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We investigate the existence of ground state solutions of a Gross-Pitaevskii equation 
modeling the dynamics of pumped Bose Einstein condensates (BEC). The main 
interest in such BEC comes from its important nature as macroscopic quantum 
system, constituting an excellent alternative to the classical condensates which are 
hard to realize because of the very low temperature required. Nevertheless, the Gross 
Pitaevskii equation governing the new condensates presents some mathematical 
challenges due to the presence of the pumping and damping terms. Following a self-
contained approach, we prove the existence of ground state solutions of this equation 
under suitable assumptions: This is equivalent to say that condensation occurs in 
these situations. We also solve the Cauchy problem of the nonlinear Schrödinger 
equation and prove some corresponding laws.

© 2021 Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions l’existence de solutions d’état fondamental d’une équation du type 
Gross-Pitaevskii modélisant la dynamique des condensateurs de Bose Einstein 
pompés (BEC). Le principal intérêt de l’étude d’un tel BEC vient de sa particularité 
importante entant que système quantique macroscopique constituant une excellente 
alternative aux condensateurs classiques difficiles à réaliser, en raison de la très basse 
température. Néanmoins, l’équation de Gross-Pitaevskii régissant cette nouvelle 
génération de condensateurs présente des défis mathématiques dus notament à 
la présence des termes de pompage et d’amortissement. Suivant une approche 
autonome, nous prouvons l’existence de solutions à l’état fondamental de cette 
équation sous des hypothèses appropriées : Cela revient à dire que de la condensation 
se produit dans ces situations. Nous résolvons également le problème de Cauchy 
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de l’équation non linéaire de Schrödinger et nous prouvons quelques lois de 
conservation.

© 2021 Elsevier Masson SAS. All rights reserved.

1. Introduction

The first realization of condensation has been obtained experimentally in a system consisting of about 
half million alkali atoms cooled down to nano-Kelvin temperature. Thus, a considerable obstacle in the 
study of (BEC) is the very low temperature required to create the condensate. Completely aware that it is 
extremely important to explore what kind of condensates can undergo condensation at higher temperatures, 
huge efforts have been undertaken by scientists to overcome this difficulty right after the first experimental 
realization of the first (BEC) in 1995. During the last years, a new kind of condensates has attracted the 
attention of many scientists. Very recently, it turned out that an excellent candidate is a system of exciton-
polaritons, which are bosonic quasiparticles that exist inside semiconductor micro-cavities, consisting of a 
superposition of an exciton and a cavity photon. Above a threshold density, the polaritons macroscopically 
occupy the same quantum state, forming a condensate. The temperatures that are usually used to form 
exciton-polariton BECs are around T=10K, far higher than the nano-Kelvin temperatures required for 
atomic BECs. They are immensely promising in terms of new quantum technologies since quantum effects 
can appear on a macroscopic level, unlike most systems where quantum effects are rather easily destroyed by 
temperature and decoherence. As Boson particles are composed of quantum well excitons and optical cavity 
photons, microcavity exciton-polaritons possess unique intrinsic features: reminiscent excitonic nature leads 
to important interaction dynamics among exciton-polaritons. Polariton-polariton repulsive interactions are 
indeed crucial to stimulate scattering processes in order to relax into the ground state Bose-Einstein conden-
sates (BECs). Since the temperature of condensation is inversely proportional to the mass of the particles, 
the exciton-polariton systems afford relatively high temperatures of condensation. The first drawback of 
these new condensates is their very short lifetime (approximately 1 ps), inherited also from their photonic 
component, so that polariton thermalization could be problematic. In fact the polariton gas can become 
fully thermalized, as a result of strong polariton-polariton interaction caused by their excitonic component. 
The second important inconvenient comes from the fact that the excitons disappear with the recombination 
of the electron-hole pairs through emission of photons. One way to overcome these problems is to introduce 
a polariton reservoir: polaritons are “cooled”and “pumped”from this reservoir into the condensate. At the 
same time, a low density level is kept in order to reduce the interactions between polaritons. Different math-
ematical models have been suggested for this new condensate. In this paper we consider the one proposed 
in [10], called complex Gross-Pitaevski equation. For a more detailed account of these aspects, see [13] and 
references therein.

In [13], the authors addressed the nature of radially symmetric standing wave-type solutions of the 
following nonlinear Gross-Pitaevskii equation:

i
∂ψ

∂t
= (−Δ + V (x) + |ψ|2)ψ + i(σ(x) − α|ψ|2)ψ, (GPPD)

where ψ = ψ(x, t) is a complex-valued function defined on R2 × R, Δ is the Laplace operator on R2, 
V (x) = |x|2 is the harmonic potential, σ(x) ≥ 0 and α ≥ 0.

To achieve their goals, they have developed a numerical collocation method but they did not provide any 
theoretical justification of their claims. The main objective of this paper is to rigorously prove the existence 
of ground state solutions of the Gross-Pitaevskii equation under study. We believe that this is a challenging 
and immensely important scientific question. The principle challenge comes from the fact that all classical 
methods do not seem to be applicable to discuss the existence of stationary solutions to (GPPD). This is 
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essentially due to the simultanous presence of the dissipation and pumping terms in the equation. Let us 
note that the establishment of ground state solutions avoids costly and very difficult experiments in the 
“classical”BEC. To achieve this goal, let us first introduce some important quantities associated to (GPPD).

Recall that the mass M, the Hamiltonian H, the action Sμ (μ > 0) and the functional K associated to 
the equation (GPPD) are given by:

M(u) := ‖u‖2
L2 , (1.1)

H(u) := 1
2(‖∇u‖2

L2 + ‖xu‖2
L2) + 1

4 ‖u‖4
L4 := H0(u) + 1

4 ‖u‖4
L4 (1.2)

Sμ(u) := −μ

2 M(u) + H(u), (1.3)

K(u) :=
∫
R2

(σ(x) − α|u(x)|2)|u(x)|2 dx, (1.4)

respectively. Observe that

d

dt
M(ψ(t)) = 2K(ψ(t)). (1.5)

Identity (1.5) shows that, at least formally, the mass and the energy are pumped into the system through 
the term iσψ involving the parameter σ and they are nonlinearly damped by the term −iα|ψ|2ψ involving 
the parameter α. Contrarily to the complex Ginzburg-Landau equation (when a dissipative term of the 
form iΔψ is added to the RHS of (GPDP)), one cannot obtain time-uniform estimates of the solution in 
the energy space. The complex Gross-Pitaevski equation reflects the non-equilibrium dynamics described 
above by adding pumping and decaying terms to the GP equation.
Before going any further, we recall a few results about the linear equation without dissipation and pumping. 
The equation then reads

i
∂φ

∂t
= (−Δ + V (x))φ.

We define the energy space Σ := H1(R2) ∩ {u : xu ∈ L2}, endowed with the L2-scalar product (u, v)2 :=∫
R2 u(x)v̄(x) dx, by

(u, v)Σ = (∇u, ∇v)2 + (xu, xv)2 + (u, v)2 : ‖u‖2
Σ = ‖∇u‖2

2 +
∥∥∥(1 + (| · |2) 1

2 u
∥∥∥2

2
.

Also, define the dual space Σ∗ of Σ as follows. For any v ∈ Σ∗, there exists a unique u ∈ Σ such that 
H0u = v with the norm on Σ∗ given by

‖H0u‖Σ∗ = ‖v‖Σ∗ := ‖u‖Σ.

Recall that ‖·‖p is the norm in Lp(R2). It is well known that the unbounded operator H0 := −Δ +V defined 
on

D(H0) := {u ∈ Σ : H0(u) ∈ L2(R2)}

is self-adjoint. Moreover, the lowest eigenvalue of H0 denoted by ω1 = 2 is simple with eigenfunction 
ϕ1(x) = 1√ e−|x|2/2. Notice that (ϕ1, ω1) can be constructed variationally as
π
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ω1 = min
‖u‖L2 =1

1
2

∫
R2

|∇u|2 + |x|2|u|2 dx := min
‖u‖L2 =1

H0.

In particular, for any u ∈ D(H0), we have

2‖u‖2
L2 ≤ ‖xu‖2

L2 + ‖∇u‖2
L2 .

For more details, we refer for example to [9].
When the chemical potential is complex μ = μr + iμi, solitary wave solution ψ(x, t) = Q(x)e−itμ =

Q(x)etμie−itμr would grow exponentially fast as |t| → ∞ which can be bad for the analysis as well as for 
numerics and experiments. Assuming that μ = μr, yields the following stationary problem for Q:

μQ = (−Δ + V (x) + |Q|2)Q + i(σ(x) − α|Q|2)Q, Q ∈ Σ \ {0}. (μ-SP)

Multiplying (μ-SP) by Q̄ and integrating gives the following identity.

μM(Q) = 2H(Q) + 1/2‖Q‖4
L4 + iK(Q).

The condition for the chemical potential μ of being real is then equivalent to the fact that Q is a zero of K.
It is important to emphasize that due to the presence of the dissipation and pumping mechanisms, we find 

it hard to apply the standard variational or PDE methods to construct soliton-type solutions of (GPPD) 
(i.e. a solution Q of (μ-SP)). In this paper, our idea to construct a solution of (μ-SP) with real chemical 
potential μ goes along a perturbative way by introducing a small parameter factor in the dissipation and 
pumping term. More precisely, for all ε > 0, consider

i
∂ψ

∂t
= (−Δ + V (x) + |ψ|2)ψ + iε(σ(x) − α|ψ|2)ψ, (GPPDε)

and its corresponding stationary equation

μQ = (−Δ + V (x) + |Q|2)Q + iε(σ(x) − α|Q|2)Q Q ∈ Σ \ {0}. (μ-SPε)

The object is to construct a solution (Qε, με) in the form

Qε = Qa
ε + ψε, and με = μa

ε + με,

where the approximate solution (Qa
ε , μa

ε) will be given explicitly, and (ψε, με) is the error term that needs to 
be found. To define (Qa

ε , μa
ε), we need to introduce some notation and state a few preliminary useful results. 

The first Theorem of this paper reads as follows:

Theorem 1.1. Let σ(x) ≥ 0 be a continuous and bounded nontrivial function. There exist α0 
 1 and a 
positive ε0 small such that, for any 0 < ε < ε0 and α > α0, the complex Gross-Pitaevkii equation (GPPDε)
has a solitary wave solution ψε(x, t) = eitμεQε(x) with (Qε, με) ∈ Σ × (2, ∞), with Qε �≡ 0, solving (μ-SPε).

Remark 1.1. It would be very desirable to extend the branch of standing wave solutions we constructed for 
ε small to all values of ε. Unfortunately, so far we were not able to do so given the non-equilibrium structure 
of the model.

Our second result concerns the Cauchy problem associated to (GPPD). We have.
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Theorem 1.2. Assume α ≥ 0, and σ ∈ L∞(R2) ∩ L4(R2). For any ψ0 ∈ L2(R2), there exists a unique global 
solution ψ ∈ C([0, ∞), L2(R2)) ∩ L4

loc([0, ∞), L4(R2)) of (GPPD) with ψ(x, 0) = ψ0(x). Moreover, for any 
T > 0, we have

T∫
0

∫
R2

|ψ(x, t)|4 dxdt � e‖σ‖L∞ T ‖ψ0‖4
L2 .

The paper is organized as follows: In the next section, some preliminary results are proven. This will 
prepare the field to the establishment of ground state solutions. In section 3, we will present our self-
contained proof built up to prove the existence of ground state solutions. The last section of this paper is 
dedicated to the Cauchy problem. We show the existence and uniqueness of solutions for a large class of 
damping and pumping terms. We also discuss the non-conservation of some important functionals associated 
to the Schrödinger equation.

2. Preliminaries

Here we focus on the problem without pumping and decay of the energy, that is when ε = 0. We 
start by recalling a few known facts about the space Σ, for which the proof can for example be found in 
Kavian-Weissler [9].

Lemma 2.1. The Hilbert space Σ is compactly embedded in Lp(R2) for any p ∈ [2, ∞).

Throughout this paper, we suppose that σ ≥ 0 is nontrivial continuous and is in L∞(R2) function.

Lemma 2.2. For any M > 0, there exists a unique vM ∈ Σ solving the following constrained variational 
problem:

(VM ) : μM = inf{H(u) :
∫

u2 = M};

In addition, the minimizer vM is non-negative, radial and radially decreasing satisfying

|∂βvM (x)| � exp(−|x|2), x ∈ R2,

for all multi-index β with |β| ≤ 2.

Proof. It is sufficient to show the existence of a minimizer of (VM). The uniqueness of the minimizer follows 
directly from the strict convexity of the functional H, and the decay was proven in Proposition 6.9 in [9].

Now let us fix M > 0, let (vn) be a minimizing sequence of (VM ), i.e., limn→∞ H(vn) = μM and 
∫

v2
n = M . 

Then

H(vn) ≥ 1
2‖∇vn‖2

2 + 1
2‖xvn‖2

2.

Therefore, we can find KM > 0 such that

‖∇vn‖2
2 + ‖xvn‖2

2 ≤ KM .

This implies that

‖vn‖2
Σ ≤ M + KM . (2.1)
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Consequently, there exists u ∈ Σ such that

vn ⇀ u in Σ.

This implies, thanks to Lemma 2.1, that vn → u in L2(R2) and L4(R2). Thus, we certainly have that ∫
u2 = M implying that u is non-trivial, and by the lower semi-continuity, we can write:

H(u) ≤ lim inf
n

H(vn) = μM .

Therefore, H(u) = μM . On the other hand, let u be the unique minimizer of (VM ), then u is a non-negative 
function in Σ since

H(|u|) ≤ H(u), and M(|u|) = M(u).

Furthermore, by rearrangement inequalities [6,7], we have:
∫

|u|2 =
∫

(|u|∗)2

∫
|u|4 =

∫
(|u|∗)4

∫
|x|2|u|2 ≥

∫
|x|2(|u|∗)2

∫
|∇|u||2 ≥

∫
|∇(|u|∗)|2.

Combining these identities, it follows that

H(|u|∗) ≤ H(|u|). �
The next Lemma, addresses the regularity of the Hamiltonian H, as well as the map M → μM .

Lemma 2.3. The Hamiltonian H is in C1(Σ, R). Moreover, for all u ∈ Σ we have

‖H′(u)‖Σ−1 ≤ C{‖u‖Σ + ‖u‖3
Σ} for all u ∈ Σ, (i)

and the function

M → μM = H(vM ), is continuous on (0, ∞). (ii)

Proof. The proof of (i) follows from standard arguments. For example, we refer to reference [8], and we just 
prove (ii).
Fix M > 0. Let Mn ⊂ (0, ∞) be a sequence of positive real numbers such that Mn → M . We will first prove 
that

lim sup
n

μMn
≤ μM . (2.2)

Let (vn) be a sequence such that 
∫

v2
n = M and H(vn) → μM . By (2.1), we can find L > 0 such that

‖vn‖2
Σ ≤ L.
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Now let wn = Mn

M vn, then 
∫

w2
n = Mn and

‖vn − wn‖Σ = |1 − Mn

M
|‖vn‖Σ ≤ |1 − Mn

M
|L

for any n ∈ N.
Therefore, we can find n0 such that

‖vn − wn‖Σ ≤ L + 1

for any n ≥ n0.
It follows from (i) that there exists a constant K(L) such that ‖H′(u)‖Σ−1 ≤ K(L) for all u ∈ Σ such 

that ‖u‖Σ ≤ 2L + 1.
Thus, for all n ≥ n0,

|H(wn) − H(vn)| = |
1∫

0

d

dt
H(twn + (1 − t)vn)dt|

≤ sup
‖u‖Σ≤2L+1

‖H′(u)‖Σ−1‖vn − wn‖Σ

≤ K(L)L|1 − Mn

M
|.

Consequently, μMn
≤ H(wn) ≤ H(vn) + K(L)L|1 − Mn

M |.
Then lim sup μMn

≤ lim H(vn) = μM and then

lim sup μMn
≤ μM . (2.3)

Now let us prove that if Mn → M , then

μM ≤ lim inf μMn
. (2.4)

For all n ∈ N, there exists (vn) a sequence of functions in Σ such that 
∫

v2
n = Mn and

μMn
≤ H(vn) ≤ μMn

+ 1
n

.

Combining the proof of (2.1) and (2.4), we can find K > 0 such that ‖vn‖Σ ≤ K for all n ∈ N. Setting 
wn = M

Mn
vn, we have that 

∫
w2

n = M and

‖vn − wn‖Σ ≤ K|1 − M

Mn
|.

Thus, following the proof of (2.4), we certainly get:

|H(wn) − H(vn)| ≤ L(K)K|1 − M

Mn
|.

Consequently, we have:

μMn
≥ H(vn) − 1

n
≥ H(wn) − L(K)K|1 − M

Mn
| − 1

n
,

yielding lim inf μMn
≥ μM as desired. �
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Proposition 2.4. Let M > 0, and (Mn) ⊂ (0, ∞) be a sequence of positive real numbers such that Mn → M . 
Denote by vMn

the unique minimizer of (VMn
), and vM the unique minimizer of (VM ). Then

K(vMn
) → K(vM ),

and

H(vMn
) → H(vM ).

Proof. We will first prove that there exists ū ∈ Σ such that vMn
converges weakly in Σ to ū (vMn

⇀ ū in Σ). 
First obviously ‖vMn

‖2
2 ≤ A. Now noticing that

μMn
= 1

2‖∇vMn
‖2

2 + 1
2‖xvMn

‖2
2 + 1

4‖vMn
‖2

4,

one has

μMn
≥ 1

2‖∇vMn
‖2

2 + 1
2‖xvMn

‖2
2.

Therefore, using (2.4), there exists a constant B > 0 such that

‖vMn
‖Σ ≤ B.

Thus, (up to a subsequence), there exists ū ∈ Σ such that

vMn
⇀ ū in Σ.

Now using Lemma 2.1, we have that

vMn
→ ū in L2(R2) ∩ L4(R2).

In particular, 
∫

ū2 = M . Thus,

μM ≤ H(ū) ≤ lim inf H(vMn
) = lim inf μMn

and then H(ū) = μM . This shows that ū is the unique minimizer of (VM ). To end the proof, we need to 
show that

∫
σ(x)v2

Mn
(x) →

∫
σ(x)v2

M (x) (2.5)

and
∫

v4
Mn

(x) →
∫

v4
M (x). (2.6)

To prove (2.5), it is sufficient to notice that σ ∈ L∞(R2) and vn → v in L2(R2), while (2.6) follows from 
the fact that vn → u in L4(R2). �
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3. Ground state solutions

Always in the case ε = 0, and within the class of minimizers vM we have just constructed, we would like 
to intersect it with the co-dimension one manifold characterized by the zeros of the functional K. Before 
doing so, let us first fix our assumptions on the decay and pumping parameters.
First we deal with case ε = 0 i.e. the standard nonlinear Schrödinger equation in the absence of both the 
pumping and dissipation. Equation (μ-SPε) then becomes

μQ = (−Δ + V (x) + |Q|2)Q, Q ∈ Σ \ {0}. (μ-SP0)

The first preliminary result is the first iteration. We have the following result:

Proposition 3.1. There exists a non-negative radial function Q0 ∈ Σ and μ0 > 2 solving (μ-SP0). Moreover, 
Q0 satisfies

K(Q0) = 0.

Remark 3.1. (Q0, μ0) will be the first approximate solution in the iteration process to construct the full 
solution (Qε, με) of (μ-SPε).

Proof of Proposition 3.1. It is sufficient to prove that the functional K changes sign when the mass of the 
ground state vM given by Lemma 2.2 varies. Then the conclusion will follow using Lemma 2.3. We divide 
the proof into several steps.Step 1: Positivity of K(QM ) for small masses: Now, because of the 
positivity of Q = QM , first observe that for any nontrivial non-negative continuous function σ, we have ∫
R2 σ|Q|2 dx > 0. Moreover, on the one hand, by the Gagliardo-Nirenberg inequality, there is a constant 

C∗ > 0 such that for any u ∈ H1, we have

‖u‖4
L4 ≤ C∗‖∇u‖2

L2‖u‖2
L2 .

On the other hand, multiplying (μ-SP0) by Q̄ and integrating shows that any solution Q of (μ-SP0) satisfies

μ‖Q‖2
L2 = ‖∇Q‖2

L2 + ‖xQ‖2
L2 + ‖Q‖4

L4 .

Thus, if ‖Q‖2
L2 = M we have

‖Q‖4
L4 � M2μM .

This shows that when M ≤ 1, we have μM � 1 and thus K(Q) ≥
∫
R2 σ|Q|2 dx − CM2, for some positive 

constant C. Now since σ ≥ 0 is a nontrivial continuous function, there exists a nontrivial open set O ⊂ R2

and a positive constant c0 > 0 such that σ(x) ≥ c0, for all x ∈ O. We have 
∫
R2 σ|Q|2 dx ≥ c0

∫
O |Q|2 dx ≥

c1M , for some small positive constant c1. This implies that K(QM ) ≥ 0 as M → 0. (Remember we simply 
denoted QM by Q.)
Step 2: Negativity of K(QM ) for lareg masses: More precisely, first we will prove that

H(Q) � M
3
2 , as M → ∞. (3.1)

If we let Hint(Q) := 1
2 (‖xQ‖2

L2 + 1
2‖Q‖4

L4), then clearly

Hint(Q) ≤ H(Q).
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Now, we will explicitly calculate the minimizer

νM := inf
‖u‖2

L2 =M
Hint(u), u ∈ Σint,

where Σint = {u ∈ L2(R2), u ∈ L4(R2) :
∫

|x|2u2 < ∞} with the norm

‖u‖Σ4
2

= ‖u‖2 + ‖u‖4 + ‖|x|u‖2.

Let (un) be a minimizing sequence of νM that is

‖un‖2
L2 = M, and 1

2(‖xun‖2
L2 + 1

2‖un‖4
L4) → νM . (3.2)

From the above bounds, let us just denote by u (instead of uM ), an L2-weak limit of (un). Denote by 
fn := u2

n. First we show that ‖f‖L1(R2) = M . Up to an extraction, we may assume that a subsequence of 
(fn) (also denoted by (fn)) converges weakly to f in the sense of distributions; that is for any ϕ ∈ C∞

0 (R2)
(smooth and compactly supported function), we have

∫
R2

ϕfn dx →
∫
R2

ϕf dx.

To show strong convergence in L1, we observe that (see for example [5])

lim sup
n

‖fn − f‖L1 ≤ C({fn, n = 1, 2, ··}),

where, for any subset A ⊂ L1(R2), the function C(A) introduced by H. P. Rosenthal [12] is given by

C(A) = inf
ε

sup
|A|<ε

sup
n

∫
A

fn dx.

Using Hölder inequality and the above bounds (3.2), we have for any R > 0

∫
A

fn dx ≤
√

|A|
√√√√∫

A

f2
n dx + 1

R2

∫
A∩{|x|>R}

|x|2fn dx

�
√

ε + 1
R2 ,

which clearly shows that C({fn, n = 1, 2, ··}) = 0, and thus ‖un−u‖L2 → 0 and ‖f‖L1(R2) = ‖u‖2
L2(R2) = M , 

as desired. Moreover, by the lower semi-continuity of the norms, we have

1
2(‖xu‖2

L2 + 1
2‖u‖4

L4) = 1
2(‖|x|2f‖L1 + 1

2‖f2‖2
L2) ≤ lim inf

n

1
2(‖xun‖2

L2 + 1
2‖un‖4

L4) ≤ νM .

If the estimate were strict that would contradict the minimality of ν = νM . The convergence un → u is 
therefore strong in L2, and at the minimizer u = uM , we have

|x|2u + u3 = νu, u2 = (ν − |x|2)+

yielding
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M = ‖uM ‖2
L2 =

∫
R2

(ν − V )+ dx =
∫

{|x|2<ν}

(ν − |x|2)+ dx = π

2 ν2,

and, as M → ∞,

‖uM ‖4
L4 =

∫
R2

(ν − |x|2)+|u|2 dx =
∫
R2

(ν − |x|2)2
+ dx ≤ π

3 ν3 ∼ M
3
2 .

Now we mollify vM in order to get an upper bound for νM . Set

ũM :=
(
(ν − |x|2)2

+ + 1
) 1

4 − 1, wM :=
√

M
ũM

‖ũM ‖L2
.

Calculating ‖ũM ‖2
L2 shows that

‖ũM ‖2
L2 =

μ∫
0

(
(s2 + 1) 1

4 − 1
)2

ds ∼ μ2 = M as M → ∞. (3.3)

Moreover, similar calculation enables us to see that

‖∇ũM ‖2
L2 � ν3 and ‖|x|ũM ‖2

L2 � ν3. (3.4)

In summary, in virtue of (3.3) and (3.4), we have

‖wM ‖2
L2 = M and ‖|x|wM ‖2

L2 � M
3
2 , (3.5)

which implies, thanks to the fact that H(QM ) ≤ H(wM ),

‖QM ‖2
L2 = M, and ‖xQM ‖2

L2 � M
3
2 , as M → ∞.

The above estimates automatically imply the following key estimate

M
3
2 � ‖QM ‖4

L4 . (3.6)

Step 3: proof of the key estimate (3.6): By contradiction, assume (3.6) does not hold, then there 
would exist a sequence Mn → ∞, and (un)n satisfying

‖un‖2
L2 = Mn and ‖|x|un‖2

L2 � M
3
2

n

and

‖un‖4
L4 ≤ M

3
2

n

n
.

On the other hand, for all R > 0 and n ∈ N

‖un‖2
L2 � M

3
2

n

R2 + R‖un‖2
L4

� M
3
2

n

2 + R
M

3
4

n
1 .
R n 2
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Now choosing R = M
1
4

n n
1
8 , gives the bound

1 � 1
n

1
4

leading to a contradiction by taking n → ∞.Clearly, (3.6) shows that K(QM ) becomes negative as M → ∞
which finishes the proof. �

Notice that to construct a nonlinear solution to (μ-SP0), one can use several techniques. Variationally
like in [1], for any given amount of mass M > 0, we have shown that a radial positive solution (uM , μM ) to 
(μ-SP0) can be constructed through the following minimizing problem

μM = H(uM ) := min
‖u‖2

L2 =M
H(u).

Moreover, this family of solutions is included in the branch of solutions constructed using bifurcation argu-
ments pioneered by Rabinowitz, and Crandall-Rabinowitz [4]. Indeed, (u, μ) is a solution to (μ-SP0) if and 
only if (I − μK)u = N (u), where K = A−1B, N = A−1G′(u), and the operators A, B and G are defined by

A : Σ → Σ∗, for any u, v ∈ Σ; < Au, v >:= (∇u, ∇v)2 + (xu, xv)2,

B : Σ → Σ∗, for any u, v ∈ Σ; < Bu, v >:= (u, v)2,

and

G : Σ → R, for any u ∈ Σ; G(u) = −1
4‖u‖4

L4 .

Indeed, the following proposition shows that a branch of solutions of (μ-SP0) emerging from the linear 
solution (ϕ1, ω1) can be constructed. The proof of the proposition is included in the proof of the spectral 
assumption given in the Appendix. (See section 5.)

Proposition 3.2. There exists a unique solution u = u(η) ∈ Σ, μ(η) > 2 of (μ-SP0) parametrized by η > 0; 
0 < η < η0 for some η0 > 0, such that

u(η) = √
η(a(η)ϕ1 + z(η)),

with z ∈ Σ, z(0) = 0 and (z(η), ϕ1)2 = 0.

For the solution (Q0, μ0) to (μ-SP0) satisfying K(Q0) = 0 given by Proposition 3.1, denote by

L− := −Δ + V + Q2
0 − μ0,

and

L+ := −Δ + V + 3Q2
0 − μ0.

The second preliminary result concerns the operators L±. We have the following important property of 
L±.

Proposition 3.3. Let < Q0 >⊥ be the subspace of Σ consisting of all functions L2-orthogonal to Q0. Then 
we have
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ker(L−) = {Q0}, and L− :< Q0 >⊥→< Q0 >⊥ is bijective.

Moreover, there exists α0 > 0 such that for all α > α0,

L+ : Σ → Σ∗ is bijective.

The property of L+ comes from the breakdown of the spatial translation symmetry due to the presence 
of the potential. We refer to the Appendix (Section 5) for the proof of Proposition 3.3.

We have

L+(Q0) = 2Q3
0. (3.7)

Since K(Q0) = (Q0, (σ − α|Q0|2)Q0)2 = 0, then thanks to Proposition 3.3, one can uniquely define Q1i by

L−Q1i := (α|Q0|2 − σ)Q0.

Observe that given the smoothness and the decay of Q0, we have Q1i ∈ DomL−. Moreover, we have

L−1
+ : L2 → Dom(L+) is bounded, and L+(Q1i) = αQ3

0 + 2Q2
0Q1i − σQ0. (3.8)

Now, define Q2r and Q3i by

L+Q2r = μ2Q0 + (σ − α|Q0|2)Q1i − Q0Q2
1i, (3.9)

and

L−Q3i = (2Q2rQ0 − Q2
1i)Q1i + μ2Q1i + ((2 + α)Q2

0 − σ)Q2r + Q2
1iQ0. (3.10)

The bijectivity of L+ enables us to determine Q2r, and again the regularity of Q0 shows that Q2r ∈ DomL+. 
Thus it only remains to determine the coefficient μ2, and Q3i. They are determined by the orthogonality 
condition

(L−Q3i, Q0)2 = 0.

Indeed, substituting Q2r (given by inverting (3.9)) into (3.10) gives

L−Q3i = μ2[Q1i + ((2 + α)Q2
0 − σ + 2Q0Q1i)L−1

+ Q0] + Q2
1iQ0 − Q3

1i (3.11)

+ ((2 + α)Q2
0 − σ + 2Q0Q1i)L−1

+
(
(σ − Q2

0)Q1i − Q0Q2
1i

)
. (3.12)

Now since (Q0, Q1i)2 = 0, then clearly

(L−1
+ ((2 + α)Q2

0 − σ + 2Q0Q1i), Q0) = ‖Q0‖2
L2 �= 0,

which insures that μ2 is uniquely determined in terms of Q0, Q1,i which were already defined. Then Q3i

follows by inverting L− using the orthogonality (Q3i, Q0)2 = 0. Now, set

Qa
ε := Q0 + iεQ1i + ε2Q2r + iε3Q3i, and μa

ε = μ0 + ε2μ2. (3.13)

The main result of this section is the following.
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Theorem 3.1. For σ non-negative, non-trivial and bounded function and α > α0, there exists ε0 > 0 such 
that for all 0 < ε < ε0, equation (GPPDε) has a solution (Qε, με) ∈ Σ × (2, ∞) that can be decomposed as

(Qε, με) = (Qa
ε + ψε, μa

ε + κε), (3.14)

with ψε = ψε,r + iψε,i satisfying

|κε| + ‖ψε,r‖Σ � ε4 (3.15)

‖ψε,i‖Σ � ε5. (3.16)

Proof of Theorem 3.1. First, we write an equation for (Qε, με) being a solution of (μ-SPε). We start by 
further decomposing Qa

ε = Qa
ε,r + iQa

ε,i and observe that

|Qε|2 = |Qa
ε,r|2 + |Qa

ε,i|2 + 2Qa
ε,rψε,r + 2Qa

ε,iψε,i + |ψε,r|2 + |ψε,i|2.

Substituting this in equation (μ-SPε) and splitting the real and imaginary parts, we obtain

(μa
ε + κε)(Qa

ε,r + ψε,r) = (−Δ + V + |Qε|2)(Qa
ε,r + ψε,r)

−ε(σ − α|Qε|2)(Qa
ε,i + ψε,i), (3.17)

and

(μa
ε + κε)(Qa

ε,i + ψε,i) = (−Δ + V + |Qε|2)(Qa
ε,i + ψε,i)

+ε(σ − α|Qε|2)(Qa
ε,r + ψε,r), (3.18)

respectively. The identity coming from the real part can be rewritten in the following way.

L+ψε,r = μa
εQa

ε,r − (−Δ + V + |Qa
ε |2)ψε,r + ε(σ − α|Qa

ε |2)Qa
ε,i

+ κεQa
ε,r + ε2μ2ψε,r − 2Qa

ε,iQ
a
ε,rψε,r + ε(σ − α|Qa

ε |2)ψa
ε,i

− 2|Qi
ε,r|2ψa

ε,i + κεψε,r + ψε,r(2Qa
ε,rψε,r + 2Qa

ε,iψε,i + ψ2
ε,r + ψ2

ε,i)

− εψε,r(2Qa
ε,rψε,r + 2Qa

ε,iψε,i + ψ2
ε,r + ψ2

ε,i)

:= κεQ0 + ε4g1 + Fε(ψε,r, ψε,i, κε)

where g1 is given by

g1 := μ2Q2r − Q2
1iQ2r − (Q2

2r + 2Q3iQ1i)Q0 + (σ − αQ2
0)Q3i − (2Q0Q2r + Q2

1i)Q1i

and Fε can be explicitly computed. In particular it satisfies

‖Fε(ψε,r, ψε,i, κε)‖Σ � ε6.

The identity coming from the imaginary part can be rewritten in the following way.

L−ψε,i = μa
εQa

ε,i − (−Δ + V + |Qa
ε |2)Qa

ε,i − ε(σ − α|Qa
ε |2)Qa

ε,r

+ κεQa
ε,i + ε2μ2ψε,i − 2Qa

ε,i(Qa
ε,rψε,r + Qa

ε,iψε,i) − ε(σ − α|Q0|2)ψε,r

+ 2εQa
ε,r(Qa

ε,rψε,r + Qa
ε,iψε,i)
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− 2ψε,i(Qa
ε,rψε,r + Qa

ε,iψε,i) + 2εψε,r(Qa
ε,rψε,r + Qa

ε,iψε,i)

+ εQa
ε,r(ψ2

ε,r + ψ2
ε,i) − ψε,i(ψ2

ε,r + ψ2
ε,i) + εψε,r(ψ2

ε,r + ψ2
ε,i) + κεψε,i

:= ε
(
κεQ1i + ((2 + α)Q2

0 − σ − 2Q0Q1i)ψε,r

)
+ ε5ϕ2 + Gε(Qε,r, Qε,i, κε),

where ϕ2 is given by

ϕ2 := −(2Q0Q2r + Q2
1i)Q3i − (Q2

2r + 2Q1iQ3i)Q1i + (2Q0Q2r + Q2
1i)Q2r + (Q2

2r + 2Q1iQ3i)Q0

and Gε can be explicitely computed. In particular it satisfies

‖Gε(ψε,r, ψε,i, κε)‖Σ � ε7.

Now we define a map Φε : Σ × Σ × (0, ∞) → Σ × Σ × (0, ∞) by

Φε(ψ̃ε,r, ψ̃ε,i, κ̃ε) = (ψε,r, ψε,i, κε)

where, (ψε,r, ψε,i, κε) solves

⎧⎪⎪⎨
⎪⎪⎩

L+ψε,r = κεQ0 + ε4g1 + Fε(ψ̃ε,r, ψ̃ε,i, κ̃ε)

L−ψε,i = ε
(
κεQ1i + ((2 + α)Q2

0 − σ − 2Q0Q1i)ψε,r

)
+ ε5ϕ2 + Gε(ψ̃ε,r, ψ̃ε,i, κ̃ε),

(L−ψε,i, Q0)2 = 0.

(3.19)

Now the purpose is to show that there are positive constants C1, C2 and C3 such that the above map is a 
contraction on the ball

Bε := {(ψε,r, ψε,i, κε) : |κε| ≤ C1ε4, ‖ψε,r‖Σ ≤ C2ε4, ‖ψε,i‖Σ ≤ C3ε5},

for ε > 0 sufficiently small. The ball Bε is endowed with the norm

max
{

|κε|
C1ε4 ,

‖ψε,r‖Σ

C2ε4 ,
‖ψε,i‖Σ

C3ε5

}
. (3.20)

Thanks to the equation on ψε,r and the invertibility of L+, we can write

ψε,r = κεQ′(μ0) + ε4L−1
+ (g1) + L−1

+
(
Fε(ψ̃ε,r, ψ̃ε,i, κ̃ε)

)
. (3.21)

Plugging the above identity in the equation on ψε,i, we obtain

L−ψε,i = εκε

(
Q1,i + ((2 + α)Q2

0 + 2Q0Q1,i − σ)Q′(μ0)

+ε5((2 + α)Q2
0 + 2Q0Q1,i − σ)L−1

+ (g1) + L−1
+

(
Fε(ψ̃ε,r, ψ̃ε,i, κ̃ε)

)
.

Since,

(
Q1,i + ((2 + α)Q2

0 − 2Q0Q1,i − σ)Q′(μ0), Q0
)

2 = ‖Q0‖2
L2

then the choice of
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κε = − ε4

‖Q0‖2
L2

∫
R2

Q0g1 dx − 1
ε

∫
R2

Q0L−1
+

(
Fε(ψ̃ε,r, ψ̃ε,i, κ̃ε)

)
dx

makes

(L−ψε,i, Q0)2 = 0,

which enables us to invert L− and thus calculate ψε,i:

ψε,i = εκεL−1
−

(
Q1,i + ((2 + α)Q2

0 − 2Q0Q1,i − σ)Q′(μ0)
)

+ L−1
− L−1

+
(
Fε(ψ̃ε,r, ψ̃ε,i, κ̃ε)

)
+ ε5L−1

−
(
((2 + α)Q2

0 − 2Q0Q1,i − σ)L−1
+ (g1)

)
(3.22)

Let

C1 := 2‖g1‖L2

‖Q0‖L2
,

C2 = 2
(
C1‖Q′(μ0)‖Σ + ‖L−1

+ (g1)‖Σ
)
,

and

C3 : = 2C1‖L−1
−

(
Q1,i + ((2 + α)Q2

0 − 2Q0Q1,i − σ)Q′(μ0)
)
‖Σ

+ 2‖L−1
−

(
((2 + α)Q2

0 − 2Q0Q1,i − σ)L−1
+ (g1)

)
‖Σ

To show that Φε is a contraction, consider (ψ̃a
ε,r, ψ̃a

ε,i, ̃κ
a
ε) and (ψ̃b

ε,r, ψ̃b
ε,i, ̃κ

b
ε) in the ball Bε and denote by 

(ψa
ε,r, ψa

ε,i, κ
a
ε) and (ψb

ε,r, ψb
ε,i, κ

b
ε) their respective images through the map Φε. We have

κε := κa
ε − κb

ε = 1
ε

∫
R2

Q0L−1
+

[
Fε(ψ̃b

ε,r, ψ̃b
ε,i, κ̃b

ε) − Fε(ψ̃a
ε,r, ψ̃a

ε,i, κ̃a
ε)

]
dx,

ψε,r := ψa
ε,r − ψb

ε,r = κεQ′(μ0) − L−1
+

(
Fε(ψ̃b

ε,r, ψ̃b
ε,i, κ̃b

ε) − Fε(ψ̃a
ε,r, ψ̃a

ε,i, κ̃a
ε)

)
,

and

ψε,i := ψa
ε,r − ψb

ε,r = εκεL−1
−

(
Q1,i + ((2 + α)Q2

0 − 2Q0Q1,i − σ)Q′(μ0)
)

− L−1
− L−1

+
(
Fε(ψ̃b

ε,r, ψ̃b
ε,i, κ̃b

ε) − Fε(ψ̃a
ε,r, ψ̃a

ε,i, κ̃a
ε)

)
.

Estimating κε, ψε,r and ψε,i using the above bounds on Fε and Gε yields

|κε| � ε5, ‖ψε,r‖Σ � ε5, ‖ψε,i‖Σ � ε6

showing the contraction of the map Φε �
4. The Cauchy problem

In this section, we study the Cauchy problem:
{

i∂tψ + Δψ = V (x)ψ + |ψ|2ψ + i(σ(x) − α|ψ|2)ψ, t > 0, x ∈ R2,

ψ|t=0 = ψ0.
(4.1)

We will first assume that σ ∈ L4(R2), we set U(t) = e−it(−Δ+V ).
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Definition 4.1. A pair (p, q) is admissible if 2 ≤ q < ∞ and

2
p

= δ(q) := 2(1
2 − 1

q
).

Recall the following Strichartz estimates for the Schrödinger equation with potential are due to [3].

Proposition 4.1. Let T > 0.

1. For any admissible pair (p, q), there exists Cq(T ) such that

‖U(.)ϕ‖Lp([0,T ];Lq) ≤ Cq(T )‖ϕ‖L2 , ∀ ϕ ∈ L2(R2). (4.2)

2. Denote

D(F )(t, x) =
t∫

0

U(t − s)F (s, x)dτ.

For all admissible pairs (p1, q1) and (p2, q2), there exists C = Cq1,q2(T ) such that

‖D(F )‖Lp1 ([0,τ ];Lq1 ) ≤ C‖F‖
Lp′

2 ([0,τ ];Lq′
2 ), (4.3)

for all F ∈ Lp′
2([0, T ]; Lq′

2) and 0 ≤ τ ≤ T .

Proposition 4.2. There exists δ > 0 such that if ψ0 ∈ L2(R2) and T ∈ [0, 1] are such that

‖U(.)ψ0‖L4([0,T ]×R2) ≤ δ and T 3/4‖σ‖L4(R2) ≤ 1
8 ,

then (4.1) has a unique solution

ψ ∈ C([0, T ]; L2) ∩ L4([0, T ] × R2).

Proof of Proposition 4.2. Let

X = {ψ ∈ C([0, T ]; L2) ∩ L4([0, T ] × R2), ‖ψ‖L4([0,T ]×R2) ≤ 2δ}.

In view of Duhamel’s formula, and for ψ ∈ X, introduce the map

Φ(ψ)(t) := U(t)ψ0 − i

t∫
0

U(t − s)(1 − iα)|ψ|2ψ(s)ds +
t∫

0

U(t − s)(σψ)(s)ds.

From Strichartz inequalities

‖Φ(ψ)‖L4([0,T ]×R2) ≤ ‖U(.)ψ0‖L4([0,T ]×R2) + C(1 + α)‖|ψ|2ψ‖L4/3([0,T ]×R2)

+ ‖σψ‖L1([0,T ];L2)

≤ δ + C(1 + α‖ψ‖3
L4([0,T ]×R2) + ‖σ‖L4‖ψ‖L1([0,T ];L4)

≤ δ + C(1 + α)(2δ)3 + ‖σ‖L4T 3/4‖ψ‖L4([0,T ]×R2)

≤ δ + C(1 + α)(2δ)3 + 2δT 3/4‖σ‖L4

≤ δ + C(1 + α)(2δ)3 + δ
.
4
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By choosing δ > 0 sufficiently small, the right hand side does not exceed 2δ : X is stable under the action 
of Φ. For the contraction, let ψ1, ψ2 ∈ X:

‖Φ(ψ1) − Φ(ψ2)‖L4([0,T ]×R2) ≤ C(1 + α)‖|φ1|2ψ1 − |ψ2|2ψ2‖L4/3([0,T ]×R2)

+ ‖σ(ψ1 − ψ2)‖L1([0,T ];L2)

≤ C(‖ψ1‖2
L4([0,T ]×R2) + ‖ψ2‖2

L4([0,T ]×R2))‖ψ1 − ψ2‖L4([0,T ]×R2)

+ ‖σ‖L4T 3/4‖ψ1 − ψ2‖L4([0,T ]×R2)

≤ (Cδ2 + 1
8)‖ψ1 − ψ2‖L4([0,T ]×R2).

Up to decreasing δ again, the factor on the right hand side does not exceed 1/2 and Φ is a contraction on 
X. This proves the existence part of the proposition. The uniqueness part readily follows from the remark 
that if ψ ∈ L4([0, T ] × R2), then [0, T ] can be split finitely many times on intervals where

‖ψ‖L4(Ij×R2) ≤ 2δ,

so uniqueness on X can be deduced. �
Theorem 4.1. Let ψ0 ∈ L2(R2), σ ∈ L4(R2). Then (4.1) has a unique, maximal solution

ψ ∈ C([0, Tmax); L2) ∩ L4
loc([0, Tmax); L4(R2)).

Moreover, in [0, Tmax):

d

dt
‖ψ(t)‖2

L2 + α‖ψ(t)‖4
L4 −

∫
R2

σ(x)|ψ(t, x)|2dx = 0. (4.4)

It is maximal in the sense that if Tmax is finite, then

Tmax∫
0

∫
R2

|ψ(t, x)|4dtdx = ∞.

Proof. Since ψ0 ∈ L2, the homogeneous Strichartz inequality (2.1) implies U(.)ψ0 ∈ L4([0, 1]) × R2), hence

‖U(.)ψ0‖L4([0,T ]×R2) �→
T →0

0.

Moreover, Proposition 4.2 yields a local solution satisfying (4.1). For the notion of maximality, we proceed 
as in [2]. Suppose that ψ ∈ C([0, Tmax); L2) ∩ L4([0, Tmax] × R2), with Tmax finite, and that ψ cannot be 
extended to larger time. Let t ∈ [0, Tmax) and s ∈ [0, Tmax − t). Duhamel’s formula implies

U(s)ψ(t) = ψ(t + s) + i

s∫
0

U(s − s′)(1 − iα)|ψ|2ψ(t + s′)ds′ −
s∫

0

U(s − s′)(σψ)(t + s′)ds′.

In view of the same inequality as in the proof of Proposition 4.2.

‖U(.)ψ(t)‖L4((0,Tmax−t)×R2) ≤ ‖ψ‖L4((t,Tmax)×R2) + C‖ψ‖3
L4(t,Tmax)×R2

+1‖ψ‖L4((t,Tmax)×R2).
8
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The right hand side is less than δ if t is close to Tmax. Proposition 4.3 shows that ψ can be extended after 
Tmax, in contradiction with the definition of Tmax. �
Corollary 4.2. If ψ0 ∈ L2(R2) and σ ∈ L4 ∩ L∞(R2), then Tmax = ∞, and for all t ≥ 0,

‖ψ(t)‖2
L2 ≤ ‖ψ0‖2

L2et‖σ‖L∞ .

Proof. Form (5.1)

d

dt
‖ψ(t)‖2

L2 + α‖ψ(t)‖4
L4 − ‖σ‖L∞‖ψ(t)‖2

L2 ≤ 0,

hence

d

dt

(
e−‖σ‖L∞ t‖ψ(t)‖2

L2

)
+ αe−‖σ‖L∞ t‖ψ(t)‖4

L4 ≤ 0,

and

e−‖σ‖L∞ t‖ψ(t)‖2
L2 + α

T∫
0

e−‖σ‖L∞ t‖ψ(t)‖4
L4dt ≤ ‖ψ0‖2

L2 .

Therefore, for all T finite,

T∫
0

‖ψ(t)‖4
L4dt ≤ eT ‖σ‖L∞

α
‖ψ0‖2

L2 ,

hence Tmax = ∞ in Theorem 4.1. �
Corollary 4.3. If ψ0 ∈ Σ and σ ∈ L4 ∩ W 1.∞(R2), then (4.1) has a unique, global solution ψ, such that

ψ, ∇ψ, xψ ∈ C([0, ∞); L2(R2)) ∩ L4
loc([0, ∞); L4(R2)).

The analogue of Proposition 4.2 becomes, if we just assume σ ∈ L∞(R2):

Proposition 4.3. There exists δ > 0 such that if ψ0 ∈ L2(R2) and T ∈ (0, 1] are such that

‖U(.)ψ0‖L4([0,T ]×R2) ≤ δ and T‖σ‖L∞‖ψ0‖L2 ≤ δ

8 ,

then (4.1) has a unique solution

ψ ∈ C([0, T ]; L2) ∩ L4([0, T ] × R2).

The proof is similar to the proof of Proposition 4.2, by working in

Y = {ψ ∈ C([0, T ]; L2) ∩ L4([0, T ] × R2), ‖ψ‖L4([0,T ]×R2) ≤ 2δ, ‖ψ‖L∞([0,T ];L2) ≤ 2‖ψ0‖L2}.

and estimating

‖σψ‖L1([0,T ];L2) ≤ T‖σ‖L∞([0,T ];L2).
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Now, we still have (5.1), hence

‖ψ(t)‖2
L2 ≤ ‖ψ0‖2

L2et‖σ‖L∞ and
T∫

0

‖ψ(t)‖4
L4dt ≤ eT ‖σ‖L∞

α
‖ψ0‖2

L2 .

Therefore, the solution is global again.

5. Appendix: Proof of Proposition 3.3

Proof. We start by proving (i). Consider the minimizing problem

�μ0 := inf{< L−v; v >Σ∗,Σ: u ∈ Σ and ‖v‖L2 = 1},

and observe that since L−(Q0) = 0, then �μ0 ≤ 0.
On the one hand, arguing as in the proof of Proposition 3.1, one can easily show that a minimizer u of the 
above problem exists. Next, for any test function ϕ, we have

< L−(u + εϕ); (u + εϕ) >Σ∗,Σ≥ �μ0(1 + ε2‖ϕ‖2
L2 + 2εRe(u, ϕ)2).

That is

�μ0 + ε2 (
‖∇ϕ‖2

L2 + ‖xϕ‖2
L2 + ‖Q0ϕ‖2

L2 − μ0‖ϕ‖2
L2

)
+ 2εRe ((∇u, ∇ϕ)2 + (xu, xϕ)2 + (Q0u, Q0ϕ)2 − μ0(u, ϕ)2)

≥ �μ0(1 + ε2‖ϕ‖2
L2 + 2εRe(u, ϕ)2).

Since ε is arbitrary and can have any sign, then we deduce that

L−u = �μ0u,

and therefore u is an eigenvector of L− corresponding to the first (and simple) eigenvalue �μ0 . On the other 
hand, it follows from Theorem 11.8 in [11] that the minimizer is unique and up to a phase change, we can 
take a positive minimizer ũ = eiθu with θ ∈ R. Now, to conclude it suffices to show that �μ0 = 0. We see 
from L−Q0 = 0 that

�μ0(ũ, Q0)2 =< L−ũ; Q0 >Σ∗,Σ=< ũ; L−Q0 >Σ∗,Σ= 0,

yielding (given that Q0 and ũ are positive) �μ0 = 0. This finishes the proof.
Now we prove (ii). The proof of the bijectivity goes through several steps. First we prove Proposition 3.2. 
Set

μ = 2 + η

u = √
ηq, where 0 < η << 1. (5.1)

Then (μ0−SP0) reads as

(−Δ + |x|2 − 2)q = η(q − q3).
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Now we can decompose q = aϕ1 + ϕ⊥
1 , where ϕ1 is the first simple eigenfunction of the operator H0 :=

−Δ + |x|2, ϕ⊥
1 denotes an element of the vector space L2-orthogonal to ϕ1, and a(η) is a scalar. Therefore, 

we have

L2ϕ⊥
1 := (−Δ + |x|2 − 2)ϕ⊥

1 = η
[
aϕ1 + ϕ⊥ − (aϕ1 + ϕ⊥

1 )3
]

= ηF (a, ϕ⊥
1 ). (5.2)

Now let us define the projection Π by: Π(cϕ1 +ϕ⊥
1 ) = ϕ⊥

1 . Thus, (5.2) can be rewritten in the following way

ϕ⊥
1 = η(ΠL2)−1ΠF (a, ϕ⊥

1 ) (5.3)

and

(I − Π) F (a, ϕ⊥
1 ) = 0. (5.4)

We will first solve (5.3) using the implicit function theorem.
First, we notice that for η = 0, and a0 satisfying:

|ϕ1|22 − a2
0|ϕ1|44 = 0,

we have ϕ⊥
1 (0, a0) = 0 is a solution of (5.3). On the other hand,

d

dϕ⊥
1

|(η=0,a0)

(
ϕ⊥

1 − η(ΠL2)−1ΠF (a, ϕ⊥
1 )

)

is invertible for 0 < |(η, a − a0)| << 1. Thus, using the implicit function theorem, there exists a unique 
ϕ⊥

1 = γ(η, a) solving (5.3). Now we are going to solve (5.4) for a = a(η).
We have (F (a, ϕ⊥

1 ), ϕ1)2 = 0, which after expansion, leads to

a|ϕ1|22 − a3|ϕ1|44 + O(η) = 0,

that in partcicular yields

−|ϕ1|22 − 3a2|ϕ1|44 < 0, (5.5)

by an appropriate choice of |η| << 1.
In summary, we can assert that there exists 0 < η0 << 1 such that for all 0 < η < η0, there exists a unique 
solution (ϕ⊥

1 , a) = (ϕ⊥
1 , a)(η)) solving (5.3)-(5.4), finishing the proof of Proposition 3.2.

Second, we consider the eigenvalue problem of the linearized operator around u(η)

L+ϕ =
(

− Δ + |x|2 − 3(u(η))2 − μ(η)
)
ϕ = λϕ, (5.6)

and track how the zero eigenvalue of L+ moves for small values of η. Note that since q (and hence u) 
decays exponentially fast in space, the operator L+ has a discrete spectrum with the same asymptotic of 
the eigenvalues as the Harmonic oscillator. Recalling that μ = η + 2 and u(η) = √

ηq with q = aϕ1 + ϕ⊥
1 , 

equation (5.6) is rewritten as

Lηϕ(η) = λ(η)ϕ(η)
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with ‖ϕ(η)‖2
2 = 1, and Lη := −Δ + |x|2 − 3ηq2 − η − 2.

When η = 0, we have λ(0) = 0, ϕ(0) = ϕ1, and λ(0) is a simple isolated eigenvalue of L0.
Taking the derivative with respect to η, we obtain at η = 0:

(
− Δ + |x|2 − 2 − 3(a(0)ϕ1)2 − 1

)
+ L(0)dϕ(0)

dη
= dλ

dη
ϕ(0) + λ

dϕ(0)
dη

. (5.7)

Multiplying the identity (5.7) by ϕ(0) and taking the L2 scalar product, we get
(

(−Δ + |x|2 − 2 − 3(a(0)ϕ1)2 − 1)ϕ1, ϕ1

)
2

= −3a2(0)|ϕ1|44 − |ϕ1|22. (5.8)

(5.8) is strictly negative by identity (5.5). Therefore, dλ

dη

∣∣∣
η=0

< 0.
Third, we show that for small masses M , the ground state QM minimizing VM given by Lemma 2.2 is 

indeed equal to the unique u(η) given in proposition (3.2) by choosing M ∼ η << η0. More precisely, it is 
sufficient to show that QM√

M
→ ϕ1 and μM → 2, as M → 0 where (−Δ + |x|2)ϕ1 = 2ϕ1 and ‖ϕ1‖2 = 1.

To prove the latter assertion, let us first notice that

2M ≤ ‖∇QM ‖2
2 + ‖xQM ‖2

2 + ‖QM ‖4
4

≤ 2M + M2‖ϕ1‖4
4. (5.9)

This implies that μM → 2 as M → 0.
Additionally, (5.9) implies that QM√

M
= vM is bounded in Σ and satisfies

−ΔvM + |x|2vM + M |vM |2vM = μM vM .

Taking the weak limit in the latter inequality, we deduce that vM → ϕ1 in Σ as M → 0. Hence, choosing 
M small enough; M ∼ η << M0 := η0 so that QM√

M
is in a neighborhood of ϕ1 in Σ.

In the last part of the proof, we choose

α =

∫
σ(x)Q4

M (x)dx∫
Q2

M (x)dx

> α0 :=

∫
σ(x)Q4

M0
(x)dx∫

Q2
M0

(x)dx

∼ 1
M0

for M < M0 yielding that QM is a zero of the functional K. �
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