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STABLE SELF-SIMILAR BLOW-UP
FOR A FAMILY OF NONLOCAL TRANSPORT EQUATIONS

TAREK M. ELGINDI, TEJ-EDDINE GHOUL AND NADER MASMOUDI

We consider a family of nonlocal problems that model the effects of transport and vortex stretching in the
incompressible Euler equations. Using modulation techniques, we establish stable self-similar blow-up
near a family of known self-similar blow-up solutions.

1. Introduction

The dynamics of solutions to the 3-dimensional incompressible Euler equations is guided by many effects
which are still not properly understood. Among these effects are

• nonlocality,

• transport,

• vortex stretching.

Nonlocality is physically clear: in an ideal fluid, any disturbance in one location is immediately felt
everywhere. Transport refers to the fact that while vortices produce a velocity field, they are also carried
by that velocity field to different locations in space. Vortex stretching is the process by which vortices
are enhanced due to variations in the velocity gradient in the direction of the vortex. This is succinctly
captured in the 3-dimensional Euler system as follows:{

∂tω+ u · ∇ω = ω · ∇u,
u =∇ × (−1)−1ω.

(1-1)

Nonlocality is described by the relation u = ∇ × (−1)−1ω (called the Biot–Savart law), while the
time-evolution of the vorticity ω is determined by the transport term u · ∇ω and the vortex-stretching
term ω · ∇u. Notice that the incompressible Euler equation is a system of three equations and that each
equation contains seven terms all coupled together through the nonlocal Biot–Savart law. Many authors
have written about the different effects of each term, observed through numerical simulations [Hou and
Lei 2009], the construction of special solutions [Stuart 1988; Elgindi and Jeong 2020b], and the analysis
of model problems [Constantin et al. 1985; De Gregorio 1996; Constantin 2000; Okamoto et al. 2008].
Since a finite-time singularity in the Euler equation can only happen if the magnitude of the vorticity ω
becomes unbounded, many have highlighted the vortex stretching as the source of a possible singularity.
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Wanting to understand better the qualitative nature of the vortex stretching term, Constantin, Lax and
Majda [Constantin et al. 1985] introduced the following model set on R×[0, T∗):{

∂tω =−2H(ω)ω,
H(ω)(x)= 1

π
PV

∫
∞

−∞
ω(y)/(x − y) dy.

(1-2)

From the 3-dimensional Euler equation, one just drops the transport term, makes the system into a single
equation, and approximates ∇u = ∇ ∇ × (−1)−1ω by a zeroth-order operator. In one dimension, the
natural choice is the Hilbert transform H. With these simplifications, they solve explicitly the equation
and prove that solutions can become singular in finite time. This allows one to speculate that singularity
formation is possible even in the 3-dimensional Euler equation. There is at least one major problem,
however, with this model: while the transport term does not change the magnitude of the vorticity, it can
counteract the growing effects of the vortex stretching term. This can be seen easily in the simple model

∂tω+ λ(t) sin(x) ∂xω = λ(t)ω,

set on [−π, π] with periodic boundary conditions and with λ(t) a time-dependent constant. It is not
difficult to show that if ω0 is C1 and vanishes at 0 and π , then solutions to this equation are uniformly
bounded in time independent of the size of λ(t). In particular, transport can act to “deplete” the growth
effects of the vortex stretching term in this simple model. Thus, while the transport term cannot cause a
singularity, it can stop it from happening.

After [Constantin et al. 1985], De Gregorio [1996] introduced a model that takes into account both
vortex stretching and transport: {

∂tω+ 2u ∂xω = 2∂x uω,
u =−3−1ω(x)=−

∫ x
0 Hω(y) dy.

(1-3)

Based on numerical simulations, De Gregorio conjectured by that the addition of the transport term should
lead to global regularity. Strong evidence for this conjecture was given in [Jia et al. 2019] and global
regularity for special kind of data was given in [Lei et al. 2020]. Inspired by this conjecture, Okamoto,
Sakajo, and Wunsch [Okamoto et al. 2008] introduced a new model where they weight the transport term
with a parameter a: {

∂tω+ au ∂xω = 2∂x uω,
u =−3−1ω(x)=−

∫ x
0 Hω(y) dy.

(1-4)

The purpose of this model was to understand the effects of the modeled vortex stretching and transport
terms. Hence, when a = 2 we get the De Gregorio model and when a = 0 we get the model of Constantin,
Lax and Majda. Similarly to [Constantin et al. 1985], Córdoba, Córdoba and Fontelos [Córdoba et al.
2005] introduced a 1-dimensional model to mimic the 2-dimensional quasigeostrophic equation:{

∂tω+ 2H(ω)ω(x, t)=−23−1ω∂xω ∈ R×[0, T∗),
H(ω)(x)= 1

π
PV

∫
∞

−∞
ω(y)/(x − y) dy,

(1-5)

which corresponds to a =−2 in the generalized model (1-4).
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Recently, Elgindi and Jeong [2020a] proved the existence of a smooth self-similar profile for a small by
using a local continuation argument. The goal here is to prove the stability of those profiles for all a small
enough. The proof is based on the modulation technique which has been developed by Merle, Raphael,
Martel, Zaag and others. This technique has been very efficient to describe the formation of singularities
for many problems like the nonlinear wave equation [Merle and Zaag 2015], the nonlinear heat equation
[Merle and Zaag 1997], reaction diffusion systems [Ghoul et al. 2018a; 2018b], the nonlinear Schrödinger
equation [Merle and Raphael 2005; Kenig and Merle 2006], the GKDV equation [Martel et al. 2014],
and many others. Note that for (1-4) comparing to all the previous models cited above there exists a
group of scaling transformations of dimension larger than 2 that leaves the equation invariant. Here this
degeneracy is a real difficulty since one does not know in advance which scaling law the flow will select.
We remark that similar results to Theorems 1 and 2 were recently established by Chen, Hou, and Huang
[Chen et al. 2019]. They were also able to find a singularity for the De Gregorio (a = 2) model on the
whole line using a very interesting argument with computer assistance.

Main theorem. We introduce first the weighted space

L2
φ(R)=

{
f ∈ L2

loc(R) :

∫
R

| f |2φ <∞
}
,

equipped with the norm and inner product

‖ f ‖2L2
φ

= ( f φ, f )L2,

where φ = (1+ y2)2/y4. From now on we focus on (1-4). In [Elgindi and Jeong 2020a], the authors show
the existence of self-similar solutions of (1-4) of the form

ω(x, t)=
1

T − t
Fa

(
x

(T − t)1+γ (a)

)
, (1-6)

where Fa solves
Fa +

(
(1+ γ (a))y− a3−1 Fa

)
F ′a + 2H Fa Fa = 0, (1-7)

and γ (a)= a(−2+ ln 4)+ O(a2). When a = 0, the profile F0 has the form

F0(y)=
y

1+ y2 , H F0(y)=−
1

y2+ 1
,

while for |a| small
|γ (a)| + |Fa − F0|H3 ≤ C |a|,

with C > 0 a universal constant. In fact, we also have the expansions

Fa(y)=
{

y+ O(y3), y ≤ 1,

C1|y|
−

1
1+γ (a) + O(|y|−

2
1+γ (a) ), y ≥ 1,

(1-8)

H Fa(y)=

{
−(2+ γ (a))/(2− a)+ O(y2), y ≤ 1,

C2|y|
−

1
1+γ (a) + O(|y|−

2
1+γ (a) ), y ≥ 1.

(1-9)
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The main result of this work is the dynamic stability of these blow-up profiles. In particular, this allows
us to construct compactly supported solutions with local self-similar blow-up and cusp formation in finite
time (a phenomenon numerically conjectured to occur in the case a =−2).

To prove the stability of the profiles Fa we rescale (1-4). A natural change of variables to do here is

z =
x

λ1+γ (a) ,
ds
dt
=

1
λ
, ω(x, t)=

1
λ
v

(
x

λ1+γ (a) , s
)
. (1-10)

Hence, in these new variables we get the following equation on v:{
vs − (λs/λ)(v+ (1+ γ (a))zvz)+ 2H(v)v = a3−1vvz ∈ R×[0,∞),
H(v)(y)= 1

π
PV

∫
∞

−∞
v(x)/(z− x) dx .

(1-11)

Note that this change of variables leaves the Cα(a) norm of the velocity u = −3−1ω unchanged, with
α(a) = 1− 1/(1+ γ (a)). This indicates that the velocity u will form a Cα cusp. Note that (1-7) is
invariant under the scaling

Fa,µ(z) := Fa(µz).

We will make an abuse of notation by denoting Fa,µ by Fa . Actually, this will induce an instability as one
can see on the spectrum of the linearized operator around the profile Fa in (1-8). To fix this instability,
we will allow µ to depend on time and fix it through an orthogonality condition. Hence, we introduce

v(z)= w(µz), y = µz,
where w solves

ws +
µs

µ
ywy −

λs

λ
(w+ (1+ γ (a))ywy)+ 2H(w)w = a3−1wwy, (1-12)

and
Sa(w)= w+ (1+ γ (a))y∂yw.

Now we linearize around Fa by setting
w = Fa + q,

where q solves

qs +
µs

µ
y(F ′a + qy)−

(
λs

λ
+ 1
)

Sa(Fa + q)=Maq − 2Hqq + a3−1qqy, (1-13)

where
Maq =−(2H Fa + 1)q − 2Hq Fa − ((1+ γ (a))y− a3−1 Fa)qy + a3−1q F ′a . (1-14)

Theorem 1. Let a be small enough and α̃(a)= 1− 1/(1+ γ (a)). Then there exists an open set of odd
initial data of the form ω(t=0)= Fa + q0, with ∂xq0(0)= Hq0(0)= 0 and where

C2

∫
R

|q0(y)|2φ(y) dy+C1

∫
R

|y∂yq0|
2φ(y) dy < ε, (1-15)

such that there exist T (q0) > 0, µ∗(q0), and C(q0) > 0 with ω satisfying

ω(x, t)=
1
λ(t)

(
Fa

(
xµ(t)
λ1+γ (a)

)
+ q

(
xµ(t)
λ1+γ (a) , t

))
,
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with λ(t)/(T − t)→ C(q0) and µ(t)→ µ∗ as t→ T and

C1

∫
R

|y ∂yq(y, t)|2φ(y) dy+C2

∫
R

|q(y, t)|2φ(y) dy .δ (T − t)1−δ

for any δ > 0. When a < 0 (so that γ (a) > 0) we have

sup
t∈[0,T ]

‖u(t)‖C α̃(a) <∞, with u(t, x)=−3−1ω.

Remark 1.1. The last statement of the theorem on the Cα regularity of the velocity field when a < 0 is
related to the C1/2 conjecture made in [Kiselev 2010; Silvestre and Vicol 2016].

Remark 1.2. The assumptions of the theorem do not require that q0 be differentiable everywhere (just that
q ∈ H 1 and that q vanishes to high order near 0). Note also that the assumptions that ∂xq0(0)= Hq0(0)=0
can be trivially removed using Lemma 3.1 since Fa could be replaced by a slightly rescaled version of Fa

to make the perturbation and its Hilbert transform vanish to second order at 0.

Remark 1.3. Note that the open set of initial data contains a slowly decaying solution, and also compactly
supported solutions. Indeed, one can impose that q0 ∼−Fa at infinity.

Our next theorem is in the same spirit as Theorem 1. The difference is that it applies to the nonsmooth
self-similar solutions constructed in [Elgindi and Jeong 2020a] and, thus, applies even for a large. Indeed,
in that work, the authors constructed a family of self-similar solutions to (1-4) which are smooth functions
of the variable X = |x |α with speed 1+ γ̃α(a) whenever |aα| is small enough. Denoting these solutions
by Fαa , we have the following stability theorem.

Theorem 2. Define

φ∗(Y )=
(1+ Y )4

Y 4 .

There exists c0 > 0 so that if a ∈ R and α > 0 satisfy (|a|+1)α < c0 and β̃α(a)= 1−1/(1+ γ̃α(a)), then
there exists an open set of odd initial data of the form ω(t=0)= Fαa + q0, with ∂X q0(0)= Hq0(0)= 0
and where

C2

∫
R

|q0(Y )|2φ∗(Y ) dY +C1

∫
R

|Y ∂Y q0|
2φ∗(Y ) dY < ε, (1-16)

such that there exist T (q0) > 0, µ∗(q0), and C(q0) > 0 with ω satisfying

ω(x, t)=
1
λ(t)

(
Fa

(
Xµ(t)
λ1+γ̃α(a)

)
+ q

(
Xµ(t)
λ1+γ̃α(a)

, t
))
,

with λ(t)/(T − t)→ C(q0) and µ(t)→ µ∗ as t→ T and

C1

∫
R

|Y ∂Y q(Y, t)|2φ∗(Y ) dy+C2

∫
R

|q(Y, t)|2φ∗(Y ) dY .δ (T − t)1−δ

for any δ > 0 and

sup
t∈[0,T ]

‖u(t)‖C β̃α (a) <∞, with u(t, x)=−3−1ω.
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Remark 1.4. Note that in Theorem 2 we allow the parameter a to be anything in R but we pay the price
on the regularity, since we need to pick α so that |aα| is small enough. Note also that β̃α(a)→ 1 as
α→ 0 for any fixed a. This means that as α→ 0, the blow-up becomes more and more mild.

Remark 1.5. The proof of Theorem 2 is sketched in Section 6; the only main difference between the
proofs of Theorems 1 and 2 is the coercivity of the linearized operator and an extra change of variables in
the proof of Theorem 2.

Organization of the paper. In Section 2 we establish coercivity estimates for the linearized operator Ma

under the assumption that the perturbation q vanishes to high order at 0 along with its Hilbert transform.
This is the core of the argument. In Section 3, we modulate the free parameters λ and µ to propagate the
vanishing condition on q. Then we prove long-time decay estimates on q (in self-similar variables) in
Section 4, which show that the perturbation q becomes small relative to the self-similar profile as we
approach the blow-up time. We establish Theorem 2 in Section 6.

2. Coercivity

Proposition 2.1. There exists a universal constant C > 0 so that if a is small enough and if f is odd,
f ′(0)= H f (0)= 0 and ∫

R

| f |2φ(y) dy <+∞,∫
R

f Ma f φ(y) dy ≤−
(1

2 −C |a|
)∫

R

f (y)2φ(y) dy. (2-1)

The proof of this lemma requires a weighted identity for the Hilbert transform, which we show in
Lemma A.1.

Proof. We write

Ma f =−(2H Fa + 1) f − 2H f Fa −
(
(1+ γ (a))y− a3−1 Fa

)
fy + a3−1 f F ′a

=−(2H F0+ 1) f − 2H f F0− y fy + aMa f.

Observe that if a is small enough, there exists a universal constant C > 0 (independent of a) so that we
have the estimate∣∣∣∣∫

R

f Ma f φ(y) dy
∣∣∣∣≤ C

∫
(|H f |2+ | f |2)φ(y) dy ≤ C

∫
| f |2φ(y) dy,

using Lemma A.1. This follows from the observation∣∣∣∣ 1
φ(y)

∂y(φ(y)3−1 Fa)

∣∣∣∣
L∞
+ |Fa

′
|L∞ +

|γ (a)|
|a|
+

1
|a|
|Fa − F0|L∞ +

1
|a|
|H Fa − H F0|L∞ ≤ C.

The only one which is not a direct consequence of the expansion given in [Elgindi and Jeong 2020a] is
the first one, which we see can be estimated by∣∣∣∣ 1

φ(y)
∂yφ(y)3−1 Fa

∣∣∣∣
L∞
+ |H Fa|L∞ ≤

∣∣∣∣1y3−1 Fa

∣∣∣∣
L∞
+ |H Fa|L∞ ≤ C |H Fa|L∞ ≤ C.
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Thus, we must consider only the quantity∫
((−2H F0− 1) f − 2H f F0− y fy) f φ dy.

First let us observe ∫
H f f F0φ = 0.

Indeed,∫
H f f F0φ =

∫
f H f

y2
+ 1

y3 =

∫
f H f

y
+

∫
f H f
y3 = H( f H f )(0)+ 1

2 H(∂yy( f H f ))(0)

=
1
2(H( f )2(0)− f (0)2)+ 1

4∂yy(H( f )2− f 2)(0)= 0,

by the assumptions1 on f . This leaves us with∫
(−2H F0− 1) f 2φ(y)− y f fyφ dy =

∫ (
−2H F0− 1+ 1

2
∂y(yφ)
w

)
| f (y)|2φ(y) dy.

Next observe that

−2H F0− 1+
1
2
∂yφ

φ
=

2
1+ y2 − 1+

y2
− 3

2(y2+ 1)
=−

1
2
.

This completes the proof. �

3. Modulation equation and derivation of the law

Since our coercivity estimate from the previous section relies on ∂yq(0) = H(q)(0) = 0, we will use
that we have the “free” parameters µ and λ to fix these conditions. To find precisely how to do this, we
will just differentiate (1-13) with respect to y and apply the Hilbert transform to (1-13) and evaluate
both at y = 0. We will prove now by using the implicit function theorem that there exists a unique
decomposition to the solution w of (1-12). Indeed, in the following lemma we fix µ and λ such that
qy(s, 0)= Hq(0)= 0.

Lemma 3.1 (modulation). For q ∈ L1
loc for which Hq(0) and q ′(0) exist and

|Hq(0)| + |q ′(0)| ≤ 1
2 ,

there exists a unique pair (µ, λ) ∈ (0,∞)2 so that

q̃ := Fa(y)+ q − F̃a,µ,λ,

with

F̃a,µ,λ(y)=
1
λ

Fa

(
yµ

λ1+γ (a)

)
,

satisfies
q̃y(0)= Hq̃(0)= 0.

1Note that, strictly speaking, f H( f ) is not twice differentiable but the equality
∫

H f f F0φ = 0 can be made rigorous by
applying the smoothing procedure in Lemma A.2.
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In fact,

λ= 1− H(q)(0)
(2+ γ (a))

2− a
and µ= (1+ q ′(0))λ2+γ (a).

Proof of Lemma 3.1. We want to find µ, λ so that

q̃ := Fa + q − F̃aµ,λ

satisfies q̃y(0)= Hq̃(0)= 0. Observe that

(F̃aµ,λ)
′(0)=

µ

λ2+γ (a) F ′a(0), H(F̃aµ,λ)(0)=
1
λ

H Fa(0),

while
F ′a(0)= 1, H Fa(0)=−

2+ γ (a)
2− a

. �

Let w0, y∂yw0 be in L2
φ(R) with a small enough norm and let w be its corresponding solution.

Consequently, thanks to Lemma 3.1 the solution admits a unique decomposition on some time interval
[s0, s∗):

w(y, s)= F̃a,µ,λ+ q, (3-1)

where
qy(s, 0)= Hq(s, 0)= 0.

The bootstrap regime. We will define first in which sense the solution is initial close to the self-similar
profile.

Definition 3.2 (initial closeness). Let δ > 0 small enough, s0 � 1, and w0 ∈ H 1
φ . We say that w0 is

initially close to the blow-up profile if there exists λ0 > 0 and µ0 > 0 such that the following properties
are satisfied. In the variables (y, s) one has

w0(y)= F + q0, (3-2)

and the remainder and the parameters satisfy

(i) (initial values of the modulation parameters)

1
2 e

s0
2 < λ0 < 2e

s0
2 , 1

2 < µ0 < 2, (3-3)

(ii) (initial smallness)
‖y∂yq0‖

2
L2
φ

+
1
δ
‖q0‖

2
L2
φ

< e−
s0
8 . (3-4)

We are going to prove that solutions initially close to the self-similar profile in the sense of Definition 3.2
will stay close to this self-similar profile in the following sense.

Definition 3.3 (trapped solutions). Let K � 1. We say that a solution w is trapped on [s0, s∗] if it satisfies
the properties of Definition 3.2 at time s0, and if it can be decomposed as

w = F + q(y, s)

for all s ∈ [s0, s∗] with



STABLE SELF-SIMILAR BLOW-UP FOR A FAMILY OF NONLOCAL TRANSPORT EQUATIONS 899

(i) (values of the modulation parameters)

1
K

e−
s
8 < λ(s) < K e−

s
8 ,

1
K
< µ(s) < K , (3-5)

(ii) (smallness of the remainder)

‖y∂yq‖2L2
φ

+
1
δ
‖q‖2L2

φ

< K e−
s
8 , (3-6)

Proposition 3.4. There exist universal constants K , s∗0 � 1 such that the following holds for any s0 ≥ s∗0 .
All solutions w initially close to the self-similar profile in the sense of Definition 3.2 are trapped on
[s0,+∞) in the sense of Definition 3.3.

Define for δ > 0 small enough

E (s)= ‖y∂yq‖2L2
φ

+
1
δ
‖q‖2L2

φ

. (3-7)

The proof of the proposition will be done later by using energy estimates. Before this we will derive
the “law” that µ and λ will satisfy.

Indeed, we will prove the following:

Proposition 3.5. To ensure that
qy(s, 0)= Hq(0)= 0,

it suffices to impose that µ and λ satisfy the following:

µs

µ
= (2+ γ (a))

(
λs

λ
+ 1

)
, (3-8)(

λs

λ
+ 1
)

2+ γ (a)
2− a

= a
(
H(3−1 Faqy)(0, s)+ H(3−1q F ′a)(0, s)+ H(3−1qqy)(0, s)

)
, (3-9)∣∣∣∣λs

λ
+ 1

∣∣∣∣≤ C |a|
√

E . (3-10)

Proof. Dividing (1-13) by y and evaluating at y = 0 and using that q is odd we get

∂s(qy(0, s))+
µs

µ
(F ′a(0)+ qy(0))−

(
λs

λ
+ 1
)
∂y((1+ (1+ γ (a))y ∂y)(Fa + q))

∣∣
y=0

= ∂yMaq
∣∣

y=0− 2∂y(Hqq)
∣∣

y=0+ a ∂y(3
−1qqy)

∣∣
y=0.

By inspection, using that F ′a(0)= 1 we see that

∂s(qy(0, s))+
µs

µ
− (2+ γ (a))

(
λs

λ
+ 1
)
= AHq(0, s)+ Bqy(0, s)

for some s-dependent numbers A, B depending only on q, Fa , µ and λ. Before finding the second law,
we note the following simple fact for decaying functions f with fy ∈ L1:

H(y ∂y f )(0)=
∫

fy = 0.
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Now we apply H to (1-13) and evaluating at y = 0 we will get the second law

∂s(Hq(0,s))−
(
λs

λ
+1
)
(H Fa(0)+Hq(0,s))=−H(q)(0)+2H(q)(0,s)H(Fa)(0)+aH(3−1 Faqy)(0,s)

+aH(3−1q F ′a)(0,s)−Hq(0,s)2+aH(3−1(q)qy)(0,s).

In particular, if(
λs

λ
+ 1
)

2+ γ (a)
2− a

= a
(
H(3−1 Faqy)(0, s)+ H(3−1q F ′a)(0, s)

)
+ H(3−1qqy)(0, s),

µs

µ
= (2+ γ (a))

(
λs

λ
+ 1
)
,

and if Hq(0, 0)= qy(0, 0)= 0 we get

Hq(0, s)= qy(0, s)= 0

for all s ≥ 0. In addition, we get that∣∣∣∣λs

λ
+ 1

∣∣∣∣. ∫ ∞
0

|a|(|3−1 Faqy| + |3
−1q F ′a|)+ |3

−1qqy|

y
dy. (3-11)

By using that ∣∣∣∣3−1q
y

∣∣∣∣
L∞
. |H(q)|L∞ . |q|H1 .

√
E (s),

we deduce that ∣∣∣∣λs

λ
+ 1

∣∣∣∣≤ |a|C√E (s). �

4. Energy estimates

The goal of this section is to establish energy estimates for q in a suitable space. Let us first define our
energy

E (q)= 1
δ

∫
|q|2φ(y) dy+

∫
|y ∂yq|2φ(y) dy,

where δ will be chosen to be small enough. We will prove that if a is small enough, then

d
ds

E (q)≤− 1
4E (q)+CE (q)3/2 (4-1)

for a universal constant C > 0.
Observe that from our choice of µ and λ in Proposition 3.5, we have the following estimate (again

assuming that a is small enough): ∣∣∣∣λs

λ
+ 1

∣∣∣∣≤ aC(
√

E (q)+ E (q))

for some universal constant C > 0. Next, we use

µs

µ
= (2+ γ (a))

(
λs

λ
+ 1
)



STABLE SELF-SIMILAR BLOW-UP FOR A FAMILY OF NONLOCAL TRANSPORT EQUATIONS 901

in (1-13) to deduce

qs +

(
λs

λ
+ 1
)
(Fa − yF ′a + q − yqy)=Maq − 2Hqq + a3−1qqy . (4-2)

Taking the (weighted) inner product of (4-2) with q we get

1
2

d
ds
‖q‖2L2

φ

≤ (Maq, q)+ aC(E (q)+ E (q)
3
2 )− 2(H(q)q, q)L2

φ
+ a(3−1qqy, q)L2

φ
,

where we have used that ∣∣∣∣∂y(yφ(y))
φ(y)

∣∣∣∣
L∞
+ |Fa − yF ′a |L2

φ
≤ C

for some universal constant C independent of a. Now, we have

|H(q)|L∞ ≤ C |q|H1 ≤ CE (q).

Furthermore,

(3−1qqy, qφ)=− 1
2(q

2 ∂y(φ3
−1q))=− 1

2(q
23−1q, ∂yφ)−

1
2(q

2, H(q)φ).

Now observe that ∣∣∣∣3−1q
y

∣∣∣∣
L∞
≤ C |H(q)|L∞ and

∣∣∣∣ y ∂yφ

φ

∣∣∣∣≤ C.

Thus,
1
2

d
ds
‖q‖2L2

φ

≤−

(1
2
−C |a|

)
|q|2L2

φ

+ |a|CE (q)+CE (q)
3
2 . (4-3)

Now we establish the first derivative estimate. First we apply y ∂y to (4-2) and get

∂s(yqy)+

(
λs

λ
+ 1
)
(−y2 F ′′a − y2qyy)=Ma(yqy)+ [Ma, y ∂y]q − 2y ∂y(Hqq)+ ay ∂y(3

−1qqy).

Now we multiply by yφqy and integrate to get

1
2

d
ds
‖y ∂yq‖2L2

φ

≤ (Ma(yqy), yqy)L2
φ
+ ([Ma, y ∂y]q, yqy)L2

φ
− 2(y ∂y(Hqq), yqy)L2

φ

+ (ay ∂y(3
−1qqy), yqy)L2

φ
+ |a|C(E (q)+ E (q)

3
2 ).

Note that yqy is an odd function and H(yqy)(0)= 0= (yqy)y(0). Thus,

(Ma(yqy), yqy)L2
φ
≤−

( 1
2 − aC

)
‖yqy‖

2
L2
φ

,

using Proposition 2.1. It is also easy to see that, as before,

|(y ∂y(Hqq), yqy)L2
φ
| + |(y ∂y(3

−1qqy), yqy)L2
φ
| ≤ CE (q)3/2

once we observe that y H(∂yq)= H(y ∂yq) and remember that H is an isometry on odd functions in L2
φ

whose first derivative and Hilbert transform vanish at 0. Thus it remains to estimate the commutator term

([Ma, y ∂y]q, yqy)L2
φ
.
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Note that y and ∂y both commute with the Hilbert transform (when the argument of the Hilbert transform
is an odd function). Let us first recall the form of Ma:

Maq =−(2H Fa + 1)q − 2Hq Fa −
(
(1+ γ (a))y− a3−1 Fa

)
qy + a3−1q F ′a .

In particular,

[Ma, y ∂y]q =
6∑

i=1

Ii ,

where
I1 =−2qy ∂y H Fa, I2 =−2Hqy ∂y Fa, I3 = a qy y ∂y3

−1 Fa,

I4 =−a3−1 Fa ∂yq, I5 = a3−1qyF ′′a , I6 = aF ′a [3
−1, y] ∂yq.

Thus we see readily

|(I1+ I2, yqy)L2
2
| ≤ C |q|L2

φ
|yqy|L2

φ
(|y ∂y Fa|L∞ + |y ∂y H Fa|L∞)≤ C |q|L2

φ
|yqy|L2

φ
.

Moreover,
|(I3+ I4+ I5, yqy)L2

φ
| ≤ |a|E (q).

Now note that

[3−1, y] ∂yq = y
∫ y

0
∂z H(q)(z) dz−

∫ y

0
H(z ∂zq) dz = y H(q)−

∫ y

0
H(z ∂zq)

= y H(q)− H(yq)+
∫ y

0
H(q)=

∫ y

0
H(q). (4-4)

Thus,

|(I6, yqy)L2
φ
| = |(aF ′a3

−1q, yqy)L2
φ
| = |a|

∣∣∣(yF ′a
1
y
3−1q, yqy

)
L2
φ

∣∣∣≤ |a||yF ′a |L2
φ
E (q)≤ |a|CE (q).

Therefore, we get

1
2

d
ds
‖y ∂yq‖2L2

φ

≤−

(1
2
−C |a|

)
|yqy|

2
L2
φ

+C |q|L2
φ
|yqy|L2

φ
+C |a|E (q)+CE (q)3/2, (4-5)

with C a universal constant independent of a (when a is small enough). Now we first choose a so small
that we have

d
ds
‖y ∂yq‖2L2

φ

≤−
1
2 |yqy|

2
L2
φ

+C |q|2L2
φ

+C |a|E (q)+CE (q)3/2,

d
ds
‖q‖2L2

φ

≤−
1
2 |q|

2
L2
φ

+ |a|CE (q)+CE (q)
3
2 .

Next, we recall that

E (q)= 1
δ
‖q‖2L2

φ

+‖y ∂yq‖2L2
φ

.

Thus we take δ so that 1/δ > 10C and use again that a is small to see that

d
ds

E (q)≤− 1
4E (q)+CE (q)3/2.

Now we prove the closure of the bootstrap.
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5. Proof of Proposition 3.4

By using (4-1) and the bootstrap assumptions, we deduce that

d
ds
(e

s
4 E (q))≤ C A3

1e−
s
8 . (5-1)

Hence, by integrating the previous inequality between s0 and s we deduce that

E (s)≤ E (s0)e−
(s−s0)

4 +
C A3

1

8
e−

s
4 (e−

s0
8 − e−

s
8 ). (5-2)

Also, we have from (3-8) that
λs

λ
+ 1= O(e−

s
8 ),

µs

µ
= O(e−

s
8 ). (5-3)

Hence, we can easily deduce that

λ(s)= Ce−s+O(e−
s
8 ), µ(s)= O(ee−

s
8
). (5-4)

Let an initial datum satisfy (3-4) at time s0. Let s̃ be the supremum of times when the solution is
trapped on [s0, s̃]. Suppose that s̃ <+∞. Hence, from Definition 3.3 and a continuity argument, one of
the inequalities (3-5) or (3-6) must be an equality at time s̃. This contradicts (5-2), and (5-4) for K large
enough, which implies s̃ =+∞ and concludes the proof of Proposition 3.4.

6. Proof of Theorem 2

The proof of Theorem 2 is very similar to the proof of Theorem 1 so we content ourselves with only
giving a sketch. We discuss the two key elements which are different: a change of variables and the
coercivity for the linearized operator. All the nonlinear estimates are almost identical.

We make the following change of variables in (1-4). First, since we are only looking at odd solutions,
we consider the spatial domain to be [0,∞). For some 0< α < 1 we define

X = xα

and set
ω(x, t)=�(X, t) and u(x, t)= xU (X, t).

Then the evolution equation in (1-4) becomes

∂t�+ aαU X ∂X�= 2U�+ 2αX ∂XU�.

Now let us study the relation between U and �:

∂x(xU (X, t))= ∂x u(x, t)=−H(ω)(x, t)=− 1
π

PV
∫
∞

−∞

ω(y, t)
x − y

dy.

=−
1
π

PV
∫
∞

0

yω(y, t)
x2− y2 =−

1
π

PV
∫
∞

0

y�(Y, t)
x2− y2 dy =− 1

π

∫
∞

0

Y 1/α�(Y, t)
X2/α − Y 2/α d(Y 1/α)

=−
1
πα

∫
∞

0

Y 2/α−1

X2/α − Y 2/α�(Y, t) dY := −Hα(�),
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using the oddness of ω. In particular,

U +αX ∂XU =−Hα(�).

Therefore,
∂X (X1/αU )=− 1

α
X

1
α
−1Hα(�).

Now define

Lα( f )= 1
α

X−
1
α

∫ X

0
Y

1
α
−1 f (Y ) dY.

Thus, (1-4) becomes
∂t�+ aαU X ∂X�=−2�Hα(�),

U =−LαHα(�),

Hα(�)=
1
πα

∫
∞

0

Y 2/α

X2/α − Y 2/α

�(Y, t)
Y

dY.

(6-1)

Now, as shown in [Elgindi and Jeong 2020a], when a = 0 for each α, we have the explicit self-similar
profiles

�(X, t)=
1

1− t
F (α)0

(
X

1− t

)
,

where

F (α)0 (Y )=−
sin
(
π
2 α
)
Y

1+ 2 cos
(
π
2 α
)
Y + Y 2

, Hα(F
(α)
0 )(Y )=

1+ cos
(
π
2 α
)
Y

1+ 2 cos
(
π
2 α
)
Y + Y 2

.

In particular, ∣∣sin
(
π
2 α
)
F̃0− F (α)0

∣∣
H3

Y
≤ Cα2,

where

F0(Y )=
Y

(1+ Y )2

as in the expression below (1-7). For the analysis we also need that

|Hα(F
(α)
0 )− H̃ F0|H3

Y
≤ Cα, (6-2)

where
H̃ F0(Y )=−

1
1+Y

.

We also need that
α‖Hα‖H1→H1 +‖Lα‖H1→H1 ≤ C,

where C is independent of α.

Linearized operator. Following the proof of Theorem 1, we mainly need to establish coercivity properties
of the main linearized operator. We thus content ourselves with establishing the analogue of Proposition 2.1.
We note that linearizing around Fα0 leads to

M α
a q =M0q + Pαa q,

where
M α

0 q = q + Y ∂Y q + 2Hα(F
(α)
0 )q + 2F (α)0 Hα(q)
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and Pαa (q) satisfies
|(Pαa (q), q)E | ≤ C(α|a| +α)E (q),

exactly as in the proof of Proposition 2.1.
Now let us introduce the weight

φ∗(Y ) :=
(Y + 1)4

Y 4 ,

which was used in [Elgindi 2019]. Then, recalling (6-2), we have

(q + Y ∂Y q + 2Hα(F
(α)
0 )q, qφ∗)≥

( 1
2 −Cα

)
|q
√
φ∗|

2
L2 .

It remains to study (Hα(q), q F (α)0 φ∗)L2 .

Claim. (Hα(q), q F (α)0 φ∗)L2 ≥ Cα|q
√
φ∗|

2
L2 .

Once the claim is established, the L2 coercivity once α is small follows and the rest of the proof of
Theorem 2 is similar to that of Theorem 1. We have

(Hα(q), q F (α)0 φ∗)L2 =

∫
∞

0

∫
∞

0

Y 2/α

X2/α − Y 2/α

(X + 1)2

X2

q(X)q(Y )
XY

d X dY

=
1
2

∫
∞

0

∫
∞

0

Y 2/α+2(X + 1)2− X2/α+2(Y + 1)2

X2/α − Y 2/α

q(X)q(Y )
X3Y 3 d X dY.

All we have done in the second equality is symmetrize the kernel. Now let us study the symmetrized
kernel

Kα(X, Y ) :=
Y 2/α+2(X + 1)2− X2/α+2(Y + 1)2

X2/α − Y 2/α .

Observe that

Kα(X, Y )=
(Y/X)1/αY 2(X + 1)2− (X/Y )1/αX2(Y + 1)2

(X/Y )1/α − (Y/X)1/α
.

Now, it is easy to see that limα→0+ K (α, X, Y )=−Y 2(X +1)21X<Y − X2(Y +1)21X≥Y on R2
\ {X=Y }.

Let us try to get some more quantitative information. By symmetry, we may restrict ourselves to the
region where X < Y. Observe that

Kα(X, Y )+ Y 2(X + 1)2 =
( X

Y

)1/α Y 2(X + 1)2− X2(Y + 1)2

(X/Y )1/α − (Y/X)1/α
=

( X
Y

)1/α (2XY + X + Y )(Y − X)
(X/Y )1/α − (Y/X)1/α

=
(2XY + X + Y )(Y − X)

1− (Y/X)2/α
=−X2(2Y + 1+ σ)

σ − 1
σ 2/α − 1

,

with σ = Y/X . Defining f (σ )= σ 2/α
− 1, let us note that f, f ′, f ′′ ≥ 0. Therefore,

f (σ )≥ (σ − 1) f ′(1)= (σ − 1)
( 2
α
− 1
)

if σ ≥ 1. Thus,
σ − 1
σ 2/α − 1

≤
α

2−α
.
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Consequently,
|Kα(X, Y )+ Y 2(X + 1)2| ≤ 2Y X2α+ 2X2α+ 2XYα

if α ≤ 1. Now let us note that∫
∞

0

|q|(X)
X

∫
∞

X

|q|(Y )
Y 3 dY d X ≤ |q

√
φ∗|L2

∫
∞

0

|q|(X)
|X |2

d X

=

∫
∞

0

|q|(X)(X + 1)2

X2

1
(X + 1)2

d X ≤ 10|q
√
φ∗|

2
L2 .

The claim now follows once we show that∫
∞

0

∫
∞

X
Y 2(X + 1)2

q(X)q(Y )
Y 3 X3 d X dY ≤ 0,

whenever q(0)= q ′(0)=
∫
∞

0 q(Y )/Y dY = 0. Indeed,∫
∞

0

∫
∞

X
Y 2(X + 1)2

q(X)q(Y )
Y 3 X3 d XdY =

∫
∞

0

q(X)
X

(X + 1)2

X2

∫
∞

X

q(Y )
Y

dY

=−
1
2

∫
∞

0

d
d X

(∫
∞

X

q(Y )
Y

dY
)2
(X + 1)2

X2 d X

=−
1
2

∫
∞

0

d
d X

(∫
∞

X

q(Y )
Y

dY
)2(

1+
2
X
+

1
X2

)
d X

=−
1
2

∫
∞

0

(∫
∞

X

q(Y )
Y

dY
)2( 2

X2 +
2

X3

)
≤ 0.

Appendix

Weighted identities.

Lemma A.1. Let φ(y)= (1+ y2)2/y4. For all f ∈ C∞c (R) odd on R and satisfying f ′(0)= H f (0)= 0,
we have ∫

|H f (y)|2φ(y) dy =
∫
| f (y)|2φ(y) dy.

Proof. Note that w(y)= 1+ 2/y2
+ 1/y4. Thus, it suffices to show that∫
|H f (y)|2

yk dy =
∫
| f (y)|2

yk dy

under the condition that f is odd and f ′(0)= H f (0)= 0 for k= 0, 2, 4. Note that k= 0 is just the isometry
property of H. The cases k = 2 and k = 4 are similar so we only do the more difficult case of k = 4. Let us
write f = y2g. Observe that, by assumption, we have 0= H f (0)=

∫
yg and

∫
g= 0 since g is odd. Thus,

H(y2g)= y2 H(g).
In particular, we have ∫

|H f |2

y4 dy =
∫
|H(g)|2 =

∫
|g|2 =

∫
| f |2

y4 . �
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Smoothing procedure. We now give a lemma which allows us to justify some of the computations in
the coercivity and energy estimates.

Lemma A.2. Let q be such that q is odd, H(q)= q ′(0)= 0 and E (q) <∞. Then, there exists a sequence
qn ∈S (R) with

• qn is odd and q ′n(0)= Hqn(0)= 0,

• E (qn)≤ 2E (q),

• qn→ q uniformly on R.

Proof. Take

q1
n (y)=

ny2

ny2+ 1
φn ∗ q, where φn =

n
√
π

exp(−n2x2).

Clearly, q1
n is odd and q1

n
′
(0)= 0. Moreover, q1

n ∈S (R) and q1
n→ q uniformly on R. It may be, however,

that H(q1
n )(0) 6= 0. Now let’s define the function

ψ(y)= y3 exp(−y2).

Clearly, ψ ∈S and E (ψ) <∞. Moreover,

H(ψ)(0) 6= 0.
Thus we define

qn(y)= q1
n (y)−

H(q1
n )(0)

H(ψ)(0)
ψ(y).

Clearly, qn is odd and q ′n(0)= Hqn(0)= 0. Now let’s compute E (qn). First, H(q1
n )(0)→ 0 as n→∞ by

the dominated convergence theorem and E (ψ)<∞. Thus, the second term in the definition of qn converges
uniformly to 0 in R in the energy norm. It is also easy to see that if n is large enough, E (q1

n )≤ 2E (q). �
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823Nonlinear spectral decompositions by gradient flows of one-homogeneous functionals
LEON BUNGERT, MARTIN BURGER, ANTONIN CHAMBOLLE and MATTEO NOVAGA

861Restriction of toral eigenfunctions to totally geodesic submanifolds
XIAOQI HUANG and CHENG ZHANG

881A gap theorem for α-harmonic maps between two-spheres
TOBIAS LAMM, ANDREA MALCHIODI and MARIO MICALLEF

891Stable self-similar blow-up for a family of nonlocal transport equations
TAREK M. ELGINDI, TEJ-EDDINE GHOUL and NADER MASMOUDI

909Potential well theory for the derivative nonlinear Schrödinger equation
MASAYUKI HAYASHI

945Monomial convergence on `r

DANIEL GALICER, MARTÍN MANSILLA, SANTIAGO MURO and PABLO SEVILLA-
PERIS

2157-5045(2021)14:3;1-7

A
N

A
LY

SIS
&

PD
E

Vol.14,
N

o.3
2021


	1. Introduction
	2. Coercivity
	3. Modulation equation and derivation of the law
	4. Energy estimates
	5. Proof of Proposition 3.4
	6. Proof of Theorem 2
	Appendix
	Acknowledgements
	References
	
	

