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de l’équation non linéaire de Schrodinger et nous prouvons quelques lois de
conservation.

© 2021 Elsevier Masson SAS. All rights reserved.

1. Introduction

The first realization of condensation has been obtained experimentally in a system consisting of about
half million alkali atoms cooled down to nano-Kelvin temperature. Thus, a considerable obstacle in the
study of (BEC) is the very low temperature required to create the condensate. Completely aware that it is
extremely important to explore what kind of condensates can undergo condensation at higher temperatures,
huge efforts have been undertaken by scientists to overcome this difficulty right after the first experimental
realization of the first (BEC) in 1995. During the last years, a new kind of condensates has attracted the
attention of many scientists. Very recently, it turned out that an excellent candidate is a system of exciton-
polaritons, which are bosonic quasiparticles that exist inside semiconductor micro-cavities, consisting of a
superposition of an exciton and a cavity photon. Above a threshold density, the polaritons macroscopically
occupy the same quantum state, forming a condensate. The temperatures that are usually used to form
exciton-polariton BECs are around T=10K, far higher than the nano-Kelvin temperatures required for
atomic BECs. They are immensely promising in terms of new quantum technologies since quantum effects
can appear on a macroscopic level, unlike most systems where quantum effects are rather easily destroyed by
temperature and decoherence. As Boson particles are composed of quantum well excitons and optical cavity
photons, microcavity exciton-polaritons possess unique intrinsic features: reminiscent excitonic nature leads
to important interaction dynamics among exciton-polaritons. Polariton-polariton repulsive interactions are
indeed crucial to stimulate scattering processes in order to relax into the ground state Bose-Einstein conden-
sates (BECs). Since the temperature of condensation is inversely proportional to the mass of the particles,
the exciton-polariton systems afford relatively high temperatures of condensation. The first drawback of
these new condensates is their very short lifetime (approximately 1 ps), inherited also from their photonic
component, so that polariton thermalization could be problematic. In fact the polariton gas can become
fully thermalized, as a result of strong polariton-polariton interaction caused by their excitonic component.
The second important inconvenient comes from the fact that the excitons disappear with the recombination
of the electron-hole pairs through emission of photons. One way to overcome these problems is to introduce
a polariton reservoir: polaritons are “cooled”and “pumped”from this reservoir into the condensate. At the
same time, a low density level is kept in order to reduce the interactions between polaritons. Different math-
ematical models have been suggested for this new condensate. In this paper we consider the one proposed
in [10], called complex Gross-Pitaevski equation. For a more detailed account of these aspects, see [13] and
references therein.

In [13], the authors addressed the nature of radially symmetric standing wave-type solutions of the
following nonlinear Gross-Pitaevskii equation:

oy

igy = (CA+V @)+ [9P)e +ilo(x) - alvl’)y, (GPPD)

where 1) = 1(x,t) is a complex-valued function defined on R? x R, A is the Laplace operator on R2
V(x) = |x|? is the harmonic potential, o(z) > 0 and o > 0.

To achieve their goals, they have developed a numerical collocation method but they did not provide any
theoretical justification of their claims. The main objective of this paper is to rigorously prove the existence
of ground state solutions of the Gross-Pitaevskii equation under study. We believe that this is a challenging
and immensely important scientific question. The principle challenge comes from the fact that all classical
methods do not seem to be applicable to discuss the existence of stationary solutions to (GPPD). This is
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essentially due to the simultanous presence of the dissipation and pumping terms in the equation. Let us
note that the establishment of ground state solutions avoids costly and very difficult experiments in the
“classical’BEC. To achieve this goal, let us first introduce some important quantities associated to (GPPD).

Recall that the mass M, the Hamiltonian #, the action S,, (¢ > 0) and the functional K associated to
the equation (GPPD) are given by:

M(u) = |72, (1.1)
1 2 2 1 4 1 4

Hw) = S (IVull + llzullz2) + 7 lullpe = Ho(u) + 7 llull s (1.2)

S,(u) == —%M(u) +H(w), (1.3)

K(u) == /(U(fﬂ) — alu(x)]?)|u(z)|? da, (1.4)

R2

respectively. Observe that

— M((t)) = 2K(4(1))- (1.5)

Identity (1.5) shows that, at least formally, the mass and the energy are pumped into the system through
the term iot) involving the parameter o and they are nonlinearly damped by the term —iat|?% involving
the parameter «. Contrarily to the complex Ginzburg-Landau equation (when a dissipative term of the
form A is added to the RHS of (GPDP)), one cannot obtain time-uniform estimates of the solution in
the energy space. The complex Gross-Pitaevski equation reflects the non-equilibrium dynamics described
above by adding pumping and decaying terms to the GP equation.

Before going any further, we recall a few results about the linear equation without dissipation and pumping.
The equation then reads

¢
ig = (CA+V(@)o.

We define the energy space X := H(R?) N {u: zu € L?}, endowed with the L2-scalar product (u,v)s :=
Jrz u(@)v(x) dx, by

2

() = (Ve Vo) + (wu, wv)a + (uw,v)s : ulf = [Vul3 + | @+ (-2 du].

Also, define the dual space ¥* of ¥ as follows. For any v € ¥* there exists a unique v € % such that
Hyu = v with the norm on ¥* given by

[Houlls- = [[vlls- := [ullz.

Recall that ||-, is the norm in LP(R2). Tt is well known that the unbounded operator Hy := —A+V defined
on

D(Ho) :={ueX: Hy(u) € L*(R?)}

is self-adjoint. Moreover, the lowest eigenvalue of Hjy denoted by w; = 2 is simple with eigenfunction
p1(x) = ﬁe_m"‘/z_ Notice that (p1,w1) can be constructed variationally as
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1
wi; = min f/|Vu|2 + |z juf? dz ;= min Ho.
llull p2=1 2R2 llull2=1

In particular, for any v € D(Hp), we have
20ule < llzullZe + [V Ze.

For more details, we refer for example to [9].

When the chemical potential is complex pu = pu, + ip;, solitary wave solution ¥(x,t) = Q(z)e ™ =
Q(x)ettie~Hr would grow exponentially fast as [t| — oo which can be bad for the analysis as well as for
numerics and experiments. Assuming that p = u,., yields the following stationary problem for Q:

pQ = (A +V(2) +1Q)Q +i(o(x) —alQP)Q, Qe X\ {0} (u-SP)

Multiplying (u-SP) by @ and integrating gives the following identity.

pM(Q) = 2H(Q) +1/2||Q|| 7+ + iK(Q).

The condition for the chemical potential p of being real is then equivalent to the fact that @ is a zero of K.

It is important to emphasize that due to the presence of the dissipation and pumping mechanisms, we find
it hard to apply the standard variational or PDE methods to construct soliton-type solutions of (GPPD)
(i.e. a solution @ of (u-SP)). In this paper, our idea to construct a solution of (4-SP) with real chemical
potential u goes along a perturbative way by introducing a small parameter factor in the dissipation and
pumping term. More precisely, for all € > 0, consider

iaa_qf = (=A+V(2) + [0} +ie(o(z) — alp*)y, (GPPD,)

and its corresponding stationary equation
nQ = (—A+V(z)+1Q7)Q +ic(o(z) —a|Q*)Q Qe X\ {0}. (u-SP¢)

The object is to construct a solution (Q¢, j) in the form

Qe=Q§+¢E7 and UEZM?+N87

where the approximate solution (Q%, u?) will be given explicitly, and (¢, pe) is the error term that needs to
be found. To define (Q2, 12), we need to introduce some notation and state a few preliminary useful results.
The first Theorem of this paper reads as follows:

Theorem 1.1. Let o(x) > 0 be a continuous and bounded nontrivial function. There exist cy > 1 and a
positive 9 small such that, for any 0 < e < g9 and a > ag, the complex Gross-Pitaevkii equation (GPPD.)
has a solitary wave solution ¢ (x,t) = e Q¢ (x) with (QF, u.) € X x (2,00), with Q° # 0, solving (11-SP. ).

Remark 1.1. It would be very desirable to extend the branch of standing wave solutions we constructed for
e small to all values of €. Unfortunately, so far we were not able to do so given the non-equilibrium structure

of the model.

Our second result concerns the Cauchy problem associated to (GPPD). We have.
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Theorem 1.2. Assume o > 0, and o € L*(R?) N L*(R?). For any 1o € L*(R?), there exists a unique global
solution v € C([0,00), L*(R?)) N L}, ([0, 00), L*(R?)) of (GPPD) with ¢(x,0) = vbo(z). Moreover, for any
T > 0, we have

T

[ [ 1ot dude s ebele=T g
0 R2

The paper is organized as follows: In the next section, some preliminary results are proven. This will
prepare the field to the establishment of ground state solutions. In section 3, we will present our self-
contained proof built up to prove the existence of ground state solutions. The last section of this paper is
dedicated to the Cauchy problem. We show the existence and uniqueness of solutions for a large class of
damping and pumping terms. We also discuss the non-conservation of some important functionals associated
to the Schrodinger equation.

2. Preliminaries

Here we focus on the problem without pumping and decay of the energy, that is when ¢ = 0. We
start by recalling a few known facts about the space X, for which the proof can for example be found in
Kavian-Weissler [9].

Lemma 2.1. The Hilbert space ¥ is compactly embedded in LP(R?) for any p € [2,00).
Throughout this paper, we suppose that ¢ > 0 is nontrivial continuous and is in L>°(R?) function.

Lemma 2.2. For any M > 0, there exists a unique vy € X solving the following constrained variational
problem:

(Va)s mas =t (M) [ u? = M)
In addition, the minimizer vy is non-negative, radial and radially decreasing satisfying
|0%vn ()] S exp(—|z]?), xe€R?
for all multi-index 8 with || < 2.

Proof. It is sufficient to show the existence of a minimizer of (Vs). The uniqueness of the minimizer follows
directly from the strict convexity of the functional H, and the decay was proven in Proposition 6.9 in [9)].
Now let us fix M > 0, let (v;,) be a minimizing sequence of (Vay), i-e., lim, oo H(vy,) = pas and [v2 = M.
Then
1 2 1 2
H(wn) > 5 V0all3 + 5 lavnl
Therefore, we can find Kj; > 0 such that
[Vl + llzva 3 < K.

This implies that

[onll$ < M + Kar. (2.1)
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Consequently, there exists u € 3 such that
v, —u in 2.

This implies, thanks to Lemma 2.1, that v, — u in L?(R?) and L*(R?). Thus, we certainly have that
il u? = M implying that « is non-trivial, and by the lower semi-continuity, we can write:

H(u) < liminf H(v,) = pps-

Therefore, H(u) = par. On the other hand, let w be the unique minimizer of (Vay), then w is a non-negative

function in ¥ since

[Pz [ Que

Combining these identities, it follows that
H(|ul") < H(lu|). O
The next Lemma, addresses the regularity of the Hamiltonian H, as well as the map M — pyy.

Lemma 2.3. The Hamiltonian H is in C*(X,R). Moreover, for all u € ¥ we have

1# (s < Clllulls + [[ul} for all ue X, (i)
and the function

M — py = H(var), is continuous on (0, 00). (i)
Proof. The proof of (i) follows from standard arguments. For example, we refer to reference [8], and we just
prove (ii).

Fix M > 0. Let M,, C (0,00) be a sequence of positive real numbers such that M,, — M. We will first prove
that

limsup ppg, < pag- (2.2)
Let (v,) be a sequence such that [v2 = M and H(v,) — par. By (2.1), we can find L > 0 such that

lonll% < L.
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Now let w,, = %vn, then [w2 = M, and

M, M,
n — Wn =|1-— n S]-_—L
I = wallz = 1 = 202 o < 1 - A

for any n € N.
Therefore, we can find ng such that

an _wnHE S L+1

for any n > ny.

It follows from (i) that there exists a constant K (L) such that ||H'(u)||g-1 < K(L) for all u € X such
that |lul|ls < 2L+ 1.

Thus, for all n > ng,

1
d
M) = o) = | [ (b + (L o)
0
< s [H @l llon — walls
[lulls<2L+1

M,
< K(L)L|1—-—|.
< K()L]L - 52|

Consequently, fnr, < H(w,) < H(v,) + K(L)L|1 — X ).
n)

Then limsup par, <limH(v,) = par and then
lim sup par, < pr. (2.3)
Now let us prove that if M,, — M, then
par < liminf ppy, . (2.4)

For all n € N, there exists (v;,) a sequence of functions in ¥ such that [v2 = M, and

1
pr, < H(vn) < par, + —

Combining the proof of (2.1) and (2.4), we can find K > 0 such that |jv,||s < K for all n € N. Setting
Wy, = Mﬂvn, we have that [w? = M and

M
o = walls < KJL = 31
Thus, following the proof of (2.4), we certainly get:
M
[H(wn) = H(vn)| < LIE)K[L — 3.
n

Consequently, we have:

1 M, 1
pat, = H(vn) = — > H(wn) = L) KL= [ = —,

yielding liminf p1ps, > par as desired. 0O
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Proposition 2.4. Let M > 0, and (M,) C (0,00) be a sequence of positive real numbers such that M, — M.
Denote by vy, the unique minimizer of (Var, ), and var the unique minimizer of (Var). Then

K(va,) = K(va),
and
H(UMn) — H(UM)

Proof. We will first prove that there exists 4 € 3 such that vy, converges weakly in 3 to @ (vp, — u in X).
First obviously ||vas, ||3 < A. Now noticing that

1 1 1
pat, = I V0rs, I3+ 3 lwvas, 13 + Flloae, |,
one has
1 1
par, > = Voar, |13 + 5H$UMH||3-

Therefore, using (2.4), there exists a constant B > 0 such that

loar, lls < B.
Thus, (up to a subsequence), there exists u € ¥ such that
vy, — U in X
Now using Lemma 2.1, we have that
vy, — 4 in L*(R?*) N L*(R?).
In particular, fﬂQ = M. Thus,
pp < H(u) < liminf H(vag, ) = iminf ppy,

and then H(u) = pas. This shows that @ is the unique minimizer of (V). To end the proof, we need to
show that

[o@idi @~ [o@iti (2.5)
and
/ oy (z) = / v (2). (2.6)

To prove (2.5), it is sufficient to notice that o € L*>°(R?) and v,, — v in L?(R?), while (2.6) follows from
the fact that v, — u in L*(R?). O
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3. Ground state solutions

Always in the case € = 0, and within the class of minimizers vy; we have just constructed, we would like
to intersect it with the co-dimension one manifold characterized by the zeros of the functional K. Before
doing so, let us first fix our assumptions on the decay and pumping parameters.

First we deal with case € = 0 i.e. the standard nonlinear Schrédinger equation in the absence of both the
pumping and dissipation. Equation (x-SP.) then becomes

pQ=(-A+Vvz)+1Q*Q, Qex\{o}. (1-SPo)
The first preliminary result is the first iteration. We have the following result:

Proposition 3.1. There exists a non-negative radial function Qo € X and pg > 2 solving (11-SPy). Moreover,
Qo satisfies

K(Qo) = 0.

Remark 3.1. (Qo, po) will be the first approximate solution in the iteration process to construct the full
solution (Qe, pte) of (u-SP.).

Proof of Proposition 3.1. It is sufficient to prove that the functional I changes sign when the mass of the
ground state vy given by Lemma 2.2 varies. Then the conclusion will follow using Lemma 2.3. We divide
the proof into several steps.STEP 1: POSITIVITY OF K(Qps) FOR SMALL MASSES: Now, because of the
positivity of Q = @y, first observe that for any nontrivial non-negative continuous function o, we have
fR2 o|Q|? dx > 0. Moreover, on the one hand, by the Gagliardo-Nirenberg inequality, there is a constant
C, > 0 such that for any v € H', we have

lullzs < CullVulZz [[ul 2.
On the other hand, multiplying (1-SP) by Q and integrating shows that any solution @ of (u-SPy) satisfies
plQllz= = IIVQIIZ2 + llzQll7= + Q1|7
Thus, if ||Q[|2: = M we have
QN7+ S M.

This shows that when M < 1, we have pp S 1 and thus K(Q) > [g. 0|Q* dz — CM?, for some positive
constant C. Now since ¢ > 0 is a nontrivial continuous function, there exists a nontrivial open set O C R?
and a positive constant ¢o > 0 such that o(z) > co, for all 2 € O. We have [p, 0|Q[? dz > ¢ [, |Q[* dx >
c1 M, for some small positive constant ¢;. This implies that K(Qns) > 0 as M — 0. (Remember we simply
denoted Qs by Q.)

STEP 2: NEGATIVITY OF K(Qas) FOR LAREG MASSES: More precisely, first we will prove that
H(Q)SM?, as M — oo. (3.1)

If we let Hing(Q) := 5(||zQ]|22 + £]|Q|74), then clearly

Hint (Q) S H(Q)
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Now, we will explicitly calculate the minimizer

Uy = iznf Hint (1), © € Bing,
[lull2 o =M

where Xy = {u € L?(R?),u € L*(R?) : [ |z|*u® < oo} with the norm
lullss = llullz + [lulla + [[[z]e]2-

Let (u,) be a minimizing sequence of vy that is
2 1 s 1 4
fuallZs =0, and (ol + 2 fuallfe) - v (32)

From the above bounds, let us just denote by u (instead of uys), an L?-weak limit of (u,). Denote by
fn := u?. First we show that | f|| r1(r?) = M. Up to an extraction, we may assume that a subsequence of
(f») (also denoted by (f,,)) converges weakly to f in the sense of distributions; that is for any ¢ € C$°(R?)
(smooth and compactly supported function), we have

/gofn dm—>/<pfdm.
R2

R2

To show strong convergence in L', we observe that (see for example [5])
hmsup ||er - f”L1 S C({fna n= 172a })7
n

where, for any subset A C L'(R?), the function C'(A) introduced by H. P. Rosenthal [12] is given by

C(A) = inf sup sup/fn dz.
A

€ |Al<e n
Using Holder inequality and the above bounds (3.2), we have for any R > 0

/fnde\/W /f,%da:+% / @2, da
A A

An{|z|>R}
1
SVet B2

which clearly shows that C({ f,,, n = 1,2,--}) = 0, and thus ||u,—u| > — 0and || f| 1 (r2) = Hu||2L2(R2) =M,
as desired. Moreover, by the lower semi-continuity of the norms, we have

1 1 1 1 1 1
Sl + Slulfa) = 5 el + 5 172132) < iminf 5 (lzwn3: + S llunllt) < var.

If the estimate were strict that would contradict the minimality of v = vj;. The convergence u,, — u is
therefore strong in L2, and at the minimizer u = u,;, we have

lz|?u 4+ u® = vu, u?=(v— |z},

yielding
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iy
M:WM@:/@fm+m: / (v = [af*)+ dx = Z07,
k2 {lz|2<v}

and, as M — oo,

e

T
Justlls = [ (=l slu? do = [ o)} do < 0 ~ 3,
R2 R2

Now we mollify vy; in order to get an upper bound for vy;. Set

an = (v = a3+ 1) =1, o= VM A

a2
Calculating ||@as||2, shows that
i 2
~ o2 2 1 2 _
2 — - — . .
a2 /((s + 1) 1) ds~p2=M as M — oo (3.3)

0
Moreover, similar calculation enables us to see that

IVaul|lze S v* and |zfaazs < v° (3.4)

In summary, in virtue of (3.3) and (3.4), we have

lwarlfz = M and - |[lafwarl[z2 < M2, (3:5)
which implies, thanks to the fact that H(Qa) < H(war),
IQul3>=M, and  [l2Qu|32 < M3, as M — cc.
The above estimates automatically imply the following key estimate
M2 < [|Qullg- (3.6)

STEP 3: PROOF OF THE KEY ESTIMATE (3.6): By contradiction, assume (3.6) does not hold, then there
would exist a sequence M,, — co, and (uy,), satisfying

3
2

< M

~

lunllZz = My and  |[[ofun |72

and
3
ME
4 o Ma
funle < 2
On the other hand, for all R >0 and n € N
M%
a3 S S+ Rllun 3
ME M
< h LRI

~RTE
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1
Now choosing R = M} ns, gives the bound

1S

3
e

leading to a contradiction by taking n — oo.Clearly, (3.6) shows that (Qas) becomes negative as M — oo
which finishes the proof. O

Notice that to construct a nonlinear solution to (1-SP), one can use several techniques. Variationally
like in [1], for any given amount of mass M > 0, we have shown that a radial positive solution (uns, piar) to
(1-SPy) can be constructed through the following minimizing problem

=H(upr) := min  H(u).
jov: (unr) R oy (u)

Moreover, this family of solutions is included in the branch of solutions constructed using bifurcation argu-
ments pioneered by Rabinowitz, and Crandall-Rabinowitz [4]. Indeed, (u, 1) is a solution to (u-SPy) if and
only if (I — uK)u = N (u), where K = A~'B, N'= A7'G’(u), and the operators A, B and G are defined by

A:EX =Y forany wu,v€X; < Au,v >:= (Vu, Vv)s + (zu, 2v)s,
B:Y¥ =¥ forany u,v€X; < Bu,v>:=(u,v)s,
and
Looa
G:Y¥— R, forany uwel; Glu) = _Z||uHL4'
Indeed, the following proposition shows that a branch of solutions of (1-SPy) emerging from the linear
solution (y1,w1) can be constructed. The proof of the proposition is included in the proof of the spectral

assumption given in the Appendix. (See section 5.)

Proposition 3.2. There exists a unique solution u = u(n) € X, u(n) > 2 of (u-SPy) parametrized by n > 0;
0 <n < ng for some ng > 0, such that

u(n) = vnla(n)er + 2(n)),
with z € &, 2(0) =0 and (2(n),p1)2 = 0.
For the solution (Qo, po) to (1-SPy) satisfying K(Qo) = 0 given by Proposition 3.1, denote by
Lo =—-A+V+Qf — po,
and
Ly:=—-A+V+3Q3— uo.

The second preliminary result concerns the operators L. We have the following important property of
L.

Proposition 3.3. Let < Qg > be the subspace of ¥ consisting of all functions L?-orthogonal to Qo. Then
we have
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ker(L_) ={Qo}, and L_:<Qy>T—< Qo> is bijective.
Moreover, there exists cg > 0 such that for all a > ap,
Ly :¥X— X" is bijective.

The property of L, comes from the breakdown of the spatial translation symmetry due to the presence
of the potential. We refer to the Appendix (Section 5) for the proof of Proposition 3.3.
We have

L+(Qo) = 2Q3. (3.7)
Since K(Qo) = (Qo, (0 — @|Qo|*)Qo)2 = 0, then thanks to Proposition 3.3, one can uniquely define Q;; by
L_Qui:= (OZ|QO|2 —0)Qo.
Observe that given the smoothness and the decay of Qg, we have QQ1; € DomL _. Moreover, we have
L7':L? = Dom(L;) is bounded, and Ly (Qu) = aQ} + 2Q2Q1; — 0Qo. (3.8)
Now, define @2, and Q3; by
Ly Qar = 12Qo + (0 — |Qo[*)Qui — Q@3 (3.9)
and
L-Qsi = (2Q2rQo — Q1)Qui + 12Qui + (2 + @)QF — 0)Q2r + Q1 Qo- (3.10)

The bijectivity of L enables us to determine Q)2,, and again the regularity of )y shows that Q2, € DomL, .
Thus it only remains to determine the coefficient ps, and @3;. They are determined by the orthogonality
condition

(L-Q3i,Qo)2 = 0.

Indeed, substituting Q2, (given by inverting (3.9)) into (3.10) gives

L_Q3 = p2[Qui + (24 @)QF — 0 + 2QoQ1;) L1 Qo] + Q1,Q0 — Q3 (3.11)
+ (24 a)Qf — 0 +2Q0Q1) L' ((0 — Q) Q1 — QuQT,). (3.12)

Now since (Qo, @1:)2 = 0, then clearly
(LTH(2 + @)QF — 0 +2Q0Q1:), Qo) = [ Qoll72 # O,

which insures that ps is uniquely determined in terms of Qg, @1,; which were already defined. Then @Q3;
follows by inverting L_ using the orthogonality (Q3;, Qo)2 = 0. Now, set

Q% = Qo +ieQq; + Q2 +1€°Q3;,  and  pl = po + e pa. (3.13)

The main result of this section is the following.
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Theorem 3.1. For o non-negative, non-trivial and bounded function and o > «, there exists eg > 0 such
that for all 0 < e < &g, equation (GPPD.) has a solution (Qe, ie) € X X (2,00) that can be decomposed as

(st,ue) = (Q? +¢eaug+’is)a (314)

with V. = Ve + W10 ; satisfying
kel + [Yenlle S e (3.15)
[eills < €°. (3.16)

Proof of Theorem 3.1. First, we write an equation for (Qc, ue) being a solution of (u-SP.). We start by
further decomposing Q¢ = Q¢ , +1Q¢ ; and observe that

Qe = 1Q2 17 + Q2% +2Q2 e +2Q2 e + e + el

Substituting this in equation (1-SP.) and splitting the real and imaginary parts, we obtain

(ne + K) Q2 + Vo) = (A +V +[Q*)(Q2, + Yer)
—e(0 — o] Qe[*)(Q2; + ), (3.17)

and

(e + k) Q2+ thei) = (A +V + Q) (Q%; + e i)
+e(o — | Qc*) Q2 + Ve ), (3.18)

respectively. The identity coming from the real part can be rewritten in the following way.

Lither = pQ2, — (A +V + Q) e + (0 — a|Q2*)Q2;
+ KeQ2, + 2 pater — 2Q2 Q% e + £(0 — | QLP)YE,
— 2|QL, PU%; + Ko + e r (2Q% e r + 2Q2 e i + U2, + 92 ,)
— e (2Q% Ve r +2Q% e + U2 + Y2,
= k:Qo + etgr + Fe(Ver, Pe i, e

where ¢g; is given by

g1 = 12Qa2r — Q3,Qar — (Q3, 4+ 2Q3:Q1:)Qo + (0 — aQd) Qs — (2QoQ2, + Q3,)Q1i

and F. can be explicitly computed. In particular it satisfies

”Fs(que,rawe,ia “e)HZ S e8.

The identity coming from the imaginary part can be rewritten in the following way.

Lothey = plQ2; — (FA+V +[QI)Q2L; — (o — a]Q2)Q2,
+ Kngyi + 52/12"/}6,2' - 2@?,1’( g,rws,r + Qg,iwe,i) - 5(0 - a'QOP)'I/Js,r
+ 28Qg,r( ?,r%,r + Q;ﬂba,i)
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= 20 i(QF ;Ve,r + Q2 We,i) + 260e 1 (QF p e, r + Q2 ¥ei)

+eQ2 (W2, +¥2,) = ea(2, +92,) + e (W2, +92,) + Ketbe
= e(reQui + (24 @)QF — 0 — 2Q0Qui)Ye.r)

+ %02 4+ Ge(Qe,ry Qe iy i),

where @5 is given by

02 1= —(2Q0Q2r + Q3;)Q3i — (Q3, +2Q1:Q3:)Q1; + (2Q0Q2r + Q3,)Qar + (Q3, +2Q1,Q3:)Qo

and G. can be explicitely computed. In particular it satisfies

||GE(¢E,T71/}E,% KE)HE S/ 67'

Now we define a map ®. : ¥ x X x (0,00) = X x ¥ x (0,00) by

®, (i’s,ra 1[’5,1‘7 ’%e) = (ws,m ws,h HE)
where, (e, Ve, i, e) solves
L+¢E,r = KQo + 5491 + FE(/&E,?H QEE,’L" /%a)

L—djs,i = 5(”5@12’ + ((2 + OC)Q?) — 0 — QQOQli)ﬂ}E,T) + 55802 + Gs(qzz}s,ra 1/;671" ks)v (319)
(L—ei, Qo)2 = 0.

Now the purpose is to show that there are positive constants C7,Cy and C5 such that the above map is a
contraction on the ball

B, = {(wsnwwa,iaﬁa) : |"€a| < 01547 Hwa,r |E < 0254; st,i”E < 0355}7

for € > 0 sufficiently small. The ball B. is endowed with the norm

el erlls  [[¥eills
: : . 2
max { Crel’  Cyet ' Cacd (3.20)

Thanks to the equation on 1., and the invertibility of L, we can write

Yer = H‘EQ/(/’LO) + €4L11(91) + L.T_l (Fa ('st,ra Iza,i, R&‘)) . (321)

Plugging the above identity in the equation on . ;, we obtain

L 9. = ek (Qui + (24 @)QF + 2QuQ1,i — 0)Q' (10)
+€5((2 + Q)Q(% + 2QOQl,i - O—)L—T-l(gl) + L-T-l (Fs(zzjs,r, "/;s,i, Fﬂs))

Since,

(Qui + (2+ a)Qf — 2Q0Q1, — 0)Q' (110), Qo) , = [|Qol|7

then the choice of
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Ke = IIQ H /Qog1 dr — —/QoL Fe (e, e iy Re)) da
0

makes

(L-ei, Qo)2 =0,

which enables us to invert L_ and thus calculate 1. ;:

Ve = ek L2 Qi + (24 @)QF — 2Q0Q1,i — 0)Q' (ko)) + LI LY (Fe (e s Ye iy Bie))

+ L2+ a)QF — 2QuQ1: — o) LT (1)) (3.22)
Let
2||g1llz2
Cy = ,
Qo>
Co =2(C1]|Q (o)l + 17 (g1) %)
and

O : =201 L2 (Qui + (2 + @)Qf — 2Q0Q1,i — 0)Q' (o)) ||z
+ 2| L2 (2 + @) Q5 — 2Q0Qu,i — U)Lll(m)) o

To show that ®. is a contraction consider (1/38 0% RE) and (z/)8 25, L) in the ball B. and denote by

€’L7 € 79 g

(Y2, %, k2) and (° ., ¥, k) their respective images through the map ®.. We have

e,ry Pe,ir Ve e,rs Weis e

Re .:li —Iﬁ: /Qo Tﬂl)em 5) ( r»wsz’ s)] €,

wE,T = g,r - ,l/}s,r = HEQ (:LLO) - Lll( ( £, r’ws (Rl 5) ( r?we 79 E))

and

Yo =12, — YL =er L7M(Qui + (24 a)QF — 2QuQ1,: — 0)Q' (110))
- L:lLI ( E(we,m &g,i’ ’%g) - Fs(ng,rﬂ;g,i’ Rg))

Estimating s, ¥, and 9. ; using the above bounds on F, and G, yields

kel S€°%  Nerlls S€°  tbeslls S €°

showing the contraction of the map . O
4. The Cauchy problem

In this section, we study the Cauchy problem:

10 + A = V() + [P +i(o(x) — alp)y, >0,z €R?, (41)
Yli=o0 = o. '

We will first assume that o € L*(R?), we set U(t) = e *(=A+V),
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Definition 4.1. A pair (p, ¢) is admissible if 2 < ¢ < 0o and

2 1 1
- =46(q) =2(z — -
p (a) = 2(5 .

).

Recall the following Strichartz estimates for the Schrodinger equation with potential are due to [3].

Proposition 4.1. Let T > 0.

1. For any admissible pair (p,q), there exists Cy(T) such that

1T ellzrorirey < Co(D)llellLe, Ve € L*(R?).

2. Denote

t

D(F)(t,z) = /U(t — s)F(s,x)dr.

0

For all admissible pairs (p1,q1) and (p2, q2), there exists C = Cq, 4,(T') such that
HD(F)”L“([OJ};L‘“) < C||F||LP’2([0,T];L4’2)7
for all F e LP2([0,T); L%) and 0 < 7 < T.

Proposition 4.2. There exists 6 > 0 such that if 1o € L*>(R?) and T € [0,1] are such that

—_

||U(')1/}0HL4([O,T]><]R2) <9 and T3/4HO—”L4(R2) < -,

oo

then (4.1) has a unique solution
¢ € C([0,T]; L*) N L*([0,T] x R?).
Proof of Proposition 4.2. Let
X ={yYeC(0,T}; L*) N L*([0,T] x R?),  [[¥llza(po,rixR2) < 26}

In view of Duhamel’s formula, and for ¢ € X, introduce the map

t t

()(t) := U(t)to — i/U(t = 5)(1 — ia) [y [*(s)ds +/U(t —s)(o9)(s)ds

0 0

From Strichartz inequalities

@ ()| (o, m1xR2) < NU()bollLago,ryxr2) + C(L+ a)[[[91*Y | ars (0,17 xR2)
+ lo |l 10,122
<0+ C(1+ all9lFaqo.ryxre) + 1ol e lll L1 (o, r:L0)
<5+ C(1+ a)(20)* + ||o|| LaT® 4|9l Lo, 1y xr2)
<6+ O(1+ )(20)® + 20T3/*|o|| 11
(

<5+ C(1+a)(20)% +

17
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By choosing § > 0 sufficiently small, the right hand side does not exceed 24 : X is stable under the action
of ®. For the contraction, let 11,19 € X:

[ (4h1) — @(¥2)llLao,11xR2) < C(L+ )l Pr*1 — [vha|*P2ll Lara o, 1) xr2)
+ [lo (1 — ¥2)ll Lo, 1):2)
< Cl[91ll7aomxr2) + P20 740,71 xR2) 191 = D2l 0,77 xR2)
+ ol T3 |1 — ol Lo,y xr2)
1
< (C6* + g)H% — 2|l (0,1 xR?)-
Up to decreasing § again, the factor on the right hand side does not exceed 1/2 and ® is a contraction on

X. This proves the existence part of the proposition. The uniqueness part readily follows from the remark
that if ¢ € L*([0,T] x R?), then [0, T] can be split finitely many times on intervals where

19l L2 (r; xr2) < 29,
so uniqueness on X can be deduced. O
Theorem 4.1. Let ¢y € L?(R?),0 € L*(R?). Then (4.1) has a unique, maximal solution

Y € C([0, Trnaz); L*) N L ([0, Trnaz ); L*(R?)).

loc

Moreover, in [0, Taz):

GO + alw®lts - [o@lvtta)Pdz =0, (44)

R2
It is maximal in the sense that if Tiae ts finite, then

Tmaz

/ [ (t, z)[*dtdr = oco.

0 R2

Proof. Since ¢g € L?, the homogeneous Strichartz inequality (2.1) implies U(.)yg € L*([0,1]) x R?), hence

IU()bollzao,1)xr2) > O.

T—0

Moreover, Proposition 4.2 yields a local solution satisfying (4.1). For the notion of maximality, we proceed
as in [2]. Suppose that 1 € C([0, Tynaz); L?) N LA([0, Trnae) x R?), with T, finite, and that ¢ cannot be
extended to larger time. Let ¢ € [0, Tinaz) and s € [0, Tiaqr — t). Duhamel’s formula implies

S S

Us)v(t) =yt +s) +1 / U(s — s")(1 —ia)|h|*p(t + s')ds' — /U(s — (o) (t + s")ds'.

0 0

In view of the same inequality as in the proof of Proposition 4.2.

1T YO 40 Tmar -ty xB2) < N0 L((0 Tan)xR2) + ClONT 400 7,0y xR

1
+§ 11 (. Tas) xR2) -
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The right hand side is less than § if ¢ is close to T}, Proposition 4.3 shows that ¢ can be extended after
Tonaz, in contradiction with the definition of T},,4,. O

Corollary 4.2. If g € L?(R?) and o € L* N L*>®(R?), then Tynar = 00, and for all t > 0,

o122 < |lwol|2etloles.

Proof. Form (5.1)

d
ZIOI: +ellp@lz: = lloll=l¥®l7= <0,

hence

d [ ol e —llollzee
4 (A y(0)32) + ae I~ e <0,

and

T
oIt ()22 + o / eIt s (8) 4t < [[0ll2-
0

Therefore, for all T finite,

T

\ CTliollzos ,
[ 1wl < == ol
0

hence T,,4 = 00 in Theorem 4.1. O
Corollary 4.3. If g € ¥ and o € L* N W1°(R?), then (/.1) has a unique, global solution 1), such that
¥, Vb, a1p € C([0,00); L*(R?)) N Lj,. ([0, 00); L (R?)).
The analogue of Proposition 4.2 becomes, if we just assume o € L>(R?):

Proposition 4.3. There exists § > 0 such that if 1o € L?*(R?) and T € (0,1] are such that

1)
IUC)YollLaqo,rxrzy <6 and  Tl[o|pe||vollz2 < 3

<3
then (/.1) has a unique solution
Y € C([0,T); L?) N L*([0, T] x R?).
The proof is similar to the proof of Proposition 4.2, by working in
Y ={y € C([0,T}; L*) N L*([0,T] x R?), [|¥]| 12 jo.1xR2) < 26, 9] o< (o, 73522) < 2[[%0ll 22}

and estimating

ol Lo, 11522y < TllollLoe (o, 17522) -
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Now, we still have (5.1), hence

T
T
(& g oo
6Ol < Rolsetole and [ oo)lude < I g
0

Therefore, the solution is global again.
5. Appendix: Proof of Proposition 3.3
Proof. We start by proving (i). Consider the minimizing problem
lyy =inf{< L_v;v >« 5 v €X and ||v]p2 =1},

and observe that since L_(Qo) = 0, then ¢,,, < 0.
On the one hand, arguing as in the proof of Proposition 3.1, one can easily show that a minimizer u of the
above problem exists. Next, for any test function ¢, we have

< L_(u+ep);(u+tep) >s- 5>, (1+ €2HQOH%2 + 2eRe(u, ¢)2).
That is
Uiy + % (IVlZ2 + llzel 7z + 11QupllZ2 — pollellZz)

+ 2eRe (Vu, Vo)a + (2u, 10)2 + (Qou, Qow)2 — to(u, ©)2)
> o (1+ 2| @ll72 + 2eRe(u, ¢)2).

Since € is arbitrary and can have any sign, then we deduce that
L_u=/{,u,
and therefore u is an eigenvector of L_ corresponding to the first (and simple) eigenvalue £,,,. On the other

hand, it follows from Theorem 11.8 in [11] that the minimizer is unique and up to a phase change, we can

take a positive minimizer @ = e?’u with § € R. Now, to conclude it suffices to show that £,, = 0. We see

from L_Qo = 0 that

Lo (0, Qo)2 =< L_1; Qo >s+ »=< U; L_Qo >x- x=10,
yielding (given that Q¢ and @ are positive) £,,, = 0. This finishes the proof.

Now we prove (ii). The proof of the bijectivity goes through several steps. First we prove Proposition 3.2.
Set

p=2+n
u = /g, where 0 <n << 1. (5.1)

Then (p0—SPy) reads as

(—A+ |z|* = 2)g = n(q — ¢°).
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Now we can decompose ¢ = ag; + 7, where o is the first simple eigenfunction of the operator Hy :=
—A + |z|?, o1 denotes an element of the vector space L2-orthogonal to ¢;, and a(n) is a scalar. Therefore,
we have

Lapt = (=B + [a2 = 2)¢t = nagr +¢* = (ae1 + o1 )]
=nF(a,¢1). (5.2)
Now let us define the projection II by: I(cp; + 1) = ¢i. Thus, (5.2) can be rewritten in the following way
i = (L)~ IF (a, 1) (5.3)
and
(I —10) F(a, pt) = 0. (5.4)

We will first solve (5.3) using the implicit function theorem.
First, we notice that for n = 0, and ag satisfying:

|13 — aglerli =0,
we have 1 (0,a9) = 0 is a solution of (5.3). On the other hand,

d -
Tt =) (91 = n(11L2) M TIF (@ 01)

is invertible for 0 < |(n,a — ag)| << 1. Thus, using the implicit function theorem, there exists a unique
o1 = v(n, a) solving (5.3). Now we are going to solve (5.4) for a = a(n).
We have (F(a, 1), ¢1)2 = 0, which after expansion, leads to

ale1[3 — a®lgr]i + O(n) =0,
that in partcicular yields
~le1l3 = 3a®[ul <0, (5.5)

by an appropriate choice of |n| << 1.

In summary, we can assert that there exists 0 < 19 << 1 such that for all 0 < n < 19, there exists a unique
solution (¢1,a) = (p1,a)(n)) solving (5.3)-(5.4), finishing the proof of Proposition 3.2.

Second, we consider the eigenvalue problem of the linearized operator around wu(n)

Lig=(—A+zl>=3(u(®)® - nn)e =X, (5.6)

and track how the zero eigenvalue of L, moves for small values of 7. Note that since ¢ (and hence w)
decays exponentially fast in space, the operator L has a discrete spectrum with the same asymptotic of
the eigenvalues as the Harmonic oscillator. Recalling that 1 = n + 2 and u(n) = \/fg with ¢ = ap1 + 1,
equation (5.6) is rewritten as

Lyp(n) = Mn)e(n)
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with [lo(n)[13 =1, and Ly := —A + |z]* — 3n¢® —n — 2.
When 1 = 0, we have A(0) = 0, ©(0) = ¢1, and A(0) is a simple isolated eigenvalue of L.
Taking the derivative with respect to 7, we obtain at n = 0:

d(0) _ dA dip(0)
-A 2_9- 2o1) 4+ L(0)=~ =2 A— .
(= 8+ 2= 3(O)e)* - 1) + LOT S = Te(0) + A (5.7)
Multiplying the identity (5.7) by (0) and taking the L? scalar product, we get

((—A+[af? =2 = 3(a(0)¢1)* = Deer. 1) | = —=3a*(0) el = ln . (5.8)

d\
(5.8) is strictly negative by identity (5.5). Therefore, d—‘ < 0.
17 1n=0

Third, we show that for small masses M, the ground state @j; minimizing Va; given by Lemma 2.2 is
indeed equal to the unique u(n) given in proposition (3.2) by choosing M ~ n << 1. More precisely, it is

sufficient to show that 3—]]:4_4 — @1 and ppr — 2, as M — 0 where (—A + |2]?)p1 = 21 and |12 = 1.

To prove the latter assertion, let us first notice that

2M < [VQul3 + l2Qull3 + |Qar3
< 2M + M2 ll3. (5.9)

This implies that puy, — 2 as M — 0.
Additionally, (5.9) implies that @ = vy is bounded in ¥ and satisfies

vM
—Avps + |zPoy + Moa 2oy = parvas.
Taking the weak limit in the latter inequality, we deduce that vy, — 1 in ¥ as M — 0. Hence, choosing

M small enough; M ~ n << My := ng so that 3—% is in a neighborhood of ¢; in 3.
In the last part of the proof, we choose

[ et [t @as
@

(07

for M < My yielding that Qj; is a zero of the functional L. O
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