt, a, gÞ ¼ ða2 þ g2Þexðt, a, gÞ and by
using (2.11), we have

jaewðt, a, gÞj � C
jaj

jgj2 þ a2
jexinða, gþ atÞj:

Thus we get by the Minkowski’s integral inequality (4.6) that

jjjDxj
1
2 ln ðjDxj þ eÞ@xwðt, x, yÞjjL2t L2xL1y

� jja3
2 ln ðjaj þ eÞewðt, a, gÞjjl2aL2t L1g � jja3

2 ln ðjaj þ eÞewðt, a, gÞjjl2aL1gL2t
� C

X
a 6¼0

�ð
R

jaj32 ln ðjaj þ eÞ
jgj2 þ a2

�ðT
0
jexinða, gþ atÞj2dt

�1
2

dg

�2
0@ 1A1

2

� C
X
a 6¼0

�ð
R

jaj ln ðjaj þ eÞ
jgj2 þ a2

jjexinða, �ÞjjL2dg
�2

 !1
2

� C
X
a 6¼0

jj ln ðjaj þ eÞexinða, gÞjj2L2g
� �1

2 � Cjj ln ðjDxj þ eÞxinðx, yÞjjL2x, y ,

which implies (2.8).
The estimate (2.7) follows from the (2.8) and the following Sobolev embedding result,����f � 1

j2pj
ð
T

f ðxÞdx
����
L1ðTÞ

� CjjjDxj
1
2 ln ðjDxj þ eÞf jjL2ðTÞ:

Next we prove (2.9). We have,

jjjaj ln ðjaj þ eÞ@ybwðt, a, yÞjjL2t, a, y � jjjaj ln ðjaj þ eÞ@yewðt, a, gÞjjL2t, a, g
� C

X
a6¼0

ð
R

ðT
0

� jaj ln ðjaj þ eÞjgj
a2 þ g2

jexinða, gþ atÞj
�2

dtdg

 !1
2

� C
X
a6¼0

ð
R

� jajjgj
a2 þ g2

�2

jaj�1dgjj ln ðjaj þ eÞexinða, �Þjj2L2
 !1

2

� Cjj ln ðjaj þ eÞexinða, gÞjjl2aL2g :
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Finally by the Gagliardo-Nirenberg inequality (4.5), we have

jj@ybwðt, a, yÞjjL1t l1aL
1
y

� Ckjj@ybwðt, a, yÞjj12L2y jj@ybwðt, a, yÞjj12H1
y
kL1t l1a

� Ckjaj�1
2ð ln ðjaj þ eÞÞ�1jjjaj ln ðjaj þ eÞ@ybwðt, a, yÞjj12L2y jj ln ðjaj þ eÞ@ybwðt, a, yÞjj12H1

y
kL1t l1a

� Ckjjjaj�1
2ð ln ðjaj þ eÞÞ�1jjl2a jjjj ln ðjaj þ eÞ@ybwðt, a, yÞjj12L2y jjl4a jjjj ln ðjaj þ eÞ@ybwðt, a, yÞjj12H1

y
jjl4akL1t

� Cjj ln ðjaj þ eÞbxinða, yÞjjL2a, y ,

which gives the last inequality. Here the last inequality we use the fact that

jjjj ln ðjaj þ eÞ@ybwðt, a, yÞjj12H1
y
jjl4a ¼ jjjj ln ðjaj þ eÞ@ybwðt, a, yÞjjH1

y
jj12l2a :

Thus we proved the lemma. w

Remark 2.3. Let w solve Dw ¼ x, then it holds that

jjrwjjL1x, y � CjjxjjHlog
x L2y

:

Proof. By the same argument in the proof of (2.10), we have

jj@ywjjL1x, y � CjjxjjHlog
x L2y

:

We also have

jj@xwjjL1x, y � C
X
a 6¼0

ð
g

a
g2 þ a2

jexða, gÞjdg

� C
X
a 6¼0

jjexða, �ÞjjL2
ð
g

a2

ðg2 þ a2Þ2 dg
 !1

2

� C
X
a 6¼0

jaj�1
2 ln ðjaj þ eÞ�1jj ln ðjaj þ eÞexða, �ÞjjL2 � CjjxjjHlog

x L2y
:

Thus we proved the remark. w

3. Nonlinear enhanced dissipation and inviscid damping

In this section, we prove the nonlinear enhanced dissipation and inviscid damping.
For t> s, let Sðt, sÞf solve

@txþ y@xx� �Dx ¼ 0,
xjt¼s ¼ f ðx, yÞ,

�
with

Ð
T
f ðx, yÞdx ¼ 0:
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We now consider the nonlinear equation,

@tx 6¼ þ y@xx 6¼ � �Dx 6¼ ¼ �N 1 �N 2 �N 3,
x 6¼jt¼0 ¼ P 6¼0xinðx, yÞ,

�
(3.1)

with

N 1 ¼ ðV1
6¼@xx 6¼Þ6¼ðt, x, yÞ þ ðV2

6¼@yx 6¼Þ6¼ðt, x, yÞ,
N 2 ¼ V1

0 ðt, yÞ@xx6¼ðt, x, yÞ and N 3 ¼ V2
6¼ðt, x, yÞ@yx0ðt, yÞ, where x0ðt, yÞ satisfies

@tx0 � �@2
yx0 ¼ �ðV1

6¼@xx 6¼Þ0ðt, yÞ � ðV2
6¼@yx 6¼Þ0ðt, yÞ,

x0jt¼0 ¼ P0xinðyÞ,

(
(3.2)

and V1
0 ðt, yÞ satisfies

@tV1
0 � �@2

yV
1
0 ¼ �ðV1

6¼@xV
1
6¼Þ0ðt, yÞ � ðV2

6¼@yV
1
6¼Þ0ðt, yÞ,

V1
0 jt¼0 ¼ P0V1

inðyÞ:

(
(3.3)

We get by the enstrophy conservation law that

jjxðtÞjj2L2x, y þ 2�
ðt
0
jjrxðsÞjj2L2x, yds ¼ jjxinjj2L2x, y , (3.4)

which implies ðt
0
jj@yx6¼ðsÞjj2L2x, ydsþ

ðt
0
jj@yx0ðsÞjj2L2y ds �

1
2�

jjxð0Þjj2L2x, y : (3.5)

We also have

jjet�@2y f jjL2 � jjf jjL2 ,
ð1
s
jj@yeðt�sÞ�@2y f jj2L2dt �

1
�
jjf jj2L2 ,

and

V1
0 ðt, yÞ ¼ V1

inðyÞ �
ðt
0
eðt�sÞ�@2

y ððV1
6¼@xV

1
6¼Þ0ðs, yÞ þ ðV2

6¼@yV
1
6¼Þ0ðs, yÞÞds,

and

x 6¼ðt þ s, a, yÞ

¼ Sðt, 0Þx 6¼ðs, a, yÞ �
ðt
0
Sðt, sÞðN 1 þN 2 þN 3Þðsþ sÞds:

The proof of Theorem 1.1 is based on a bootstrap argument.
Suppose jj ln ðeþ jDxjÞxinjjL2x, y þ jjVinjjL2x, y � �0�

b and for any s, t þ s 2 ½0,T� with

t 	 0, the following inequalities hold:

1. Uniform bound of V1
0

jjV1
0 ðsÞjjL2y � 8C0�0�

b; (3.6)
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2. Enhanced dissipation

jj ln ðeþ jDxjÞx 6¼ðt þ sÞjjL2x, y � 8C1e
�c1�

1
3tjj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y (3.7)

ðT
s
jj ln ðeþ jDxjÞrx 6¼ðsÞjj2L2x, yds

 !1
2

� 8C2�
�1

2jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y (3.8)

ðT
s
jj ln ðeþ jDxjÞ@xx6¼ðsÞjjL2x, yds � 8C3�

�1
2jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y (3.9)

ðT
s
jj ln ðeþ jDxjÞx6¼ðsÞjj2L1x, yds

 !1
2

� 8C4�
�1

2jj ln ðeþ jDxjÞx6¼ðsÞjjL2x, y (3.10)

3. Inviscid dampingðT
s
jjV2

6¼ðsÞjj2L1x, ydt
 !1

2

� 8C5jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y , (3.11)

ðT
s
jjjDxj

1
2 ln ðeþ jDxjÞV2

6¼ðsÞjj2L2xL1y dt
 !1

2

� 8C6jj ln ðeþ jDxjÞx6¼ðsÞjjL2x, y , (3.12)

ðT
s
jj ln ðeþ jDxjÞ@xV1

6¼ðsÞjj2L2x, yds
 !1

2

� 8C7jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y ; (3.13)

4. Uniform bound of V1
6¼

sup
s2½s,TÞ

jjV1
6¼ðsÞjjL1x, y � 8C8jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y : (3.14)

The constants c1, �0, and Ck 	 1, k ¼ 0, 1, 2, :::, 8, will be determined later.
By choosing t ¼ s and s¼ 0 in (3.7), we get

jjx6¼ðsÞjjL2x, y � jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y � 8C1�0�
b: (3.15)

Proposition 3.1. Let b 	 1=2. Assume that jjxinjjHlog
x L2y

þ jjVinjjL2x, y � �0�
b and that for

some T> 0, the estimate (3.6)-(3.14) hold on ½0,T�. Then there exists �0 so that for � <

�0 and �0 sufficiently small depending only on c1 and Ckðk ¼ 0, :::, 8Þ (in particular, inde-
pendent of T), these same estimates hold with all the occurrences of 8 on the right-hand
side replaced by 4.
This proposition implies Theorem 1.1 by the standard bootstrap argument. Now we

begin the proof of Proposition 3.1. We need the following lemmas.

Lemma 3.2. Under the bootstrap assumptions (3.6) and (3.7), there is a constant M1

independent of C1, c1 and �0, � so that

jjV1
0 ðtÞjjL2y � M1jjVinjjL2x, y þM1jjxinjjL2x, y�0�

b�1=3C1=c1:
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Proof. We have

jjV1
0 ðtÞjjL2y � jjet�@2y V1

inð0ÞjjL2y þ
���� ðt

0
eðt�sÞ�@2

y ððV1
6¼@xV

1
6¼Þ0 þ ðV2

6¼@yV
1
6¼Þ0Þds

����
L2y

� CjjVinjjL2x, y þ kðV6¼ � rV1
6¼Þ0kL1t L2y :

By the fact that

jjðV6¼rV1
6¼Þ0jjL2y � jjV 6¼jjL2xL1y jjrV1

6¼jjL2x, y � jjx6¼jj2L2x, y ,

and the bootstrap assumption (3.7), we have

kðV 6¼ � rV1
6¼Þ0kL1t L2y � C

ðt
0
jjx 6¼ðsÞjj2L2x, yds

� CC1

ðt
0
e�c1�1=3sdsjjx 6¼ð0Þjj2L2x, y � CjjxinjjL2x, y�0�

b�1=3C1=c1:

Here we used the fact that jjx 6¼jjL2x, y � jjx 6¼jjHlog
x L2y

and we also used the enstrophy con-

servation law (3.4). This gives the lemma. w

Lemma 3.3. Under the bootstrap assumptions (3.6)-(3.14), there is a constant M2 inde-
pendent of Ck, ðk ¼ 0, :::, 8Þ and �0, � so that for any t, s > 0 and t þ s < T, it holds thatX3

k¼1

jj ln ðeþ jDxjÞN kðsþ sÞjjL1s ð 0, t½ �, L2x, yÞ

� M2�0�
b�1

2C1 C2C5 þ C6C2 þ C2C
1
2
0 þ C4C7 þ C3C8

	 

jj ln ðeþ jDxjÞxðsÞjjL2x, y :

Proof. Let us first recall the Littlewood-Paley theory and Bony’s decomposition on T

which can be found in Section 4.1.2.
According to Bony’s decomposition, we divide N 1 ¼ V1

6¼@xx6¼ þ V2
6¼@yx 6¼ into four

terms

N 1 ¼ T@xx6¼V
1
6¼ þ T�

V1
6¼
@xx 6¼ þ T�

V2
6¼
@yx 6¼ þ T@yx6¼V

2
6¼:

Thus we have

jj ln ðeþ jDxjÞN 1ðsþ sÞjjL1s ð 0, t½ �, L2x, yÞ ¼
ðt
0
jj ln ðeþ jDxjÞN 1ðsþ sÞjjL2x, yds

� Cjj ln ðeþ jDxjÞT@xx6¼V
1
6¼jjL1s ð 0, t½ �, L2x, yÞ

þ Cjj ln ðeþ jDxjÞT�
V1
6¼
@xx 6¼jjL1s ð 0, t½ �, L2x, yÞ

þ Cjj ln ðeþ jDxjÞT�
V2
6¼
@yx 6¼jjL1s ð 0, t½ �, L2x, yÞ

þ Cjj ln ðeþ jDxjÞT@yx6¼V
2
6¼jjL1s ð 0, t½ �, L2x, yÞ

¼ N1, 1 þ N1, 2 þ N1, 3 þ N1, 4:
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By the bootstrap assumptions (3.13), (3.10) and using (3.15) and (4.4), we have

N1, 1 � Cjj ln ðeþ jDxjÞ@xV1
6¼ðsþ sÞjjL2s ð 0, t½ �, L2x, yÞjjx6¼ðsþ sÞjjL2s ð 0, t½ �, L1x, yÞ

� CC7C4�
�1

2jj ln ðeþ jDxjÞx 6¼ðsÞjj2L2x, y
� CC1C7C4�0�

b�1
2jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y :

By the bootstrap assumptions (3.14) and (3.9) and using (4.2), we have

N1, 2 � CjjV1
6¼ðsþ s, b, yÞjjL1s L1x, y

jj ln ðeþ jDxjÞ@xx 6¼ðsþ sÞjjL1s ð 0, t½ �, L2x, yÞ

� C�0�
b�1

2C1C8C3jj ln ðeþ jDxjÞx6¼ðsÞjjL2x, y :

By the bootstrap assumptions (3.11) and (3.8) and using (4.2), we have

N1, 3 � CjjbV 2
6¼ðsþ sÞjjL2s ð 0, t½ �, L1x, yÞjj ln ðeþ jDxjÞ@yx 6¼ðsþ sÞjjL2s ð 0, t½ �, L2x, yÞ

� C�0�
b�1

2C1C5C2jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y :

By the bootstrap assumptions (3.12) and (3.8) and using (4.3), we have

N1, 4 � CjjjDxj
1
2 ln ðeþ jDxjÞV2

6¼ðsþ sÞjjL2s ð 0, t½ �, L2xL1y Þjj@yx 6¼jjL2s ð 0, t½ �, L2x, yÞ

� C�0�
b�1

2C1C6C2jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y :

We need the log-type regularity only in the estimates of N1, 2 and N1, 3, which are due to the
fact that V6¼ is in lower frequency in x, so we need to use the L1x, y estimate on V 6¼: For N1, 2

we use the enhanced dissipation and to treat N1, 3 we use inviscid damping.
Thus we have finished the estimate of N 1:

Now we deal with N 2: By the fact that jjx0ðt, yÞjjL2y � jjxðt, x, yÞjjL2x, y �
jjxðs, x, yÞjjL2x, y for any s < t the bootstrap assumptions (3.6) and (3.9), we have

jj ln ðeþ jDxjÞN 2ðsþ sÞjjL1s ð 0, t½ �, L2x, yÞ

� C
ðt
0
jjV1

0 ðsþ s, yÞjjL1jj ln ðeþ jDxjÞ@xx 6¼ðsþ sÞjjL2x, yds

� CjjV1
0 ðs, yÞjj

1
2
L2 jjxinðx, yÞjj

1
2
L2x, y

jj ln ðeþ jDxjÞ@xx 6¼ðsþ s, a, �ÞjjL1s ð 0, t½ �, L2x, yÞ

� CC
1
2
0C2�0�

b�1
2jj ln ðeþ jDxjÞx6¼ðs, a, yÞjjL2x, y :

At last we deal with N 3: By the bootstrap assumption (3.12) and the fact that

jj@yx0ðsþ s, �ÞjjL2s ð 0, t½ �, L2yÞ � jj@yxðsþ s, x, yÞjjL2s ð 0, t½ �, L2x, yÞ � C��
1
2jjbxðs, x, yÞjjL2x, y ,

we have

jj ln ðeþ jDxjÞN 3ðsþ sÞjjL1s ð 0, t½ �, L2x, yÞ

� Cjj ln ðeþ jDxjÞV2
6¼ðsþ s, x, yÞjjL2s ð 0, t½ �, L2xL1y Þjj@yx0ðsþ s, yÞjjL2s ð 0, t½ �, L2Þ

� CC6��
b�1

2jj ln ðeþ jDxjÞx 6¼ðs, a, yÞjjL2x, y :

Thus we proved the lemma. w
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Now we are in a position to prove Proposition 3.1.

Proof. Under the bootstrap assumptions (3.6)-(3.14), there is a constant M independent
of Ck, ðk ¼ 0, :::, 8Þ and �0, � so that for any t, s > 0 and t þ s < T, it holds that

jj ln ðeþ jDxjÞx 6¼ðt þ sÞjjL2x, y
� Me�c�

1
3tjj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y

þMC1ð�0�b�1
2 C2C5 þ C2C6 þ C2C

1
2
0 þ C4C7 þ C3C8

	 

Þjj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y

� M e�c�
1
3t þ 5C1�0�

b�1
2X2

	 

jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y ,

(3.16)

where X ¼ maxfC0,C2,C3,C4,C5,C6,C7,C8g:
By (2.3)-(2.10) and Lemma 3.3, we have

�
1
2

ðT
s
jj ln ðeþ jDxjÞrx 6¼ðsÞjj2L2x, yds

 !1
2

þ �
1
2

ðT
s
jj ln ðeþ jDxjÞ@xx 6¼ðsÞjjL2x, yds

þ �
1
2

ðT
s
jjx 6¼ðsÞjj2L1x, yds

 !1
2

þ
ðT
s
jjV2

6¼ðsÞjj2L1x, ydt
 !1

2

þ
ðT
s
jjjDxj

1
2 ln ðeþ jDxjÞV2

6¼ðsÞjj2L2xL1y ds
 !1

2

þ
ðT
s
jj ln ðeþ jDxjÞ@xV1

6¼ðsÞjj2L2x, yds
 !1

2

þ sup
s2 s,T½ �

jjV1
6¼ðsÞjjL1x, y

� �
1
2

ð1
s
jj ln ðeþ jDxjÞrSðt, sÞx 6¼ðsÞjj2L2x, ydt þ �

1
2

ð1
s
jj ln ðeþ jDxjÞ@xSðt, sÞx 6¼ðsÞjjL2x, ydt

þ �
1
2

ð1
s
jjSðt, sÞx6¼ðsÞjjL1x, ydt

� �1
2

þ
ð1
s
jj@xð�DÞ�1Sðt, sÞx6¼ðsÞjj2L1x, ydt

� �1
2

þ
ð1
s
jjjDxj

1
2 ln ðeþ jDxjÞ@xð�DÞ�1Sðt, sÞx6¼ðsÞjj2L2xL1y dt

� �1
2

þ
ð1
s
jj ln ðeþ jDxjÞ@x@yð�DÞ�1Sðt, sÞx6¼ðsÞjj2L2x, ydt

� �1
2

þ sup
t2½s,1Þ

jj@yð�DÞ�1Sðt, sÞx 6¼ðsÞjjL1x, y þ
X3
k¼1

jj ln ðeþ jDxjÞN kjjL1s ð 0, t½ �, L2x, yÞ

� M3ð1þ �0�
b�1

2C1 C2C5 þ C2C6 þ C2C
1
2
0 þ C4C7 þ C3C8

	 

Þjj ln ðeþ jDxjÞx6¼ðsÞjjL2x, y

� M3 1þ 5�0�
b�1

2C1X
2

� �
jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y ,

where X ¼ maxfC0,C2,C3,C4,C5,C6,C7,C8g:
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By Lemma 3.2, we get

jjV1
0 ðtÞjjL2y � M1ð1þ �0�

b�1=3C1=c1Þ�0�b: (3.17)

Here without loss of generality, we assume M1 � M3:

At last we will determine those constants in the bootstrap assumption. The propos-
ition holds if we choose the constants Ckðk ¼ 0, 1, :::, 8Þ and �0, c1 in the following way.

Ck ¼ maxfM3, 1g ¼ X, k ¼ 0, 2, :::, 8,

C1 ¼ 5maxfM, 1g, c1 ¼ c ln 2
ln 4M

,

�0 ¼ 10�2ðmaxfM3, 1gÞ�2ðmaxfM, 1gÞ�2c,

where M is the constant in (3.16).
Actually we have

�
1
2

ðT
s
jj ln ðeþ jDxjÞrx 6¼ðsÞjj2L2x, yds

 !1
2

þ �
1
2

ðT
s
jj ln ðeþ jDxjÞ@xx6¼ðsÞjjL2x, yds

þ �
1
2

ðT
s
jjx 6¼ðsÞjj2L1x, yds

 !1
2

þ
ðT
s
jjV2

6¼ðsÞjj2L1x, ydt
 !1

2

þ
ðT
s
jjjDxj

1
2 ln ðeþ jDxjÞV2

6¼ðsÞjj2L2xL1y ds
 !1

2

þ
ðT
s
jj ln ðeþ jDxjÞ@xV1

6¼ðsÞjj2L2x, yds
 !1

2

þ sup
s2 s,T½ �

jjV1
6¼ðsÞjjL1x, y

� M3 1þ 5�0�
b�1

2C1X
2

� �
jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y

� 4Xjj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y :

(3.18)

Thus (3.8)-(3.14) hold with all the occurrences of 8 on the right-hand side replaced
by 4.

Then we get by (3.16) that there exists t0 ¼ ð ln 4MÞ c�
1
3ð Þ�1

, so that for any
s, sþ t0 2 ½0,T�,

jj ln ðeþ jDxjÞx 6¼ðsþ t0ÞjjL2x, y �
1
2
jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y , (3.19)

and for any 0 < s � t0 and s, sþ s 2 ½0,T�,
jj ln ðeþ jDxjÞx6¼ðsþ sÞjjL2x, y � 2Mjj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y : (3.20)

For any t þ s, s 2 ½0,T� with t 	 0, let t ¼ nt0 þ s with n ¼ ½t=t0� 	 0 and s 2 ð0, t0�:
Therefore, by (3.19), we get for any t þ s, s 2 ½0,T� with t 	 0,
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jj ln ðeþ jDxjÞx 6¼ðt þ sÞjjL2x, y ¼ jj ln ðeþ jDxjÞx 6¼ðnt0 þ sþ sÞjjL2x, y
� 1

2
jj ln ðeþ jDxjÞx 6¼ððn� 1Þt0 þ sþ sÞjjL2x, y

� 1

2 t=t0½ � jj ln ðeþ jDxjÞx6¼ðsþ sÞjjL2x, y :

Then by (3.20), it holds that

jj ln ðeþ jDxjÞx 6¼ðt þ sÞjjL2x, y � 2Me�ð ln 2Þt=t0þ1jj ln ðeþ jDxjÞx 6¼ðsÞjjL2x, y : (3.21)

According to the definition of c1, C1, we get for any t> 0

2Me�ð ln 2Þt=t0þ1 � 4C1e
�c1�

1
3t:

Thus (3.21) implies that (3.7) holds with the occurrence of 8 on the right-hand side
replaced by 4.
At last we have

M1 þM1�0�
b�1=3C1=c1 � 4C0:

Then by (3.17), we proved that (3.6) holds with the occurrence of 8 on the right-hand
side replaced by 4. Thus we proved the proposition. w

4. Appendix

4.1. Littlewood-Paley theory

In this subsection, we recall some basic facts about the Littlewood-Paley theory.

4.1.1. Littlewood-Paley theory on T� R
Let us first recall some basic facts about the Littlewood-Paley theory on T� R: Let
Uðx, yÞ and U0ðx, yÞ be two functions in C1ðT� RÞ such that their Fourier transform

satisfy suppeU � n ¼ ða, gÞ : 34 � jnj � 8
3

� �
, supp eU0 � n ¼ ða, gÞ : jnj � 4

3

� �
and eU0ðnÞ þP

j	1
eUjðnÞ ¼ 1 with eUjðnÞ ¼ eUð2�ðj�1ÞnÞ, j ¼ 1, 2, ::::

The Littlewood-Paley operators �jðj 	 0Þ on T� R defined by

�ju ¼
ð
R

X
a

euða, gÞeUjða, gÞeiaxþigydg ¼ Uj � u:

Then Bernstein’s inequality (see Lemma 2.1 of [12]) gives

jj�jujjL1x, y � jjUjjjL2x, y
X

jk�jj�2

jj�kujjL2x, y � C2j
X

jk�jj�2

jj�kujjL2x, y : (4.1)
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4.1.2. Littlewood-Paley theory on T

Let us recall some basic facts about the Littlewood-Paley theory on T: Let / and /0

be two functions in C1ðTÞ such that supp b/ � f34 � jnj � 8
3g, supp bv � fjnj � 4

3g
and bvðnÞ þPj	0

b/ð2�jnÞ ¼ 1:

Then the Littlewood-Paley operators �j, Sj, ðj 	 0Þ on T defined by

�ju ¼ ð/j � uÞðxÞ ¼
ð
T

/jðx � x1Þuðx1Þdx1, j 	 0

Sju ¼
Xj�1

‘¼�1

�‘u ¼ ðvj � uÞðxÞ, ��1u ¼ ðv � uÞðxÞ

Here /jðxÞ ¼ 2j/ð2jxÞ and jjvjjjL2 � C2
1
2j:

Furthermore, we have Bony’s decomposition: Tf g ¼Pj	1 Sj�1f�jg

and T�
g f ¼ fg � Tf g:

The following Bernstein type inequalities will be used.

jj ln ðeþ jDxjÞTf gjjL2x þ jj ln ðeþ jDxjÞT�
f gjjL2x � Cjjf jjL1x jj ln ðeþ jDxjÞgjjL2x , (4.2)

jj ln ðeþ jDxjÞTf gjjL2x � Cjjf jjL2x jjjDxj
1
2 ln ðeþ jDxjÞgjjL2x , (4.3)

jj ln ðeþ jDxjÞT@xf gjjL2x � Cjjf jjL1x jj ln ðeþ jDxjÞ@xgjjL2x : (4.4)

Here we show the proof of (4.3), (4.2) and (4.4) can be obtained by the same argument.
Indeed, we have

jj ln ðeþ jDxjÞTf gjjL2x ¼ jj ln ðeþ jDxjÞ
�X

j	1

Sj�1f�jg

�
jjL2x

� C
X
k	�1

jjhki�kð
X
j	1

Sj�1f�jgÞjj2L2x
� �1

2

� C
X
k	�1

hki
X

jj�kj�2

sup
j�kþ2

jjSj�1f jj2L1jj�jgjj2L2x
� �1

2

� C
X
k	�1

hki
X

jj�kj�2

2j sup
j�kþ2

jjSj�1f jj2L2 jj�jgjj2L2x
� �1

2

� Cjjf jjL2
X
k	�1

hki2kjj�kgjj2L2x
� �1

2 � Cjjf jjL2x jjjDxj
1
2 ln ðeþ jDxjÞgjjL2x :

Details of the Littlewood-Paley theory on T or T� R as well as Bony’s decomposition
can be found in [12–14].

4.2. Functional inequalities

In this subsection, we introduce some basic functional inequalities which are used in
the proof. We start with the well-known Gagliardo-Nirenberg on R inequality (see
[15]). Suppose u 2 SðRÞ, then there exists a constant C such that
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jjujjL1ðRÞ � Cjjujj12L2ðRÞjj@yujj
1
2
L2ðRÞ: (4.5)

We also introduce the Minkowski’s integral inequality (see [16]). Suppose that ðS1, l1Þ
and ðS2, l2Þ are two r-finite measure spaces and Fðx, yÞ : S1 � S2 ! R is measurable.
Then it holds for p> 1 that

jjFjjLpðdl2, L1ðdl1ÞÞ ¼
def

ð
S2

ð
S1

Fðx, yÞdl1ðxÞ




 



pdl2ðyÞ

 !1
p

�
ð
S1

ð
S2

Fðx, yÞj jpdl2ðyÞ
� �1

p

dl1ðxÞ ¼def jjFjjL1ðdl1, Lpðdl2ÞÞ:
(4.6)

We end this subsection by introducing the discrete Schur test. Let Kðj, j0Þ be the non-

negative function defined on N2 and

Tðf ÞðjÞ ¼
X
j02N

Kðj, j0Þf ðj0Þ:

Then if there exists a constant C> 0 such that the kernel Kðj, j0Þ satisfies
sup
j	0

X
j02N

Kðj, j0Þ � C, sup
j0	0

X
j2N

Kðj, j0Þ � C:

Then it holds that,

X
j2N

Tðf ÞðjÞgðjÞ














 � Cjjf jjl2 jjgjjl2 (4.7)

Proof. We only need to prove that jjTðf Þjjl2 � Cjjf jjl2 : Using the Cauchy–Schwarz
inequality, we have

jTðf ÞðjÞj2 ¼
X
j02N

Kðj, j0Þf ðj0Þ















2

�
X
j02N

Kðj, j0Þ
� � X

j02N
Kðj, j0Þf ðj0Þ2

� �
,

and then by the Fubini’s theorem, we get

jjTðf Þjj2l2 �
X
j2N

X
j02N

Kðj, j0Þ
� � X

j02N
Kðj, j0Þf ðj0Þ2

� �
� sup

j2N

X
j02N

Kðj, j0Þ
� �

sup
j02N

X
j2N

Kðj, j0Þ
� �

jjf jj2l2 � Cjjf jj2l2 :

Thus we proved (4.7). w

4.3. Regularization estimate

In this subsection, we show the local in time estimates and regularization of the viscos-
ity term.
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Lemma 4.1. Let b ¼ 1
2 þ 1

2 � with � > 0. Let x be the solution of (1.4) with initial data xin

satisfying jjxinjjL2 � �b, then there exist T> 0 independent � such that for any t � T,

jjjDj�xðtÞjjL2x, y � Cðt�Þ��=2jjxinjjL2 :

Proof. Recall that from the linearized equation, we get that if x solves the linearized
equation with initial data xin, then xðtÞ satisfies

jexðt, a, gÞj � e�ca2�t3�ca2�t�cg2�tjexinða, gþ atÞj,
which gives

jjðt�jDj2Þ�=2xðtÞjjL2x, y þ �
1
2jjðt�jDj2Þ�=2rxðtÞjjL2ð 0,1Þ, L2x, yÞ�CjjxinjjL2x, y :

�
Thus

xðtÞ ¼ eSðt, 0Þxin �
ðt
0

eSðt, sÞðV � rxÞðsÞds,
with

jjðt�jDj2Þ�=2eSðt, sÞf jjL2x, y � Cjjf jjL2x, y :

Therefore by using the fact that �
1
2jjrxjjL2t L2 � CjjxinjjL2 , we get,

sup
t2½0,T�

jjðt�jDj2Þ�=2xðtÞjjL2x, y

� C sup
t2½0,T�

jjðt�jDj2Þ�=2eSðt, 0ÞxinjjL2x, y þ C sup
t2½0,T�

ðt
0
jjVrxðsÞjjL2ds

� CjjxinjjL2 þ
�ðT

0
ðs�Þ��ds

�1
2

jjrxðsÞjjL2s L2 sup
s2½0,T�

jjxðsÞjjH�ðs�Þ�=2

� CjjxinjjL2 1þ T
1
2��

2��
�
2��1=2 sup

t2½0,T�
jjðt�jDj2Þ�=2xðtÞjjL2x, y

� �
:

By the assumption jjxinjjL2 � �
1þ�
2 , we get that there is T> 0, so that CT

1
2��

2 � 1
2 and then

sup
t2 0,T½ �

jjðt�jDj2Þ�=2xðtÞjjL2x, y � CjjxinjjL2 :

Thus we proved the lemma. w

Lemma 4.2. Let x be the solution of (1.4) with initial data xin satisfying jjxinjjL2 � �1=2

j ln �j,
then there exist T> 0 independent � such that for any t � T,

jj ln ðjDj þ eÞxðtÞjjL2x, y � Cj ln ðð�tÞ�1 þ eÞjjjxinjjL2 :

Proof. Recall that from the linearized equation, we get that if x solves the linearized
equation with initial data xin, then xðtÞ satisfies

jexðt, a, gÞj � e�ca2�t3�ca2�t�cg2�tjexinða, gþ atÞj:
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Let v be the smooth function support in jaj � ð�tÞ�1 with vðaÞ ¼ 1 for jaj � 1
2 ð�tÞ�1,

then we get

jj ln ðjDj þ eÞvðDÞxðtÞjjL2x, y þ �
1
2jj ln ðjDj þ eÞvðDÞrxðtÞjjL2ð½0,1Þ, L2x, yÞ � Cj ln �jjjxinjjL2x, y ,

and

k ln ðjDj þ eÞð1� vðDÞÞxðtÞkL2x, y
þ �

1
2jj ln ðjDj þ eÞð1� vðDÞÞrxðtÞjjL2ð½0,1Þ, L2x, yÞ

� C ln ðð�tÞ�1 þ eÞ
 X

a

����� ln ðjaj þ eÞ
ln ððt�Þ�1 þ eÞ ð1� vðaÞÞe��a2texin

�����
2

L2g

0@ 1A1
2

þ
X
a

����� ln ðjaj þ eÞ
ln ððt�Þ�1 þ eÞ ð1� vðaÞÞ�1

2ðjaj þ jgjÞe��a2t��g2texin

�����
2

L2gL
2
t

0@ 1A1
2
!

by the fact that ln ðjajþeÞ
ln ððt�Þ�1þeÞ ð1� vðaÞÞe��a2t � Cae�a � C for �t 	 a�1, we get

jj ln ðjDj þ eÞxðtÞjjL2x, y þ �
1
2jj ln ðjDj þ eÞrxðtÞjjL2ð½0,1Þ, L2x, yÞ � C ln ðð�tÞ�1 þ eÞjjxinjjL2x, y ,

for the solution of the linearized equation.
Thus

xðtÞ ¼ eSðt, 0Þxin �
ðt
0

eSðt, sÞðV � rxÞðsÞds,

with ����� ln ðjDj þ eÞ
ln ðð�ðt � sÞÞ�1 þ eÞ

eSðt, sÞf�����
L2x, y

� Cjjf jjL2x, y :

Therefore by using Remark 2.3 and the fact that �
1
2jjrxjjL2t L2x, y � CjjxinjjL2x, y , we get,

sup
t2 0,T½ �

����� ln ðjDj þ eÞ
ln ðð�tÞ�1 þ eÞxðtÞ

�����
L2x, y

� C sup
t2 0,T½ �

����� ln ðjDj þ eÞ
ln ðð�tÞ�1 þ eÞ

eSðt, 0Þxin

�����
L2x, y

þ C sup
t2 0,T½ �

ðt
0
jjVrxðsÞjjL2ds

� CjjxinjjL2 þ jjVjjL2L1jjrxjjL2L2
� CjjxinjjL2 þ C��

1
2jjð ln ðjDj þ eÞÞxðsÞjjL2t L2x, y jjxinjjL2

� CjjxinjjL2 þ C��
1
2T

1
2 ln ðð�TÞ�1 þ eÞÞjjxinjj2L2 :

By the assumption jjxinjjL2 � �1=2

j ln �j , we get that there is T> 0, so that CT
1
2
ln ðð�TÞ�1þeÞÞ
ln ð��1þeÞÞ � 1

2

and then
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sup
t2 0,T½ �

����� ln ðjDj þ eÞ
ln ðð�tÞ�1 þ eÞxðtÞ

�����
L2x, y

� CjjxinjjL2 :

Thus we proved the lemma. w
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