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ABSTRACT ARTICLE HISTORY
We consider the 2D incompressible Navier-Stokes equations on T x Received 4 September 2019

R, with initial vorticity that is ¢ close in H)lf'gLf, to —1(the vorticity of Accepted 19 May 2020

the Couette flow (y,0)). We prove that if § < v'/?, where v denotes ~ KEYWORDS

the viscosity, then the solution of the Navier-Stokes equation Couette flow; critical space;
approaches some shear flow which is also close to Couette flow for enhanced dissipation;
time t> v~ '3 by a mixing-enhanced dissipation effect and then inviscid damping,
converges back to Couette flow when t — +oo. In particular, we ~ avier stokes

show the nonlinear enhanced dissipation and the inviscid damping

results in the almost critical space Hi”gLf, cL,

1. Introduction

In this paper, we consider the 2D incompressible Navier-Stokes equations on T x R:

U+ U-VU+ VP —-vAU =0,
V-U=0, (1.1)
Ulizp = Uin(x,y).

where U = (U', U?) and P denote the velocity and the pressure of the fluid respectively.
Let Q = 9,U? — 9,U" be the vorticity, which satisfies

Q+U-VQ—-vAQ =0. (1.2)
The Couette flow (y,0) is a steady solution of (1.1) with Q = —1.

We introduce the perturbation. Let U = (y,0) + V and Q = —1 + o, then w satisfies

0w + ¥y, — vAw = -V - Vo,
V=Vi-A) "o, (1.3)
ol = 0in(x,y),
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and V satisfies

OV +yoV—vAV +Vp = -V -VV — (V,,0),
V-V=0, (1.4)
Vo = Vin(x,9).

The enstrophy conservation law || (t)|[7. + 2v Jg [Var(s)||72ds = ||win|[7. implies that
the solution of (1.1) remains J-close in L* to the Couette flow if the initial vorticity is
d-close in L* to —1. In this paper, we focus on asymptotic stability of the 2D Couette
flow. For the linearized equation

0w + y0,00 — vAw = 0,
(1.5)
o,y = 0in(x,y),
it is easy to obtain that
o4l < Cllonlly, e and |[Vell| < Cllomls (16)

here we use the notation fx(t,x,y) = f(t,x,y) — ﬁhf (t,x,y)dx. The first inequality in
(1.6) is the enhanced dissipation and the second one is the inviscid damping.

However the nonlinear interaction may affect this linear behavior which leads to the
fact that the nonlinear enhanced dissipation and inviscid damping are sensitive to the
regularity of the perturbation and/or its smallness. Then an interesting question can be
proposed in the following two ways:

1. Given a norm || - ||x(X C L?), determine a § = f(X) so that for the initial vorti-
city |||y < VP and for t > 0,

1
ol < Cllollye™ and [[Villys < Clloully, (17)
or the weak enhanced dissipation type estimate
1
ol < Cotlonmliy (18)

holds for the Navier-Stokes equation (1.3).

2. Given f, is there an optimal function space X C L* so that if the initial vorticity
satisfies |||y < VP then (1.7) or (1.8) hold for the Navier-Stokes equa-
tion (1.3)?

These two problems(find the smallest 5 or find the largest function space X) are related
to each other, since one can gain regularity in a short time by a standard time-weight
argument if the initial perturbation is small enough.

For =0, Bedrossian, Masmoudi and Vicol [1, 2] showed that if X is taken as
Gevery-m with m <2, then (1.8) holds.

For =1, Bedrossian, Vicol and Wang [3] proved the nonlinear enhanced dissipa-
tion and inviscid damping for the perturbation of initial vorticity in H*,s > 1.

Very recently, in [4] we proved that for § =1, the nonlinear enhanced dissipation
and inviscid damping hold in Sobolev spaces H*,s > 40.
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The problem is also related to the stability threshold problem for Couette flow.
One may also refer to [5-7] for more details of the 2D case and refer to [8-11] for the
3D case.

Our main goal is to prove that the nonlinear enhanced dissipation and inviscid

damping estimates (1.7) hold for the nonlinear equations if the initial vorticity is
. def def
V/2-close to —1 in H*L2 ={f: [P = [[In (e + Du|)f ]2, < o0}
Our main result is:

Theorem 1.1. Let o be a solution of (1.3) with v < 1. Then there exists ey > 0, such that
i 1Villuz, + ol yorys < v for B> 172, then
Xy X y

1/3

10040 gy < C™

o ol loo(®lls < Clloll,

where wo(t,y) = 17 Jpo(t x, y)dx and 0 (t,x,y) = o(t,x,y) — wo(t,y).
Moreover we have the inviscid damping type estimate,

[ vz

The constants c, C are independent of v.

+00 —+00

1
1DV (8) s + L VA ds < Cllon

2
Lzyds + J

2
o HiugL; .

By the same argument, one may also get:

Corollary 1.1. Let w be a solution of (1.3) with v < 1. Then for any € > 0, there exists
€0 > 0, such that if || Vil + |0l < eV for B> 1/2, then
%y Xy

3
ooz ()l < Ce™ il lprz> Moo (O)llgz < Cllvinllpz -

where wy(t,y) = ﬁfww(t, x,y)dx and w4(t,x,y) = o(t,x,y) — wo(t, y).
Moreover we have the inviscid damping type estimate,

—+00
| vl s+ |

0

—+00 +00

L 2 2 2
DAV g+ | 10VAIE; de < Cllon s
The constants c, C are independent of v.

By the time weight argument, one can show that there exists 7> 0 independent of v,
such that for ||wl|; < €v2/|Invl,||In(|D|+ e)w(t)||L§y < Cln((vt)™" + e)||wil| 2

holds for t<T, which gives |[In(|D|+e)o(T)||. < Cln((wT)™" + e)||w|l: <
Xy

Ceor2. Details can be found in the appendix. The following corollary can be obtained by
applying Theorem 1.1 for t > T.

Corollary 1.2. Let @ be a solution of (1.3) with v < 1. Then there exists ey > 0, such
that if ||Vin||L§y + ||w,»n||L§y < egva|Inv|™, then

_1/3
s (Ol < Ce " “lully > ool < Cllowll;

where wy(t,y) = ﬁhw(t, x,y)dx and w4(t,x,y) = o(t,x,y) — wo(t, ).
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Moreover we have the inviscid damping type estimate,

+00
2 2
vz, e |

0

+00 +00

" 2
DAV B s+ |

2 2
1VAO)IE ds < Cllomy

The constants c, C are independent of v.

It also implies that for § > 1/2, the space X can be taken as L> which is the larg-
est space.
Let us now outline the main idea in the proof of Theorem 1.1. We will show that

there is a time t ~ 73, such that for any 7 > 0 the energy E(t) of the nonzero mode
w satisfies E(t 4+ 1) < JE(t) and that there exists C independent of t and 7 such that
for any s € [1,t + 1], E(s) < CE(7).

Let us start by some heuristic argument. The main difficulty is to control the nonlinear
growth. There are three nonlinear terms Vg@xw?é, Vic’?ywo and V. -Vw.. Formally, for
the first term, due to the fact V1(s) behaves as V}(7) for |t —s| < v % and Oywx(s)
behaves as v7%(s — r)_%w?g(r +1) for s € [t+ 1,7+ t] (due to the enhanced dissipation),
the effect of the nonlinear interactions from time 7 to 7+t cause v2 growth. For the
second term, one can only obtain that ||9,wo(s)||r2(, - 1o < Cv3||wl|,> due to that fact

that the initial vorticity is in Lﬁ. Thus the effect of the nonlinear interactions also cause 12

growth. One can use the same argument for the third term. However, since the Sobolev
embedding of H' in L fails in dimension 2, we need to assume that the initial vorticity
has some log -type regularity in the x direction (see (2.7) and (2.10) in Lemma 2.2). Finally

to cancel the v growth, we assume the initial perturbation is 4 small.

Remark 1.2. The log-type regularity in the x direction is not optimal. Actually by the

same argument, one can replace it by (In(e+|Dy]))” or (In(e+ |Dx|))%
(In In (e + |Dy|))" with y > 3 and so on.

2. Linear enhanced dissipation and inviscid damping

We consider the linearized Navier-Stokes around (y,0)

{ 0w + yohw — vAw = 0, 1)
0li—g = Vin(xy),
Taking the Fourier transform in the x direction, we get
i S (2 o2\ —
<2ta) + fayl V(9 —oa*) =0, (22)
0li—g = Din(0,y).

Now let us introduce the key lemmas for the linearized system (2.2). The following
lemma shows the enhanced dissipation for the linearized system.

Lemma 2.1. Suppose w is a solution of the linearized Navier Stokes equation (1.5) with
initial data satisfying [, (x,y)dx = 0. Then there exist ¢ and C such that for any t > 0,
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oot % )y < €5, (23)
IVer(ts o y)l| o ggoesz) < Cv2 o (x,y)] Mo (2.4)
100t 9) | ez < C |2 9) ey (2.5)

|| In (|Dy| + e)a)(t,x,y)||leLicy < CV*%||w,-n(x,y)||HiugL;. (2.6)

The inequality (2.3) is the linear enhanced dissipation. The inequalities (2.4) and
(2.6) are the heat dissipation results. The inequality (2.5) is obtained by using both
enhanced dissipation and the heat dissipation.

The next lemma gives the inviscid damping for the linearized system.

Lemma 2.2. Suppose o is a solution of the linearized Navier Stokes equation (1.5) with
initial data satisfying [, (x,y)dx =0. Let  be the stream function so that V =
(O, — Ou) and —AY = w, then for any t > 0,

10659 15, < Cllon () g @)
[1Dx"" 10 (IDx] + )0t (1,2 12121 < Clleoin (09 (2.8)
10,00 (65 )l ey < Cllom () 29)
Moreover the Sobolev embedding theorem gives
’|ay‘p(t>x’)’)||Lf°Lfy < Clloin(x, y)] HE (2.10)

We begin the proof of Lemma 2.1.

Proof. Let @(t,a,n) = [(®(t,ay)e "dy be the Fourier transform of & in y. Let
W(t,x,y) = o(t,x + yt,y), then W(tay) = d(t,0y)e?" and W(t,o,n) = [(O(t, %)
ee ™ dy = o (t,a,n — at). It is easy to check that
OW + v + (i —at) )W =0,
thus we obtain that
W(t, o) = efy(iazttwtzwztht)a)m(a’ "), (2.11)
which gives
1@ (t, 0, 1)| = e—y(§a2t3+nat2+n2t+a2t) @i (e, + att)|
_ R B ) 5 )
< eI G () + at)
Thus by using Plancherel’s theorem, we get that
1t 9) 2 < Cem 4 )

and
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||(8},, ) (t, O‘))’)||LfL§ < CV7||6)1‘H(°")’)||L§’
which gives ||In (|D,| + e)Vm(t,x,y)HL%” < Cv71||In (|Dy| + e)a)m(x,y)||L§y.
Next we prove (2.5). We get
[ In (IDx[ + €)Bxeo(t, % y) [ 112 |

cj:<§j||a1n<|a|+e <ray>||y>%

o#0

1 1
<c| (3 i el + (e 2 ) Y

o#£0

CL <Z|||fx|ln o] + e)d (tOC)/)||L2>%

+

o0

c(j S llalin (2] + ) (t,a,m@dt)Z

a0
r c 1
* J 3212 (Z [0 (Jor] + €)@in (o )’)||L2>

< Cv3|In (o] + e)wm(%}’)Hsz;-

At last we prove (2.6). Here we will use the Littlewood-Paley theory on T x R which
can be found in Section 4.1.1. Let us recall the notation that

Aju = J Z (o, 7)®; (o, )™ W diy = O} % u.
R

Recall W(t,x,y) = w(t,x + yt,y). Then by (4.1) and (4.7), we get that
||w(t’x’)’)||L§L;§y < ||w(t’x+yt’y)||LfL§fy

ZHAjw(t,x,y)H% < || D 2Iaw(tx )l ‘
]20 Lt ]>0 Lf
< || S 2 (tt )
j=0 L
= C(L Z ZZJ V|| W (t, 1) D (o, n)||lsz( )W (¢ U)‘I’ (o0 ’7)||12L2( )dt>
j=>0 j=>0

%
<C(v YD oo 180l 1487®ull
( j>0 >0 22] + 22] > >
< v loull -

The last inequality follows from the fact that the kernel K(j,j) = 22?:_2;/2/ satisfies the

Schur criterion,
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2 2if
s PZ 2j 2j' +s PZ 2j 2]
2942 29 +2

/>0 j=>0 >0

By the same argument, we get
10 (e + D)ot 5920z, < €| In (e + [Dul ool -
Thus we proved the lemma. O

Next we begin the proof of Lemma 2.2.

Proof. Let us first prove (2.8). By the fact that y(t,0,1) = (¢ + #*)@(t, 2 n) and by
using (2.11), we have

||
n* + o2

Thus we get by the Minkowski’s integral inequality (4.6) that
|[[Dx[* In (|Dx| + €)0utp (£, x, y)”LZLZLOC
< |2 In (e + ) (£, o0 m)l[grgs < [l In (e + ) (£ m) e

|oc|%ln(|oc| +e) <JT ~ 2 )é )2
<C E —_— m(on +at)°dt | d
- <JR n* + o2 0 il + e 1

o0

lo/In (o] +€) )2 :
<> (| 226, ) |
- (#0 <~[R |’7|2+O€2 [19in (02l

< C(Z [|1n (|of + e)amw,mni,z,)z < Cl|In (D] + Q)i (x.y)l|z

a0

which implies (2.8).
The estimate (2.7) follows from the (2.8) and the following Sobolev embedding result,

-l

Next we prove (2.9). We have,
[lled In (Jo + €)W (t o0 y)llz < [ In (Jor] +e) ylﬁ 1)z

tyayn
(e In (| +e)|'1|
< E ——— (o, t)] dtd
_C<cx7é0JRJ0 ( o2 + a1+ )] 1

gc(Z | (G ) o I (2] + )i >||Lz>

o (t,06m)| < € |@in (067 + t).

1

2

< C[[[D<[* In (D] + e)f [ 2r)
L=(T)

[N

o0
< C||1In (Jor| + €)@in (s ’7)||1§L5'
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Finally by the Gagliardo-Nirenberg inequality (4.5), we have

18,0629 s

< a6 ) 10,062 oy e,

< Clllo ™ (In (| + €)) ™[] In (| + €)Ayp (2 26 Y)[i 11 (| + €YDy (8 ) |

< Clllffad™2(In (Jof + )~ g 1l Clod + ) (£ o) 1 g 1111 (] + €)Ayp (8, 0 9) i s

< Clln(Jof + &)@ (%)l »

which gives the last inequality. Here the last inequality we use the fact that
110 ([ + e)Dyap (8 06 )iy 1 = [M11In (o] + €) O (£, y) [ [

Thus we proved the lemma.

O
Remark 2.3. Let y solve Ay = w, then it holds that
905, <l
Proof. By the same argument in the proof of (2.10), we have
101z, < Cllol o
We also have
0wt < €3 | s onlan
_ o2 :
<CY 6l (den>
<CY o (lof + ) [|In (o + Q)@ (% )], < Cllo! ey
220
Thus we proved the remark. 0

3. Nonlinear enhanced dissipation and inviscid damping

In this section, we prove the nonlinear enhanced dissipation and inviscid damping.
For t>s, let S(¢,s)f solve

{ 0w + ¥y — vAw = 0,
ol =f (%),

with [.f(x,y)dx = 0.
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We now consider the nonlinear equation,

{&w# +y8xco¢—uAa)¢:—/\/1 —Nz—./\/g,

(3.1)
W2l—g = Prowin(%, ),

with
N1 = (Vi) ,(t59) + (V23,0 (8 57),
Ny = Vi(t,y)0c4(t, x,y) and N5 = V3 (t,x,)d,00(t,y), where wq(t, y) satisfies

Oy — v wy = —(VL0kw,)y(ty) — (V20,04)(ty), (3.2)
C()()|t:0 = Powin()’)>

and V{(t,y) satisfies

Vo — vy Vg = —=(VLO.VL)o(ty) — (VZ0,VL)o(t,y)s (33)
Voli—o = PoVi, (9)-
We get by the enstrophy conservation law that
t
o1, +2v | IV ds= loal (3.4)
which implies
t t
1
|| 100 s+ | o006 sds < 0O (35)
0 ® 0 v Y

We also have

o0
1€ fllz2 < 11Flz J ||36””8f||Ldf<—|lf||Lz’
N

and

t
Vo(ty) = Vi,(y) — J eI ((VEO VL) (5,9) + (V2O VL)o(s.))ds,
0
and
C();ﬁ(t“‘f, OC,)/)

= S(t,0)w(t, 0 y) — J:) S(t,s) N1+ No +N3)(s+ 1)ds

The proof of Theorem 1.1 is based on a bootstrap argument.
Suppose ||In (e + |Dx|)wi|lz + ||Vinllz < €ov# and for any t,t+1 € [0,T] with
X,y Yy
t > 0, the following inequalities hold:

1. Uniform bound of V;
||V3(T)||L; < 8Coeor; (3.6)
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2. Enhanced dissipation

1
[[1n (e + [De[Joos(t + 7)l|2 | < 8Cre"|[In (e + [Del) s (1)l 2 (3.7)

1

T
( [[1n (e + IDxI)Vw;e(S)IIig,de> < 8Cw2[[In (e + [De)ox(D)ll (38)
T 1

[ In (e + |Dx|)Oxw ()] 2 ds < 8Csw72||In (e + | Def )z (7)]] 2 | (3.9)

T

1

T 5
( ||1n<e+|Dx|>w¢<s>|\ifyds> <8CoH|In(e+ Do (@] (310)

T

3. Inviscid damping

1

T 5
(J ||v;<s>||i;fydt> < 8Cs[|n (e + D)< (1)l (3.11)

T

1
2

T
(j |||Dx|nn<e+|ux>v;<s>||i§L;odr> < 8CIn (e + Doy, (3.12)

T

1

T 2
(j In(e+ |Dx|>axv;<s>||iiyds> <Gt Dhos@ly ;s (13)
4. Uniform bound of V;é
S[uP) ||V;1é(s)||L;°y < 8Cs||In (e + [Dx)ox (7)]| 3 - (3.14)
selt, T ? >

The constants ¢, €y, and C > 1,k =0,1,2,...,8, will be determined later.
By choosing t = 7 and 1=0 in (3.7), we get

o2 (@)lls, < ll1n (e + DD, < 8Crear. (.15)
Proposition 3.1. Let > 1/2. Assume that ||wi|| e, + ||Viall, < e’ and that for

some T >0, the estimate (3.6)-(3.14) hold on [0, T). Then there exists vy so that for v <
vy and €y sufficiently small depending only on ¢; and Cy(k =0, ...,8) (in particular, inde-

pendent of T), these same estimates hold with all the occurrences of 8 on the right-hand
side replaced by 4.

This proposition implies Theorem 1.1 by the standard bootstrap argument. Now we
begin the proof of Proposition 3.1. We need the following lemmas.

Lemma 3.2. Under the bootstrap assumptions (3.6) and (3.7), there is a constant M,
independent of C;, ¢; and €, v so that

IVo(Ollz < M| Vinllpz +Ml||win||L§,y€oVﬂfl/3C1/C1-
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Proof. We have

t
Ve (Ol < 1T VOl + H [ et viaviy + (Viavids

12
Y
< ClVallgz, + (Ve - VV 2ol
By the fact that
2
NV V2ol < VAl IVVLIL: ) < lloxll

and the bootstrap assumption (3.7), we have
t

(V- 9Vl < € |

s (I ds
0 |

t

<cci | e a0, < Cllonl, o /o

Here we used the fact that ||w.||. < [|wx||, 0, and we also used the enstrophy con-
) x 2y

servation law (3.4). This gives the lemma. O

Lemma 3.3. Under the bootstrap assumptions (3.6)-(3.14), there is a constant M, inde-
pendent of Cy, (k =0, ...,8) and €y, v so that for any t,t > 0 and t + t© < T, it holds that

3
> llIn (e + [De )Nk(s + Doz,
k=1

S MonUﬁ_%Cl (CzCs + C6C2 + Czcg + C4C7 + C3C8> ||1n (e + ‘DXD(D(T)HL,Z”/

Proof. Let us first recall the Littlewood-Paley theory and Bony’s decomposition on T
which can be found in Section 4.1.2.

According to Bony’s decomposition, we divide Ny = VL0iw, + V0,0, into four
terms

Ny =Toe, VL + Ty, Ok + T3 Oy + Topo, VZ.

Thus we have
t

110 (e + [DeDN (s + Ollso,n,22,) = JO 110 (e + ID<[JN 1 (s + D)l 2 ds
< C[[1n (e + [Dx[) To,e, Vil 12 o, 012,)
+Cl[In (e + D) Ty ozl o012 )
+Cl[In (e + |Dx) Ty oy o012 )
+CllIn (e + [Dx)) To,0, VIl o, 4,12,
= Ny,1 + Ni,2 + N3+ Nya
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By the bootstrap assumptions (3.13), (3.10) and using (3.15) and (4.4), we have
Ni1 < Cl[In (e + [De) 0 Viu(s + Ollizo, g, 12 oz (s + Dz o, 12,
< CCrCav || In (e + [Di)oo4(v)I7;
< CCLCrCaeor” || In (e + IDal ) (1)l -
By the bootstrap assumptions (3.14) and (3.9) and using (4.2), we have
Ni2 < ClIVo(s + 7 By)llere 110 (e + [Dx))0crs(s + O)lliy o, 0,12

< C€0Vﬁ7%C1C8C3|| In (e + |Dx|)w7é(7)||L§)y-

By the bootstrap assumptions (3.11) and (3.8) and using (4.2), we have

~2
Ni3 < C||V7£(s +1) Lg([o,t],L;fy)H In (e + [Dy|) 0y (s + 7)||L§([o, 1,12 )

< Cepr! 201 C5G, || In (e + |Dx|)w#(f>||L§,y~

By the bootstrap assumptions (3.12) and (3.8) and using (4.3), we have
1
Ni,4 < C||IDs In (e + [Dx) V(s + 0|12, t],L§L7)||aya’aé||Lg([o, 012
< Ceo’3C,C6Cy | In (e + D)ooz (1)l -

We need the log-type regularity only in the estimates of Nj ; and Ny 3, which are due to the
fact that V., is in lower frequency in x, so we need to use the L}, estimate on V... For Nj ,

we use the enhanced dissipation and to treat N} ; we use inviscid damping.
Thus we have finished the estimate of A/;.
Now we deal with A, By the fact that [|wo(ty)|l: < ||otx )| <
y Re4

llo(t, %, ¥)||2 for any 7 < t the bootstrap assumptions (3.6) and (3.9), we have
Xy
10 (e + [De DN (s + Ol 11 o,,122,)

t
< CL Vo (s + 79l (e + [Dil)Oxors (s + 1)l 2 ds

< ClIVo (w )zl (e )1z 111 (e + (D) Ders (s + 7 06 )iy, 0,12
< CCiCacor’ || In (e + [Dal o4 (r. 20 ) -

At last we deal with N5. By the bootstrap assumption (3.12) and the fact that
10y0(s + )20, 4,12) < 10y (s + 1.9 120,,12,) < Cv 2|0 (T2 9)]12 5

%y
we have
[[1n (e + [Dx)N3(s + Oon12,)
< Cl[In (e + [Dx) VZ(s + % 9) ] 120, t],LgL;C)Haywo(S + o) 2(0,4,12)
< CCoer | n (e + [Di)os (5.1 -

Thus we proved the lemma. O
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Now we are in a position to prove Proposition 3.1.

Proof. Under the bootstrap assumptions (3.6)-(3.14), there is a constant M independent
of Cy, (k=0,...,8) and €y, v so that for any t,7 > 0 and ¢+ v < T, it holds that

[I1n (e + |De) s (t + 7l
< Me—c;ﬁtH In (e + |Dx|)0);£(r)||L§,y
+ MC1(€ol/ﬁ7% <C2C5 + CCs + GGy + CuCr + C3C8) )i (e + |DX|)CO7£(T)||L§J

1 1
< M<e—cy3t 4 5C160yﬁ—zx2>|| In (e + |Dx|)w7g(‘c)||Liy,
(3.16)

where X = max{Cy, C;, C3, Cy, Cs, Cs, C7, Cs }.
By (2.3)-(2.10) and Lemma 3.3, we have

T 2 T
(j ||1n(e+|Dx|>Vw¢<s>||i;yds> k[t D)6,

T 2 T 2
+<j ||w¢<s>||;%ds> n <J ||v;<s>||i%ydr>

1 1

T 2 T
- (j |||Dx|un<e+|Dx|>v;<s>||iﬂ;ods> + <j ||1n<e+|Dx|>axv;<s>||i§,yds>

T T

+ sup [IVAG) s

s€lt, T)

<ot | " lln e+ DS D40 de+ ot e+ DRSOl dr

([ st 000l @)+ (] 10 s 00, dr)

= ([ i e 19,08 (0 e 0

1
2

+ ([ im e+ Iphaa, -4 st o. 0, )

T

3
+ sup [[9,(=A)'S(s, T)Q)?é(T)HL;fy + ZHIH (e+ |Dx|>Nk||le([0,t],L}c’y)
=1

te(s, 00)

< M;(1+ e 0 <C2C5 + GG + GG + GGy + C3C8))||1n (e+ |Dx|)w#(f)||L§y
< M;(1 4 560/ 2C1X%) || In (e + D)ars (@)l

where X = max{Co, Cz, C3, C4, C5, Cg, C7, Cg}



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 1695

By Lemma 3.2, we get
||V5(t>||L§ <M (1+ EOVB71/3C1/C1)€0Vﬁ~ (3.17)

Here without loss of generality, we assume M; < M;.
At last we will determine those constants in the bootstrap assumption. The propos-
ition holds if we choose the constants Cy(k = 0,1,...,8) and €, ¢; in the following way.

G = max{Ms,1} =X, k=0,2,..,8,

~ cln2

~ In4M’

€0 = 1072 (max{M;,1})*(max{M,1}) ¢,

Cy =5max{M, 1}, ¢

where M is the constant in (3.16).
Actually we have

1

T 2
% (j Iin (e + |Dx|>Vw¢<s>||i§,yds>

T

T
4ot [ 1 e+ D29

T

T 3 r !
+VZ<J ||w;e(5)||i;3yds> + (J |Vi(5>||ig§ydt>

T

! (3.18)
+ (j 1D In (e + |Dx|>v;<s>||imcds>

T 2
+ (J ||1n(e+|Dx|)<9xV;(S)|§3{)de> + sup [[VL(5)ll,

T s€lt, T)
< My (1 + 56020 0%) || In (e + [Da)oo (7).
< 4X|[In (e + [De) oz (D)2 -
Thus (3.8)-(3.14) hold with all the occurrences of 8 on the right-hand side replaced
by 4.

Then we get by (3.16) that there exists t) = (ln4M)(c1/%)71, so that for any
T, T+t € [0, T],

1
[In (e + [Dal)oz(t + to)l|p; | < S [In e+ [Dal)rz (D)l » (3.19)
and for any 0 < s < fp and 7,7+ s € [0, T},
|1 (e + [Dif)wx(t +9)llz | < 2M]|In (e + [Dif)ewx (7|2 - (3.20)

For any t+ 1,7 € [0, T] with t >0, let t = nty +s with n = [t/tp] > 0 and s € (0, ).
Therefore, by (3.19), we get for any ¢+ 7,7 € [0, T] with ¢ > 0,
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[IIn (e + |Dx| )z (t + )|z = [[In (e + [Dxl)r(nto + s+ 7|12
1
< —||1n (e + [DeJox((n = Dto + 5+ 7)][1z |

I e+ DD (s + Ol

Then by (3.20), it holds that

1 (e + [Doos(t + D]l < 2Me "9 [In (e 4 D)l . (32D
According to the definition of ¢;, C,, we get for any >0
2Mef(ln2)t/t0+l S 4C167611/%t.

Thus (3.21) implies that (3.7) holds with the occurrence of 8 on the right-hand side
replaced by 4.
At last we have

M] +M160Vﬁ_1/3C1/C1 S 4C0

Then by (3.17), we proved that (3.6) holds with the occurrence of 8 on the right-hand
side replaced by 4. Thus we proved the proposition. O

4. Appendix
4.1. Littlewood-Paley theory

In this subsection, we recall some basic facts about the Littlewood-Paley theory.

4.1.1. Littlewood-Paley theory on T x R
Let us first recall some basic facts about the Littlewood-Paley theory on T x R. Let
®(x,y) and @y(x,y) be two functions in C*(T x R) such that their Fourier transform

satisfy supp® C {& = (o n): 3 < |¢] < 8}, supp @ C {&= (o) [¢] <4} and Dy(¢) +

Yoo @5(8) = 1 with (&) = D(27078),j = 1,2, ...
The Littlewood-Paley operators A;(j > 0) on T x R defined by

Aju = J Zﬁ(a,n)&)j(oc, n)e™MWdy = ; x u.
R

o

Then Bernstein’s inequality (see Lemma 2.1 of [12]) gives

1Al < N0l S Akl <2 3 (1wl . (4.)

[k—jl<2 [k—jl<2
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4.1.2. Littlewood-Paley theory on T
Let us recall some basic facts about the Littlewood-Paley theory on T. Let ¢ and ¢,

be two functions in C>(T) such that supp ¢ C 3<1E <8, suppy C {I¢] <3}
and 7(¢) + ijo (278 =1
Then the Littlewood-Paley operators A, S;, (j > 0) on T defined by

By =0y 0 = | 9y = sz, 20

j-1
Sju = ZAW = (g *u)(x), A_ju=(z*u)(x)

l=—1

Here ¢;(x) = 2¢(2x) and [[y;]],. < C27.

Furthermore, we have Bony’s decomposition: Tig = ZjZI SiifAjg
and Tof = fg — Tyg.

The following Bernstein type inequalities will be used.

[I1n (e + [Dx[) Tygl| 2 + [|1n (e + |Dx|) T7gll 12 < ClIfl ]| In (e + [Dxl)gl] 25 (4.2)
[ In (e + D<) Tygll 2 < ClIf[|L2[|IDs[In (e + D¢l 25 (4.3)
[IIn (e + |Dxl) Togll 2 < ClIf |l |0 (e + D) Oxgll - (4.4)

Here we show the proof of (4.3), (4.2) and (4.4) can be obtained by the same argument.
Indeed, we have

1 (e + D) Tygllyz = |/1n (e + IDXI)<ZSJ'1fAjg) s

=1

< c(Z [N sjlfAjg>||i§)f
k>—1 j>1

<C(Y (k) D> sup (IS flli-llAg 2\
k>—1  |j—k<2isk+2

<C Z<k> Z 27 sup ||SiifI[5:11Ag ig :
k>—1  |j—kj<z2 Jsk+2

< ClIfle <Z (k)24 Aeg

k>—1

1 1
g)z < ClIfI] 21Dk In (e + [Dx[)gl 2-

Details of the Littlewood-Paley theory on T or T x R as well as Bony’s decomposition
can be found in [12-14].

4.2. Functional inequalities

In this subsection, we introduce some basic functional inequalities which are used in
the proof. We start with the well-known Gagliardo-Nirenberg on R inequality (see
[15]). Suppose u € S(R), then there exists a constant C such that
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||“||Lm < C||“||L2 ||ay“||ELz(R)' (4.5)

We also introduce the Minkowski’s integral inequality (see [16]). Suppose that (Sy, ;)
and (S,,1,) are two o-finite measure spaces and F(x,y):S; x S, — R is measurable.
Then it holds for p > 1 that

def
||F||U(du2,Ll(dH1)) - <JS

‘l’ def
SL(mewwmm)wxywmm%ﬂwm

1

P ?
dp, (Y))

Jmemu@
Si (4.6)

We end this subsection by introducing the discrete Schur test. Let K(j,j/) be the non-
negative function defined on N? and

=Y KGO

jeN
Then if there exists a constant C > 0 such that the kernel K(j, ;") satisfies

supZK(]] ) <G, supZKQ] ) < C.

20 ieN 720 jex

Then it holds that,
D TG < Clifllellglle (4.7)
jeN

Proof. We only need to prove that ||T(f)||. < C||f||.- Using the Cauchy-Schwarz
inequality, we have

TG %KOJ ()| < (ZNK(/EJ")> <Z%K(i’j’)f(i’)2>,
je je jel

and then by the Fubini’s theorem, we get

ITOIE < (Z K(iJ’)) (Z K(i,j’)f(i’f)

jeN \j/eN jeN
< (sup Y K(if) SHPZK(IJ N IFIE < ClIflz-
JjeN jeN NjeN
Thus we proved (4.7). O

4.3. Regularization estimate

In this subsection, we show the local in time estimates and regularization of the viscos-
ity term.
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Lemma 4.1. Let f =1+ 1e with € > 0. Let w be the solution of (1.4) with initial data w,,
satisfying ||win||;» < VP, then there exist T > 0 independent v such that for any t < T,
—¢/2
1Dl w(®)]l;2, < Cltr)™ "l 2.
Proof. Recall that from the linearized equation, we get that if w solves the linearized

equation with initial data ;,, then w(t) satisfies

B(t,o,n)| < e—coczyﬁ—cozzur—cnzut|C~Dm(a, 0+ ot)

which gives
1
@IDP) o)z, + AP T 0l 12, <Gl
Thus

o(t) = S(t,0)w;y, — J S(t,s)(V - Vo) (s)ds,

0
with

I(ADP) 36, 5)f1l2 < Cllf

2,
Therefore by using the fact that 12|| V|| pr < Clloil[12 we get,

sup (D) (o),
te0, T) ’

t
< C sup ||(t1/|D|2)€/zS(t,O)a),-nHLiy+C sup J [|[VV@(s)||2ds
te[0, T] ’ tel0, T} JO

e (1) 72

T 3
< Cllowll + (j (su)*ds) IVo)lge sup llo)]

s€[0, T]

< Cl|win] |12 1+ Ty 512 sup ||(tV|D|2)€/20)(t)||Lz .
te[o, T) i

By the assumption ||w;,||;» < /7", we get that there is T > 0, so that CT? ™5 < 1and then

sup [|(t]DP)*w(8)]|z < Cllol |,
€0, T) ?

Thus we proved the lemma. O
Lemma 4.2. Let w be the solution of (1.4) with initial data w,, satisfying ||@u||;. < %,
then there exist T > 0 independent v such that for any t < T,

10 (ID] + e)or(t)|pz, < ClIn (1) + €]l [

Proof. Recall that from the linearized equation, we get that if w solves the linearized
equation with initial data w,,, then w(¢) satisfies

|c~u(t, °‘>77)| < efcatzyﬁfcazytfﬂlzyt‘C’Z)in(a’n + oct)|.
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Let 7 be the smooth function support in || < (vt)™" with y(a) =1 for o <1(vt)™",
then we get

[ In (D] + e)x(D)ar ()]l + V2| In (D] + €)2(D) Ve (8) |z g0, 00,12 ) < ClIn V|l »

>y

and
[0 (ID] + e)(1 = (D))o (t)] 2|

+ 22| In (D] + e)(1 — KDYV Bl 12(0,00)12, )
§Cln((1/t)1+e)< yo || ol e)

m (1 = (o)™ iy

2
L

1
2

In (lfx| + 6) : e,yaztﬂ/ . 2 1
)y o (A e )

2

o

I

by the fact that %(1 — y(a))e "t < Coe™ < C for vt > o', we get

10 (ID] + e)oo(t)|p2 | + 2| In (ID] + &) Ver(t)]|2 0,12 ) < Cln (1) + €)1 »

for the solution of the linearized equation.

Thus
() = S(t,0)wy — JOE(t, (V- Vor)(s)ds,
with
In(|D| +e)  ~
In((v(t—s))"" + e)s(t’s)f " < Wl

Therefore by using Remark 2.3 and the fact that 12||Vo|| g, < Cllomll » we get,
X,y %Yy

In(|D
su Lljre)w(t)
te[0, T) In ((I/t) +e) 2
%Y
In(|D ~ ‘
< C sup Lﬁ—e)s(to)wm +C sup J IVVa(s)||-ds
wefo, 7] || In ((vt)™ +e) = tefo, 7] Jo
%)

< C||win||L2 + ||V||L2Loc||vw||L2L2

_1
< Clloi||2 + Cv72||(In (ID] + e))eo(s)[|pzzz [l 12
< Cllowllz + Cv2 T In (W)™ + ¢))| |l 7.

-1
By the assumption ||w;,||;» < -, we get that there is T >0, so that CTz 71n1(( 0 _te) <

1
[Inv]> n(v-1+e)) 2
and then
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In (|D
sup || HPLED )| < ol
telo, 7] || In ((vt)" +e) 12
Xy
Thus we proved the lemma. O
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